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Abstract

We consider a locally interacting Fermi gas in its natural non-equilibrium steady state and prove the Quantum
Central Limit Theorem (QCLT) for a large class of observables. A special case of our results concerns finitely
many free Fermi gas reservoirs coupled by local interactions. The QCLT for flux observables, together with the
Green-Kubo formulas and the Onsager reciprocity relations previouslyestablished [JOP4], complete the proof of
the Fluctuation-Dissipation Theorem and the development of linear response theory for this class of models.
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1 Introduction

This paper and its companion [AJPP3] are first in a series of papers dealing with fluctuation theory of non-equilibrium steady
states in quantum statistical mechanics. They are part of a wider programinitiated in [Ru2, Ru3, JP1, JP2, JP4] which deals
with the development of a mathematical theory of non-equilibrium statistical mechanics in the framework of algebraic quantum
statistical mechanics [BR1, BR2, Pi]. For additional information about thisprogram we refer the reader to the reviews [Ru4,
JP3, AJPP1].

In this paper we study the same model as in [JOP4]: A free Fermi gas in aquasi-free state perturbed by a sufficiently regular
local interaction. It is well-known that under the influence of such a perturbation this system approaches, as timet → +∞, a
steady state commonly called the natural non-equilibrium steady state (NESS) [BM1, AM, BM2, FMU, JOP4]. Our main result
is that under very general conditions the Quantum Central Limit Theorem(QCLT) holds for this NESS. Combined with the
results of [JOP4], the QCLT completes the proof of the near-equilibrium Fluctuation-Dissipation Theorem and the development
of linear response theory for this class of models.

The rest of this introduction is organized as follows. In Subsection 1.1 for notational purposes we review a few basic concepts
of algebraic quantum statistical mechanics. In this subsection the reader can find the definition of QCLT for quantum dynamical
systems and a brief review of related literature. Our main result is stated in Subsection 1.2. In Subsection 1.3 we discuss our
results in the context of linear response theory.

Acknowledgment.A part of this work has been done during Y.P.’s stay at McGill University and the C.R.M. as ISM Postdoc-
toral Fellow, during his visit to McGill University funded by NSERC and his visit to Erwin Schrödinger Institut. The research
of V.J. was partly supported by NSERC. We wish to thank Manfred Salmhofer for useful discussions.

1.1 Central limit theorem for quantum dynamical systems

Let O be aC∗-algebra with identity1l and letτ t, t ∈ R, be a strongly continuous group of∗-automorphisms ofO. The pair
(O, τ) is called aC∗-dynamical system. A positive normalized element of the dualO∗ is called a state onO. In what follows
ω is a givenτ -invariant state onO. The triple(O, τ, ω) is called a quantum dynamical system.

The system(O, τ, ω) is called ergodic if

lim
t→∞

1

t

Z t

0

ω (B∗τs(A)B) ds = ω(B∗B)ω(A),

and mixing if
lim

|t|→∞
ω
`
B∗τ t(A)B

´
= ω(B∗B)ω(A),

for all A, B ∈ O.

We denote by(Hω, πω, Ωω) the GNS-representation of theC∗-algebraO associated to the stateω. The stateω is called
modular ifΩω is a separating vector for the enveloping von Neumann algebraπω(O)′′. The states of thermal equilibrium are
described by the(τ, β)-KMS condition whereβ > 0 is the inverse temperature. Any(τ, β)-KMS state onO is τ -invariant and
modular.

For any subsetA ⊂ O we denote byAself = {A ∈ A |A = A∗} the set of self-adjoint elements ofA. Let f be a bounded
Borel function onR andA ∈ Oself . With a slight abuse of notation in the sequel we will often denotef(πω(A)) by f(A) and
write ω(f(A)) = (Ωω, f(πω(A))Ωω). With this convention,1[a,b](A) denotes the spectral projection on the interval[a, b] of
πω(A). We shall use the same convention for the productsf1(πω(A1)) · · · fn(πω(An)), etc.

An involutive antilinear∗-automorphismΘ of O is called time-reversal ifΘ ◦ τ t = τ−t ◦ Θ. A stateη on O is called
time-reversal invariant ifη ◦ Θ(A) = η(A∗) holds for allA ∈ O.

We say that a subsetA ⊂ O is L1-asymptotically abelian forτ if for all A, B ∈ A,
Z ∞

−∞

‚‚[A, τ t(B)]
‚‚ dt < ∞.
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Throughout the paper we shall use the shorthand

Ãt ≡ 1√
t

Z t

0

(τs(A) − ω(A)) ds.

Definition 1.1 LetC be a∗-vector subspace ofO. We say thatC is CLT-admissibleif for all A, B ∈ C,
Z ∞

−∞

˛̨
ω(τ t(A)B) − ω(A)ω(B)

˛̨
dt < ∞.

ForA, B ∈ C we set

L(A, B) ≡
Z ∞

−∞

ω
`
(τ t(A) − ω(A))(B − ω(B))

´
dt =

Z ∞

−∞

`
ω
`
τ t(A)B

´
− ω(A)ω(B)

´
dt,

ς(A, B) ≡ 1

2i

Z ∞

−∞

ω
`
[τ t(A), B]

´
dt =

1

2i
(L(A, B) − L(B, A)) .

The functional(A, B) 7→ L(A, B) is obviously bilinear. Other properties of this functional are summarized in:

Proposition 1.2 Suppose thatC is CLT-admissible and letA, B ∈ C. Then:

(i) L(A∗, A) ≥ 0.

(ii) L(A, B) = L(B∗, A∗). In particular, if A andB are self-adjoint, thenς(A, B) = Im L(A, B).

(iii) |L(A∗, B)|2 ≤ L(A∗, A)L(B∗, B).

(iv) (A, B) 7→ ς(A, B) is a (possibly degenerate) symplectic form on the real vector spaceCself .

(v) If ω is a mixing(τ, β)-KMS state, thenς = 0.

(vi) Suppose thatς = 0, thatC is dense inO andL1-asymptotically abelian forτ , and thatω is either a factor state or3-fold
mixing: For all A1, A2, A3 ∈ O,

lim
mini6=j |ti−tj |→∞

ω
`
τ t1(A1)τ

t2(A2)τ
t3(A3)

´
= ω(A1)ω(A2)ω(A3).

Thenω is a (τ, β)-KMS state for someβ ∈ R ∪ {±∞}.

Proof. Note that

0 ≤ ω
“
Ã∗

t Ãt

”
=

Z t

−t

„
1 − |s|

t

«
ω
`
(τ t(A∗) − ω(A∗))(A − ω(A))

´
ds.

This identity and the dominated convergence theorem yield

L(A∗, A) = lim
t→∞

ω
“
Ã∗

t Ãt

”
≥ 0,

and (i) follows. Parts (ii) and (iv) are obvious. (i) and (ii) imply the Cauchy-Schwartz inequality (iii). Part (v) follows
from Proposition 5.4.12 in [BR2]. Part (vi) is the celebrated stability result of Bratteli, Kishimoto and Robinson [BKR], see
Proposition 5.4.20 in [BR2].2

Definition 1.3 Let C be CLT-admissible. We shall say that the Simple Quantum Central Limit Theorem (SQCLT) holds forC
w.r.t. (O, τ, ω) if for all A ∈ Cself ,

lim
t→∞

ω
“
eiÃt

”
= exp

„
−1

2
L(A, A)

«
.

We shall say that the Quantum Central Limit Theorem (QCLT) holds forC if for all n and allA1, · · · , An in Cself ,

lim
t→∞

ω
“
eiÃ1t · · · eiÃnt

”
= exp

0
@−1

2

X

1≤j,k≤n

L (Ak, Aj) − i
X

1≤j<k≤n

ς(Aj , Ak)

1
A . (1.1)
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The SQCLT is obviously a special case of the QCLT. Under sufficient ergodic assumptions, however, the QCLT can be deduced
from the SQCLT.

Theorem 1.4 Suppose thatC is CLT-admissible andL1-asymptotically abelian forτ . Suppose also that the system(O, τ, ω)
is ergodic and that the stateω is modular. If the SQCLT holds forC w.r.t. (O, τ, ω) then the QCLT also holds forC.

We shall prove Theorem 1.4 in Section 2 following the ideas of [GV].

The SQCLT has the same probabilistic interpretation as the classical centrallimit theorem. The probability of measuring a
value ofA in [a, b] when the system is in the stateω is given by

Probω{A ∈ [a, b]} = ω(1[a,b](A)).

If SQCLT holds forA, then

lim
t→∞

Probω


1

t

Z t

0

τs(A) ds ∈ ω(A) +

»
a√
t
,

b√
t

–ff
=

1p
2πL(A, A)

Z b

a

e−x2/2L(A,A)2 dx. (1.2)

Except in trivial cases, the QCLT does not have a classical probabilisticinterpretation. In this case the relevant concept is the
CCR algebra over the symplectic space(Cself , ς), often called the fluctuation algebra [GVV1]. The mathematical structure of
the fluctuation algebra is discussed in many places in the literature, see e.g.[GVV1]–[GVV6] and [MSTV, BR2, Pe, OP, De2]
for general results about CCR algebras. For notational and reference purposes we recall a few basic facts. LetW be the
C∗-algebra generated by the elements{W (A) |A ∈ Cself} such that for allA, B in Cself

W (−A) = W (A)∗, W (A)W (B) = e−iς(A,B)/2W (A + B),

equipped with the minimal regular norm. The map

ωL(W (A)) ≡ e−L(A,A)/2,

uniquely extends to a quasi-free state onW and (1.1) can be written as

lim
t→∞

ω
“
eiÃ1t · · · eiÃnt

”
= ωL(W (A1) · · ·W (An)). (1.3)

The pair(W, ωL) describes the fluctuations ofC w.r.t. the quantum dynamical system(O, τ, ω). Let (HL, πL, ΩL) be the
GNS representation ofW associated toωL. We shall also denote byωL the induced state on the enveloping von Neumann
algebraπL(W)′′. Since for allA ∈ Cself the map

R ∋ x 7→ ωL(W (xA)),

extends to an entire analytic function onC, there exist self-adjoint operatorsϕL(A) onHL such that

πL(W (A)) = eiϕL(A).

Moreover, the operatorsϕL(A), A ∈ Cself have a common dense set of analytic vectorsA ⊂ HL and on this set

[ϕL(A), ϕL(B)] = iς(A, B)1l.

The operatorsϕL(A) are the Bose fields associated by QCLT to(O, τ, ω). For anyn andA1, · · · , An ∈ Cself , ΩL is in the
domain ofϕL(A1) · · ·ϕL(An) and , as usual, we denote

ωL(ϕL(A1) · · ·ϕL(An)) ≡ (ΩL, ϕL(A1) · · ·ϕL(An)ΩL). (1.4)

In particularωL(ϕL(A1)ϕL(A2)) = L(A1, A2). For any integern we denotePn the set of all permutationsπ of {1, . . . , 2n}
such that

π(2j − 1) < π(2j), and π(2j − 1) < π(2j + 1), (1.5)

for everyj ∈ {1, . . . , n}. The cardinality ofPn is (2n)!/(2nn!). Then

ωL(ϕL(A1) · · ·ϕL(An)) =

8
>><
>>:

X

π∈Pn/2

n/2Y

j=1

ωL(ϕL(Aπ(2j−1))ϕL(Aπ(2j))), if n is even;

0, if n is odd.

(1.6)

The QCLT and the non-commutative Lévy-Cramér theorem proven in [JPP] yield:
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Theorem 1.5 Suppose that QCLT holds forC w.r.t. (O, τ, ω), let A1, · · · , An ∈ Cself , and letI1, . . . , In ⊂ R be open
intervals. IfL(Aj , Aj) = 0, we assume in addition that0 is not an endpoint ofIj . Then

lim
t→∞

ω(χI1(Ã1t) · · ·χIn(Ãnt)) = ωL(χI1(ϕL(A1)) · · ·χIn(ϕL(An))), (1.7)

whereχI denotes the characteristic function of the intervalI.

For a probabilistic interpretation of Theorem 1.5 in the context of repeatedquantum-mechanical measurements we refer the
reader to Section 2 in [Da1].

The QCLT does not imply that
lim

t→∞
ω(Ã1t · · · Ãnt) = ωL(ϕL(A1) · · ·ϕL(An)), (1.8)

and in principle the convergence of moments has to be established separately. In our model, the proof of (1.8) is an intermediate
step in the proof of the QCLT.

To define Bose annihilation and creation operators associated with fieldsϕL(A), we need to assume that the symplectic formς
is non-degenerate and thatCself is either even- or infinite-dimensional. In this case there exists a complex structureJ on Cself

satisfyingς(JA, JB) = ς(A, B), and one can define the operatorsaL(A)/a∗
L(A) onA by

aL(A) ≡ 1√
2

(ϕL(A) + iϕL(JA)) , a∗
L(A) ≡ 1√

2
(ϕL(A) − iϕL(JA)) . (1.9)

These operators are closable and satisfy

[aL(A), a∗
L(B)] = i (ς(A, B) − iς(A, JB)) ,

onA.

We expect that in typical physical examples the symplectic formς will be degenerate in which case the Bose annihilation and
creation operators (1.9) cannot be defined globally. Let us considerfirst the extreme caseς = 0 (this will hold, for example, if
ω is a mixing(τ, β)-KMS state). Let̂Cself be the group of all characters of the discrete Abelian groupCself . The dual group
Ĉself endowed with the topology of pointwise convergence is a compact topological group and the algebraW is isomorphic
to theC∗-algebra of all continuous functions on̂Cself . The stateωL is identified with the Gaussian measure onĈself uniquely
determined by Z

χ(A) dµL(χ) = e−L(A,A)/2.

More generally, let
C

(1)
self = {A | ς(A, B) = 0 for all B ∈ Cself} ,

and suppose that there existC
(2)
self such thatCself = C

(1)
self ⊕ C

(2)
self as an orthogonal sum (this is certainly the case ifCself is finite

dimensional, i.e., we consider QCLT with respect to finitely many observables). The restriction ofς to C
(2)
self is non-degenerate,

and ifW (j), ω
(j)
L , j = 1, 2 denote the respective CCR algebras and quasi-free states, then

W = W(1) ⊗W(2), ωL = ω
(1)
L ⊗ ω

(2)
L .

In particular, annihilation and creation operators can be associated to the elements ofW(2).

Besides QCLT one may consider the related and more general existenceproblem for the quantum hydrodynamic limit (QHL).
For ǫ > 0 andt > 0, let

Âǫ(t) ≡ ǫ

Z t/ǫ2

0

(τs(A) − ω(A)) ds.

We say thatC has QHL w.r.t.(O, τ, ω) if for all A1, · · ·An ∈ Cself , and allt1 > 0, · · · , tn > 0,

lim
ǫ↓0

ω
“
eiÂ1ǫ(t1) · · · eiÂnǫ(tn)

”
= ωL(W (χ[0,t1] ⊗ A1) · · ·W (χ[0,tn] ⊗ An)), (1.10)

where, in the definition of the Weyl algebra, the bilinear formL must be replaced by

LQHL(χ[0,s] ⊗ A, χ[0,t] ⊗ B) = inf(s, t) L(A, B).
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The special case where alltj ’s are equal corresponds to QCLT. The QHL is interpreted as the weak convergence of the quan-
tum stochastic procesŝAǫ(t) to a quantum Brownian motion. With the obvious reformulation, Theorem 1.5holds for QHL.
Convergence of moments

lim
ǫ↓0

ω(Â1ǫ(t1) · · · Ânǫ(tn)) = ωL(ϕL(χ[0,t1] ⊗ A1) · · ·ϕL(χ[0,tn] ⊗ An), (1.11)

is of independent interest. Even more generally, one may associate to a classF of real valued integrable functions onR the
observables

Âǫ(f) ≡ ǫ−1

Z ∞

0

f(ǫ2t)
`
τ t(A) − ω(A)

´
dt,

with f ∈ F, A ∈ C and study the limitǫ ↓ 0 of

ω
“
eiÂ1ǫ(f1) · · · eiÂnǫ(fn)

”
. (1.12)

Note that QHL corresponds to the choiceF = {χ[0,t] | t > 0}. For reasons of space and notational simplicity we will focus
in the paper on the QCLT for locally interacting fermionic systems. With only notational changes our proofs can be extended
to establish QHL and (1.11). It is likely that the proofs can be extended to amuch larger class of functionsF, but we shall not
pursue this question here (see [De1] for a related discussion).

We finish this subsection with a few general remarks. We finish this section with a few remarks about earlier quantum central-
limit type results.

First, notice that, since the law of one single observable is well-defined, the description of the limiting law of a family(Ãx)x≥0

of observables as the parameterx → ∞, is covered by the classical Lévy- Cramèr theorem. Several results of interest exist,
which are only of quantum nature insofar as the computation of the limitlimx→∞ ω(eiαÃx) is made more complicated by the
quantum setting.

Truly quantum central limit theorems therefore involve an attempt to describe the limiting joint behavior of the law of a family
(Ã(1), . . . , Ã(p))x of observables asx → ∞. The earliest results of this type were obtained in a quantum probabilistic approach
and were non commutative analogues of classical results concerning sums of independent, identically distributed variables.
Such results can be translated in a physical setting as applying to space fluctuations of one-site observables in quantum spin
systems with respect to translation-invariant product states. The generality of the framework and the formulation of the limit
vary. We mention in particular [Me] where matrix elements of approximate Weyl operators constructed from Pauli matrices are
considered; [GvW] which holds in the general *-algebra case but where only convergence of moments is proved; [Kup] which
works in a general C*-algebra setting and where a true convergence indistribution (to a classical Gaussian family) is proved,
but only with respect to a tracial state . We also mention [CH] which, althoughnot a central limit theorem, is a first attempt
to characterize a convergence in distribution of a family of non-commutating operators, in terms of a (pseudo)-characteristic
function.

The papers [GVV1]–[GVV6] aim at more physical applications: a satisfactory algebra of fluctuations is constructed for space
fluctuations of local observables in a quantum spin system with a tranlation-invariant state. That state does not have to be a
product state; however, the ergodic assumptions on that state are so strong that no nontrivial application was found beyond the
product case. However, these papers were a conceptual improvement and our construction owes much to them. The papers
[Ma1]-[Ma2] had a similar spirit but, using less stringent ergodic conditions, gave non trivial application to space fluctuations
of local observables in XY chains.

A distinct feature of our work is that we study QCLT with respect to the group τ t describing the microscopic dynamics of the
system. There is a number of technical and conceptual aspects of QCLT which are specific to the dynamical group. For example,
the ergodic properties of the system (laws of large numbers), which have to be established prior to study its fluctuations, are
typically much harder to prove for the dynamical group than for the lattice translation group. As for the conceptual differences,
we mention that ifω is a (τ, β)-KMS state, then by Proposition 1.2 (v),ς = 0 and the CCR algebra of fluctuationsW is
commutative (Part (vi) provides a partial converse to this statement). This is in sharp contrast with QCLT w.r.t. the translation
group, where even in the simple example of product states of spin systems the fluctuation algebra is non-commutative.

The CLT for classical dynamical systems is discussed in [Li]. For a review of results on dynamical CLT for interacting particle
systems in classical statistical mechanics we refer the reader to [Sp] and[KL]. The CLT for classical spin systems is discussed
in Section V.7 of [E].

After this paper was completed, we have learned of the work [De1] whichis technically and conceptually related to ours. We
shall comment on Dereziński’s result at the end of Subsection 3.3.
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1.2 QCLT for locally interacting fermions

A free Fermi gas is described by theC∗-dynamical system(O, τ0) where:

(i) O = CAR(h) is the CAR algebra over the single particle Hilbert spaceh;

(ii) τ t
0 is the group of Bogoliubov∗-automorphisms generated by the single particle Hamiltonianh0,

τ t
0(a

#(f)) = a#(eith0f),

wherea∗(f)/a(f) are the Fermi creation/annihilation operators associated tof ∈ h anda# stands for eithera or a∗. We
denote byδ0 the generator ofτ0.

Let O be theτ0-invariantC∗-subalgebra ofO generated by{a∗(f)a(g) | f, g ∈ h} and1l. Physical observables are gauge
invariant and hence the elements ofO.

Let v be a vector subspace ofh and letO(v) be the collection of the elements of the form

A =

KX

k=1

nkY

j=1

a∗(fkj)a(gkj), (1.13)

whereK andnk ’s are finite andfkj , gkj ∈ v. We denotenA ≡ maxk nk and

F(A) ≡ {fkj , gkj | j = 1, . . . , nk, k = 1, . . . , K}

(to indicate the dependence ofK onA we will also denote it byKA). O(v) is a∗-subalgebra ofO, and ifv is dense inh, then
O(v) is norm dense inO.

Our main assumption is :

(A) There exists a dense vector subspaced ⊂ h such that the functions

R ∋ t 7→ (f, eith0g),

are inL1(R, dt) for all f, g ∈ d.

This assumption implies thath0 has purely absolutely continuous spectrum. Specific physical models which satisfy this as-
sumption are discussed at the end of this subsection.

Let V ∈ O(d)self be a self-adjoint perturbation. We shall always assume thatnV ≥ 2. The special casenV = 1 leads to
quasi-free perturbed dynamics and is discussed in detail in the companion paper [AJPP3], see also [AJPP1, AJPP2, JKP] and
Remark after Theorem 1.7 below.

Let λ ∈ R be a coupling constant and letτλ be theC∗-dynamics generated byδλ = δ0 + iλ[V, · ]. By rescalingλ, without
loss of generality we may assume that

max
f∈F(V )

‖f‖ = 1. (1.14)

We shall consider the locally interacting fermionic system described by(O, τλ). Note thatτλ preservesO and that the pair
(O, τλ) is also aC∗-dynamical system. Let

λV ≡ 1

2nV KV ℓV

(2nV − 2)2nV −2

(2nV − 1)2nV −1
, (1.15)

where

ℓV ≡
Z ∞

−∞

sup
f,g∈F(V )

|(f, eith0g)|dt. (1.16)

The following result was proven in [JOP4] (see also [BM1, AM, BM2, FMU]).
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Theorem 1.6 Suppose that (A) holds. Then:

1. For all A ∈ O(d) and any monomialB = a#(f1) · · · a#(fm) with {f1, . . . , fm} ⊂ d, one has

sup
|λ|≤λV

Z

R

‚‚[τ t
λ(A), B]

‚‚ dt < ∞.

2. For |λ| ≤ λV the Møller morphisms
γ+

λ ≡ s − lim
t→∞

τ−t
0 ◦ τ t

λ,

exist and are∗-automorphisms ofO.

In what follows we shall assume that (A) holds. LetT be a self-adjoint operator onh satisfying0 ≤ T ≤ I and[T, eith0 ] = 0
for all t, and letω0 be the gauge invariant quasi-free state onO associated toT . We will sometimes callT the density
operator. The stateω0 is τ0-invariant and is the initial (reference) state of our fermionic system. The quantum dynamical
system(O, τ0, ω0) is mixing. We denote byN0 the set of allω-normal states onO. Theorem 1.6 yields that any stateη ∈ N0

evolves to the limiting stateω+
λ = ω0 ◦ γ+

λ , i.e., forA ∈ O and|λ| ≤ λV ,

lim
t→∞

η(τ t
λ(A)) = ω+

λ (A),

see, e.g., [Ro, AJPP1]. The stateω+
λ is the NESS (non-equilibrium steady state) of(O, τλ) associated to the initial stateω0.

Clearly, ω+
λ is τλ-invariant andγ+

λ is an isomorphism of the quantum dynamical systems(O, τ0, ω0) and (O, τλ, ω+
λ ). In

particular, the system(O, τλ, ω+
λ ) is mixing.

In what follows we shall always assume thatKer T = Ker (I − T ) = {0}. This assumption ensures that the statesω0 andω+
λ

are modular.

Let c ⊂ d be a vector subspace such that the functions

R ∋ t 7→ (f, eith0Tg),

are inL1(R, dt) for all f, g ∈ c. In general, it may happen thatc = {0}, and so the existence of a non-trivialc is a dynamical
regularity property of the pair(T, h0). If T = F (h0), whereF ∈ L1(R, dx) is such that its Fourier transform

F̂ (t) =
1√
2π

Z ∞

−∞

eitxF (x)dx,

is also inL1(R, dt), then one can takec = d.

Let
λ̃V ≡ 2−8(nV −1)λV , (1.17)

and
C ≡ O(c).

The main result of this paper is:

Theorem 1.7 Suppose that (A) holds, thatV ∈ Cself , and that|λ| ≤ λ̃V . ThenC is CLT-admissible and the QCLT holds for
C w.r.t. (O, τλ, ω+

λ ).

Remark. If nV = 1, then Theorem 1.6 holds for any0 < λV < (2KV ℓV )−1, see [JOP4]. With this change, Theorem 1.7
holds withλ̃V = λV . The casenV = 1 is however very special. IfV =

P
k a∗(fk)a(gk), thenτλ is quasi-free dynamics

generated byhλ = h0 + λ
P

k(gk, ·)fk and Theorem 1.6 can be derived from the scattering theory of the pair(hλ, h0), see
[Ro, AJPP1]. This alternative approach is technically simpler, yields better constants, and can be also used to prove a Large
Deviation Principle and to discuss additional topics like Landauer-Büttiker formula which cannot be handled by the method of
[JOP4] and this paper. For this reason, we shall discuss this special case separately in the companion paper [AJPP3].

As we have already remarked, our proof of Theorem 1.7 also yields the convergence of moments (see Theorem 3.2), and is
easily extended to the proof of existence of QHL for locally interacting fermionic systems (recall (1.10), (1.11)).
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We finish this subsection with some concrete models to which Theorem 1.7 applies. The models on graphs are the same as in
[JOP4]. LetG be the set of vertices of a connected graph of bounded degree,∆G the discrete Laplacian acting onl2(G), and
δx the Kronecker delta function atx ∈ G. We shall call a graphG admissibleif there existsγ > 1 such that for allx, y ∈ G,

|(δx, e−it∆G δy)| = O(|t|−γ), (1.18)

ast → ∞. Examples of admissible graphs areG = Z
d for d ≥ 3, G = Z+ × Z

d−1 whereZ+ = {0, 1, · · · } andd ≥ 1,
tubular graphs of the typeZ+ × Γ, whereΓ ⊂ Z

d−1 is finite, a rooted Bethe lattice, etc. Assumption (A) holds and Theorem
1.7 holds withc = d if:

(i) G is an admissible graph;

(ii) h = ℓ2(G) (or more generallyℓ2(G) ⊗ C
L) andh0 = −∆G ;

(iii) d is the subspace of finitely supported elements ofh;

(iv) T = F (h0) whereF̂ ∈ L1(R, dt) and0 < F (x) < 1 for x ∈ sp(h0);

The continuous examples are similar. LetD ⊂ R
d be a domain and let∆D be the Dirichlet Laplacian onL2(D, dx). We shall

say that a domainD is admissible if there existsγ > 1 such that

|(f, e−it∆Dg)| = O(|t|−γ),

for all boundedf andg with compact support. Examples of admissible domains areD = R
d for d ≥ 3, D = R+ × R

d−1 for
d ≥ 1, tubular domains of the typeR+ × Γ, whereΓ ⊂ R

d−1 is a bounded domain, etc. Assumption (A) holds and Theorem
1.7 holds withc = d if:

(i) D is an admissible domain;

(ii) h = L2(D, dx) (or more generallyL2(D, dx) ⊗ C
L) andh0 = −∆D;

(iii) d is the subspace of bounded compactly supported elements ofh;

(iv) T = F (h0) whereF̂ ∈ L1(R, dt) and0 < F (x) < 1 for x ∈ sp(h0);

1.3 QCLT, linear response and the Fluctuation-Dissipationtheorem

In addition to the assumptions of the previous subsection, we assume thath, h0, T have the composite structure

h =

MM

j=1

hj , h0 =

MM

j=1

hj , T =

MM

j=1

1

1 + eβj(hj−µj)
, (1.19)

wherehj ’s are bounded from below self-adjoint operators on the Hilbert subspaceshj , βj > 0, andµj ∈ R. We denote bypj

the orthogonal projections ontohj . The subalgebrasOj = CAR(hj) describe Fermi gas reservoirsRj which are initially in
equilibrium at inverse temperaturesβj and chemical potentialsµj . The perturbationλV describes the interaction between the
reservoirs and allows for the flow of heat and charges within the system.

The non-equilibrium statistical mechanics of this class of models has been studied recently in [JOP4] (see also [FMU] for
related models and results). We briefly recall the results we need.

Suppose thatpjF(V ) ⊂ Dom (hj) for all j. The entropy production observable of(O, τλ) associated to the reference state
ω0 is

σλ ≡ −
MX

j=1

βj(Φj − µjJj),

whereΦj ≡ iλ[dΓ(hjpj), V ] andJj ≡ iλ[dΓ(pj), V ]. Explicitly,

Φj = λ

KVX

k=1

nkX

l=1

 
l−1Y

i=1

a∗(fki)a(gki)

!
{a∗(ihjpjfkl)a(gkl) + a∗(fkl)a(ihjpjgkl)}

 
nkY

i=l+1

a∗(fki)a(gki)

!
,

Jj = λ

KVX

k=1

nkX

l=1

 
l−1Y

i=1

a∗(fki)a(gki)

!
{a∗(ipjfkl)a(gkl) + a∗(fkl)a(ipjgkl)}

 
nkY

i=l+1

a∗(fki)a(gki)

!
.
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The observableΦj/Jj describes the heat/charge flux out of the reservoirRj (note thatΦj ,Jj ∈ O). The conservation laws

MX

j=1

ω+
λ (Φj) = 0,

MX

j=1

ω+
λ (Jj) = 0,

hold. By the general result of [JP1, Ru2, JP4], the entropy production of the NESSω+
λ is non-negative,

Ep(ω+
λ ) ≡ ω+

λ (σλ) = −
MX

j=1

βj(ω
+
λ (Φj) − µjω

+
λ (Jj)) ≥ 0.

If all βj ’s andµj ’s are equal, i.e.β1 = · · · = βM = β andµ1 = · · · = µM = µ, thenω0 ↾ O is a (τ0, β)-KMS state
and so the reference state is a thermal equilibrium state of the unperturbedsystem. Thenω+

λ ↾ O is a (τλ, β)-KMS state,
ω+

λ (Φj) = ω+
λ (Jj) = 0 for all j, and in particularEp(ω+

λ ) = 0, see [JOP2]. On physical grounds, vanishing of the fluxes
and the entropy production in thermal equilibrium is certainly an expected result. It is also expected that if eitherβj ’s or µj ’s
are not all equal, thenEp(ω+

λ ) > 0. For specific interactionsV one can computeω+
λ (σλ) to the first non-trivial order inλ and

hence establish the strict positivity of entropy production by a perturbative calculation (see [FMU, JP6] and [JP3] for a related
results). The strict positivity of the entropy production for a generic perturbationλV has been established in [JP5].

To establish QCLT for the flux observables in addition to the Assumption (A) we need:

(B) For all j, hjpjd ⊂ d.

This assumption and the specific form of density operator ensure that one may takec = d and that ifV ∈ Cself , then
{Φj ,Jj} ⊂ Cself . Hence, for|λ| ≤ λ̃V the QCLT holds for the flux observables.

We finish with a discussion of linear response theory (for references and additional information about linear response theory
in algebraic formalism of quantum statistical mechanics we refer the reader to [AJPP1] and [JOP1]-[JOP4]). We will need the
following two assumptions:

(C) The operatorshj are bounded.

(D) There exists a complex conjugationc onh which commutes with allhj and satisfiescf = f for all f ∈ F(V ).

Assumption (C) is of technical nature and can be relaxed. Assumption (D) ensures that the system(O, τλ, ω0) is time-reversal
invariant. Time-reversal invariance is of central importance in linear response theory.

Let βeq > 0 andµeq ∈ R be given equilibrium values of the inverse temperature and chemical potential. We denote~β =
(β1, · · · , βM ), ~µ = (µ1, · · · , µM ), ~βeq = (βeq, · · · , βeq), ~µeq = (µeq, · · · , µeq), and we shall indicate explicitly the
dependence ofω+

λ on ~β and~µ by ω+

λ,~β,~µ
. Similarly, we shall indicate explicitly the dependence ofL(A, B) on λ, ~β, ~µ by

Lλ,~β,~µ. Sinceω+

λ,~βeq,~µeq
(Φj) = ω+

λ,~βeq,~µeq
(Jj) = 0,

Lλ,~βeq,~µeq
(A, B) =

Z ∞

−∞

ω+

λ,~βeq,~µeq

`
Aτ t

λ(B)
´

dt,

for A, B ∈ {Φj ,Jj | 1 ≤ j ≤ M}.

Assuming the existence of derivatives, the kinetic transport coefficients are defined by

Lkj
λhh ≡ −∂βj ω+

λ,~β,~µ
(Φk)

˛̨
~β≡~βeq,~µ=~µeq

, Lkj
λhc ≡ βeq∂µj ω+

λ,~β,~µ
(Φk)

˛̨
~β=~βeq,~µ=~µeq

,

Lkj
λch ≡ −∂βj ω+

λ,~β,~µ
(Jk)

˛̨
~β=~βeq,~µ=~µeq

, Lkj
λcc ≡ βeq∂µj ω+

λ,~β,~µ
(Jk)

˛̨
~β=~βeq,~µ=~µeq

,
(1.20)

where the indicesh/c stand for heat/charge. We then have
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Theorem 1.8 Suppose that Assumptions (A)-(D) hold. Then, for any|λ| < λV , the functions

(~β, ~µ) 7→ ω+

λ,~β,~µ
(Φj), (~β, ~µ) 7→ ω+

λ,~β,~µ
(Jj),

are analytic in a neighborhood of(~βeq, ~µeq). Moreover,
(1) The Green-Kubo formulas hold:

Lkj
λhh =

1

2
Lλ,~βeq,~µeq

(Φk, Φj), Lkj
λhc =

1

2
Lλ,~βeq,~µeq

(Φk,Jj),

Lkj
λch =

1

2
Lλ,~βeq,~µeq

(Jk, Φj), Lkj
λcc =

1

2
Lλ,~βeq,~µeq

(Jk,Jj).

(1.21)

(2) The Onsager reciprocity relations hold:

Lkj
λhh = Ljk

λhh, Lkj
λcc = Ljk

λcc, Lkj
λhc = Ljk

λch. (1.22)

(3) LetC denote the linear span of{Φj ,Jj | 1 ≤ j ≤ M}. For |λ| ≤ λ̃V , C is CLT-admissible and the QCLT holds forC w.r.t.
(O, τλ, ωλ,~βeq,~µeq

). The associated fluctuation algebraW is commutative.

Remark 1. Parts (1) and (2) of Theorem 1.8 are proven in [JOP4]. Part (3) is aspecial case of Theorem 1.7. Parts (1)
and (3) relate linear response to thermodynamical forces to fluctuationsin thermal equilibrium and constitute the Fluctuation-
Dissipation Theorem for our model. The physical aspects of linear response theory and Fluctuation-Dissipation Theorem are
discussed in classical references [DGM, KTH].
Remark 2. The arguments in [JOP4] do not establish that the functions

t 7→ ω+

λ,~βeq,~µeq

`
Aτ t

λ(B)
´
, (1.23)

are absolutely integrable forA, B ∈ {Φj ,Jj | 1 ≤ j ≤ M} and in Part (2)Lλ,~βeq,~µeq
(A, B) is defined by

Lλ,~βeq,~µeq
(A, B) = lim

t→∞

Z t

−t

ω+

λ,~βeq,~µeq
(Aτs

λ(B)) ds.

The absolute integrability of the correlation functions (1.23) is a delicate dynamical problem resolved in Part (3) for|λ| ≤ λ̃V

(see Definition 1.1).
Remark 3. Remarks 4 and 6 after Theorem 1.5 in [JOP4] apply without changes to Theorem 1.8. Remark 7 is also applicable
and allows to extend the Fluctuation-Dissipation Theorem to a large class of socalledcenteredobservables.
Remark 4. Although the time-reversal Assumption (D) plays no role in Part (3) of Theorem 1.8, it is a crucial ingredient
in proofs of Parts (1) and (2) (see [JOP4, AJPP3] for a discussion). The Fluctuation-Dissipation Theorem fails for locally
interacting open fermionic systems which are not time-reversal invariant.

A class of concrete models for which (A)-(B)-(D) hold is easily constructed following the examples discussed at the end of
Subsection 1.2. LetG1, . . . ,GM be admissible graphs. Then (A)-(D) hold ifhj = ℓ2(Gj) (or ℓ2(Gj) ⊗ C

L), hj = −∆Gj , and
d is the subspace of finitely supported elements ofh. A physically important class of allowed interactions isV = V hop + V int

where
V hop =

X

x,y

t(x, y) (a∗(δx)a(δy) + a∗(δy)a(δx)) ,

andt : G × G → R is a finitely supported function (G = ∪jGj), and

V int =
X

x,y

v(x, y)a∗(δx)a∗(δy)a(δy)a(δx),

wherev : G × G → R is finitely supported.V hop describes tunneling junctions between the reservoir andV int is a local pair
interaction.
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2 General aspects of CLT

2.1 Proof of Theorem 1.4

Our argument follows the ideas of [GV]. ForA, B in Oself we set

D(A, B) ≡ eiAeiB − ei(A+B)e−
1
2
[A,B].

The first ingredient of the proof is:

Proposition 2.1 If the set{A, B} ⊂ Oself is L1-asymptotically abelian forτ then the asymptotic 2nd-order Baker-Campbell-
Hausdorff formula

lim
t→∞

‖D(Ãt, B̃t)‖ = 0,

holds.

Note that Proposition 2.1 is not a simple consequence of the BCH formula because its hypothesis do not ensure that the double
commutator[Ãt, [Ãt, B̃t]] vanishes ast → ∞. To prove Proposition 2.1 we need the following estimate.

Lemma 2.2 If A, B, a, b are bounded self-adjoint operators then

‖D(A + a, B + b)‖ ≤ ‖D(A, B)‖ + 4
`
‖a‖3 + ‖b‖3´+ ‖[[A, B], [a, b]]‖ + (2 + ‖a‖ + ‖b‖)

X

X∈{A,B}
y∈{a,b}

‖[X, y]‖.

Proof. We decomposeD(A + a, B + b) =
P9

j=1 Dj according to the following table and get an upper bound of the norm of
each term using the elementary estimates

‚‚‚ei(x+y) − eix
‚‚‚ ≤ ‖y‖,

‚‚‚ei(x+y) − eixeiy
‚‚‚ ≤ 1

2
‖[x, y]‖,

‚‚‚eixeiy − eiyeix
‚‚‚ ≤ ‖[x, y]‖.

j Dj upper bound on‖Dj‖

1
“
ei(A+a) − eiaeiA

”
ei(B+b) 1

2
‖[A, a]‖

2 eiaeiA
“
ei(B+b) − eibeiB

” 1

2
‖[B, b]‖

3 eia
“
eiAeib − eibeiA

”
eiB ‖[A, b]‖

4 eiaeib
“
eiAeiB − ei(A+B)e−

1
2
[A,B]

”
‖D(A, B)‖

5
“
eiaeib − ei(a+b)e−

1
2
[a,b]
”

ei(A+B)e−
1
2
[A,B] ‖D(a, b)‖

6 ei(a+b)
“
e−

1
2
[a,b]ei(A+B) − ei(A+B)e−

1
2
[a,b]
”

e−
1
2
[A,B] 1

2
‖[A + B, [a, b]]‖

7 ei(a+b)ei(A+B)
“
e−

1
2
[a,b]e−

1
2
[A,B] − e−

1
2
[A,B]− 1

2
[a,b]
” 1

8
‖[[A, B], [a, b]]‖

8 ei(a+b)ei(A+B)
“
e−

1
2
[A,B]− 1

2
[a,b] − e−

1
2
[A+a,B+b]

” 1

2
(‖[A, b]‖ + ‖[B, a]‖)

9
“
ei(a+b)ei(A+B) − ei(A+B+a+b)

”
e−

1
2
[A+a,B+b] 1

2
(‖[A, a]‖ + ‖[A, b]‖ + ‖[B, a]‖ + ‖[B, b]‖)
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>From the BCH estimate we further get

‖D5‖ ≤ ‖D(a, b)‖ ≤ ‖[a, [a, b]]‖ + ‖[b, [a, b]]‖ ≤ 4(‖a‖3 + ‖b‖3),

and the Jacobi identity yields

‖D6‖ ≤ ‖a‖(‖[A, b]‖ + ‖[B, b]‖) + ‖b‖(‖[A, a]‖ + ‖[B, a]‖).

The result follows.2

Proof of Proposition 2.1.For t > 0 andj ∈ N setp(t) ≡ log(1 + t) andIj(t) ≡ [jp(t), (j + 1)p(t)[. ForX ∈ Oself define

X
(j)
t ≡ t−1/2

Z

Ij(t)∩[0,t]

τs(X) ds, X
(<k)
t ≡

X

0≤j<k

X
(j)
t .

If N(t) denotes the integer such thatN(t)p(t) ≤ t < (N(t) + 1)p(t) then repeated use of Lemma 2.2 yields

‖D(Ãt, B̃t)‖ ≤4

N(t)X

j=0

“
‖A(j)

t ‖3 + ‖B(j)
t ‖3

”
+

N(t)X

j=0

“
2 + ‖A(j)

t ‖ + ‖B(j)
t ‖

” X

X,Y ∈{A,B}

‖[X(<j)
t , Y

(j)
t ]‖

+

N(t)X

j=0

‖[[A(<j)
t , B

(<j)
t ], [A

(j)
t , B

(j)
t ]]‖.

(2.24)

We now estimate the right hand side of this inequality. We first note that

‖X(j)
t ‖ ≤ ‖X‖ t−1/2p(t) ≤ ‖X‖, (2.25)

and hence

N(t)X

j=0

“
‖A(j)

t ‖3 + ‖B(j)
t ‖3

”
≤
`
‖A‖3 + ‖B‖3´ (N(t) + 1)t−3/2p(t)3 ≤ 2

`
‖A‖3 + ‖B‖3´ t−1/2p(t)2 → 0,

ast → ∞. Next consider

N(t)X

j=0

j−1X

k=0

‖[X(k)
t , Y

(j)
t ]‖ ≤ 1

t

N(t)X

j=0

Z jp(t)

0

Z (j+1)p(t)

jp(t)

‖[X, τv−u(Y )]‖ dvdu.

The change of variablesξ = v − jp(t), η = v − u, leads to

N(t)X

j=0

j−1X

k=0

‖[X(k)
t , Y

(j)
t ]‖ ≤ 1

t

N(t)X

j=0

Z p(t)

0

Z ξ+jp(t)

ξ

‖[X, τη(Y )]‖ dηdξ ≤ N(t) + 1

t

Z p(t)

0

Z ∞

ξ

‖[X, τη(Y )]‖ dηdξ.

Since(N(t) + 1)/t ≤ 2/p(t) we obtain, forX, Y ∈ {A, B},

lim
t→∞

N(t)X

j=0

j−1X

k=0

‖[X(k)
t , Y

(j)
t ]‖ ≤ lim

p→∞

2

p

Z p

0

»Z ∞

ξ

‖[X, τη(Y )]‖ dη

–
dξ = 0. (2.26)

Combining this with (2.25) we get

N(t)X

j=0

“
2 + ‖A(j)

t ‖ + ‖B(j)
t ‖

” X

X,Y ∈{A,B}

‖[X(<j)
t , Y

(j)
t ]‖ ≤ (2 + ‖A‖ + ‖B‖)

X

X,Y ∈{A,B}

N(t)X

j=0

j−1X

k=0

‖[X(k)
t , Y

(j)
t ]‖ → 0,

ast → ∞. To estimate the last term on the right hand side of (2.24) we write

N(t)X

j=0

‖[[A(<j)
t , B

(<j)
t ], [A

(j)
t , B

(j)
t ]]‖ ≤

N(t)X

j=0

j−1X

k=0

j−1X

l=0

‖[[A(k)
t , B

(l)
t ], [A

(j)
t , B

(j)
t ]]‖ = Z1 + Z2 + Z3,
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where

Z1 ≡
N(t)X

j=0

j−1X

k=0

‖[[A(k)
t , B

(k)
t ], [A

(j)
t , B

(j)
t ]]‖,

and

Z2 ≡
N(t)X

j=0

j−1X

k=0

k−1X

l=0

‖[[A(k)
t , B

(l)
t ], [A

(j)
t , B

(j)
t ]]‖, Z3 ≡

N(t)X

j=0

j−1X

l=0

l−1X

k=0

‖[[A(k)
t , B

(l)
t ], [A

(j)
t , B

(j)
t ]]‖.

Combined with (2.25) and (2.26), the identity

[[Ak, Bk], [Aj , Bj ]] = [[[Ak, Aj ], Bk], Bj ] + [[[Aj , Bk], Ak], Bj ] + [[[Bk, Bj ], Ak], Aj ] + [[[Bj , Ak], Bk], Aj ],

yields

Z1 ≤ 4(‖A‖2 + ‖B‖2)
X

X,Y ∈{A,B}

N(t)X

j=0

j−1X

k=0

‖[X(k)
t , Y

(j)
t ]‖ → 0,

ast → ∞. The estimate

N(t)X

j=0

‖[A(j)
t , B

(j)
t ]‖ ≤ 1

t

N(t)X

j=0

Z

Ij(t)

Z

Ij(t)

‖[A, τu−v(B)]‖ dudv

≤ 1

t

N(t)X

j=0

Z p(t)

0

Z p(t)−v

−v

‖[A, τu(B)]‖ dudv

≤ N(t) + 1

t
p(t)

Z p(t)

−p(t)

‖[A, τu(B)]‖du ≤ 2

Z

R

‖[A, τu(B)]‖ du,

together with (2.26) yield

Z2 ≤ 2

N(t)X

j=0

‖[A(j)
t , B

(j)
t ]‖

N(t)X

k=0

k−1X

l=0

‖[A(k)
t , B

(l)
t ]‖ → 0,

ast → ∞. The same argument applies toZ3 and completes the proof.2

Let (Hω, πω, Ωω) be the GNS-representation of the algebraO associated to the stateω. The second ingredient of the proof of
Theorem 1.4 is:

Proposition 2.3 Suppose that(O, τ, ω) is an ergodic quantum dynamical system and thatω is a modular state. If{A, B} is
anL1-asymptotically abelian pair forτ , then

s− lim
t→∞

πω

“
[Ãt, B̃t]

”
=

Z ∞

−∞

ω([τs(A), B]) ds.

Proof. We shall first prove that

lim
t→∞

πω

“
[Ãt, B̃t]

”
Ωω =

„Z ∞

−∞

ω([τs(A), B]) ds

«
Ωω. (2.27)

Writing

πω

“
[Ãt, B̃t]

”
=

1

t

Z t

0

Z t

0

πω

`
τs1([τs2−s1(A), B])

´
ds1ds2,

the change of variableu = s1, v = s2 − s1 yields that

πω

“
[Ãt, B̃t]

”
=

Z t

−t

ft(v) dv, (2.28)
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where

ft(v) =
1

t

Z min(t,t−v)

max(−v,0)

πω (τu([τv(A), B])) du.

Clearly,
‖ft(v)‖ ≤ ‖[τv(A), B])‖ ∈ L1(R), (2.29)

and so, by the dominated convergence theorem, it suffices to show that

lim
t→∞

ft(v)Ωω = ω ([τv(A), B]) Ωω, (2.30)

for all v ∈ R to prove (2.27). LetLω be the standard Liouvillean associated toω. We recall thatLω is the unique self-adjoint
operator onHω such that

πω(τ t(A)) = eitLω πω(A)e−itLω , LωΩω = 0.

Then
πω(τu([τv(A), B]))Ωω = eiuLω πω([τv(A), B])Ωω,

implies

ft(v)Ωω =
1

t

Z min(t,t−v)

max(−v,0)

eiuLω πω ([τv(A), B]) Ωω du.

Since(O, τ, ω) is ergodic, zero is a simple eigenvalue ofLω, and von Neumann’s mean ergodic theorem yields

s− lim
t→∞

1

t

Z min(t,t−v)

max(−v,0)

eiuLω du = s− lim
t→∞

1

t

Z t

0

eiuLω du = Ωω(Ωω| · ),

for all v ∈ R. This implies (2.30) and (2.27) follows.

To finish the proof note that for anyX ∈ πω(O)′ one has

πω

“
[Ãt, B̃t]

”
XΩω = Xπω

“
[Ãt, B̃t]

”
Ωω,

and so for allΨ ∈ πω(O)′Ωω

lim
t→∞

πω

“
[Ãt, B̃t]

”
Ψ =

„Z ∞

−∞

ω([τs(A), B]) ds

«
Ψ. (2.31)

Sinceω is modularπω(O)′Ωω is dense inHω and it follows from the estimate

sup
t>0

‖[Ãt, B̃t]‖ ≤
Z

R

‖[τs(A), B]‖ds < ∞,

that (2.31) extends to allΨ ∈ Hω. 2

We are now ready to complete:

Proof of Theorem 1.4.Let {A1, · · · , An} ∈ Cself . Forj = 1, . . . , n − 1, we set

Ujt = exp

„
−1

2
[Ãjt, Ã(j+1)t + · · · + Ãnt]

«
,

andUt = U1t · · ·U(n−1)t. Clearly, theUjt’s are unitary and repeated use of Proposition 2.1 yields that

lim
t→∞

‚‚‚eiÃ1t · · · eiÃnt − ei(Ã1t+···+Ãnt)Ut

‚‚‚ = 0,

and hence,

lim
t→∞

˛̨
˛ω
“
eiÃ1t · · · eiÃnt

”
− ω

“
ei(Ã1t+···+Ãnt)Ut

”˛̨
˛ = 0. (2.32)

Proposition 2.3 implies that

s− lim
t→∞

πω(Ujt) = exp

0
@−i

nX

k=j+1

ς(Aj , Ak)

1
A ,



Central limit theorem for locally interacting Fermi gas 16

and so

s− lim
t→∞

πω(Ut) = exp

0
@−i

X

1≤j<k≤n

ς(Aj , Ak)

1
A . (2.33)

Since SQCLT holds, Relations (2.32) and (2.33) yield

lim
t→∞

ω
“
eiÃ1t · · · eiÃnt

”
= lim

t→∞
ω
“
ei(Ã1t+···+Ãnt)Ut

”

= lim
t→∞

ω
“
ei(Ã1t+···+Ãnt)

”
exp

0
@−i

X

1≤j<k≤n

ς(Aj , Ak)

1
A

= exp

 
−1

2
L

 
nX

k=1

Ak,

nX

j=1

Aj

!!
exp

0
@−i

X

1≤j<k≤n

ς(Aj , Ak)

1
A ,

and the theorem follows.2

2.2 Norm localization

For ǫ > 0 we denoteDǫ = {z ∈ C | |z| < ǫ}.

Proposition 2.4 LetA ∈ Oself be such that
Z ∞

−∞

|ω(Aτ t(A)) − ω(A)2| dt < ∞.

Suppose that there existsǫ > 0 such that

lim
t→∞

ω(eiαÃt) = e−L(A,A)α2/2, (2.34)

for α ∈ Dǫ. Then (2.34) holds for allα ∈ R.

Proof. Remark that, forα = −ix, ω(eiαÃt) = ω(exÃt) ande−L(A,A)α2/2 = eL(A,A)x2/2 are moment generating functions.
The result then follows from well-known results in classical probability (see the paragraph “Moment generating functions” in
Section 30 of [Bil]).2

3 Locally interacting fermions

In this section we describe the strategy of the proof of our main result, Theorem 1.7, and establish a number of preliminary
results needed for the proof. In particular, we shall reduce the proofof Theorem 1.7 to the proof of Theorem 3.5 (stated in
Subsection 3.3 and proven in Section 4). Theorem 3.5, which is the main technical result of our paper, concerns only the
unperturbed system(O, τ0, ω0).

3.1 Strategy

Suppose that the assumptions of Theorem 1.7 hold and let

A =

KAX

k=1

nkY

j=1

a∗(fkj)a(gkj),
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be an element ofC. Clearly,

ω+
λ

“
(Ãt)

n
”

= t−n/2

Z

[0,t]n
ω+

λ

 
nY

j=1

“
τ

tj

λ (A) − ω+
λ (A)

”!
dt1 · · · dtn.

The first ingredient of the proof of Theorem 1.7 is:

Theorem 3.1 There exists a finite constantCV,A such that for alln,

sup
|λ|≤λ̃V ,t>0

t−n/2

Z

[0,t]n

˛̨
˛̨
˛ω

+
λ

 
nY

j=1

“
τ

tj

λ (A) − ω+
λ (A)

”!˛̨˛̨
˛ dt1 · · · dtn ≤ Cn

V,A n!. (3.35)

Remark 1. Our proof also gives an explicit estimate on the constantCV,A, see Formula (3.49) below.
Remark 2. In the special casen = 2, Theorem 3.1 yields that for allt > 0 and|λ| ≤ λ̃V ,

Z t

−t

„
1 − |s|

t

« ˛̨
ω+

λ

`
(τs

λ(A) − ω+
λ (A))(A − ω+

λ (A))
´˛̨

ds ≤ 2C2
V,A.

As t → ∞ the monotone convergence theorem yields
Z ∞

−∞

˛̨
ω+

λ

`
(τs

λ(A) − ω+
λ (A))(A − ω+

λ (A))
´˛̨

ds ≤ 2C2
V,A.

In particular, we derive thatC is CLT-admissible.

The second ingredient of the proof of Theorem 1.7 is:

Theorem 3.2 For |λ| ≤ λ̃V and alln ≥ 1,

lim
t→∞

ω+
λ

“
(Ãt)

n
”

=

8
><
>:

n!

2n/2(n/2)!
L(A, A)n/2 if n is even,

0 if n is odd.

Remark. With only notational changes the proof of Theorem 3.2 yields that for allA1, · · · , An ∈ C,

lim
t→∞

ω+
λ

“
Ã1t · · · Ãnt

”
= ωL (ϕL(A1) · · ·ϕL(An)) ,

where the r.h.s. is defined by (1.6).

Given Theorems 3.1 and 3.2, we can complete:

Proof of Theorem 1.7.Let A ∈ Cself . Forα ∈ C one has

ω+
λ

“
eiαÃt

”
=
X

n≥0

(iα)n

n!
ω+

λ

“
(Ãt)

n
”

. (3.36)

Let ǫ = 1/(2CV,A) and suppose that|λ| ≤ λ̃V . Theorems 3.1 and 3.2 yield that

sup
|α|<ǫ,t>0

˛̨
˛ω+

λ

“
eiαÃt

”˛̨
˛ < ∞,

and that for|α| < ǫ,

lim
t→∞

ω+
λ

“
eiαÃt

”
= e−L(A,A) α2/2. (3.37)
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Proposition 2.4 yields that (3.37) holds for allα ∈ R, and so SQCLT holds forC w.r.t. (O, τλ, ω+
λ ). Our standing assumption

Ker (T ) = Ker (I − T ) = {0} ensures that the stateω0 is modular, and sinceω+
λ = ω0 ◦ γ+

λ , the stateω+
λ is also modular.

By Theorem 1.6, if|λ| ≤ λV , thenC is L1-asymptotically Abelian forτλ and it follows from Theorem 1.4 that the QCLT also
holds.2

Notice that in the initial step of the proof we did not use the assumption thatA is self-adjoint, and so the following weak form
of QCLT holds foranyA ∈ C:

Corollary 3.3 For anyA ∈ C there existsǫ > 0 such that for|λ| ≤ λ̃V and|α| < ǫ,

lim
t→∞

ω+
λ

“
eiαÃt

”
= e−L(A,A)α2/2.

In the rest of this section we shall describe the strategy of the proof of Theorems 3.1 and 3.2.

3.2 The commutator estimate

We shall need the following result

Theorem 3.4 Suppose that Assumption (A) holds. LetV ∈ O(d)self be a perturbation such thatnV ≥ 2 and

max
f∈F(V )

‖f‖ = 1.

LetA = a#(f1) · · · a#(fm) be a monomial such thatF(A) = {f1, · · · , fm} ⊂ d, and let

C(n)
A (s1, . . . , sn) = [τsn

0 (V ), [· · · , [τs1
0 (V ), A] · · · ]].

Then for alln ≥ 0 there exist a finite index setQn(A), monomialsF (n)
A,q ∈ O, and scalar functionsG(n)

A,q such that

C(n)
A (s1, . . . , sn) =

X

q∈Qn(A)

G
(n)
A,q(s1, . . . , sn)F

(n)
A,q(s1, . . . , sn). (3.38)

Moreover,

1. The order of the monomialF
(n)
A,q does not exceed2n(nV − 1) + m.

2. If m is even then the order ofF (n)
A,q is also even.

3. The factors ofF (n)
A,q are from

n
a#(eish0g)

˛̨
˛ g ∈ F(V ), s ∈ {s1, . . . , sn}

o
∪
n

a#(g)
˛̨
˛ g ∈ F(A)

o
,

The number of factors from the first set does not exceedn(2nV − 1) while the number of factors from the second set
does not exceedm − 1. In particular,‖F (n)

A,q‖ ≤ max(1, maxf∈F(A) ‖f‖m−1).

4. LetλV be given by (1.15). Then

WV,A ≡
∞X

n=1

|λV |n
X

q∈Qn(A)

Z

−∞<sn≤···≤s1≤0

˛̨
˛G(n)

A,q(s1, . . . , sn)
˛̨
˛ ds1 · · · dsn < ∞. (3.39)

The proof of Theorem 3.4 is identical to the proof of Theorem 1.1 in [JOP4]. Parts 1–3 are simple and are stated for reference
purposes. The Part 4 is a relatively straightforward consequence ofthe fundamental Botvich-Guta-Maassen integral estimate
[BGM] which also gives an explicit estimate onWV,A. A pedagogical exposition of the Botvich-Guta-Maassen estimate can
be found in [JP6].

If A is as in Theorem 3.4 then
γ+

λ (A) = lim
t→∞

τ−t
0 ◦ τ t

λ(A),
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can be expanded in a power series inλ which converges for|λ| ≤ λV . Indeed, it follows from the Dyson expansion that

τ−t
0 ◦ τ t

λ(A) = A +
∞X

n=1

(iλ)n

Z

−t≤sn≤···≤s1≤0

[τsn
0 (V ), [· · · , [τs1

0 (V ), A] · · · ]] ds1 · · · dsn.

Hence, for|λ| ≤ λV ,

γ+
λ (A) = A +

∞X

n=1

(iλ)n
X

q∈Qn(A)

Z

−∞<sn≤···≤s1≤0

G
(n)
A,q(s1, . . . , sn)F

(n)
A,q(s1, . . . , sn) ds1 · · · dsn, (3.40)

where the series on the right-hand side is norm convergent by Parts 3 and 4 of Theorem 3.4. This expansion will be used in the
proof of Theorems 3.1 and 3.2.

3.3 Quasi-free correlations

LetO, τ0 andω0 be as in Subsection 1.2. We denote by

ϕ(f) =
1√
2

(a(f) + a∗(f)) ,

the Fermi field operator associated tof ∈ h. The Fermi field operators satisfy the commutation relation

ϕ(f)ϕ(g) + ϕ(g)ϕ(f) = Re(f, g)1l,

and the CAR algebraO is generated by{ϕ(f) | f ∈ h}. Clearly,

a(f) =
1√
2

(ϕ(f) + iϕ(if)) , a∗(f) =
1√
2

(ϕ(f) − iϕ(if)) . (3.41)

We recall thatω0, the gauge invariant quasi-free state associated to the density operatorT , is uniquely specified by

ω0(a
∗(fn) · · · a∗(f1)a(g1) · · · a(gm)) = δn,mdet{(gi, T fj)}.

Alternatively, ω0 can be described by its action on the Fermi field operators. LetPn be the set of all permutationsπ of
{1, . . . , 2n} described in Subsection 1.1 (recall (1.5)). Denote byǫ(π) the signature ofπ ∈ Pn. ω0 is the unique state onO
such that

ω0(ϕ(f1)ϕ(f2)) =
1

2
(f1, f2) − i Im(f1, T f2),

and

ω0(ϕ(f1) · · ·ϕ(fn)) =

8
>>>><
>>>>:

X

π∈Pn/2

ǫ(π)

n/2Y

j=1

ωT

`
ϕ(fπ(2j−1)), ϕ(fπ(2j))

´
if n is even;

0 if n is odd.

For any bounded subsetf ⊂ h we set
Mf = sup

f∈f

‖f‖,

and

Cf = max

„
1, sup

f,g∈f

2

‖f‖ ‖g‖

Z ∞

−∞

˛̨
ω0

`
ϕ(f)τ t

0(ϕ(g))
´˛̨

dt

«
,

and we denote byM(f) the set of monomials with factors from{ϕ(f)|f ∈ f}. We further say thatA ∈ M(f) is of degree at
mostk if, for somef1, . . . , fk ∈ f, one can writeA = ϕ(f1) · · ·ϕ(fk).

Theorem 3.5 Suppose thatCf < ∞. Then for anyA1, . . . , An ∈ M(f) of degrees at mostk1, . . . , kn the following holds:
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1.

sup
t>0

t−n/2

Z

[0,t]n

˛̨
˛̨
˛ω0

 
nY

i=1

`
τ ti
0 (Ai) − ω0(Ai)

´
!˛̨
˛̨
˛ dt1 · · · dtn ≤

“
27/2Mf

”P
i ki

Cn
f n!.

2. If n is odd,

lim
t→∞

t−n/2

Z

[0,t]n
ω0

 
nY

i=1

`
τ ti
0 (Ai) − ω0(Ai)

´
!

dt1 · · · dtn = 0.

3. If n is even,

lim
t→∞

t−n/2

Z

[0,t]n
ω0

 
nY

i=1

`
τ ti
0 (Ai) − ω0(Ai)

´
!

dt1 · · · dtn =
X

π∈Pn/2

n/2Y

j=1

L0(Aπ(2j−1), Aπ(2j)),

where

L0(Ai, Aj) =

Z ∞

−∞

ω0

`
(τ t

0(Ai) − ω0(Ai))(Aj − ω0(Aj))
´

dt. (3.42)

Remark. As in Remark 2 after Theorem 3.1, Part 1 of the previous theorem withn = 2 implies that
Z ∞

−∞

˛̨
ω0

`
(τ t

0(Ai) − ω0(Ai))(Aj − ω0(Aj))
´˛̨

dt < ∞,

and soL0(Ai, Aj) is well defined.

Theorem 3.5 is in essence the main technical result of our paper. Its proof is given in Section 4.

We have formulated Theorem 3.5 in terms of field operators since that allows for a combinatorially natural approach to its proof.
Using the identities (3.41) one effortlessly gets the following reformulation which is more convenient for our application.

Denote byM̃(f) the set of monomials with factors from{a#(f)|f ∈ f}. A ∈ M(f) is of degree at mostk if, for some
f1, . . . , fk ∈ f, one can writeA = a#(f1) · · · a#(fk). Let

Df = max

„
1, sup

f,g∈f∪if

2

‖f‖ ‖g‖

Z ∞

−∞

˛̨
ω0

`
ϕ(f)τ t

0(ϕ(g))
´˛̨

dt

«
,

Corollary 3.6 Suppose thatDf < ∞. Then for anyA1, . . . , An ∈ M̃(f) of degrees at mostk1, . . . , kn the following holds:

1.

sup
t>0

t−n/2

Z

[0,t]n

˛̨
˛̨
˛ω0

 
nY

i=1

`
τ ti
0 (Ai) − ω0(Ai)

´
!˛̨
˛̨
˛ dt1 · · · dtn ≤

`
24Mf

´P
i ki Dn

f n!.

2. If n is odd,

lim
t→∞

t−n/2

Z

[0,t]n
ω0

 
nY

i=1

`
τ ti
0 (Ai) − ω0(Ai)

´
!

dt1 · · · dtn = 0.

3. If n is even,

lim
t→∞

t−n/2

Z

[0,t]n
ω0

 
nY

i=1

`
τ ti
0 (Ai) − ω0(Ai)

´
!

dt1 · · · dtn =
X

π∈Pn/2

n/2Y

j=1

L0(Aπ(2j−1), Aπ(2j)),

whereL0(Ai, Ak) is defined by (3.42).
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Note that ifc is as in Subsection 1.2 andf is a finite subset ofc, thenCf < ∞ andDf < ∞.

After this paper was completed we have learned of a beautiful paper [De1] which is perhaps deepest among early works on
quantum central limit theorems (Dereziński’s work was motivated by [Ha1, Ha2, Ru1, HL1, HL2, Da2]). In relation to our
work, in [De1] Theorem 3.5 was proven in the special casek1 = · · · = kn = 2 of quadratic interactions. This suffices for the
proof of SQCLT for quasi-free dynamics and for observables whichare polynomials in Fermi fields. The proofs of Parts (2)
and (3) of Theorem 3.5 are not that much different in the general casekj ≥ 2. The key difference is in Part (1) which in the
quadratic case follows easily from Stirling’s formula. To prove Part (1)for anykj ≥ 2 is much more difficult and the bulk of
the proof of Theorem 3.5 in Section 4 is devoted to this estimate. The proof of QCLT for locally interacting fermionic systems
critically depends on this result.

3.4 Proofs of Theorems 3.1 and 3.2

In this subsection we shall show that Theorems 3.4 and 3.5 imply Theorems 3.1 and 3.2, thereby reducing the proof of Theorem
1.7 to the proof of Theorem 3.5.

If η is a state, we shall denote

ηT(A1, . . . , An) ≡ η ((A1 − η(A1)) . . . (An − η(An))) . (3.43)

Let

A =

KAX

k=1

Ak, Ak =

nkY

j=1

a∗(fkj)a(gkj),

be an element ofC. Without loss of generality we may assume thatmaxf∈F(A) ‖f‖ = 1. With

f =
n

eish0f
˛̨
˛ f ∈ F(V ) ∪ F(A), s ∈ R

o
,

DV,A = max

„
1, max

f,g∈F(V )∪F(A)

1

‖f‖‖g‖

Z ∞

−∞

“
2−1|(f, eith0g)| + |(f, eith0Tg)|

”
dt

«
,

we clearly haveMf = 1 andDf ≤ DV,A.

Proof of Theorem 3.1.For |λ| ≤ λV ,

ω+
λT

`
τ t1

λ (A), . . . , τ tn
λ (A)

´
=

KAX

k1,...,kn=1

ω0T

`
τ t1
0 ◦ γ+

λ (Ak1), . . . , τ
tn
0 ◦ γ+

λ (Akn)
´
, (3.44)

and the expansion (3.40) yields that

τ t
0 ◦ γ+

λ (Ak) − ω0 ◦ γ+
λ (Ak) =

X

j≥0

(iλ)j
X

q∈Qj(Ak)

Z

∆j

G
(j)
Ak,q(s)

“
τ t
0

“
F

(j)
Ak,q(s)

”
− ω0

“
F

(j)
Ak,q(s)

””
ds, (3.45)

where∆j denotes the simplex{s = (s1, . . . , sj) ∈ R
j | − ∞ < sj < · · · < s1 < 0}. We have adopted the convention that

Q0(Ak) is a singleton, thatG(0)
Ak,q = 1 and thatF (0)

Ak,q = Ak. Moreover, integration over the empty simplex∆0 is interpreted
as the identity map. Applying Fubini’s theorem we get

t−n/2

Z

[0,t]n
ω0T

`
τ t1
0 ◦ γ+

λ (Ak1), . . . , τ
tn
0 ◦ γ+

λ (Akn)
´

dt1 · · · dtn =
X

j1,...,jn≥0

(iλ)j1+···+jn
X

q1∈Qj1
(Ak1

),...,qn∈Qjn (Akn )

Z

∆j1

ds1 · · ·
Z

∆jn

dsn

 
nY

l=1

G
(jl)
Akl

ql
(sl)

!
Ct(j, q, s; Ak1 , . . . , Akn), (3.46)
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where we have set

Ct(j, q, s; Ak1 , . . . , Akn) = t−n/2

Z

[0,t]n
ω0T

“
τ t1
0

“
F

(j1)
Ak1

q1
(s1)

”
, . . . , τ tn

0

“
F

(jn)
Akn qn

(sn)
””

dt1 · · · dtn.

We derive from Corollary 3.6 and Theorem 3.4 that

|Ct(j, q, s; Ak1 , . . . , Akn)| ≤ 28(nV −1)
Pn

l=1 jl

“
28nADf

”n

n!, (3.47)

holds fort > 0. Using this bound we further get from (3.46)

sup
t>0

t−n/2

Z

[0,t]n

˛̨
ω0T

`
τ t1
0 ◦ γ+

λ (Ak1), . . . , τ
tn
0 ◦ γ+

λ (Akn)
´˛̨

dt1 · · · dtn

≤
nY

l=1

0
B@28nADf

X

jl≥0

|28(nV −1)λ|jl
X

ql∈Qjl
(Akl

)

Z

∆l

˛̨
˛G(jl)

Akl
ql

(sl)
˛̨
˛ dsl

1
CAn!. (3.48)

For |λ| ≤ λ̃V we have (recall Definitions (1.17) and (3.39)),

X

jl≥0

|28(nV −1)λ|jl
X

ql∈Qjl
(Akl

)

Z

∆l

˛̨
˛G(jl)

Akl
ql

(sl)
˛̨
˛ dsl ≤ 1 + WV,Akl

.

By Theorem 3.4, the right hand side of this inequality is finite. Combining this bound with (3.44) and (3.48) we finally obtain

sup
|λ|<λ̃V ,t>0

t−n/2

Z

[0,t]n

˛̨
ω+

λT

`
τ t1

λ (A), . . . , τ tn
λ (A)

´˛̨
dt1 · · · dtn ≤

 
28nADf

KAX

k=1

(1 + WV,Ak)

!n

n!,

which concludes the proof.2

The above proof gives that in Theorem 3.1 one may take

CV,A = 28nADV,A

KAX

j=1

(1 + WV,Ak) . (3.49)

For an explicit estimate onWV,Ak we refer the reader to [JOP4].

Proof of Theorem 3.2.Note that

ω+
λ

“
(Ãt)

n
”

=

KAX

k1,...,kn=1

t−n/2

Z

[0,t]n
ω0T

`
τ t1
0 ◦ γ+

λ (Ak1), . . . , τ
tn
0 ◦ γ+

λ (Akn)
´

dt1 · · · dtn. (3.50)

In the proof of Theorem 3.1 we have established that the power series (3.46) converges uniformly for|λ| ≤ λ̃V andt > 0.
Suppose first thatn is odd. Corollary 3.6 yields that

lim
t→∞

Ct(j, q, s; Ak1 , . . . , Akn) = 0. (3.51)

By (3.47) and Part 3 of Theorem 3.4 we can apply the dominated convergence theorem to thes-integration in (3.46) to conclude
that each term of this power series vanishes ast → ∞, and so

lim
t→∞

ω+
λ

“
(Ãt)

n
”

= 0,

for |λ| ≤ λ̃V .
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If n is even, Corollary 3.6 yields

lim
t→∞

Ct(j, q, s; Ak1 , . . . , Akn) =
X

π∈Pn/2

n/2Y

i=1

L0

„
F

(jπ(2i−1))

Akπ(2i−1)
,qπ(2i−1)

(sπ(2i−1)), F
(jπ(2i))

Akπ(2i)
,qπ(2i)

(sπ(2i))

«

=
X

π∈Pn/2

Z

Rn/2

n/2Y

i=1

ω0T

„
τ ti
0

„
F

(jπ(2i−1))

Akπ(2i−1)
,qπ(2i−1)

(sπ(2i−1))

«
, F

(jπ(2i))

Akπ(2i)
,qπ(2i)

(sπ(2i))

«
dt1 · · · dtn/2.

The estimate (3.47) (applied in the casen = 2) yields that
Z

R

˛̨
˛ω0T

“
τ t
0

“
F

(j)
Ak,q(s)

”
, F

(j′)

Ak′ ,q′(s
′)
”˛̨
˛ dt ≤

“
28nA+1/2Df

”2

28(nV −1)(j+j′),

from which we obtain ˛̨
˛ lim
t→∞

Ct(j, q, s; Ak1 , . . . , Akn)
˛̨
˛ ≤

“
28nA+1/2Df

”n

28(nV −1)
P

i ji .

Arguing as in the previous case we get, for|λ| ≤ λ̃V , the expansion

lim
t→∞

t−n/2

Z

[0,t]n
ω0T

`
τ t1
0 ◦ γ+

λ (Ak1), . . . , τ
tn
0 ◦ γ+

λ (Akn)
´
dt1 · · · dtn/2

=
X

j1,...,jn≥0

(iλ)j1+···+jn
X

q1∈Qj1
(Ak1

),··· ,qn∈Qjn (Akn )

Z

∆j1

ds1 · · ·
Z

∆jn

dsn

 
nY

l=1

G
(jl)
Akl

,ql
(sl)

!
(3.52)

X

π∈Pn/2

Z

Rn/2

n/2Y

i=1

ω0T

„
τ ti
0

„
F

(jπ(2i−1))

Akπ(2i−1)
,qπ(2i−1)

(sπ(2i−1))

«
, F

(jπ(2i))

Akπ(2i)
,qπ(2i)

(sπ(2i))

«
dt1 · · · dtn/2.

By Fubini’s theorem, this can be rewritten as

X

π∈Pn/2

Z

Rn/2

2
64

X

j1,...,jn≥0

(iλ)j1+···+jn
X

q1∈Qj1
(Ak1

),··· ,qn∈Qjn (Akn )

Z

∆j1

ds1 · · ·
Z

∆jn

dsn

 
nY

l=1

G
(jl)
Akl

,ql
(sl)

!
n/2Y

i=1

ω0T

„
τ ti
0

„
F

(jπ(2i−1))

Akπ(2i−1)
,qπ(2i−1)

(sπ(2i−1))

«
, F

(jπ(2i))

Akπ(2i)
,qπ(2i)

(sπ(2i))

«3
5 dt1 · · · dtn/2.

By Expansion (3.40), the expression inside the square brackets is

n/2Y

i=1

ω0T

“
τ ti
0 ◦ γ+

λ

“
Akπ(2i−1)

”
, γ+

λ (Akπ(2i)
)
”

=

n/2Y

i=1

ω+
λT

“
τ ti

“
Akπ(2i−1)

”
, Akπ(2i)

”
,

so that, by (3.50),

lim
t→∞

ω+
λ

“
(Ãt)

n
”

=

KAX

k1,...,kn=1

X

π∈Pn/2

n/2Y

i=1

„Z

R

ω+
λT

“
τ t
“
Akπ(2i−1)

”
, Akπ(2i)

”
dt

«

=
X

π∈Pn/2

n/2Y

i=1

„Z

R

ω+
λT

`
τ t (A) , A

´
dt

«

=
n!

2n/2(n/2)!
L(A, A)n/2.

2
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4 Proof of Theorem 3.5

For notational simplicity throughout this section we shall drop the subscript0 and writeh for h0, τ for τ0, ω for ω0. We shall
also use the shorthand (3.43).

4.1 Graphs, pairings and Pfaffians

An graph is a pair of setsg = (V, E) whereE is a set of2-elements subsets ofV . The elements ofV are called points or
vertices ofg, those ofE are its edges. Abusing notation, we shall writev ∈ g for vertices ofg ande ∈ g for its edges. If
v ∈ e ∈ g we say that the edgee is incident to the vertexv. If the edgee is incident to the verticesu andv we writee = uv
and say that the edgee connectsu to v. The degree of a vertexv ∈ g is the number of distinct edgese ∈ g incident tov. A
graph isk-regular if all its vertices share the same degreek. A vertexv ∈ g of degree0 is said to be isolated. A path ong is a
sequence(v0, e1, v1, e2, . . . , en, vn) wherevi ∈ V , ei ∈ E andei = vi−1vi. We say that such a path connects the verticesv0

andvn. If v0 = vn the path is closed and is called a loop. The graphg is connected if, given any pairv, v′ ∈ V there is a path
ong which connectsv andv′. A connected graph without loops is a tree.

A graphg′ = (V ′, E′) is a subgraph of the graphg = (V, E) if V ′ ⊂ V andE′ ⊂ E. A subgraphg′ of g is said to be
spanningg if V ′ = V . A connected graphg has a spanning treei.e.,a subgraph which is spanning and is a tree.

Let g = (V, E) be a graph. To a subsetW ⊂ V we associate a subgraphg|W = (W, E|W ) of g by settingE|W = {e = uv ∈
E |u, v ∈ W}. Given two graphsg1 = (V1, E1) andg2 = (V2, E2) such thatV1 andV2 are disjoint we denote byg1 ∨ g2 the
joint graph(V1 ∪ V2, E1 ∪ E2).

Let g = (V, E) be a graph andΠ = {V1, . . . , Vn} a partition ofV . The set

E/Π = {ViVj | there areu ∈ Vi, v ∈ Vj such thatuv ∈ E}.

defines a graphg/Π = (Π, E/Π). We say thatg/Π is theΠ-skeleton ofg.

A graphg = (V, E) is said to be(V1, V2)-bipartite if there is a partitionV = V1 ∪ V2 such that all edgese ∈ E connect a
vertex ofV1 to a vertex ofV2.

A pairing on a setV is a graphp = (V, E) such that every vertexv ∈ V belongs to exactly one edgee ∈ E. Equivalently,
p = (V, E) is a pairing ifE is a partition ofV or if it is 1-regular. We denote byP(V ) the set of all pairings onV . Clearly,
only setsV of even parity|V | = 2n admit pairings and in this case one has

|P(V )| =
(2n)!

2nn!
= (2n − 1)!!.

If the setV = {v1, . . . , v2n} is completely ordered,v1 < v2 < · · · < v2n, writing

E = {π(v1)π(v2), π(v3)π(v4), . . . , π(v2n−1)π(v2n)} ,

sets a one-to-one correspondence between pairingsp = (V, E) and permutationsπ ∈ SV such thatπ(v2i−1) < π(v2i) and
π(v2i−1) < π(v2i+1) for i = 1, . . . , n (compare with (1.5)). In the sequel we will identify the two pictures and denote by
p the permutation ofV associated to the pairingp. In particular, the signatureε(p) of a pairingp is given by the signature
of the corresponding permutation. A diagrammatic representation of a pairing p ∈ P(V ) is obtained by drawing the vertices
v1, . . . , v2n as2n consecutive points on a line. Each edgee ∈ p is drawn as an arc connecting the corresponding points above
this line (see Figure 1). It is well known that the signature ofp is then given byε(p) = (−1)k wherek is the total number of
intersection points of these arcs.

If V = V1 ∪ V2 is a partition ofV into two equipotent subsets we denote byP(V1, V2) ⊂ P(V ) the corresponding set of
(V1, V2)-bipartite pairings and note that

|P(V1, V2)| = n!.

If V1 = {v1, . . . , vn} andV2 = {vn+1, . . . , v2n} are completely ordered byv1 < · · · < vn < · · · < v2n thenp(v2i−1) = vi

andσ(vn+i) = p(v2i) for 1 ≤ i ≤ n defines a one-to-one correspondence between bipartite pairingsp ∈ P(V1, V2) and
permutationsσ ∈ SV2 . A simple calculation shows thatε(p) = (−1)n(n−1)/2ε(σ).
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v1 v2 v3 v4 v5 v6 v7 v8

ε(p) = (−1)2 = +1

p =

(

1 2 3 4 5 6 7 8
1 4 2 6 3 5 7 8

)

Figure 1: Diagrammatic representation of a pairingp

In the special caseV = {1, . . . , 2n}, V1 = {1, . . . , n} andV2 = {n + 1, . . . , 2n} we shall setP(V ) = Pn andP(V1, V2) =
ePn.

The Pfaffian of a2n × 2n skew-symmetric matrixM is defined by

Pf(M) =
X

p∈Pn

ε(p)
nY

i=1

Mp(2i−1)p(2i).

If B is an × n matrix and

M =

»
0 B

−BT 0

–
,

then only bipartite pairingsp ∈ ePn contribute to the Pfaffian ofM which reduces to

Pf(M) =
X

p∈ ePn

ε(p)
nY

i=1

Bp(2i−1)p(2i)

=
X

σ∈Sn

(−1)n(n−1)/2ε(σ)
nY

i=1

Biσ(i) (4.53)

= (−1)n(n−1)/2 det(B).

4.2 Truncating quasi-free expectations

Let V ⊂ h be finite and totally ordered. To any subsetW ⊂ V we assign the monomial

Φ(W ) ≡
Y

u∈W

ϕ(u),

where the product is ordered from left to right in increasing order of the indexu.

Let ω be a gauge invariant quasi-free state onCAR(h). We define a|V | × |V | skew-symmetric matrixΩ by setting

Ωuv ≡ ω(ϕ(u)ϕ(v)),

for u, v ∈ V andu < v. We also denote byΩW the sub-matrix ofΩ whose row and column indices belong toW . Then we
have

ω(Φ(W )) =


Pf(ΩW ) if |W | is even,
0 otherwise.

(4.54)

If |W | is even, assigning to any pairingp ∈ P(W ) the weight

Ω(p) ≡
Y

uv∈p
u<v

Ωuv,
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u2 u4 v1 v2 v3 v4u3

u1 u2 u3 u4 v3 v4

u1

ε(p1) = −1

ε(p1 ∨ p2) = +1

ε(p2) = +1

ε(J1, J2) = −1

v1 v2

Figure 2: Proof of Lemma 4.1

we can rewrite Equ. (4.54) as
ω(Φ(W )) =

X

p∈P(W )

ε(p)Ω(p). (4.55)

The following simple lemma is our fundamental tool when dealing with such expansions.

Lemma 4.1 Let W1 = {u1, . . . , ur} andW2 = {v1, . . . , vs} be disjoint even subsets ofV such thatu1 < u2 < · · · < ur

andv1 < v2 < · · · < vs. Denote byε(W1, W2) the signature of the permutation ofW1 ∪ W2 which “orders” the sequence
W1W2 i.e.,which maps the sequenceu1, u2, · · ·ur, v1, v2, · · · , vs into the ordered sequence of elements ofW1 ∪ W2. Then,
for anyp1 ∈ P(W1) andp2 ∈ P(W2) one has

Ω(p1 ∨ p2) = Ω(p1)Ω(p2), ε(p1 ∨ p2) = ε(W1, W2)ε(p1)ε(p2). (4.56)

Proof. The statement aboutΩ(p1 ∨ p2) is obvious. To prove the statement about signatures we draw the followingdiagram
(see Figure 2). Draw two parallel lines and on the top one the two diagrams corresponding to the pairingsp1 andp2, one next
to the other. On the bottom line draw the diagram representing the pairingp1 ∨ p2 but with the edges drawn below the baseline.
Now draw segments connecting each point of the top line with its representant on the bottom line. These segments represent
the permutation referred to in the Lemma. Thus, if there areq intersection points of these segments thenε(W1, W2) = (−1)q.
Denote byj the number of intersection points in our diagram lying above the top line and byj′ the number of those intersections
points lying below the bottom line. Then, we haveε(p1)ε(p2) = (−1)j andε(p1 ∨ p2) = (−1)j′ . Now observe that our
diagram is a disjoint union of closed loops. Thus, it has an even number of intersection pointsi.e.,

(−1)j+q+j′ = 1,

from which the result follows.2
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Iterating Equ. (4.56) we obtain, for disjoint even subsetsW1, . . . , Wk ⊂ V and arbitrary pairingspi ∈ P(Wi), the formulas

Ω

 
k_

i=1

pi

!
=

kY

i=1

Ω(pi), ε

 
k_

i=1

pi

!
= ε(W1, . . . , Wk)

kY

i=1

ε(pi),

whereε(W1, . . . , Wk) denotes the signature of the permutation which “orders” the sequenceW1, . . . , Wk. Moreover, the
recurrence relation

ε(W1, . . . , Wk) = ε(W1 ∪ · · · ∪ Wk−1, Wk)ε(W1, . . . , Wk−1),

holds.

If X, Y are subsets ofV we writeX < Y whenevermax(X) < min(Y ).

Remark. If W1 < W2 < · · · < Wk it immediately follows from the fact that theWi are even thatε(Wπ(1), . . . , Wπ(k)) = 1
for any permutationπ ∈ Sk.

Lemma 4.2 LetΠ = (V1, . . . , Vn) be an ordered partition ofV by even subsetsi.e.,

V1 < V2 < · · · < Vn, |Vi| even.

and setAi = Φ(Vi). Then one has

ωT (A1, . . . , An) =
X

p∈P(Π)

ε(p)Ω(p), (4.57)

whereP(Π) denotes the set of pairingsp ∈ P(V ) which have aΠ-skeletonp/Π without isolated vertex.

Proof. Expanding the left hand side of Equ. (4.57) we get
X

K⊂I

(−1)|K| ω(Φ(∪i∈I\KVi))
Y

i∈K

ω(Φ(Vi)),

whereI = {1, . . . , n}. Using Lemma 4.1 and the remarks following it, we can rewrite this expression as

X

K⊂I

(−1)|K|
X

ξ∈ΞK

ε(p(ξ)) Ω(p(ξ)), (4.58)

where we sum over the sets

ΞK ≡ P(∪i∈I\KVi) ×
 
Y

i∈K

P(Vi)

!
,

and, forξ = (q, (pi)i∈K) ∈ ΞK we have setp(ξ) = q ∨ (∨i∈Kpi). Let us define

Is(p) ≡ {i ∈ I |Vi is an isolated vertex ofp/Π}.

Clearly, if K ⊂ I andξ ∈ ΞK thenp(ξ) ∈ P(V ) andK ⊂ Is(p(ξ)). Reciprocally, suppose thatp ∈ P(V ) andK ⊂ Is(p).
Then the restricted graphsq = p|W with W = ∪i∈I\KVi andpi = p|Vi

for i ∈ K satisfyξ = (q, (pi)i∈K) ∈ ΞK and
p(ξ) = p. We conclude that

{(K, p(ξ)) |K ⊂ I, ξ ∈ ΞK} = {(K, p) | p ∈ P(V ), K ⊂ Is(p)},

and since the mapξ 7→ p(ξ) is clearly injective we can rewrite the sum (4.58) as

X

p∈P(V )

ε(p)Ω(p)
X

K⊂Is(p)

(−1)|K|.

The result follows from the fact that the second sum in the last expression vanishes unless Is(p) is empty.2
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V4 V5V1 V2 V3

Figure 3: The exit graphex(p) (solid lines) forp ∈ P(Π)

4.3 Resummation

The setup in this subsection is the same as in the previous one. We consider afixed ordered partitionΠ = (V1, . . . , Vn) of V
by even subsets as in Lemma 4.2 and fix our attention on the expansion (4.57) of the truncated correlation.

Consider a fixed term in this expansioni.e., a pairingp ∈ P(Π). Since its skeletonp/Π has no isolated point, for each
i ∈ I = {1, . . . , n} the set of edges ofp which connect a vertex inVi to a vertex outsideVi is not empty. We call exit edge of
p from Vi the element of this set which contains the smallest vertex inVi. The set of all exit edges ofp defines a subgraph ofp
which we denote byex(p) (see Figure 3). We also denote byEx(Π) = {ex(p) | p ∈ P(Π)} the set of all exit graphs. We can
rewrite expansion (4.57) as

ωT (A1, . . . , An) =
X

g∈Ex(Π)

X

p∈ex−1({g})

ε(p)Ω(p).

A given exit graphg can be seen as a pairing onX(g) = {u ∈ V |uv ∈ g for somev ∈ V }. SettingV (g) = V \ X(g) and
applying Lemma 4.1 we get

ωT (A1, . . . , An) =
X

g∈Ex(Π)

Ω(g)S(g) (4.59)

where
S(g) ≡

X

p∈ex−1({g})

ε(p)Ω(p|V (g)). (4.60)

Our next result is a partial resummation formula forS(g).

Define the exit point fromVi by xi(g) ≡ min(X(g) ∩ Vi). We say that

θ = (X, L, M, M ′, R),

is ag-admissible partition ofV if X, L, M, M ′ andR are disjoint subsets ofV such that

X = X(g), V = X ∪ L ∪ M ∪ M ′ ∪ R,

and which, for alli ∈ I, satisfy the following conditions

(1) max((L ∪ M) ∩ Vi) < xi(g);

(2) min((R ∪ M ′) ∩ Vi) > xi(g);

(3) |L ∩ Vi| is even;

(4) |M ∩ Vi| = |M ′ ∩ Vi|.

If X, Y are two subsets ofV denote byΩX,Y the sub-matrix ofΩ with row (resp. column) indices inX (resp.Y ).

Lemma 4.3 For g ∈ Ex(Π) one has

S(g) =
X

θ=(X,L,M,M′,R)∈Θ(g)

ε(θ)ω(Φ(R))
Y

i∈I

„
ω(Φ(L ∩ Vi)) det(ΩM∩Vi,M′∩Vi)

«
, (4.61)
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Xi(g)

Vi

Ri(p)

M ′

i
(p)Mi(p)

Li(p)

xi(g)

Figure 4: The partition ofVi induced by a pairingp. Solid lines belong to the exit graphex(p).

whereΘ(g) denotes the set ofg-admissible partitions ofV and

ε(θ) ≡ ε(X, L ∩ V1, . . . , L ∩ Vn, (M ∪ M ′) ∩ V1, . . . , (M ∪ M ′) ∩ Vn, R)ε(g|X)
Y

i∈I

(−1)|M∩Vi|(|M∩Vi|−1)/2.

Proof. Let us have a closer look at a pairingp whose exit graph isg. What happens inXi(g) ≡ Vi ∩ X(g) is completely
determined byg. However, the structure ofp|Vi(g) whereVi(g) ≡ Vi ∩ V (g) depends on finer details ofp. Edges ofp which
are incident to a vertex inVi(g) located to the left of the exit pointxi(g) must connect this vertex to another vertex inVi(g).
These edges split in two categories: the ones which connect two vertices on the left of the exit point and the ones which connect
a vertex on the left to a vertex on the right. We denote byLi(p) the set of vertices which belong to an edge of the first category,
and byMi(p) the vertices located to the left ofxi(g) and belonging to an edge of the second one. ByM ′

i(p) we denote the set
of vertices which are connected to elements ofMi(p). This subset ofVi(g) is located on the right of the exit point. We group
the remaining vertices ofVi(g), which are all on the right of the exit point, into a fourth setRi(p). Elements of this set connect
among themselves or with elements ofRj(p) for somej 6= i (see Figure 4). Setting

L(p) ≡
[

i∈I

Li(p), M(p) ≡
[

i∈I

Mi(p), M ′(p) ≡
[

i∈I

M ′
i(p), R(p) ≡

[

i∈I

Ri(p),

we obtain a partition
θ(p) ≡ (X(g), L(p), M(p), M ′(p), R(p)),

of V which is clearlyg-admissible. Moreover, setting

li(p) ≡ p|L(p)∩Vi
∈ P(L(p) ∩ Vi),

mi(p) ≡ p|(M(p)∪M′(p))∩Vi
∈ P(M(p) ∩ Vi, M

′(p) ∩ Vi),

r(p) ≡ p|R(p) ∈ P(R(p)).

we obtain a mapΨ from ex−1({g}) to the set

[

θ=(X,L,M,M′,R)∈Θ(g)

"
{θ} ×

 
Y

i∈I

P(L ∩ Vi)

!
×
 
Y

i∈I

P(M ∩ Vi, M
′ ∩ Vi)

!
× P(R)

#
.

Since

p = g ∨
 
_

i∈I

li(p)

!
∨
 
_

i∈I

mi(p)

!
∨ r(p),

Ψ is injective. For anyg-admissible partitionθ = (X, L, M, M ′, R) and any

li ∈ P(L ∩ Vi), mi ∈ P(M ∩ Vi, M
′ ∩ Vi), r ∈ P(R) (4.62)
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the pairing

p = g ∨
 
_

i∈I

li

!
∨
 
_

i∈I

mi

!
∨ r, (4.63)

satisfies
ex(p) = g, θ(p) = θ, li(p) = li, mi(p) = mi, r(p) = r.

We conclude thatΨ is bijective. Thus, using Lemma 4.1, we can rewrite the sumS(g) as

X

θ=(X,L,M,M′,R)∈Θ(g)

ε(g|X)ε(X, L ∩ V1, . . . , L ∩ Vn, (M ∪ M ′) ∩ V1, . . . , (M ∪ M ′) ∩ Vn, R)

Y

i∈I

0
@

X

li∈P(L∩Vi)

ε(li)Ω(li)

1
A
Y

i∈I

0
@

X

mi∈P(M∩Vi,M′∩Vi)

ε(mi)Ω(mi)

1
A

X

r∈P(R)

ε(r)Ω(r).

The result now follows from Equ. (4.53) and (4.55).2

4.4 Estimating truncated expectations

Apart from the entropic factor|Θ(g)|, the following Lemma controls the partial sumS(g).

Lemma 4.4 For g ∈ Ex(Π) one has

|S(g)| ≤ 2−|V (g)|/2|Θ(g)|
Y

v∈V (g)

‖v‖.

Proof. Since

ϕ(f)2 =
1

2
{a∗(f), a(f)} =

1

2
‖f‖2,

we have, for anyX ⊂ V , the simple bound

|ω(Φ(X))| ≤ 2−|X|/2
Y

v∈X

‖v‖.

Combining this estimate with the following Lemma, the result is an immediate consequence of Formula (4.61).2

Lemma 4.5 LetB be thek × k matrix defined byBij = ω(ϕ(ui)ϕ(vj)). Then, the estimate

| det(B)| ≤ 2−k
kY

i=1

„
‖ui‖ ‖vi‖

«
,

holds.

Proof. Let · be a complex conjugation onh. The real-linear map

Q : h → h ⊕ h

f 7→ (1 − T )1/2f ⊕ T
1/2

f,

is isometric and such that

ω(ϕ(ui)ϕ(vj)) =
1

2

“
(ui, vj) − (ui, T vj) + (ui, T vj)

”
=

1

2
(Qui, Qvj).

It immediately follows that

det(B) = 2−k ωFock(a(Qu1) · · · a(Quk)a∗(Qvk) · · · a∗(Qv1)),
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whereωFock denotes the Fock-vacuum state onCAR(h ⊕ h). The fact that

‖a(Qu)‖ = ‖a∗(Qu)‖ = ‖Qu‖ = ‖u‖,

for anyu ∈ h yields the result.2

Foru, v ∈ V such thatu < v set

∆uv ≡ 2
|ω(ϕ(u)ϕ(v))|

‖u‖ ‖v‖ = 2
|Ωuv|

‖u‖ ‖v‖ ,

and for any graphp onV set
∆(p) ≡

Y

uv∈p
u<v

∆uv.

Note that∆uv and hence∆(p) take values in the interval[0, 1]. The following lemma, which controls the contribution of the
exit graphg to the sum (4.59) is immediate.

Lemma 4.6 For anyp ∈ P(W )

|Ω(p)| ≤ 2−|W |/2∆(p)

 
Y

w∈W

‖w‖
!

.

Applying this bound tog ∈ Ex(Π) and using Lemma 4.4 we finally get from Formula (4.59):

Lemma 4.7 Under the hypotheses of Lemma 4.2 the following estimate holds

|ωT (A1, . . . , An)| ≤ 2−|V |/2

 
Y

v∈V

‖v‖
!

X

g∈Ex(Π)

|Θ(g)|∆(g).

4.5 Counting exit graphs and their admissible partitions

Lemma 4.8 For any ordered partitionΠ of V one has

|Ex(Π)| ≤ 4|V | |Π|!

and for anyg ∈ Ex(Π)

|Θ(g)| ≤ 4|V |.

Proof. We set|V | = 2N , Π = (V1, . . . , Vn) and |Vi| = ki. To construct an exit graph we must first selectn exit points
xi ∈ Vi. Thus, there arek1k2 · · · kn exit points configurations. Each exit pointxi has now to be paired with a different vertex
yi ∈ V , subject to some constraints. Releasing these constraints we obtain the upper bound2N(2N − 1) · · · (2N − n + 1) on
the number of such pairings. Thus,

|Ex(Π)| ≤ 2N(2N − 1) · · · (2N − n + 1)k1 · · · kn =

 
2N

n

!
k1 · · · knn!.

The result follows from the facts that the binomial coefficient is boundedby 22N andki ≤ 2ki .

A g-admissible partition is a partition ofV (g) into four sets. Since there are4|V (g)| such partitions the second estimate
follows.2



Central limit theorem for locally interacting Fermi gas 32

4.6 Proof of Theorem 3.5

To prove Theorem 3.5 we setAi = ϕ(eitihfi1) · · ·ϕ(eitihfiki) and apply Lemma 4.7 to the case

Vi ≡ {eitihfi1, . . . , e
itihfiki}, i ∈ I ≡ {1, . . . , n}.

We set2N = |V | =
P

i ki and obtain

Z

[0,t]n
|ωT (A1, . . . , An)| dt1 · · · dtn ≤ 2−N

 
Y

v∈V

‖v‖
!

X

g∈Ex(Π)

|Θ(g)|C(g), (4.64)

where

C(g) ≡
Z

[0,t]n
∆(g) dt1 · · · dtn.

Lemma 4.9 Let g be a graph with vertex setV . Denote byNc(g) the number of connected components of its skeletong/Π.
Then one has Z

[0,t]n
∆(g) dt1 · · · dtn ≤ Cn−Nc(g)tNc(g), (4.65)

with

C ≡ max

„
1, max

ijkl

2

‖fij‖ ‖fkl‖

Z ∞

−∞

|ω(ϕ(fij)τ
t(ϕ(fkl)))| dt

«
.

Proof. Assume first that the skeletong/Π is connected. Then it has a spanning tree(Π, T ). Fix a rootVr in T and for
j ∈ I \ {r} let Vl(j) be the parent ofVj in T . Let π ∈ Sn be a relabeling of the vertices ofT such thatπ(r) = 1 and
π(l(j)) < π(j) for j ∈ I \ {r}. Define new variables bysj = tj − tl(j) for j ∈ I \ {r} andsr = tr. The corresponding
Jacobian matrix isJij = δij − (1 − δir)δl(i)j . By our choice of the relabelingπ the reordered matrix

J ′
ij = Jπ−1(i)π−1(j) = δij − (1 − δi1)δπ(l(π−1(i)))j ,

is lower triangular with ones on the diagonal. Thus the Jacobian determinantis given by| det J | = | det J ′| = 1.

For each edgeVjVl(j) ∈ T there is a corresponding edgeej = ujvj ∈ g with uj = eitjhfj,aj ∈ Vj andvj = eitl(j)hfl(j)bj
∈

Vl(j) and therefore a factor

∆ej (sj) =
2

‖fjaj‖ ‖fl(j)bj
‖

8
<
:

|ω(ϕ(fjaj )τ
−sj (ϕ(fl(j)bj

)))| for j < l(j),

|ω(ϕ(fl(j)bj
)τsj (ϕ(fjaj )))| for j > l(j),

,

in ∆(g). It follows that

∆(g) ≤
Y

j∈I\{r}

∆ej (sj).

and hence
Z

[0,t]n
∆(g) dt1 · · · dtn ≤

Z t

0

0
@

Y

j∈I\{r}

Z t

−t

∆ej (sj)dsj

1
Adsr ≤ Cn−1t.

In the general case,g/Π is the disjoint union ofNc(g) connected subgraphs. Applying the above estimate to each of them
yields the result.2

Inserting the estimate (4.65) into Equ. (4.64) and using Lemma 4.8 we finally obtain, taking into account the fact that the
skeleton of an exit graph can have at mostn/2 connected components

Z

[0,t]n
|ωT (A1, . . . , An)| dt1 · · · dtn ≤

„
8
√

2max
ij

‖fij‖
«2N

Cntn/2n!,

which concludes the proof of Part 1.
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Vπ(1) Vπ(2) Vπ(3) Vπ(4)

Figure 5: The pairingπ induced by a maximally disconnected pairingp.

To prove part 2 it suffices to notice that ifn is odd then the skeleton of an exit graph can have at most(n − 1)/2 connected
components.

To prove part 3, we go back to Formula (4.57) and write

t−n/2

Z

[0,t]n
ωT (A1, . . . , An) dt1 · · · dtn =

X

p∈P(Π)

ε(p) t−n/2

Z

[0,t]n
Ω(p) dt1 · · · dtn. (4.66)

By Lemmata 4.6 and 4.9 one has, ast → ∞,

t−n/2

Z

[0,t]n
Ω(p) dt1 · · · dtn = O(tNc(p)−n/2).

Thus, the pairingsp ∈ P(Π) which contribute to the limitt → ∞ are maximally disconnected in the sense that their skeleton
have exactlyn/2 connected components. The skeletonp/Π of such a pairing induces a pairingπ ∈ Pn/2 such that

p = p1 ∨ · · · ∨ pn/2, pj ∈ P0(Vπ(2j−1), Vπ(2j)),

whereP0(Vi, Vj) denotes the set of pairings onVi ∪ Vj whose skeleton w.r.t. the partition(Vi, Vj) has no isolated vertex (see
Figure 5). Since the mapp 7→ (π, p1, . . . , pn/2) is clearly bijective we can, for the purpose of computing the limit of (4.66)as
t → ∞, replaceωT (A1, . . . , An) by

X

π∈Pn/2

X

pj∈P0(Vπ(2j−1),Vπ(2j))

ε(p1 ∨ · · · ∨ pn/2) Ω(p1 ∨ · · · ∨ pn/2).

By Lemma 4.1 we have

ε(p1 ∨ · · · ∨ pn/2) = ε(Vπ(1), . . . , Vπ(n))ε(p1) · · · ε(pn/2), Ω(p1 ∨ · · · ∨ pn/2) = Ω(p1) · · ·Ω(pn/2)

and by the remark following itε(Vπ(1), . . . , Vπ(n)) = 1. Thus, the last expression can be rewritten as

X

π∈Pn/2

n/2Y

j=1

0
@

X

pj∈P0(Vπ(2j−1),Vπ(2j))

ε(pj)Ω(pj)

1
A .

Finally observe that, by Lemma 4.2, X

p∈P0(Vi,Vj)

ε(p)Ω(p) = ωT (Ai, Aj).

One easily concludes the proof by the remark following Theorem 3.5 andthe dominated convergence theorem.
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