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Abstract

We consider a locally interacting Fermi gas in its natural non-equilibriuntgtstate and prove the Quantum
Central Limit Theorem (QCLT) for a large class of observables. Aigpease of our results concerns finitely
many free Fermi gas reservoirs coupled by local interactions. THE @& flux observables, together with the
Green-Kubo formulas and the Onsager reciprocity relations previestiplished [JOP4], complete the proof of
the Fluctuation-Dissipation Theorem and the development of linear respbeory for this class of models.
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1 Introduction

This paper and its companion [AJPP3] are first in a series of papalisgevith fluctuation theory of non-equilibrium steady
states in quantum statistical mechanics. They are part of a wider pragitéated in [Ru2, Ru3, JP1, JP2, JP4] which deals
with the development of a mathematical theory of non-equilibrium statistieahamics in the framework of algebraic quantum
statistical mechanics [BR1, BR2, Pi]. For additional information aboutgtogram we refer the reader to the reviews [Ru4,
JP3, AJPP1].

In this paper we study the same model as in [JOP4]: A free Fermi gaguasi-free state perturbed by a sufficiently regular
local interaction. It is well-known that under the influence of such a peation this system approaches, as time +oo, a
steady state commonly called the natural non-equilibrium steady state JNE8@S$, AM, BM2, FMU, JOP4]. Our main result

is that under very general conditions the Quantum Central Limit Thed@@LT) holds for this NESS. Combined with the
results of [JOP4], the QCLT completes the proof of the near-equilibriluttEation-Dissipation Theorem and the development
of linear response theory for this class of models.

The rest of this introduction is organized as follows. In Subsection t.ddtational purposes we review a few basic concepts
of algebraic quantum statistical mechanics. In this subsection the readénd the definition of QCLT for quantum dynamical
systems and a brief review of related literature. Our main result is statagbsestion 1.2. In Subsection 1.3 we discuss our
results in the context of linear response theory.

Acknowledgment. A part of this work has been done during Y.P.'s stay at McGill Uniitgrand the C.R.M. as ISM Postdoc-
toral Fellow, during his visit to McGill University funded by NSERC and hisitto Erwin Schrédinger Institut. The research
of V.J. was partly supported by NSERC. We wish to thank Manfred Sdienfior useful discussions.

1.1 Central limit theorem for quantum dynamical systems

Let O be aC*-algebra with identityl and letr?, ¢t € R, be a strongly continuous group efautomorphisms o®. The pair
(O, 1) is called aC*-dynamical system. A positive normalized element of the d¥als called a state of. In what follows
w is a givenr-invariant state or®. The triple(O, T, w) is called a quantum dynamical system.

The system{O, 7,w) is called ergodic if

t
Jim % w(B*r*(A)B) ds = w(B* B)w(A),
St ),
and mixing if
ll‘im w (B*7(A)B) = w(B*B)w(A),
t|—o0
forall A, B € O.

We denote by(H., 7w, ) the GNS-representation of th@*-algebra® associated to the state The statev is called
modular ifQ),, is a separating vector for the enveloping von Neumann algeb(@)”. The states of thermal equilibrium are
described by thér, 3)-KMS condition where3 > 0 is the inverse temperature. Afly, 3)-KMS state onO is r-invariant and
modular.

For any subsefl C O we denote byd..r = {A € A| A = A"} the set of self-adjoint elements gf. Let f be a bounded
Borel function onR andA € O.i¢. With a slight abuse of notation in the sequel we will often derfdte, (A)) by f(A) and
write w(f(A)) = (Quw, f(7.(A))€). With this convention], ;) (A) denotes the spectral projection on the intefuab] of
7. (A). We shall use the same convention for the prodicts., (A1)) - - - fn (7w (45)), etc.

An involutive antilinears-automorphism® of O is called time-reversal iB o 7' = 77" 0 ©. A staten on O is called
time-reversal invariant ify o ©(A) = n(A™) holds for allA € O.

We say that a subset C @ is L'-asymptotically abelian for if for all A, B € A,

/_°° A4, 7 (B)]|| dt < oc.
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Throughout the paper we shall use the shorthand
- 1 t
A= — 7°(A) — w(A4)) ds.
o= [ -
Definition 1.1 Let ¢ be ax-vector subspace @. We say that is CLT-admissiblef forall A, B € €,

/jo |w(t'(A)B) — w(A)w(B)| dt < oo.

For A, B € € we set

L(A,B) = /_Oo w ((r'(A) — w(A))(B — w(B))) dt = /_oo (w (r'(A)B) — w(A)w(B)) dt,

«AB) =1 [T (), Bl) dt = X (L(A, B) - L(B, A)).
2i J_ o 2i

The functional(A, B) — L(A, B) is obviously bilinear. Other properties of this functional are summarized in

Proposition 1.2 Suppose that is CLT-admissible and lefl, B € ¢. Then:

(i) L(A*,A) > 0.
(i) L(A, B) = L(B*, A). In particular, if A and B are self-adjoint, theg(A, B) = Im L(A, B).
(iiy |L(A*, B)|* < L(A*, A)L(B*, B).
(iv) (A, B) — s(A, B) is a (possibly degenerate) symplectic form on the real vector spage
(v) Ifwis amixing(r, 3)-KMS state, thew = 0.
(vi) Suppose that = 0, that€ is dense ir© and L'-asymptotically abelian for, and thatw is either a factor state os-fold
mixing: Forall A;, Az, A3 € O,

lim w (Ttl (AT (Ag) T (A3)) = w(A1)w(A2)w(As).

ming; |t;—t;|—o0

Thenw is a (7, 3)-KMS state for somg € R U {£o0}.

Proof. Note that .
o<w(ii)=[ (1 - @) w ((7(A") — w(A"))(A — w(A))) ds.

t
This identity and the dominated convergence theorem yield

L(A", 4) = lim w (A:/L) >0,

and (i) follows. Parts (ii) and (iv) are obvious. (i) and (ii) imply the Cay@chwartz inequality (iii). Part (v) follows
from Proposition 5.4.12 in [BR2]. Part (vi) is the celebrated stability ltesfuBratteli, Kishimoto and Robinson [BKR], see
Proposition 5.4.20 in [BR2]3

Definition 1.3 Let € be CLT-admissible. We shall say that the Simple Quantum Central Limitdhd@QCLT) holds fo€
w.rt. (O, T,w) ifforall A € €y,

lim w (o) = exp <—%L(A,A)) .

t—oo

We shall say that the Quantum Central Limit Theorem (QCLT) hold¢ fbfor all n and all Ay, - - - , A, in Esat,

lim w (eiA“ ---eig”t) = exp (; Z L(Ai, Aj) —1i Z §(Aj,Ak-)> . (1.2)

t—oo
1<j,k<n 1<j<k<n
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The SQCLT is obviously a special case of the QCLT. Under sufficigudic assumptions, however, the QCLT can be deduced
from the SQCLT.

Theorem 1.4 Suppose that is CLT-admissible and.*-asymptotically abelian for. Suppose also that the systé, 7, w)
is ergodic and that the state is modular. If the SQCLT holds fa@ w.r.t. (O, 7, w) then the QCLT also holds fat.

We shall prove Theorem 1.4 in Section 2 following the ideas of [GV].

The SQCLT has the same probabilistic interpretation as the classical danitaheorem. The probability of measuring a
value ofA in [a, b] when the system is in the states given by

Prob,{A € [a,b]} = w(14,5(4)).
If SQCLT holds forA, then

¢
tlim Prob,, {%/ 7 (A)ds € w(A) + [ a b
—00 0

- rmram L

Except in trivial cases, the QCLT does not have a classical probabifisipretation. In this case the relevant concept is the
CCR algebra over the symplectic spd€g.is, ), often called the fluctuation algebra [GVV1]. The mathematical structure o
the fluctuation algebra is discussed in many places in the literature, s¢&¥\dl]-[GVV6] and [MSTV, BR2, Pe, OP, De2]
for general results about CCR algebras. For notational and refeqgurposes we recall a few basic facts. Wetbe the
C*-algebra generated by the elemefiB (A) | A € Csci¢ } Such that for all4, B in Cecie

W(=A) = WA,  WAW(B) =e “WB 2w (44 B),
equipped with the minimal regular norm. The map
wi(W(A)) = e HAD2,

—a2/20(A,A)? de. (1.2)

uniquely extends to a quasi-free stateldhand (1.1) can be written as

lim w (e“‘u - ~eiA"t) = wi(W(A1) - W(An)). (1.3)

t—oo

The pair(W,wr) describes the fluctuations efw.r.t. the quantum dynamical syste{@®, 7,w). Let (Hr,wr,r) be the
GNS representation afV associated ta;,. We shall also denote by, the induced state on the enveloping von Neumann
algebrar;, (W)". Since for allA € €s.ir the map

R 3>z — wr(W(zA)),
extends to an entire analytic function @nthere exist self-adjoint operatogs, (A) onHr such that
7L (W(A)) = e,
Moreover, the operatoksz, (A), A € Cqir have a common dense set of analytic vectdrs Hr, and on this set
o (A), o1(B)] = is(A, B)L.

The operators 1, (A) are the Bose fields associated by QCLT(¢, 7,w). For anyn and Ay, -+ , A, € Csat, Qr is in the
domain ofpr (A1) - -+ ¢ (An) and, as usual, we denote

wr(pr(A1) - orn(An)) = (L, pL(A1) - oL (An)QL). (1.4

In particularwr, (¢ (A1)er(A2)) = L(A1, A2). For any integer, we denoteP,, the set of all permutations of {1, ..., 2n}
such that

m(25 — 1) < w(25), and =w(25—1)<m(25+1), (1.5)
for everyj € {1,...,n}. The cardinality ofP, is (2n)!/(2"n!). Then
n/2
Ar(2i— Ar25))), ifniseven;
wr(pr (A1) - on(An)) = Z H W (L (Ar(zj-1))¢2(Ar i) " (1.6)

TEPy 2 J=1

0, if n is odd.
The QCLT and the non-commutative Lévy-Cramér theorem proverPiR][yield:
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Theorem 1.5 Suppose that QCLT holds far w.rt. (O,7,w), let A1,---, A, € Csay, and letly,..., I, C R be open
intervals. If L(A;, A;) = 0, we assume in addition thatis not an endpoint of ;. Then

Jim w(xn, (An) -+ xr, (Ane)) = wr(xn (9L(A) -+ xr. (9L(An))), @7

wherey; denotes the characteristic function of the interyal

For a probabilistic interpretation of Theorem 1.5 in the context of repegadtum-mechanical measurements we refer the
reader to Section 2 in [Dal].
The QCLT does not imply that B :

Jim w(Ar -+ Ani) = wr(er(Ar) -+ @r(4n)), (1.8)

and in principle the convergence of moments has to be establishedtsgpdneour model, the proof of (1.8) is an intermediate
step in the proof of the QCLT.

To define Bose annihilation and creation operators associated with{iglds$), we need to assume that the symplectic farm
is non-degenerate and that. ¢ is either even- or infinite-dimensional. In this case there exists a compietigteJ on Cqi¢
satisfyings(JA, JB) = (A, B), and one can define the operatorﬁ(A)/az(A) on A by

ar(A) (pr(A) +ipr(JA)),  aL(A) = —(pr(A) —ipL(JA)). (1.9)

1
V2 f
These operators are closable and satisfy

[ar(A),az(B)] =i(s(4, B) —is(A,JB)),
onA.

We expect that in typical physical examples the symplectic fomaill be degenerate in which case the Bose annihilation and
creation operators (1.9) cannot be defined globally. Let us corféisethe extreme casg= 0 (this will hold, for example, if

w is a mixing (7, 3)-KMS state). Let,.ir be the group of all characters of the discrete Abelian gréwp. The dual group
€.ir endowed with the topology of pointwise _convergence is a compact topalagicup and the algebid’ is isomorphic
to theC™-algebra of all continuous functions dheir. The stateuy, is identified with the Gaussian measuremf uniquely

determined by
/X(A) dpr(x) = e A2,

More generally, let
¢l = {A|g(A,B) =0forall B € €},

sel
and suppose that there ext&f); such thatt..ir = €1}, & ¢?) as an orthogonal sum (this is certainly the cas&if; is finite
dimensional, i.e., we consider QCLT with respect to finitely many ob&éesa The restriction of to Giel)f is non-degenerate,
and if W), w(L’),j = 1, 2 denote the respective CCR algebras and quasi-free states, then
w=wb g w® wr, (1) ® UJ( )
In particular, annihilation and creation operators can be associated tethergs ofiV(?),

Besides QCLT one may consider the related and more general exigt@fdem for the quantum hydrodynamic limit (QHL).
Fore > 0 andt > 0, let

2
Adt) = e/t/s (7°(A) — w(A)) ds.
We say thatt has QHL w.r.t.(O, 7, w) if forall Ay, -- ~0An € Csar, and allty > 0,--- ,t, >0,

leiﬂ)lw (eiAle(tl) e eiA"f(t")) =wr(W(X[0,t:) ® A1) - W(X[0,t,,] @ An)), (1.10)
where, in the definition of the Weyl algebra, the bilinear fatrmust be replaced by

LQHL(X[O,s] X A, X[0,] X B) = il’lf(s, t) L(A, B)
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The special case where &jf's are equal corresponds to QCLT. The QHL is interpreted as the waralegence of the quan-
tum stochastic process.(¢) to a quantum Brownian motion. With the obvious reformulation, Theorenhalds for QHL.
Convergence of moments

lmw(Are(t1) - Ane(tn)) = wL (0L (X[0,6] @ A1) L (X[0,60] @ An), (1.11)

€l

is of independent interest. Even more generally, one may associatdassg ©f real valued integrable functions @ the
observables

A(f) = e’l/ f(€*) (Tt(A) —w(4)) dt,
0
with f € §, A € € and study the limit | 0 of
w (eiAle(fl) . eiAne(fn)) ) (1.12)

Note that QHL corresponds to the choige= {x0,) |t > 0}. For reasons of space and notational simplicity we will focus
in the paper on the QCLT for locally interacting fermionic systems. With ontatimnal changes our proofs can be extended
to establish QHL and (1.11). Itis likely that the proofs can be extendedrtoch larger class of functiorgs but we shall not
pursue this question here (see [Del] for a related discussion).

We finish this subsection with a few general remarks. We finish this secttbravfew remarks about earlier guantum central-
limit type results.

First, notice that, since the law of one single observable is well-definedetwgigtion of the limiting law of a faminAx)zzo

of observables as the parameter— oo, is covered by the classical Lévy- Crameér theorem. Several redutitecest exist,
which are only of quantum nature insofar as the computation of theliimit ..., w(e'*“*) is made more complicated by the
guantum setting.

Truly quantum central limit theorems therefore involve an attempt to dbestire limiting joint behavior of the law of a family
(AW . A®), of observables as — co. The earliest results of this type were obtained in a quantum probabilisticagp
and were non commutative analogues of classical results conceunimg &f independent, identically distributed variables.
Such results can be translated in a physical setting as applying to spdoatftuts of one-site observables in quantum spin
systems with respect to translation-invariant product states. Thealignef the framework and the formulation of the limit
vary. We mention in particular [Me] where matrix elements of approximatg|\hperators constructed from Pauli matrices are
considered; [GVW] which holds in the general *-algebra case butevbely convergence of moments is proved; [Kup] which
works in a general C*-algebra setting and where a true convergemtistiibution (to a classical Gaussian family) is proved,
but only with respect to a tracial state . We also mention [CH] which, althowgfa central limit theorem, is a first attempt
to characterize a convergence in distribution of a family of non-commataterators, in terms of a (pseudo)-characteristic
function.

The papers [GVV1]-[GVV6] aim at more physical applications: a satisfry algebra of fluctuations is constructed for space
fluctuations of local observables in a quantum spin system with a tranlatianant state. That state does not have to be a
product state; however, the ergodic assumptions on that state arerggtstat no nontrivial application was found beyond the
product case. However, these papers were a conceptual impeov@md our construction owes much to them. The papers
[Mal]-[Ma2] had a similar spirit but, using less stringent ergodic conditj@ave non trivial application to space fluctuations
of local observables in XY chains.

A distinct feature of our work is that we study QCLT with respect to the groudescribing the microscopic dynamics of the
system. There is a number of technical and conceptual aspects af@@th are specific to the dynamical group. For example,
the ergodic properties of the system (laws of large numbers), whiah toave established prior to study its fluctuations, are
typically much harder to prove for the dynamical group than for the lattanestation group. As for the conceptual differences,
we mention that ifw is a (7, 5)-KMS state, then by Proposition 1.2 (w,= 0 and the CCR algebra of fluctuatioh® is
commutative (Part (vi) provides a partial converse to this statemen.iFm sharp contrast with QCLT w.r.t. the translation
group, where even in the simple example of product states of spin syterfluctuation algebra is non-commutative.

The CLT for classical dynamical systems is discussed in [Li]. For ewewf results on dynamical CLT for interacting patrticle
systems in classical statistical mechanics we refer the reader to [Sf{hd he CLT for classical spin systems is discussed
in Section V.7 of [E].

After this paper was completed, we have learned of the work [Del] wkitdchnically and conceptually related to ours. We
shall comment on Dereiski's result at the end of Subsection 3.3.
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1.2 QCLT for locally interacting fermions

A free Fermi gas is described by th& -dynamical systen(O, 7o) where:

(i) © = CAR(h) is the CAR algebra over the single particle Hilbert spice
(i) ¢ is the group of Bogoliubow-automorphisms generated by the single particle Hamiltohian

0 (a®(f)) = a” (" f),

wherea* (f)/a(f) are the Fermi creation/annihilation operators associatgddd) anda™ stands for eithes or a*. We
denote by, the generator ofy.

Let O be therp-invariantC*-subalgebra o) generated by{a*(f)a(g)| f,g € b} and1. Physical observables are gauge
invariant and hence the elements®f

Let v be a vector subspace pfand letO (v) be the collection of the elements of the form

K ng

A=>"T] a"(fr))algr)), (1.13)

k=1j=1
whereK andn;’s are finite andfs;, gr; € v. We denotér4 = maxy, n, and
.7-'(A)E{fkj,gkj|j:1,...,nk, k= 1,...,K}

(to indicate the dependence Bfon A we will also denote it by 4). O(v) is ax-subalgebra oD, and ifv is dense i, then
O(v) is norm dense iD.

Our main assumption is :

(A) There exists a dense vector subspace b such that the functions
R>t— (f,e""g),

are inL'(R,dt) forall f,g € 0.

This assumption implies that, has purely absolutely continuous spectrum. Specific physical modéth whtisfy this as-
sumption are discussed at the end of this subsection.

Let V € D(0)se1r be a self-adjoint perturbation. We shall always assumerthat> 2. The special casgey = 1 leads to
quasi-free perturbed dynamics and is discussed in detail in the compaeger [AJPP3], see also [AJPP1, AJPP2, JKP] and
Remark after Theorem 1.7 below.

Let A € R be a coupling constant and let be theC*-dynamics generated by = o + i\[V, -]. By rescaling\, without
loss of generality we may assume that

-1 1.14
e £l (1.14)

We shall consider the locally interacting fermionic system describe@hy»). Note thatry preserve®) and that the pair
(9, 72) is also aC*-dynamical system. Let

1 (2my —2)7"v 2

Av = 2ny Ky ly (2ry — 1)2nv -1’ (1.15)
where N
Ly = / sup  |(f, "0 g)|dt. (1.16)
—oco fL,ge€F (V)

The following result was proven in [JOP4] (see also [BM1, AM, BM2, B
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Theorem 1.6 Suppose that (A) holds. Then:

1. Forall A € ©(v) and any monomiaB = a¥ (f1) - - - a® (f) with {f1,..., fm} C 0, ONe has

sup /H[T;(A),B]H dt < oo.
[Al<Ay JR
2. For |A| < Ay the Mgller morphisms

’y; ES—tli}I{’loTO_t OT;u

exist and arex-automorphisms oD.

In what follows we shall assume that (A) holds. [7ébe a self-adjoint operator dnsatisfyingd < T' < I and[T,e'*"0] =0
for all ¢, and letw, be the gauge invariant quasi-free state@rassociated td@. We will sometimes calll’ the density
operator  The statev is To-invariant and is the initial (reference) state of our fermionic systeme qimntum dynamical
system(O, 7o, wo) is mixing. We denote by, the set of allu-normal states o). Theorem 1.6 yields that any stafec A
evolves to the limiting statey = wo o~;", i.e., forA € O and|A| < Av,

lim n(75(4)) = w (4),
see, e.g., [Ro, AJPP1]. The statg is the NESS (non-equilibrium steady state)(6F, 7,) associated to the initial state.
Clearly, wy is my-invariant andyy is an isomorphism of the quantum dynamical systéfsro,wo) and (O, 7x,wy ). In
particular, the systerfO, 7, w} ) is mixing.

In what follows we shall always assume tliétr 7' = Ker (I — T) = {0}. This assumption ensures that the stateandw;”
are modular.

Letc C o be a vector subspace such that the functions
R3¢t (f,e"Tyg),

are inL' (R, dt) for all £, ¢ € c. In general, it may happen that= {0}, and so the existence of a non-trivial a dynamical
regularity property of the paifT’, ho). If T = F(ho), whereF € L'(R, dz) is such that its Fourier transform

Ft) = % /_OO " F(x)de,

is also inL! (R, dt), then one can take= 0.

Let ~ -
Ay =278V (1.17)

and

The main result of this paper is:

Theorem 1.7 Suppose that (A) holds, that € €..i¢, and that|A\| < Av. Theng is CLT-admissible and the QCLT holds for
Cw.rt. (O, 7, wi).

Remark. If ny = 1, then Theorem 1.6 holds for aly< \v < (2Kv£yv)~!, see [JOP4]. With this change, Theorem 1.7
holds withAyv = Av. The casew = 1 is however very special. " = ", a*(fx)a(gx), thent, is quasi-free dynamics
generated by.x = ho + A>_, (gx,-) fr and Theorem 1.6 can be derived from the scattering theory of thé/paif,), see
[Ro, AJPP1]. This alternative approach is technically simpler, yields hettestants, and can be also used to prove a Large
Deviation Principle and to discuss additional topics like Landauer-Buttikemita which cannot be handled by the method of
[JOPA4] and this paper. For this reason, we shall discuss this spestaseparately in the companion paper [AJPP3].

As we have already remarked, our proof of Theorem 1.7 also yiellsahvergence of moments (see Theorem 3.2), and is
easily extended to the proof of existence of QHL for locally interacting ienim systems (recall (1.10), (1.11)).
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We finish this subsection with some concrete models to which Theorem fliésapThe models on graphs are the same as in

[JOP4]. LetG be the set of vertices of a connected graph of bounded defyiethe discrete Laplacian acting é%(G), and

0. the Kronecker delta function ate G. We shall call a grapy admissibleif there existsy > 1 such that for alke, y € G,
|(82,€7298,)[ = O(t]| ), (1.18)

ast — oo. Examples of admissible graphs &fe= Z ford > 3, G = Z, x Z%~" whereZ, = {0,1,---} andd > 1,
tubular graphs of the typ&,. x T, wherel' ¢ Z?~! is finite, a rooted Bethe lattice, etc. Assumption (A) holds and Theorem
1.7 holds withc = v if:

(i) G isan admissible graph;

(i) b =¢%(G) (or more generally?(G) ® C*) andhy = —Ag;

(iii) o is the subspace of finitely supported elements;of

(iv) T = F(ho) whereF € L*(R,dt) and0 < F(z) < 1for z € sp(ho);
The continuous examples are similar. Z2tc R be a domain and leA be the Dirichlet Laplacian of?(D, dz). We shall
say that a domaif® is admissible if there existg > 1 such that

|(f,e™ 4P g) = O(Jt| ™

for all boundedf andg with compact support. Examples of admissible domaingare R? for d > 3, D = R, x R4~ for
d > 1, tubular domains of the typ, x I', wherel' ¢ R?"! is a bounded domain, etc. Assumption (A) holds and Theorem
1.7 holds withc = v if:

(i) D is an admissible domain;

(i) b= L?*(D,dz) (or more generaly.?(D, dz) ® C¥) andho = —Ap;

(iii) o isthe subspace of bounded compactly supported elemehts of

(iv) T = F(ho) whereF' € L*(R,dt) and0 < F(z) < 1for z € sp(ho);

1.3 QCLT, linear response and the Fluctuation-Dissipatiortheorem

In addition to the assumptions of the previous subsection, we assunig tafl” have the composite structure

M M M 1
b:jE:Blhj, ho:jE:Blhj, T:JG:?W, (1.19)

whereh;'s are bounded from below self-adjoint operators on the Hilbert aadesh ;, 3; > 0, andu; € R. We denote by;

the orthogonal projections ontg. The subalgebra®; = CAR(h;) describe Fermi gas reservoiRs; which are initially in
equilibrium at inverse temperatur@s and chemical potentiajs;. The perturbatio\V' describes the interaction between the
reservoirs and allows for the flow of heat and charges within the system.

The non-equilibrium statistical mechanics of this class of models has ledied recently in [JOP4] (see also [FMU] for
related models and results). We briefly recall the results we need.

Suppose thab,; F(V) C Dom (h;) for all j. The entropy production observable @, ) associated to the reference state
wo is

U/\__Zﬁj — 1;75)5

where®; = i\[dT'(h;p;), V] andJ; = iA[dT(p;), V]. Epr|C|tIy,

Ky ng -1 ng
b, = /\ZZ a* (fri)a gm)) {a" (ih;p; frr)a(gr) + a* (fr)a(ih;pige)} ( H a* (fri)a(gr:) ) )
k=11=1 \i=1 =141

ZAZ (Ha* Jri)a gkz)> {a"(ip; fr1)a(gr) + a” (frr)a(ipjgrr) (H a” (fri)a(gu: >
k=

11=1 \i=1 i=l4+1
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The observabl@; /7, describes the heat/charge flux out of the reserRginote thatb;, 7, € O). The conservation laws

M M
dowl(@) =0, > wi(J)=0
j=1 j=1
hold. By the general result of [JP1, Ru2, JP4], the entropy produofithe NESSu;" is non-negative,

EP(W;\_) =w Zﬁ] wy ( — KWy () >

If all B;'s andu;'s are equal, i.epy = -+ = By = fandus = -+ = um = p, thenwy | O is a (70, 3)-KMS state
and so the reference state is a thermal equilibrium state of the unpersybien. Therau;r I O is a(m, §)-KMS state,

wi (®;) = wi(J;) = 0forall 5, and in particulaEp(wi) = 0, see [JOP2]. On physical grounds, vanishing of the fluxes
and the entropy production in thermal equilibrium is certainly an expectadtrdt is also expected that if eithg’s or u;'s

are not all equal, theBp(w;") > 0. For specific interactions” one can compute; (o) to the first non-trivial order in\ and
hence establish the strict positivity of entropy production by a pertubatilculation (see [FMU, JP6] and [JP3] for a related
results). The strict positivity of the entropy production for a generitypkation\V' has been established in [JP5].

To establish QCLT for the flux observables in addition to the Assumption @heed:
(B) For allj, hjp;o C 0.

This assumption and the specific form of density operator ensure teamay takec = 0 and that ifV € e, then
{®;,J;} C €seir. Hence, foA| < Ay the QCLT holds for the flux observables.

We finish with a discussion of linear response theory (for referentésdditional information about linear response theory
in algebraic formalism of quantum statistical mechanics we refer the réa@@IPP1] and [JOP1]-[JOP4]). We will need the
following two assumptions:

(C) The operatoré; are bounded.
(D) There exists a complex conjugatiemn hh which commutes with alk; and satisfiegf = f for all f € F(V).
Assumption (C) is of technical nature and can be relaxed. Assumptipan@res that the systef@, 7, wo) is time-reversal

invariant. Time-reversal invariance is of central importance in linespoese theory.

Let Beq > 0 andpueq € R be given gquilibrium values of the inverse temperature and chemicaitdteWe denote@ =
(Bi, -+, Bm), = (,ul, M), ﬁeq = (Beqs " s Beq)s fleq = (feq, "+ ,teq), @and we shall indicate explicitly the

dependence af on g and i by w G Similarly, we shall indicate explicitly the dependenceldfA, B) on ), B, i i by
. s N
L ﬂ i Slncew wgeqaﬂeq(@J) - wA,Beqleeq (Jj) - 0'

Prasna B = [ L5, (4053)

for A,Be {®;,J;|1<j<M}.

Assuming the existence of derivatives, the kinetic transport coeftscame defined by

kj ki = N
L, = ‘95; PW:A y((pk)|ézgcqvﬁ:ﬁcq7 Lihe = Beqaﬂij B ﬁ((bk”g:g”q’ﬂ:ﬂcq, (1.20)
‘C>\ch = 8BJ A B,ﬁ(jk)lﬁzﬁeq,ﬁ:ﬁeq’ >‘CC - 56(16”] w/\ .8, u(jk)lgzgleﬁ:ﬁeq7

where the indicekl /c stand for heat/charge. We then have
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Theorem 1.8 Suppose that Assumptions (A)-(D) hold. Then, forjamy Ay, the functions
(g7ﬂ) Hw:\rﬁﬁ(@j)v (Bvﬁ) Hw;-’ﬁ(ﬁ),

are analytic in a neighborhood @f., ji.q). Moreover,
(1) The Green-Kubo formulas hold:

kj 1 kj 1
Lyin = §LA,§eq,ﬁeq(q’k’ ®5); Ly = §Lx,ﬁeq,ﬁeq(q)‘“’ T5); (1.21)
Iy 1 i1 '
‘cA]ch = §Lx,§eq,ﬁeq(~7k7q’j)v E,\]cc = 9 A,ﬁeq,ﬁeq(jkn J;)-
(2) The Onsager reciprocity relations hold:
L3in = Lihns Lyie = Licer Lihe = Lien- (1.22)

(3) Let¢ denote the linear span dfb;, 7; | 1 < j < M}. For |\| < Ay, ¢ is CLT-admissible and the QCLT holds fom.r.t.
(O, 7, ‘”Aﬁeq,ﬁeq)' The associated fluctuation algeb¥# is commutative.

Remark 1. Parts (1) and (2) of Theorem 1.8 are proven in [JOP4]. Part (3)sgemial case of Theorem 1.7. Parts (1)
and (3) relate linear response to thermodynamical forces to fluctuatidhermal equilibrium and constitute the Fluctuation-
Dissipation Theorem for our model. The physical aspects of lineabnsgptheory and Fluctuation-Dissipation Theorem are
discussed in classical references [DGM, KTH].

Remark 2. The arguments in [JOP4] do not establish that the functions

(ATX(B)), (1.23)

t—wl.
/\aﬁeqvﬂeq

are absolutely integrable fot, B € {®;,7;|1 <j < M} andin Part (2)kageqﬂ (A, B) is defined by

eq

The absolute integrability of the correlation functions (1.23) is a delicatardjcal problem resolved in Part (3) fbx| < Av
(see Definition 1.1).

Remark 3. Remarks 4 and 6 after Theorem 1.5 in [JOP4] apply without changesgorgém 1.8. Remark 7 is also applicable
and allows to extend the Fluctuation-Dissipation Theorem to a large classaflsdcenteredbbservables.

Remark 4. Although the time-reversal Assumption (D) plays no role in Part (3) cfdfam 1.8, it is a crucial ingredient
in proofs of Parts (1) and (2) (see [JOP4, AJPP3] for a discussidhg Fluctuation-Dissipation Theorem fails for locally
interacting open fermionic systems which are not time-reversal intarian

A class of concrete models for which (A)-(B)-(D) hold is easily constied following the examples discussed at the end of
Subsection 1.2. Le§s, . .., G be admissible graphs. Then (A)-(D) holdhif = ¢°(G;) (or £°(G;) ® C"), h; = —Ag,, and
v is the subspace of finitely supported elements.d& physically important class of allowed interactiond/is= V1op 4 y/int
where
VI =% i(x,y) (a” (8:)a(8,) + a”(8y)a(d:))
z,Y
andt : G x G — Riis a finitely supported functiort{ = U;G;), and

yint — Z v(z,y)a” (0:)a" (6y)a(dy)a(dz),

z,y

wherev : G x G — R is finitely supported’ "°P describes tunneling junctions between the reservoiriafitlis a local pair
interaction.
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2 General aspects of CLT

2.1 Proof of Theorem 1.4

Our argument follows the ideas of [GV]. Fak, B in Og.r We set
D(A,B) = HAelB _ (i(A+B) o~ 5[4, B]
The first ingredient of the proof is:

Proposition 2.1 If the set{ A, B} C O is L'-asymptotically abelian for then the asymptotic 2nd-order Baker-Campbell-
Hausdorff formula o
t1i>nolo HD(At7 Bt)“ = 07

holds.

Note that Proposition 2.1 is not a simple consequence of the BCH forreakube its hypothesis do not ensure that the double
commutatof A, [A:, B:]] vanishes as — co. To prove Proposition 2.1 we need the following estimate.

Lemma 2.2 If A, B, a,b are bounded self-adjoint operators then

ID(A+a,B+b)|| < | D(A, B)l| + 4 (lal® + 1BI*) + II[[A, B], [a, 8]}l + 2+ llal + [Bl) >~ X, 9l
Xe{A,B}
y€{a,b}

Proof. We decompos® (A + a, B+ b) = 23:1 D; according to the following table and get an upper bound of the norm of
each term using the elementary estimates

iz iy

S <yl [ e < Ll ll, e — e < eyl
j D, upper bound o D; ||
1 (ei(A+a> - emeiA) ! (BFt) %H [A, ]|l
2 | &% (ei(B+b) - eibeiB) %H[B»b}”
3 | i (eiAeib . eibeiA) o B II[A, b]]|
4 | e (eiAeiB — ei(A+B)e_%[A’B]) ID(A, B)||
5 (eiaeib . ei(a+b)efé[a,b]) ei(A+B)ef%[A,B] | D(a,b)||
6 | e@t? (e_%[a’b]ei<A+B) - ei(A+B)e_%[a’b]) o 3P %H [A+ B, [a,b]]||
7 | ellatDi(A+B) (efé[“’b]ef%[A’B] — efé[A’B]fé[a’b]) %H[[Av B, [a, 0]
Il e L B ) I (1 [ 7=
0 | (leHDHAFE) _gi(ArBrain)) o latan SCIEA all + 1A, 81 + 1B, il + 13,8
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>From the BCH estimate we further get
IDs|| < [1D(a,b)l| < ll[a, [a, b]][| + lI[b, [a, b]]I| < 4(llal® + [1BII°),
and the Jacobi identity yields
D6l < [lall (LA, b} + (1B, 1ll) + 1Bl (A, alll + [I[B; all])-

The result follows O

Proof of Proposition 2.1.Fort > 0 andj € N setp(t) = log(1 + t) and;(t) = [jp(t), (j + 1)p(¢)[. ForX € Oscis define

Xt(j) Et71/2/ 7°(X) ds, Xt(<k) = Z Xt(j).
1;(£)N[0,4] 0552k

If N(t) denotes the integer such thsi(¢)p(t) <t < (N(t) + 1)p(t) then repeated use of Lemma 2.2 yields

N(t) N(t)
1D Bl <43 (1A21° + IBO1P) + > (24 1420+ 1B21) > 11X,y 9
j=0 j=0 X,Ye{A,B}
N (2.24)
+ 3 ASY, B 1A, B
=0
We now estimate the right hand side of this inequality. We first note that
X < (1X11#2p(t) < |1 X]), (2.25)
and hence
N(t) _ _
> (AP +IBOIP) < (A1 + IBIP) V(1) + 1)¢*p()* < 2 (|4 + | BI®) £ /*p(t)?* -0,
j=0

ast — oo. Next consider

N(t)j—1 N(t) . .

) 1 gp(®)  p+1)p(0) B
YoM Y < > / / IX, 7 ()] dvdu.
j=0 k=0 j=0"0 Jp(t)

The change of variables= v — jp(t),n = v — u, leads to

N(t) j—1 N (t) :

) 1 p(t) r&+ip(t) , N()+1 [P® poo )
S vy [T e aanme < XOEL T T ) ane
=0 k=0 j=0"’0 3 0 3

Since(N(t) + 1)/t < 2/p(t) we obtain, forX,Y € {A, B},

N(t)j—1

~ *) () i 2 (T i _
s >SSy < g 2 [T e onan as = (2.26)

=0 k=0

Combining this with (2.25) we get

N(t) N(t)j—1
ST HIAPI+IBOT) Y XY <eHlaliB) > S SIS, vl —o,
j=0 X,Ye{A,B} X,Ye{A,B} j=0 k=0

ast — oo. To estimate the last term on the right hand side of (2.24) we write

N(t) N(t)j—1j-1

Do MAT, BEL (AP, BT < D0 D DALY, BOLIAY, BN = Zi + 22 + Zs,

=0 =0 k=0 I=0
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where
N(t) j—1
k k j j
Zr =33 1A, BV 1AY, B,
j=0 k=0
and
N(t)j—1k—1 )j—11—1
ZZZH A(k) B(l) A£J)>B(])]H s = ZZH [A(k) B(l)] A(J) B(J)””
=0 k=0 1=0 =0 1=0 k=0

Combined with (2.25) and (2.26), the identity
([Ak, Bi], [Aj, Bjl] = [[[Ax, A1, Bel, B;] + [[[Aj, Bk, Ak, Bj] + [[[Bx, B;l, Axl, A;] + [[[Bj, Ak, Bl, Ajl,

yields

N(t) j—1

Zo <A(IAIP+1BIP) > D3 IXPL Y o,

X,Y€{A,B} j=0 k=0
ast — oo. The estimate

N(t) N(t>

ZH[A“) B < 2 Z / / . (B)]|| dudv

N<f> p(t) rp(t)—v
/ / I[A, 7*(B)]|| dudv

0
Mp(t)/_ I[A, 7(B)]||du < 2/R|\[A,T“(B)H|duv

t 0)

I /\

IA

together with (2.26) yield

N(t) N(t) k-1
j j k l
Zy <23 AP, BN S4B - o,
j=0 k=0 1=0

ast — oo. The same argument appliesZg and completes the proaf.

Let (H., 7w, Q) be the GNS-representation of the algebrassociated to the state The second ingredient of the proof of
Theorem 1.4 is:

Proposition 2.3 Suppose thatO, T, w) is an ergodic quantum dynamical system and thas a modular state. If A, B} is
an L!-asymptotically abelian pair for, then

s— lim ., (1A, B]) = /_o:ow([TS(A),B])ds

t—oo
Proof. We shall first prove that

t— oo

lim o, ([At,ét}) Q= (/_o;w([TS(A),BDds) Q. (2.27)
Writing
[At,Bt / / 7rw T ([T 51(A),BD) dsidsa,

the change of variable = s1, v = s — s1 yields that

T ([At,ét]) - i fi(v)dv, (2.28)
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where

1 min(t,t—v)
t(v) = — o (74([7"(4), B])) du.
s =g [ @ B)
Clearly,

1)1 < 17 (4), B € L'(R), (229

and so, by the dominated convergence theorem, it suffices to show that
tlim fi(v)Qw = w ([T"(A), B]) Qu, (2.30)

for all v € R to prove (2.27). LeL,, be the standard Liouvillean associated.towe recall that’,, is the unique self-adjoint
operator orH,, such that ' '
To(TH(A)) = Fem, (A)e e £,Q, =0.

Then
o (T ([T (4), B])w = "o ([r"(A), B)Q,
implies
1 min(t,t—v) -
) = / el (IF(A), B]) Qu du.
max(—wv,0)
Since(O, T, w) is ergodic, zero is a simple eigenvaluef, and von Neumann’s mean ergodic theorem yields
min(t,t—v) 1 t
s— lim — e"Fe du =s— lim — [ ™% du = Q,(Q]),

t—oo t t— oo 0

max(—v,0)
for all v € R. This implies (2.30) and (2.27) follows.
To finish the proof note that for an¥ € =.,(O)’ one has

mo (1o B]) X0 = X ([40, Bi]) O,
and so for all¥ € 7,,(0)'Q,

lim 7., ([/L,Bt]) U= (/j;w([rs(A),BDds) . (2.31)

t—oo

Sincew is modularr.,, (0)’$2,, is dense irH,, and it follows from the estimate
sup (A B < [ 17" (4), Bl ds < .
t>0 R

that (2.31) extends to all € H,,. O

We are now ready to complete:

Proof of Theorem 1.4.Let{A1, -+ ,An} € Ceeis. FOrj =1,...,n — 1, we set

1.~ - -
Ujt = exp <—§[Ajt7 AGene + -+ Anﬂ) ;

andU; = Uy, - - - U, —1):. Clearly, theU;,’s are unitary and repeated use of Proposition 2.1 yields that

thm eiAlt .. .eiAm, o ei(A1t+“‘+An,t)Ut“ =0,
and hence, i i i i
tlim ‘w (eiA“ ---eiA"t> —w (ei<AU+'"+A"t)Ut)' =0. (2.32)
— 00

Proposition 2.3 implies that

k=j+1

s— lim m, (Uje) = exp (i > <(Aj,f4k)) :
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and so

s— lim 7, (U) = exp (—i Z g(Aj,Ak)> . (2.33)

t—oo
1<j<k<n

Since SQCLT holds, Relations (2.32) and (2.33) yield

lim w (elA” ~~~e1A’“) = lim w (e1<A“+'”+A"t)Ut)

t—o0 t—oo

_ tliIEOW (ei(Alﬁ-m-&-Am)) exp (—i Z C(Aj,Ak))

1<j<k<n

= exXp <—; L <Zn: Ak,zn:AJ>> exp (—i Z §(Aj,Ak)) 5
k=1

and the theorem followsa

2.2 Norm localization
Fore > 0 we denoteD. = {z € C||z| < €}.
Proposition 2.4 Let A € Osqir be such that
| wtart ) - wa?dt < oc.

Suppose that there exists> 0 such that

Jim w(el* ) = THAM2, (2.34)
for « € D.. Then (2.34) holds for allt € R.
Proof. Remark that, forr = —iz, w(e'*3t) = w(e®*) ande L4 A)*/2 — ¢L(4,4)2%/2 are moment generating functions.

The result then follows from well-known results in classical probabilite (e paragraph “Moment generating functions” in
Section 30 of [Bil]).O

3 Locally interacting fermions

In this section we describe the strategy of the proof of our main resulpréhel.7, and establish a number of preliminary
results needed for the proof. In particular, we shall reduce the mfodheorem 1.7 to the proof of Theorem 3.5 (stated in
Subsection 3.3 and proven in Section 4). Theorem 3.5, which is the n@ini¢al result of our paper, concerns only the
unperturbed systetfO, 7o, wo ).

3.1 Strategy

Suppose that the assumptions of Theorem 1.7 hold and let

Ka ng

A= Z H a” (fr)a(grs),

k=1j=1
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be an element of. Clearly,

of (@) =ee [

[0,¢]™

wi <H (Tif (A) @(A))) dty -+ - dty.

The first ingredient of the proof of Theorem 1.7 is:

Theorem 3.1 There exists a finite consta@t, 4 such that for alln,

sup /2 [t (T] (70 () -t ()
A <Ay, t>0 [0,¢]™

j=1

Aty -+ dt, < CP 4l (3.35)

Remark 1. Our proof also gives an explicit estimate on the constant, see Formula (3.49) below.
Remark 2. In the special case = 2, Theorem 3.1 yields that for all> 0 and|\| < Ay,

(=B et (e - o anca - i ) as < 28,

Ast — oo the monotone convergence theorem yields
[kt (@30) = (A - (A1) | ds < 265

In particular, we derive that is CLT-admissible.

The second ingredient of the proof of Theorem 1.7 is:
Theorem 3.2 For |\| < Ay andalln > 1,

n! 2 . .
~ — (A, A"? ifniseven
tlim u);\F ((At)n) = 2n/2(n/2)!
0 if n is odd

Remark. With only notational changes the proof of Theorem 3.2 yields that fodglt - - , A,, € €,
tlirgo (A)j\r (Au ce Ant) =wL (SOL(AI) te SDL(A”)) ,
where the r.h.s. is defined by (1.6).

Given Theorems 3.1 and 3.2, we can complete:

Proof of Theorem 1.7.Let A € €,.;. Fora € C one has

wi (ei”’a”) = (iz!)nw; ((At)") . (3.36)

n>0

Lete = 1/(2Cv, ) and suppose thék| < Ay. Theorems 3.1 and 3.2 yield that

sup ‘wi (eiaAt) < 00,
|af<e, t>0
and that forla| < e,
. e 2
lim w} (emAt) = e LA /2 (3.37)

t—oo
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Proposition 2.4 yields that (3.37) holds for alle R, and so SQCLT holds fat w.r.t. (O, 7»,w). Our standing assumption
Ker (T') = Ker (I — T') = {0} ensures that the stat® is modular, and since;” = wo o 7y, the statev is also modular.
By Theorem 1.6, ifA| < Av, then€ is L'-asymptotically Abelian fot-, and it follows from Theorem 1.4 that the QCLT also
holdsd

Notice that in the initial step of the proof we did not use the assumption4haself-adjoint, and so the following weak form
of QCLT holds forany A € ¢:

Corollary 3.3 Forany A € ¢ there exists > 0 such that forf\| < Ay and|a| < e,

; +
lim wy

t—oo

In the rest of this section we shall describe the strategy of the proofedréims 3.1 and 3.2.

(eiaAt) _ efL(A,A)a2/2.

3.2 The commutator estimate
We shall need the following result

Theorem 3.4 Suppose that Assumption (A) holds. Ie€ O(0)se1r be a perturbation such thaty: > 2 and

ma; =1.
max ]

LetA = a®(f1)---a®(fm) be a monomial such the&(A) = {f1,--- , fm} C 0, and let
C(srysn) = [ (V) Lo I (V) A )
Then for alln > 0 there exist a finite index s&,, (A4), monomialsFﬁfg € O, and scalar functions}(A'ﬁ)q such that
Cl(s1, . osn) = D GY(s1,.. 50 F) (51, 8n). (3.38)
q€Qn(A)

Moreover,

1. The order of the monomiﬂf{f; does not exceezh(ny — 1) + m.

2. Ifmis even then the order GTXL; is also even.

3. The factors of"\") are from

{a*@"g) | ge F(V)s e fsr o osntfu{ato)] g e F)},

The number of factors from the first set does not exeg@d — 1) while the number of factors from the second set
does not exceeah — 1. In particular, ||FXL;\| < max(1, maxserca) || f]|"7).

4. LetAy be given by (1.15). Then

Wea=S Iwl® S / (Gt sm)| st dsy < oo (3.39)
n=1 9€Qn(A) _pocsp,<--<51<0
The proof of Theorem 3.4 is identical to the proof of Theorem 1.1 irPdP Parts 1-3 are simple and are stated for reference
purposes. The Part 4 is a relatively straightforward consequente dindamental Botvich-Guta-Maassen integral estimate

[BGM] which also gives an explicit estimate d#iv, 4. A pedagogical exposition of the Botvich-Guta-Maassen estimate can
be found in [JP6].

If Aisasin Theorem 3.4 then
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can be expanded in a power series\iwhich converges fop\| < Av. Indeed, it follows from the Dyson expansion that
7o oA (A) = A+ Y (V)" / (76" (V) [+ s [16" (V), A] -+ ] dsy - - dsi.
n=1

Hence, forlA| < Av,

WA =4+ " > / GY) (51, 5n)F) (51, sn) sy -+ dsa, (3.40)

n=1 qEQn(A) —c0< s <+ <81 <0

where the series on the right-hand side is norm convergent by Parts8BaiTheorem 3.4. This expansion will be used in the
proof of Theorems 3.1 and 3.2.

3.3 Quasi-free correlations

Let O, 7o andwo be as in Subsection 1.2. We denote by
L
V2
the Fermi field operator associatedfte h. The Fermi field operators satisfy the commutation relation

e(f)e(g) +o(g)e(f) = Re(f,9)1,

and the CAR algebré is generated by (f) | f € h}. Clearly,

o(f) = —= (a(f) +a"(f),

1

1 o sopy L
af) = 5 ) +ielif).  a'(f) =775

v (o (f) —ipif)). (3.41)

We recall thatug, the gauge invariant quasi-free state associated to the density oger&amiquely specified by

wola™(fn)---a"(f1)a(gr)---a(gm)) = dn,mdet{(g:;, Tf;)}-

Alternatively, wo can be described by its action on the Fermi field operators. A.ebe the set of all permutations of
{1,...,2n} described in Subsection 1.1 (recall (1.5)). Denote({y) the signature ofr € P,. wy is the unique state o
such that

wo(@(f1)p(f2) = 5 (i, f2) = im(fi, T o),

and
n/2

> e(m) [[wr (e(fr@i-1)s e(fr2))) if niseven
wO(SD(fl)SO(f’")) = 7\'67’n/2 j=1

0 if n is odd.
For any bounded subsgt_ h we set
M; = sup||f],
fef

and

2 > ¢
Oy = max (1, sup e [ oo ()78 01| dt) ,

f.9€f

and we denote byM (f) the set of monomials with factors frofp(f)|f € f}. We further say thatl € M(¥) is of degree at
mostk if, for somefi, ..., fx € f, one can writed = o(f1) - - - ©(fx)-

Theorem 3.5 Suppose thaf; < co. Then for anyAs, ..., A, € M(f) of degrees at mogt, .. ., k,, the following holds:
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sk
dty - dt, < (27°M;) 7 Gl

(H 7o' (As —wO(Ai))>

supt_"/Q/
t>0 0,t]™

tlim t_n/Q/ (H 7‘0 A;) —wo A:))> dty ---dt, =0.
— 00 [0,6]™ _

2. Ifnis odd,

3. Ifniseven,

n n/2
tlim t_”/Q/ wo (H (7-81 (Ay) — wo(&))) dtq ---dt, = Z H Lo(Ar2i-1), Ar(25))s
— 00 [O,t]"

i=1 TEP, 2 J=1

where -
Lo(Ai,Aj) = /_ wo ((TS(A;) — wo(Al))(A7 — wO(A]-))) dt (342)

Remark. As in Remark 2 after Theorem 3.1, Part 1 of the previous theoremmith2 implies that
/ ’wo ((TS(A ) — wo(Ai))(A4; — wo(4;)))] dt < oo,

and soLo(A;, A;) is well defined.

Theorem 3.5 is in essence the main technical result of our paperotiiprgiven in Section 4.

We have formulated Theorem 3.5 in terms of field operators since thatsditw a combinatorially natural approach to its proof.
Using the identities (3.41) one effortlessly gets the following reformulatibithvis more convenient for our application.

Denote by M(f) the set of monomials with factors frofu™ (f)|f € f}. A € M(f) is of degree at most if, for some
fi,..., fr € f, 0one can writed = o™ (f1) - - - o™ (fx). Let

Dr = ma"( L T I (eloD)] dt) ’

Corollary 3.6 Suppose thaDs < co. Then for anyA, ..., A, € M(§) of degrees at most, . . ., k,, the following holds:

iggt_nﬂ/[ <H ) — wo A))>

1.
dty - dt, < (2*M;) =" DIl

2. Ifnisodd,

3. Ifniseven,

n n/2
tlim t77l/2/ (H 7ot (A) A))) dty---dt, = Z H Lo(Ar2j-1), Ar(25))s
- [0,¢]" i=1 nEP,, /o j=1
n/2

whereLy(A;, Ax) is defined by (3.42).
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Note that ifc is as in Subsection 1.2 arjids a finite subset of, thenCs < co andD; < oo.

After this paper was completed we have learned of a beautiful papdi [2iEch is perhaps deepest among early works on
quantum central limit theorems (Derégki's work was motivated by [Hal, Ha2, Rul, HL1, HL2, Da2]). &lation to our
work, in [Del] Theorem 3.5 was proven in the special dase- - - - = k,, = 2 of quadratic interactions. This suffices for the
proof of SQCLT for quasi-free dynamics and for observables whiehpolynomials in Fermi fields. The proofs of Parts (2)
and (3) of Theorem 3.5 are not that much different in the genesgl/ca> 2. The key difference is in Part (1) which in the
quadratic case follows easily from Stirling’s formula. To prove Parfdt)anyk; > 2 is much more difficult and the bulk of
the proof of Theorem 3.5 in Section 4 is devoted to this estimate. The pfQELT for locally interacting fermionic systems
critically depends on this result.

3.4 Proofs of Theorems 3.1 and 3.2

In this subsection we shall show that Theorems 3.4 and 3.5 imply Timsdel and 3.2, thereby reducing the proof of Theorem
1.7 to the proof of Theorem 3.5.

If n is a state, we shall denote
nr(As,..., An) =0 ((A1 —n(A41)) ... (An — n(An))). (3.43)
Let

A= Z:A/l€7 Ak—Ha (frj)a(grs),

be an element af. Without loss of generality we may assume thatx ;e 74y || f|| = 1. With

f:{eishﬂf] fe]—"(V)U]—'(A),seR},

Dy = max (1 ()] + 1Tl ).

FaePOHOF(4) IIlelgH

we clearly haveM; = 1 andD; < Dy, 4.
Proof of Theorem 3.1.For || < Av,
Wit (XA, (A) = >0 wor (01 09 (Aky ), -, 70" 07X (Aky)) (3.44)

and the expansion (3.40) yields that

76 oY (Ar) — wo o v (Ak) Z 1)\ Z / 54]2,(1 (F[E‘Jk’q( )) — wo (F,gjz,q(s))) ds, (3.45)

j>0 q€Q; (Ayg)

whereA; denotes the simpleks = (s1,...,5;) € R7| —oco < s; < --- < s1 < 0}. We have adopted the convention that
Qo(Ay) is a singleton, thaf}(o =1and thath,i) . = Ax. Moreover, integration over the empty simpléy is interpreted

as the identity map. Applylng Fubini’s theorem we get

tin/Q/[ ] wor (Tél oV (Aky)s .o oY (Ag,)) dty -+ - dtn, = Z (N7t tan Z
0,t]™

F1reerin 20 1€Qy; (Aky)snan €Qjy, (Agyy)

/d81~~~ / dsn, (HGSi)ql(le Ci(G, @, 83 Akys - - -, Aryy), (3.46)

=1
i1 Ajn
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where we have set

Ci(4,4, 8 Akys - -5 Ary,) = tinﬂ/

oo wor ( t1 (Ff{kl)ql (81)) ; (F,E;J;)q (s ))) dty - - - diy,.

We derive from Corollary 3.6 and Theorem 3.4 that
C1( 4,8 Ay A, )| < 25V DB (2574 D) (3.47)

holds for¢ > 0. Using this bound we further get from (3.46)

sup t_"/Q/ lwor (15" 0 X (Aky)s- -5 70" 0 (Ak,))| dts -+ - dty
t>0 [0,t]™

< H 28%,4Df Z |28(ﬁv71))\|jl Z /‘Ggi @ )‘ ds; | nl. (348)
=1

J1=20 @€Qj, (ArA,
For || < Av we have (recall Definitions (1.17) and (3.39)),

S i 30 /‘Gﬁi)q )‘ dsi <1+ Wiy, -
7120 @1€Qj, (AxA,

By Theorem 3.4, the right hand side of this inequality is finite. Combining thismQ with (3.44) and (3.48) we finally obtain

Ka n
sup ¢/ / e (T (A), ., 7 (A)) ] dt - - dty, < (28"A Dy 1+ WV,Ak)> nl,
A <Ay,t>0 [0,¢]™ k=1
which concludes the proaf.
The above proof gives that in Theorem 3.1 one may take
K
Cv,a =2""Dya > (1+Wv,a,). (3.49)
j=1
For an explicit estimate oWy, 4, we refer the reader to [JOPA4].
Proof of Theorem 3.2.Note that
Ka
Wy ((At)") =y 2 /[ Lo (78 0y (Aky)s oo™ 07X (Ak,)) dty -+ - dt. (3.50)
0,t]™

In the proof of Theorem 3.1 we have established that the power s8ri&) Converges uniformly fgp\| < v and¢ > 0.
Suppose first that is odd. Corollary 3.6 yields that

tlim Ci(4,q,8; Akyy .o, Ak, ) = 0. (3.51)

By (3.47) and Part 3 of Theorem 3.4 we can apply the dominated ogewvee theorem to theintegration in (3.46) to conclude
that each term of this power series vanishes as co, and so

Jim (A7) =0

for [A| < Av.
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If nis even, Corollary 3.6 yields

n/2

. . (.777 i—1)) (G (24))
tlggo Cels 4,83 Ak - Ara) = Z H Lo ( (22 11) 2 (2i—1) (57"@171))’ FAk (22,.) YA (24) (Sﬂ(%)))
ey 11 Fx(2i-1) (2)
ks I ) (n(2i))
Jx(2i—1) _ I (24) ) o
Z /IR V)2 HWOT (TO ( kr(2i—1)° q7r(21'71)(57r(21_1>)> 7FAk7r(2i)’qﬂr(2i) (SW(ZZ))> dty - dtn2.
TeEP,, i=1

The estimate (3.47) (applied in the case- 2) yields that
. g B 5 o
/]1; ‘on (7’8 (Féjlqu(s)> 7Flngk/)yq,(s'))‘ de < (28”A+1/2Df) 98V —1)(j+j )7

from which we obtain

thm Ct(j7 q7S;Ak17' . '7Ak:") <

(QSWA-H/QDf)n 28(ﬁv—1) > di .

Arguing as in the previous case we get, fiaf < Av, the expansion

t—oo

— Z (i/\)j1+m+jn Z / dsy - / dsy, <H Gg,lj qz( )) (3.52)

J1seesdn>0 QIEQJI(Akl)v“‘7‘1n,€an,(Akn)Aj1 A =1

In

lim t_n/2 / woT (Tél © ’Yj\_ (Ak1)7 S ,Tén o FY;_ (Akn)) dty--- dtn/Z
[0,¢]™

n/2

t; (.77\'(21 1) ) (U (24)) ) .
Z /R P H woT (’T ( 7\-(2171) A (2i—1) (Sw(2zfl))> 7FAk7r(21‘,) 1A (24) (STI'(2Z)) dtl dtn/Z.

TEP, o VR =1

By Fubini’'s theorem, this can be rewritten as

Z /]an Z (i/\)jwn,wn Z /d81~~/dsn

TEP, /2 ) J1,--0n >0 q1€Q5, (Aky )y ,anan(Akn)Ah N
ik = ) (n(2i))
I I (1) | | Im(2i-1) ) Jm(21) )
(l—lGAk a1 ) wor (TO ( Ak (25—1) I (2i— 1)(8‘”(21*1))> 7FAk7r(2i>:Q7r(2i) (S’T(zl))) dty dtp /2.

By Expansion (3.40), the expression inside the square brackets is

HWOT (TO O'VA (Akw(m 1)) v7)\ Ak«(zq ) HwAT( ( 7r(2i—1)) Akw(m))’

so that, by (3.50),

n/2

z S TL([ b (7 (Ars) A ) )

K1y kn=17EP,, 5 i=1

lim wy ((/L)")

t—oo

_ We;/zﬁ (/ wir (7 (A), A) dt)
_ W;(“ A A
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4 Proof of Theorem 3.5

For notational simplicity throughout this section we shall drop the subsgapd writeh for hg, 7 for 7o, w for wy. We shall
also use the shorthand (3.43).

4.1 Graphs, pairings and Pfaffians

An graph is a pair of setg = (V, F) whereE is a set of2-elements subsets &f. The elements ol are called points or
vertices ofg, those of £ are its edges. Abusing notation, we shall writec g for vertices ofg ande € g for its edges. If
v € e € g we say that the edgeis incident to the vertex. If the edgee is incident to the vertices andv we writee = uv
and say that the edgeconnectsu to v. The degree of a vertex € g is the number of distinct edgese g incident tov. A
graph isk-regular if all its vertices share the same degdted vertexv € g of degred) is said to be isolated. A path gnis a
sequencéuo, e1,v1, €2, . .., en, vn) Wherev; € V, e; € E ande; = v;—1v;. We say that such a path connects the vertiges
andv,. If vo = v, the path is closed and is called a loop. The grajgconnected if, given any pair, v’ € V there is a path
on g which connect® andv’. A connected graph without loops is a tree.

A graphg’ = (V'  E’) is a subgraph of the graph= (V,E) if V' C V andE’ C E. A subgraphy’ of g is said to be
spanningg if V' = V. A connected graph has a spanning treee., a subgraph which is spanning and is a tree.

Letg = (V, E) be a graph. To a subsBt C V we associate a subgraphy = (W, Eji) of g by settingEy = {e = uv €
E|u,v € W}. Given two graphg: = (V4, E1) andgs = (Va, E2) such thatl; andV; are disjoint we denote by V g2 the
joint graph(Vi U Vo, Eq U E3).

Letg = (V, E) be agraph antll = {V1, ..., V,} a partition of V. The set
E/II = {V;Vj; |there areu € V;,v € Vj such thatuv € E}.

defines a graph/1I = (II, E/II). We say thay/I1 is theIl-skeleton ofy.

A graphg = (V, E) is said to bg V1, V2)-bipartite if there is a partitio’” = V7 U V, such that all edges € E connect a
vertex ofV; to a vertex ofi.

A pairing on a seV/ is a graphp = (V, E) such that every vertex € V belongs to exactly one edgec E. Equivalently,
p = (V,E) is a pairing ifE is a partition ofV or if it is 1-regular. We denote b (V) the set of all pairings ofV. Clearly,
only setsV of even parity|V| = 2n admit pairings and in this case one has

_ (@n)! _
[P(V)| = ol = (2n — 1)L
If the setV = {v1,...,v2, } is completely ordered); < va < -+ < va,, Writing

E = {m(vi)7(v2), m(v3)m(va), ..., m(v2n—1)7(v2n)},

sets a one-to-one correspondence between paipirggV, E) and permutations € Sy such thatr(ve;—1) < 7(v2;) and
m(vai—1) < m(vai41) fori = 1,...,n (compare with (1.5)). In the sequel we will identify the two pictures anaotie by

p the permutation o}/ associated to the pairing In particular, the signature(p) of a pairingp is given by the signature

of the corresponding permutation. A diagrammatic representation dfiagpa € P(V') is obtained by drawing the vertices
v1, ..., V2, 8S2n CONSecutive points on a line. Each edge p is drawn as an arc connecting the corresponding points above
this line (see Figure 1). It is well known that the signature @ then given by:(p) = (—1)* wherek is the total number of
intersection points of these arcs.

If V.= V4 U Vs is a partition ofV into two equipotent subsets we denote®l1,V>) C P(V) the corresponding set of
(Va, Va)-bipartite pairings and note that

P(Vi,Va)| = nl.
If Vi ={v1,...,vn} andVa = {vn41,...,v2,} are completely ordered by < --- < v, < -+ < v2p, thenp(vai—1) = v;

ando(vn+i) = p(ve2;) for 1 < ¢ < n defines a one-to-one correspondence between bipartite pajriag® (V1, V=) and
permutationsr € Sy, . A simple calculation shows thafp) = (—1)""~Y/2¢(0).
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U1 U2 U3 Uy Us Ve U7 Ug

Figure 1: Diagrammatic representation of a paining

In the special cast” = {1,...,2n}, Vi ={1,...,n} andVz = {n+1,...,2n} we shall se(V) = P, andP(V1,V2) =
Pn.

The Pfaffian of &n x 2n skew-symmetric matrix/ is defined by

PE(M) = Z E(p)HMp(Zifl)p(%y
pPEPn =1
If Bis an x n matrix and
-BT 0

el 8 7]

then only bipartite pairings € P, contribute to the Pfaffian af/ which reduces to

Pf(M) = Zs(p)HBp(Qifl)p(Qi)
=1

pEPR
= > ()" 20) [] Biotsy (4.53)
og€ESy =1

= (=)™ D2 det(B).

4.2 Truncating quasi-free expectations

Let V' C b be finite and totally ordered. To any sub¥8tC V' we assign the monomial
W)= [] e(w),
ueW
where the product is ordered from left to right in increasing order @irndexw.
Let w be a gauge invariant quasi-free state@hR(h). We define §V| x |V| skew-symmetric matrix by setting
Quo = w(p(u)p(v)),

for u,v € V andu < v. We also denote b@" the sub-matrix of2 whose row and column indices belongié. Then we
have

[ PEQY) if [W]is even,
w(@(W)) = { 0 otherwise. (4.54)
If |W] is even, assigning to any pairipge P(W) the weight
o) = [] Qs

uvep
u<v
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e(p1) = -1 (p2) = +1

E(Jl, JQ) =—1
V4 i
L ]

e(prVp2) =+1

Figure 2: Proof of Lemma 4.1
we can rewrite Equ. (4.54) as

w@EW) = > @0 (4.55)

pEP(W)
The following simple lemma is our fundamental tool when dealing with suplamesions.
Lemma4.l LetWy = {u1,...,u,} andW, = {v1,...,vs} be disjoint even subsets Bfsuch thatu; < uz < -+ < u,
andv; < v2 < --- < vs. Denote by (W1, W>) the signature of the permutation 81 U W> which “orders” the sequence
W1 W3 i.e.,which maps the sequenee, us, - - - u-, v1,v2, - - - , vs iNto the ordered sequence of element§lafu Ws. Then,
for anyp; € P(W1) andps € P(W>) one has
Q(p1 Vp2) = Q(p1)p2), e(prVp2) = (Wi, Wa)e(p1)e(p2). (4.56)

Proof. The statement abo@(p: V p2) is obvious. To prove the statement about signatures we draw the follaiaggam
(see Figure 2). Draw two parallel lines and on the top one the two diagramesponding to the pairings andp», one next

to the other. On the bottom line draw the diagram representing the pairmg- but with the edges drawn below the baseline.
Now draw segments connecting each point of the top line with its represemahe bottom line. These segments represent
the permutation referred to in the Lemma. Thus, if therejargersection points of these segments th@iv,, Ws) = (—1)7.
Denote byj the number of intersection points in our diagram lying above the top line ayidtbg number of those intersections
points lying below the bottom line. Then, we has@:)e(p2) = (—1)7 ande(p V p2) = (fl)j/. Now observe that our
diagram is a disjoint union of closed loops. Thus, it has an even nuribgetsection points.e.,

(71)j+q+j/ =1,

from which the result follows]
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Iterating Equ. (4.56) we obtain, for disjoint even subdéts ..., W, C V and arbitrary pairingg; € P(W;), the formulas
k k k k
=1 =1 =1 =1

wheree(W1,..., W) denotes the signature of the permutation which “orders” the sequénce. ., W,. Moreover, the
recurrence relation
z’:‘(Wl, e W) = €(W1 U---UWg_q, Wk)E(Wl, e Wk—1)7

holds.

If X,Y are subsets df we write X < Y whenevemmax(X) < min(Y').

Remark. If W1 < Ws < --- < Wy it immediately follows from the fact that thé’; are even that (W (1), ..., W) =1
for any permutationr € Sk.

Lemma 4.2 LetIl = (V4,...,V,) be an ordered partition oV by even subseise.,
N<Va<--- <V, |Vileven

and set4d; = ®(V;). Then one has

wr(As,...,An) = > e(p)QAp), (4.57)
pEP(II)

whereP(II) denotes the set of pairingsc P (V') which have dlI-skeletorp/II without isolated vertex.

Proof. Expanding the left hand side of Equ. (4.57) we get

> DM w@(Uienx Vi) [T w(@(vi)),

KcCI €K

wherel = {1,...,n}. Using Lemma 4.1 and the remarks following it, we can rewrite this exjuress

STEDEES T e(p(6) QUp(€)), (4.58)

KCI €8k
where we sum over the sets

€K
and, for = (q, (pi)iex) € Ex We have sep(§) = q V (Viekxp:). Let us define
Is(p) = {i € I|V; is an isolated vertex qf/I1}.

Clearly, if K C I and¢ € Ek thenp(€) € P(V) andK C Is(p(€)). Reciprocally, suppose thate P(V) and K C Is(p).
Then the restricted graphs= pjw with W = U;cn\x Vi andp; = pyy, for i € K satisfy = (q, (pi)icx) € Ex and
p(€) = p. We conclude that

{(K;p©) | K CI,§ € Ex} ={(K,p)[p € P(V), K CIs(p)},

and since the map — p(&) is clearly injective we can rewrite the sum (4.58) as

> oemop) Y. (-nFl

peP(V) KCls(p)

The result follows from the fact that the second sum in the last expregaigshes unless(ig) is emptyd
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Figure 3: The exit graphx(p) (solid lines) forp € P(II)

4.3 Resummation

The setup in this subsection is the same as in the previous one. We confsiger ardered partitiodl = (V41,...,V,) of V
by even subsets as in Lemma 4.2 and fix our attention on the expan$a@h ¢#the truncated correlation.

Consider a fixed term in this expansiae., a pairingp € P(II). Since its skeletom/II has no isolated point, for each
1€ 1=1{1,...,n} the set of edges gf which connect a vertex if; to a vertex outsid&; is not empty. We call exit edge of
p from V; the element of this set which contains the smallest verté%.iThe set of all exit edges gfdefines a subgraph of
which we denote byx(p) (see Figure 3). We also denote By (IT) = {ex(p) | p € P(II)} the set of all exit graphs. We can
rewrite expansion (4.57) as

wr(Ar,.. A=Y > ep).

g€Ex(II) peex—1({g})

A given exit graply can be seen as a pairing 8f(g) = {u € V |uv € g for somev € V'}. SettingV’(g) = V \ X(g) and
applying Lemma 4.1 we get

wr(Ar,..., An) = > Q(g)S(g) (4.59)
gE€Ex(II)
where
S = D ePpvg)- (4.60)

p€ex~1({g})
Our next result is a partial resummation formula ).

Define the exit point fronV; by z;(g) = min(X (g) N V;). We say that
0= (X,L,M,MR),
is ag-admissible partition o’ if X, L, M, M’ andR are disjoint subsets df such that
X=X(9), V=XULUMUM'UR,
and which, for all € I, satisfy the following conditions

1) max((LUM)NV;) < x:(g);
(2) min((RUM")NV;) > zi(9);
(3) |LNnV;|iseven;

4) IMNV;| =M NV

If X,Y are two subsets df denote by2*"" the sub-matrix of2 with row (resp. column) indices iX (resp.Y).

Lemma 4.3 For g € Ex(II) one has

S(g) = > e(0)w(®(R) ][] (w((ID(L AV;)) det(QMVeM'NVi )) , (4.61)

0=(X,L,M,M’,R)€O(g) iel
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Figure 4: The partition o¥; induced by a pairing. Solid lines belong to the exit grapi(p).

where©(g) denotes the set gfadmissible partitions of” and

e0) = e(X,LNVi,...,LOVa,(MUM)OVi,...,(MUM)NV,, R)e(gx) [ [(-1)M Y IaMavil=0/z,

Proof. Let us have a closer look at a pairipgvhose exit graph ig. What happens iX; (%) = Vi N X(g) is completely
determined by. However, the structure of v, ;) whereV;(g) = Vi N V(g) depends on finer details pf Edges ofp which

are incident to a vertex ifv;(g) located to the left of the exit point; (g) must connect this vertex to another vertedirg).
These edges split in two categories: the ones which connect two ventites [eft of the exit point and the ones which connect
a vertex on the left to a vertex on the right. We denotd.bfp) the set of vertices which belong to an edge of the first category,
and byM;(p) the vertices located to the left of (g) and belonging to an edge of the second one MBYp) we denote the set

of vertices which are connected to elementdff(p). This subset oi/;(g) is located on the right of the exit point. We group
the remaining vertices df;(g), which are all on the right of the exit point, into a fourth $&{(p). Elements of this set connect
among themselves or with elementsif(p) for somej # i (see Figure 4). Setting

L(p) = _ULz-(p), M(p) = U M;(p), M'(p)= U M(p), R(p)= U Ri(p),

we obtain a partition
0(p) = (X(9), L(p), M(p), M'(p), R(p)),
of V which is clearlyg-admissible. Moreover, setting

Li(p) =piLiwnv; € P(L(p)NVi),
mi(p) = pou@um eyav; € P(M(p) N Vi, M'(p) N Vi),
r(p) =prp) € P(R(p)).

we obtain a ma@ fromex ™! ({g}) to the set

U {{0} X <HP(me)> X (HP(MH%,M’HW)) x P(R)

0=(X,L,M,M’,R)€O(g) iel i€l

Since

p=gV <\/lvz(p)> v <\/ mi(p)) v r(p),

i€l i€l

¥ is injective. For any-admissible partitiod = (X, L, M, M’, R) and any

LePLNV), mi e PIMNV;,M'NV;), r¢&P(R) (4.62)
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the pairing

p=gV (\/l) v (\/ m¢> v, (4.63)

i€l i€l
satisfies

ex(p) =g, 0(p)=10, Lp)=1L mi(p)=mi r(p)=r
We conclude tha¥ is bijective. Thus, using Lemma 4.1, we can rewrite the si(g) as

e(gx)e(X, LNVi,..., LNV, (MUM )N Vi,...,(MUM') NV, R)
6=(X,L,M,M’,R)€O(g)

H( > s(li)Q(li)>H( > 5(mi)Q(mi)> > ema(n).
i€l \l;EP(LNV;) i€l \'m;eP(MNV;,M'NV;) reP(R)

The result now follows from Equ. (4.53) and (4.55).

4.4 Estimating truncated expectations
Apart from the entropic factd©(g)|, the following Lemma controls the partial susitg).

Lemma 4.4 For g € Ex(II) one has
1S()l <2720 T el

veEV (g)

Proof. Since 1

o) = SHa" (s alh)} = I,

we have, for anyX' C V, the simple bound

w@(X))| <27 X2 TT |lol.

veX

Combining this estimate with the following Lemma, the result is an immediate qoasee of Formula (4.611
Lemma 4.5 Let B be thek x k matrix defined byB;; = w(p(ui)e(v;)). Then, the estimate
k
der()] <27 [ (Il i)
i=1
holds.

Proof. Let™ be a complex conjugation dn The real-linear map

Q: b — bhob
fo= a-1)reT?,
is isometric and such that
wpus)p(v) = 3 (s, v5) = (e, Twy) + T, T07) ) = 3 (Qui, Q).

It immediately follows that

det(B) = 27" wro(a(Qu1) - - a(Qui)a” (Qui) - - @™ (Qu1)),
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wherewrock denotes the Fock-vacuum state@AR(h @ h). The fact that
la(Qu)|| = lla™(Qu)ll = [|Qull = [|u],

for anyu € b yields the resultd

Foru,v € V such that, < v set

A, = 2 [EeO)] _ ) [Ouw]
]l |l l[ull o]
and for any graplp on V' set
Alp)= [] Aw-
uveEp
u<v

Note thatA.. and hence)(p) take values in the interva, 1]. The following lemma, which controls the contribution of the
exit graphg to the sum (4.59) is immediate.

Lemma 4.6 Foranyp € P(W)

2(p)| <272 (p) ( I1 le|> :

weW
Applying this bound tgy € Ex(II) and using Lemma 4.4 we finally get from Formula (4.59):

Lemma 4.7 Under the hypotheses of Lemma 4.2 the following estimate holds

jwr(Ar, ..., Ag)| < 2712 (H ||v|> > 18@IAg).

veV g€Ex(II)

4.5 Counting exit graphs and their admissible partitions

Lemma 4.8 For any ordered partitiodI of V one has
[Ex(IT)] < 41 ]!

and for anyg € Ex(II)
©(g)| < 4!V,

Proof. We set|V| = 2N, II = (V4,...,V,) and|V;| = k;. To construct an exit graph we must first seleagxit points
x; € V;. Thus, there aré 1 k2 - - - k,, exit points configurations. Each exit point has now to be paired with a different vertex
y; € V, subject to some constraints. Releasing these constraints we obtain étdopp2 N (2N — 1) --- (2N —n+ 1) on
the number of such pairings. Thus,

Ex(IT)| < 2N(2N — 1)+ (2N — 1+ 1)ky - - bn = (?) ot - hnl.
The result follows from the facts that the binomial coefficient is bourle2f™ andk; < 2%

A g-admissible partition is a partition df (¢) into four sets. Since there atd” (9! such partitions the second estimate
follows.O
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4.6 Proof of Theorem 3.5

To prove Theorem 3.5 we sel; = p(e''" f;1) - - - p(ei" fir,) and apply Lemma 4.7 to the case

Vi={""fu,.... """ fu,}, iel={1,...,n}.
We se2N = |V| = 3, k; and obtain

/[0 - lwr(Ar,. .., Ap)| dty - --dt, <27V (H |U|> 3 e Cl), (4.64)

veV gEExX(IT)

where

C(g) E/ A(g)dity ---dt,

Lemma 4.9 Let g be a graph with vertex sét. Denote byN.(g) the number of connected components of its skelgt®h
Then one has

/ A(g)dty ---dt, < CnNel@yNelo), (4.65)
[0,]
with

0 = (L iy [ Moo Gl a).

Proof. Assume first that the skeletasyIl is connected. Then it has a spanning t(EBe7"). Fix a rootV; in T and for
j € I\ {r}letVy, be the parentoV; in T. Letw € S, be a relabeling of the vertices @f such thatr(r) = 1 and
w(l(j)) < w(j) for j € I\ {r}. Define new variables by; = t; — t;(;) for j € I\ {r} ands, = ¢,.. The corresponding
Jacobian matrix isl;; = d:; — (1 — 6:)d;;y;- By our choice of the relabeling the reordered matrix

iy = Je=1(m=10) = 05 = (1= 0)0nqu(m =100y
is lower triangular with ones on the diagonal. Thus the Jacobian deternirginen by| det J| = |det J'| = 1.

For each edg®’; V;(;, € T there is a corresponding edge= u;v; € g with u; = ™" f; .. € V; andv; = 10" f;), €
Vi) and therefore a factor

2 |lw(e(fia;)T™ " (0 (frw,)))] - forj <1(5),

Aej(si) = 75— — 1 .

I aesll i, 1) e, )7 (e Fra, ) for 3> 105),

in A(g). It follows that

g) < H Aej(sj)~

JEIN{r}
t
/ Alg)dts ---dt, < /
[0,8]m 0

In the general casg,/11 is the disjoint union ofV.(g) connected subgraphs. Applying the above estimate to each of them
yields the result

and hence

t
Aej(sj)ds]-) ds, < O™ 't
Jen{r}

Inserting the estimate (4.65) into Equ. (4.64) and using Lemma 4.8 hyfiobtain, taking into account the fact that the
skeleton of an exit graph can have at meg2 connected components

2N
/ lwr (A1, .., An)| dty -+ -dt, < (Sﬁmafoin) ™™ ),
[O,t]n )

which concludes the proof of Part 1.
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m A m N
R ARI R AR R

Ve Vi@ Vi) Vi

Figure 5: The pairingr induced by a maximally disconnected pairing

To prove part 2 it suffices to notice thatrifis odd then the skeleton of an exit graph can have at fiost 1)/2 connected
components.

To prove part 3, we go back to Formula (4.57) and write

t_"/Q/ wr(Ar,.. Ap)dt o dty = > e(p)t‘””/ Q(p) dty -+~ din. (4.66)
[0,¢]™

pEP(II) [0,¢]™

By Lemmata 4.6 and 4.9 one hastas> oo,
t*””/ Q(p)dty - - - dt,, = O(N=P)~"/2),
[07,5]77,

Thus, the pairingg € P(II) which contribute to the limit — oo are maximally disconnected in the sense that their skeleton
have exactlyn/2 connected components. The skelepgiil of such a pairing induces a pairinge P,/ such that

P=p1V---Vpna, pi€ Po(Vazj-1);Vrs)),

whereP, (V;, V;) denotes the set of pairings &) U V; whose skeleton w.r.t. the partitid;, V;) has no isolated vertex (see

Figure 5). Since the map+— (7, p1,...,pn/2) is clearly bijective we can, for the purpose of computing the limit of (4&6)
t — oo, replacevr (A1, ..., A,) by
> > e(pLV -V Pry2) APV -V pnya).

TE€Pns2 PjE€EPo(Vr(2j—1)>Var(2j))

By Lemma 4.1 we have

e(p1 V- Vpns2) =e(Vaqy, -y Vam))er) - - €(pny2), Qp1V -V pns2) = Qp1) - QUpny2)
and by the remark following (V. (1), . .., Va(n)) = 1. Thus, the last expression can be rewritten as

n/2
€(pj)9(pj)> .

TEPp 2 J=1 (Pj €Po(Vr(2j-1)>Vr(2))

Finally observe that, by Lemma 4.2,

> ePAp) = wr(As, Ay).

PEPo(Vi,Vj)
One easily concludes the proof by the remark following Theorem 3.5tendominated convergence theorem.
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