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André F. Verbeure2

Instituut voor Theoretische Fysica, K.U.Leuven (Belgium)

Valentin A. Zagrebnov3
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1 Introduction

Soon after the discovery of superfluidity F. London made a connection between this phe-
nomenon and the almost forgotten Bose-Einstein condensation (BEC) in the free Bose gas
[1]. His arguments were essentially based on fact that Helium-4 atoms are bosons, and
their superfluidity can be understood in terms of the Bose statistics that they obey. Almost
ten years later N.N. Bogoliubov [2] proposed a microscopic theory of the superfluidity of
Helium-4 showing that it can be regarded as a consequence of Bose-Einstein condensation
in an interacting system. The Bogoliubov theory had a serious impact since just a few years
before Landau had developed a spectral criterion for superfluidity and according to this
criterion the free Bose gas is not a superfluid even in the presence of BEC.

But more than eighty years after the prediction of Bose-Einstein condensation the problem of
whether this phenomenon is stable with respect to realistic pair-interaction is still unsolved
and seems beyond the reach of the present methods. Either one must use a very special pair-
potential or one must truncate the Hamiltonian. The second course was followed by many
authors. One such approach is to use a Hamiltonian which is a function of the occupation of
the free-gas single particle states [3]. Since all the operators in these models commute, they
can be investigated by probabilistic techniques using Laplace’s method (Large Deviations)
[4], [5]. However these models (which include mean-field or imperfect Bose gas) produce a
spectrum identical to that of the free Bose gas and therefore does not satisfy the superfluidity
criterion.
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A more plausible model is the so-called Bogoliubov model, also called the weakly imperfect
Bose-gas, see [2] and [6]. This model takes into account more interaction terms without
losing its exact solvability. The basic ingredients of this model in terms of states on the CCR-
algebra of the boson observables, including the problem of the Bogoliubov-Landau spectral
behaviour, has been analyzed in [7, 8]. Later the boson Pairing Model was introduced as
a further refinement of the Bogoliubov model by including of BCS boson interaction [11].
Theoretical work on this model resulted into some intriguing properties like the occurrence
of two types of condensation, a boson BCS-type pair condensation and the standard one-
particle condensation, as well the presence of a spectral gap in the elementary excitations
spectrum [12] - [16].

The methods that have been used so far for the study of these solvable models have been the
Bogoliubov approximating Hamiltonian method [6] and some form of Laplace’s method [4],
[5]. One should also mention the non-commutative large deviation method developed by [17]
for lattice systems and later refined in [18]. This method has not been rigorously extended
to Bose systems mainly due to technical problems with unbounded operators. However on a
formal level it gives the right variational formulas (see for example [16].) Here we develop a
new method based on the quasi-free states on the algebra of observables given by the algebra
of the canonical commutation relations [19, 20].

All the solvable models referred to above share the property that their equilibrium states
and/or ground states, which are states on the algebra of the Canonical Commutation Re-
lations (CCR) are completely determined by the one- and two-point correlation functions.
Such states are called quasi-free states. This class of states has been intensively studied in
the sixties and seventies. Although quasi-free states are frequently used as the ideal labora-
tory for performing tests of all kinds, this mathematical analysis turned out to be much too
technical to be very practical for its utility in the study of Bose systems in physics, see e.g.
[21], [22].

This paper is intended to remedy this failure by giving a presentation of the quasi-free states
suitable for the study of space homogeneous systems. In particular we prove the explicit form
of the variational principle of statistical mechanics for all solvable boson models. We prove
that for these models the set of states over which one minimizes the free-energy density (or
grand-canonical pressure) is reducible to the set of homogeneous quasi-free states. The main
technical step in this is the explicit formula for the entropy density of a general quasi-free
state including the non-gauge symmetric ones.

Though the variational principle when solved fully, in principle contains all the information
about the model, in practice it is often difficult to solve. A very useful additional tool is the
use of condensate equations introduced in [23, 24]. They form an essential part of the study
of the variational principle and can be derived without any explicit knowledge of the entropy
of the system, Section 2. Moreover, they are always valid as opposed to the Euler-Lagrange
equations which are not always satisfied because either the stationary point is a maximum
or the minimum does not correspond to any stationary point.

In Section 3 we apply our method to the Pairing Boson Model with Mean-Field and BCS
interactions to obtain the variational principle conjectured in [16] (and proved in [25]), sup-
plemented by the condensate equations. This model with BCS attraction is a very good
example of a situation, when the condensate equations can give some conclusions more di-
rectly. For instance, from the condensate equations (3.18), (3.19), one immediately concludes
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that there is neither pairing nor zero-mode condensation for negative chemical potentials and
also that zero-mode condensation implies a non-trivial boson pairing. An unusual property
of this model is that for the BCS repulsion it is not completely equivalent to the mean-field
case: the repulsion does not change the density of corresponding thermodynamic potentials
but produces a generalized (type III) condensation à la van den Berg-Lewis-Pulé.

Another application is the model, analyzed in [26], which describes the phenomenon of the
recently observed superradiance of the BEC accompanied by a matter-wave grating and
amplification.

2 Quasi-free Bose systems

2.1 Heuristics

The concrete and traditional approach to Bose systems in physics is to start with the sym-
metric Fock Hilbert space of vector states F. Consider L2(Rn) the space of square inte-
grable functions on Rn, n is the number of degrees of freedom. One considers the cre-
ation and annihilation operators: for any f, g ∈ L2(Rn), the creation operator is given by
a∗(f) =

∫
dxf(x)a∗(x) acting in F, the annihilation operator is its adjoint operator a(f),

and satisfying the usual canonical commutation relations

[a(x), a∗(y)] = δ(x− y) , [a(x), a(y)] = 0, (2.1)

leading to the relations

[a(f), a∗(g)] = (f, g) , [a(f), a(g)] = 0. (2.2)

It is assumed that there exists a particular normalized vector Ω in F such that it is annihilated
by all a(x) and hence that for all f :

a(f)Ω = 0. (2.3)

The symmetric Fock space F is then the Hilbert space is the linear span generated by all
vectors of the set: {a∗(f1)a

∗(f2)...a
∗(fn)Ω}n for all fi and for all n ∈ N.

A vector-state ωΨ of a boson system is an expectation value of the type ω(A) = (Ψ, AΨ),
where Ψ is a normalized vector of the Fock space and where A is any observable of the boson
system. Remark that each observable is a function of the boson creation and annihilation
operators. In particular, the physical model is defined through the energy observable, called
Hamiltonian. For a two-body interaction v the general model takes the following form in a
finite volume V = |Λ|:

HΛ =

∫
Λ

dx
1

2m
∇a∗(x) · ∇a(x) +

1

2V

∫
Λ

dx

∫
Λ

dy a∗(x)a∗(y)v(x− y)a(x)a(y) (2.4)

Stability of the model requires that the Hamiltonian operator acting in the Fock space is
bounded from below.
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In this paper we adopt the following definition: we shall say that a system is solvable if the
corresponding density of the thermodynamic potential can be expressed explicitly via a finite
number of correlation functions. We shall make this definition more exact later. In general
the model (2.4) described above is not solvable. The natural way of defining solvability is in
terms of the correlation functions.

The state ω is known if one can find all its correlation functions

ω(a∗(f1)...a
∗(fn)a(g1)...a(gm)) (2.5)

for all functions fi, gj. One should realize that in order to know the state one has to know
an infinity of correlation functions, for all n, m ∈ N. This makes the many-body problem
unsolvable in most cases.

In the literature one can find many approximation procedures, where the original state ω
is replaced by a state ω̃ constructed via various decoupling procedures such that all higher
order correlation functions can be expressed in terms of those of order less than some n+m.
It must remarked that on the basis of the Marcinkiewicz theorem [27, 28], many of them
are erroneous. Indeed, this theorem tells us that if the decoupling holds for all correlation
functions from some n+m on, then the decoupling holds for all correlation of order n+m > 2.
This means that the only decoupling, not contradicting the positivity of the state ω̃, is
the one in terms of the one-point function, ω̃(a(f)) and two-point functions, ω̃(a∗(f)a(g)),
ω̃(a(f)a(g)), for all f and g. Any state satisfying the decoupling procedure described above
is called a “quasi-free state” (qf -state).

In the rest of this section we recall the main features of the boson Gibbs states, in particular
the class of space homogeneous quasi-free states which are necessary for the formulation of
the variational principle of statistical mechanics for solvable models.

Our main original contribution in this section is a proof of the existence of a canonical
automorphism mapping a gauge breaking state in a gauge invariant one. This result will
be essential for the explicit computation of the entropy density of the state, which makes
possible the explicit formulation the variational principle for our class of solvable boson
models.

2.2 CCR and quasi-free states

In order to define the total set of all quasi-free states it is convenient to work with the boson
field which is defined on T a suitable subspace of L2(Rn), called a space of test functions.
This field is defined by the map b : f ∈ T 7→ b(f), where the linear operator b(f) on Fock
space is given by

b(f) = a(f) + a∗(f).

The Canonical Commutation Relations (CCR) for these fields are now

[b(f), b(g)] = 2iσ(f, g) , (2.6)

with σ(f, g) = =m(f, g). Note that the fields are real-linear in their argument: b(λf) =
λb(f), for =mλ = 0, but b(if) = i(−a(f) + a∗(f)) and a(f) = 1

2
((b(f) + ib(if)).
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It is equivalent to use the field operators as the generators of all observables instead of
creation and annihilation operators. To avoid using unbounded operators we use the Weyl
operators as the generators of the algebra of observables A of the system. These are given
by:

W (f) = exp{ib(f)}, (2.7)

for any f ∈ T. The CCR are then equivalent to the relations

W (f)W (g) = e−iσ(f,g)W (f + g). (2.8)

We shall denote the set of states on A by S. We recall that a state ω ∈ S, is any normalized
linear positive form on A.

Very often it is convenient to define states though their truncated functions
ω(b(f1)b(f2) . . . b(fn))t for f1, f2, . . . fn ∈ T. These functions are defined recursively through
the formula

ω(b(f))t = ω(b(f)), ω(b(f1)...b(fn)) =
∑

ω(b(fk)...)t...ω(...b(fl))t, (2.9)

where the sum is over all possible partitions of {1, ..., n} and where the order within each of
the clusters is carried over from the left to the right.

Let ω be an arbitrary state on the Weyl algebra A, then for all f ∈ T, the expectation values
ω(W (f)) are known and can be expressed in terms of the truncated functions (see e.g.[20]),

ω(W (f)) = ω(eiλb(f)) =
∞∑

n=0

inλn

n!
ω(b(f)n) = exp

{
∞∑

n=1

inλn

n!
ω(b(f)n)t

}
. (2.10)

For the models that we study in this paper we shall see that only the one- and two-point
functions play a role. The one-point function is determined by the linear functional φ on T

and the two-point functions by two (unbounded) operators R and S on T. These are defined
by

φ(f) = ω(a∗(f)), (2.11)

and the truncated two-point functions

〈f, Rg〉 = ω(a(f)a∗(g))−ω(a(f))ω(a∗(g)), 〈f, Sg〉 = ω(a(f)a(g))−ω(a(f))ω(a(g)) (2.12)

where g stands for the complex conjugate of g. Clearly ω(b(f)b(f)) can be expressed in terms
of these two operators and φ. Note that the operator R is self-adjoint. We shall denote by
Sφ,R,S the elements of S determined by the triplet φ, R and S.

Since ∗-automorphisms (canonical transformations) leave the CCR invariant, many prop-
erties of a state are conserved under these transformations. We shall say that states are
canonically equivalent if they can be transformed into each other in such a way.

It is easy to see that in general there is a canonical transformation which transforms a state
ω into a state ω0 with φ = 0. For any real linear functional χ on T, the transformation τχ

on the boson algebra defined by

τχ(W (f)) = eiχ(f)W (f) (2.13)
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together with linearity and conservation of products, is a canonical transformation. Clearly
this transformation translates the boson field: τχb(f) = b(f) + χ(f). Now the composition
of a state ω with the transformation τχ, ω0 = ω ◦ τχ is again a state and ω0(b(f)) =
ω(b(f)) + χ(f). Therefore if we choose χ(f) = −ω(b(f)) = −2Re φ(f), which is real linear,
then the one-point function of ω0 vanishes. Moreover the reduced two-point functions are
left invariant so that operators R and S are unchanged.

It is clear that the positivity of the state ω implies that

ω((a(f) + a∗(g))(a(f) + a∗(g))∗) ≥ 0 (2.14)

for all f, g ∈ T. Assuming φ = 0 the inequality (2.14) is equivalent to

〈f, Rf〉+ 〈f, Sg〉+ 〈g, S∗f〉+ 〈g, (R− 1)g〉 ≥ 0 (2.15)

for all f, g ∈ T. Putting f = 0 we see that R ≥ 1 and putting g = −R1/2h and f = R−1/2Sh
gives

R(R− 1) + S∗S −R−1/2S∗SR1/2 −R1/2S∗SR−1/2 ≥ 0. (2.16)

Notice that if operators R and S commute, then the latter simplifies to

T 2 ≡ R(R− 1)− S∗S ≥ 0. (2.17)

Now we introduce the one-parameter group of gauge transformations. This group of canon-
ical transformations or CCR-automorphisms, {τλ|λ ∈ R}, is defined by

τλ(a
∗(f)) = eiλa∗(f), τλ(a(f)) = e−iλa(f). (2.18)

A state ω is called gauge invariant if ω ◦ τλ = ω for all λ ∈ R holds. In particular for a state
ω ∈ Sφ,R,S the one- and two-point functions transform under such a gauge transformation
as follows:

(ω ◦ τλ)(a
∗(f)) = eiλω(a∗(f)),

(ω ◦ τλ)(a(f)a∗(g)) = ω(a(f)a∗(g)),

(ω ◦ τλ)(a(f)a(g)) = e−i2λ(ω)(a(f)a(g)).

or equivalently (φ,R, S) is transformed into (eiλφ, R, e−i2λS). Therefore a necessary condition
for gauge invariance is that φ = 0 and S = 0.

We now prove that any ω ∈ Sφ,R,S is canonically equivalent to a state ω̃ ∈ S
eR ≡ S0, eR,0 if

R and S commute and Rf = Rf for all f ∈ T. We shall see later that these conditions are
satisfied for translation invariant states. We determine explicitly the operator R̃ as a function
of R and S. This result is similar to the more restricted result stated in [19], where only the
existence of such a map between pure quasi-free states (see definition later) is proved. Here
we prove not only the existence of this map but we give its explicit construction.

Theorem 2.1. Let ω ∈ Sφ,R,S with R and S commuting and Rf = Rf for all f ∈ T. Then

there exists a canonical transformation τ mapping ω into ω̃ ∈ S
eR where the operator R̃ is

given, in terms of the operators R ≥ 1 and T ≥ 0, by

R̃ =
1

2
+

(
T 2 +

1

4

) 1
2

. (2.19)
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Proof. Clearly we can assume that φ = 0. By applying a canonical transformation similar to
the gauge transformation in (2.18) we can transform operator S into |S|. Then we consider
another canonical transformation γ (also called Bogoliubov transformation)

ã(f) = γ(a(f)) = a(Uf)− a∗(V f) (2.20)

where U and V are commuting self-adjoint operators commuting with R and S and satisfying
Uf = Uf , V f = V f and U2 − V 2 = I. We consider the two equations

〈f, R̃g〉 = ω̃(a(f)a∗(g)) = ω(γ(a(f)a∗(g))) (2.21)

0 = 〈f, S̃g〉 = ω̃(a(f)a(g)) = ω(γ(a(f)a(g))) (2.22)

in order to express R̃ as a function of R and S or preferably T . One computes explicitly the
following equations from the former ones, using the symmetry of R and S.

R̃ = U2R + V 2(R− 1)− 2UV S, (2.23)

0 = U2S − UV (2R− 1) + V 2S. (2.24)

From the second relation (2.24) one gets a quadratic equation for the operator X := UV −1,
which is semi-bounded from below by I. Then solution of this equation has the form:

X =
(
R− 1/2 +

(
(R− 1/2)2 − S2

)1/2
)

S−1. (2.25)

Using the relation (2.17) between the operators S and T , one gets

X =
(
R− 1/2 +

(
T 2 + 1/4

)1/2
) (

R(R− 1)− T 2
)−1/2

. (2.26)

This gives for U and V :

U = X(X2 − 1)−1/2, V = (X2 − 1)−1/2 (2.27)

which we insert into the first equation (2.23) to obtain R̃ as a function (2.19) of R and T .
The canonical transformation τ of the theorem is of course given by the composition of the
gauge transformation with the Bogoliubov transformation.

The states we shall be considering will be translation invariant. Space translations are again
realized by a group of canonical transformations {τx|x ∈ Rn} of the algebra of observables
A given by τx(a(f)) = a(Txf) where (Txf)(y) = f(y − x). The translation invariance of a
state ω, given by ω ◦ τx = ω for all x ∈ Rn, is immediately translated to the operators R, S
by the property that they both commute with the operators Tx for x ∈ Rn.

Translation invariance implies that φ(f) = cf̂(0) where f̂ denotes the Fourier transform of
f and c = ω(a∗(0)). On the other hand it is well-known [30] that if A is such a transla-
tion invariant operator, then there exists a function ξ on Rn whose Fourier transform is a
tempered distribution such that for all functions f , (Âf)(k) = ξ(k)f̂(k). This is due to the
kernel theorem for operator-valued distributions and the convolution theorem for Fourier
transforms. In particular, our operators R and S are simple multiplication operators with
functions denoted by r(k) and s(k). It is easily checked that for k 6= 0, r(k) = ω(â(k)â∗(k))
and s(k) = ω(â(k)â(−k)) = s(−k) where â(k) is the operator-valued distribution given by
the Fourier transform of a(x). For our purposes (see later) we can assume in addition that
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r(−k) = r(k). This last property is equivalent to Rf = Rf . As R and S are multiplication
operators they commute so that (2.17) holds and can be written in terms of r and s:

r(k)(r(k)− 1)− |s(k)|2 ≥ 0. (2.28)

It is convenient to introduce a non-negative function t(k), corresponding to the operator T ,
defined by

t(k)2 = r(k)(r(k)− 1)− |s(k)|2. (2.29)

The class of translation invariant states Sφ,R,S can now be parameterized by the complex
number c and the functions r ≥ 1, t ≥ 0 and α(k) = arg s(k).

Now we turn to the quasi-free states.

Definition 2.2. A state ω is called a quasi-free state (qf-state) if all truncated functions of
order n > 2 vanish. This means that a qf -state is completely determined by its one- and
two-point functions:

ω(W (f)) = exp{iω(b(f))− 1

2
ω(b(f)b(f))t} (2.30)

The set of qf -states will be denoted by Q.

Note that a qf -state is completely determined by φ, R and S. We denote the qf -state
corresponding to φ, R and S by ωφ,R,S. Of course translation invariant qf -states can be
parametrized uniquely by the complex number c and the functions r ≥ 1, t ≥ 0 and α(k) =
arg s(k). Note also that a qf -state is gauge invariant if and only if φ = 0 and S = 0. The
above arguments show that ωφ,R,S is canonically equivalent to ω

eR ≡ ω0, eR,0.

We end this section by calculating the entropy for qf -states. For any normal (density
matrix) state ω with density matrix ρ the von Neumann entropy is defined by the formula:
S(ω) = −Tr ρ ln ρ. The entropy is left invariant under any canonical transformation τ (see
e.g. [29], Chapters 1 and 9), that is, S(ω ◦ τ) = S(ω). Let ω be a translation invariant,
locally normal state on the algebra A (i.e. its restriction to every bounded region of Rn is
normal). Let Λ ⊂ Rn be a family of bounded regions increasing to Rn. Then the entropy
density of ω is defined by

S(ω) = lim
Λ

S(ωΛ)

V
, (2.31)

where V = |Λ| denotes the volume of Λ, ωΛ is the restriction of ω to Λ and limΛ := limΛ↑Rn .
For translation invariant qf -states of the type ωR, S has been calculated in [31] and is given
by

S(ωR) =

∫
ν(dk) {r(k) ln r(k)− (r(k)− 1) ln(r(k)− 1)} (2.32)

where ν(dk) = dnk/(2π)n. It is clear from the above argument that the entropy density of
ωφ,R,S is the same as that for ω

eR. We state this result in the following proposition.

Proposition 2.3. The entropy density of qf -state with two-point functions defined by R and
S is given by

S(ωφ,R,S) = S(ω
eR) =

∫
ν(dk) {r̃(k) ln r̃(k)− (r̃(k)− 1) ln(r̃(k)− 1)} (2.33)
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where r̃ is given by (2.19):

r̃(k) =
1

2
+

(
t2(k) +

1

4

) 1
2

. (2.34)

In particular the entropy density is independent of the one-point function φ.

2.3 Equilibrium states

An equilibrium state at inverse temperature β of a homogeneous boson system will be defined
by the variational principle of statistical mechanics, that is, an equilibrium state is one that
minimizes the free energy density.
The free-energy density (or more precisely the grand-canonical pressure) functional is defined
on the state space by

f(ω) := β E(ω)− S(ω) , (2.35)

where S(ω) is defined in the previous section and E(ω) is the energy density. The energy
density is determined by the local Hamiltonians of the system under consideration, HΛ,
defined for each bounded region of volume V :

E(ω) = lim
V

1

V
ω(HΛ − µNΛ) ,

where µ is the chemical potential and NΛ is the particle number operator.
The variational principle of statistical mechanics states that each translation invariant (or
periodic) equilibrium state ωβ is the minimizer of the free energy density functional, that is,
for any state ω:

f(ωβ) = inf
ω

f(ω). (2.36)

In the definition of E and S it was presupposed that the states are locally normal in the sense
that ωΛ is a normal state. This is a reasonable assumption since we are basically interested
in equilibrium states which are thermodynamic limits of local Gibbs states given locally by
their (grand) canonical density matrices ρΛ = e−β(HΛ−µNΛ)/Tr e−β(HΛ−µNΛ).

Let ω be a normal state with density matrix ρ on Fock space F, with zero one-point function
and with two-point functions given by the operators R and S = 0. Let {fj} be an ortho-
normal basis of eigenvectors of R with eigenvalues rj. Consider the operator (trial diagonal
Hamiltonian) H =

∑
j εja

∗
jaj with aj = a(fj) and εj = ln(rj/(rj − 1)). Let σ be the density

matrix given by σ = e−H/Tr e−H . It is clear that the state defined by σ is a qf -state which
has two point function

Tr σ a(f)a∗(g) = 〈f, Rg〉 = Tr ρ a(f)a∗(g). (2.37)

Thus σ is the density matrix for the qf -state ωR.

We use this construction to prove the entropy inequality

S(ω) ≤ S(ωR). (2.38)

Using the Bogoliubov-Klein convexity inequality [20], Lemma 6.2.21, one gets

S(ω(R,0))− S(ω) = Tr ρ ln ρ− Tr σ ln σ ≥ Tr (ρ− σ) ln σ (2.39)
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where ln σ = −
∑

j εja
∗
jaj − ln Tr (exp−H) and hence

S(ωσ)− S(ω) ≥ −
∑

j

εj(Tr ρ a∗jaj − Tr σ a∗jaj) = 0 (2.40)

since the states ρ and σ have the same two-point functions. This proves the inequality (2.38),
which is a mathematical expression with the following physical interpretation. The state ω
is a state with more non-trivial correlations than its associated qf -state ωR and therefore it
is understandable that the entropy of the state is smaller than or equal than the entropy of
its associated qf -state.
Clearly this inequality carries over to the entropy density of locally normal states and using
canonical equivalence to locally normal states with non-vanishing φ and S. Thus we have
for locally normal states in Sφ,R,S:

S(ω) ≤ S(ωφ,R,S) = S(ω
eR). (2.41)

From now on we shall study solvable models, i.e. models with a Hamiltonian whose energy
density limΛ ω(HΛ)/V for any translation invariant state ω depends only on the one- and
two-point correlation functions of the state. This will be made more precise in Definition
2.5. But, first we impose one last restriction on the states.

Definition 2.4. A translation invariant state ω is called space-ergodic, if for any three
A, B, C local observables the following holds

lim
Λ

ω(ABΛC) = ω(AC)ω(B),

where BΛ the space-average

BΛ =
1

V

∫
Λ

dx τx(B).

Note that for translation invariant states one has that ω(B) = limΛ ω(BΛ), and therefore
the above definition can be written in the form

ω(A(lim
Λ

BΛ − ω(B)I)C) = 0.

In other words for a space-ergodic state ω, the limiting space-average operator B := ω −
limΛ BΛ is proportional to identity I. In the same way one gets ω− limΛ[BΛ, A] = 0 for any
local observables A and B. For these reasons the limiting operator B is called an observable
at infinity [20]. Note that B is a normal operator since [B, B∗] = 0

As a first application of the ergodicity of states we have

lim
Λ

ω

(
a∗0a0

V

)
= |c|2 := ρ0, (2.42)

where ρ0 is the zero-mode condensate density for boson systems.

Definition 2.5. We shall say that a model is solvable if for every ergodic state ω, the energy
density E(ω) depends only on the one-point and two-point correlation functions of ω.
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Note that if a model is solvable then the energy density E(ω) is the same for all ω ∈ Sφ,R,S.
We shall denote this common value by E(r, t, α, c). On the other hand we have shown that
for ω ∈ Sφ,R,S, S(ω) attains its maximum at the qf -state ω = ωφ,R,S. Thus we have

inf
ω∈Sφ,R,S

f(ω) = f(ωφ,R,S) = βE(r, t, α, c)−
∫

ν(dk) {r̃(k) ln r̃(k)− (r̃(k)− 1) ln(r̃(k)− 1)} .

(2.43)

Taking the infimum in (2.43) over R, respectively T and φ we obtain our main result:

Theorem 2.6. For a solvable boson system the equilibrium state ωβ is a qf -state and it is
defined by

f(ωβ) = inf
ω∈Q

f(ω)

= inf
r, t, α, c

{
βE(r, t, α, c)−

∫
ν(dk) {r̃(k) ln r̃(k)− (r̃(k)− 1) ln(r̃(k)− 1)}

}
,

where r̃(k) is given by (2.34) as a function of r and t.

2.4 Condensate Equations

Next we introduce the notion of condensate equations for equilibrium states of general boson
system. They constitute essential tools for the study of the equilibrium as well as ground
states of boson models. For a full discussion of this topic we refer the reader to [23, 24].
These equations are derived directly from the variational principle of statistical mechanics
formulated above. However they have certain advantages over the Euler-Lagrange equations.
First of all that they can be derived without any explicit knowledge of the entropy of the
system. Secondly, while the Euler-Lagrange equations are not always satisfied because either
the stationary point is a maximum or the minimum occurs on the boundary, the condensate
equations are always valid.

To this end, consider the following completely-positive semigroups of transformations on the
locally normal states in S. Let A be any local (quasi-local) observable (with space-average
AΛ over region Λ) and let

ΓΛ =

∫
Λ

dx{[τx(A
∗
Λ), .]τx(AΛ) + τx(A

∗
Λ)[., τx(AΛ)]}.

Then for each finite region Λ one can define a semigroup of completely-positive maps on S

[33] given by
{γλ,V = exp λΓΛ|λ ≥ 0}.

Let ωβ be any locally normal state satisfying the variational principle with density matrix
ρΛ. Then using the notation of Definition 2.4, one gets

0 ≤ lim
λ→0

1

λ
(f(lim

Λ
ω ◦ eλΓΛ)− f(ω))

≤ lim
Λ
{β Tr ρΛA∗

Λ[HΛ(µ), AΛ]− Tr ρΛA∗
Λ AΛ ln

Tr ρΛA∗
Λ AΛ

Tr ρΛAΛ A∗
Λ

}
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The second inequality is a consequence of the bi-convexity of the function: x, y → x ln(x/y).
Because of the normality of the limiting space-average operator A, the second term of the
right-hand side of the inequality vanishes and one gets

lim
Λ

βωβ(A∗
Λ[HΛ(µ), AΛ]) ≥ 0 (2.44)

and the same inequality with AΛ replaced by A∗
Λ.

Using the same argument as above but now working with the group of unitary operators
{Ut = exp(itHΛ(µ))| t ∈ R}, one gets immediately limΛ ωβ([HΛ(µ), X]) = 0 for any observ-
able X. Therefore

0 = lim
Λ

ωβ([HΛ(µ), A∗
Λ AΛ]) = lim

Λ
{ωβ([HΛ(µ), A∗

Λ]AΛ) + ωβ(A∗
Λ[HΛ(µ), AΛ])}. (2.45)

Using (2.44) and the property that the space-averages commute with all local observables,
one gets the general condensate equation:

Theorem 2.7. Let ωβ be any limit Gibbs state, satisfying the variational principle for equi-
librium states at inverse temperature β, including β = ∞ which means that ω∞ is a ground
state, and let A be any local (or quasi-local) observable, then the condensate equation with
respect to A is given by

lim
Λ

ωβ(A∗
Λ [HΛ(µ), AΛ]) = 0. (2.46)

3 Applications

3.1 Superradiant Bose-Einstein Condensation

This model describes the phenomenon of the recently observed superradiance of the BEC
accompanied by a matter-wave grating and amplification. It describes a boson condensate
irradiated by laser. This model was introduced and analyzed in [26]. We consider bosons
in a cubic box Λ in Rn with volume V ≡ |Λ| and periodic boundary conditions for the
corresponding Schrödinger operators. Let Λ∗ be the dual set of single particle momenta.
For for k ∈ Λ∗ let φk(x) = eikx/V 1/2 with x ∈ Λ, and define the boson creation/anihilation
operators a#

k ≡ a#(φk). These bosons interact with a laser photon field {bq, b
∗
q} with some

fixed mode q, where [bq, b
∗
q] = 1. For the case of Rayleigh scattering the corresponding

Hamiltonian has the form:

HΛ(µ) =
∑
k∈Λ∗

(ε(k)− µ)a∗kak + Ω b∗qbq +
λ

2V
N2

Λ +
g

2
√

V
(a∗qa0bq + a∗0aqb

∗
q)

where Ω, λ, g ∈ R+ and ε(k) = k2/2m. The total system is assumed to be closed and in
equilibrium. We consider an equilibrium state ωβ of the total system satisfying the variational
principle described in the previous section.

Since the operators a0/
√

V , aq/
√

V , bq/
√

V and NΛ/V are all space averages, by the ar-
guments of Section 2.3 this model is solvable in the sense of Definition 2.5 and the energy
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density is given by

E(ρ, ρ0, ρq, ρ̃q, α0, αq, α̃q) =

∫
ν(dk) (ε(k)− µ)ρ(k)− µρ0 + (ε(q)− µ)ρq + Ωρ̃q

+g
√

ρ0ρqρ̃q cos(α0 + αq + α̃q) +
λ

2
ρ2 (3.1)

where ρ(k) ≡ r(k)− 1,

√
ρ0e

iα0 ≡ lim
Λ

ωβ(
a0√
V

),
√

ρqe
−iαq ≡ lim

Λ
ωβ(

aq√
V

),
√

ρ̃qe
ieαq ≡ lim

Λ
ωβ(

bq√
V

),

and ρ ≡
∫

dk ρ(k)+ρ0 +ρq. The entropy is given by (2.32) and depends only on ρ(k). There
are three relevant condensate densities

ρ0 = lim
Λ

ωβ(
a∗0a0

V
), ρq = lim

Λ
ωβ(

a∗qaq

V
), ρ̃q = lim ωβ(

b∗qbq

V
)

and the last two of them are periodic with period κ = 2π/|q|.

Now we minimise the free-energy (2.35). From (3.1) it is clear the minimum is attained when
α0 + αq + α̃q = π. The Euler-Lagrange equations, obtained by varying with respect to the
other parameters, are:

(λρ− µ)ρ0 =
g

2

√
ρ̃qρqρ0,

(ε(q) + λρ− µ)ρq =
g

2

√
ρ̃qρqρ0,√

ρ̃q(
√

ρ̃q −
g

2Ω

√
ρqρ0) = 0,

ρ(k) =
1

eβ(ε(k)+λρ−µ) − 1
.

We note that the condensate equations derived from Theorem 2.7 are identical to the first
three Euler-Lagrange above, and the therefore these equations must be satisfied.

In order to determine the value of the Bose-Einstein condensation and to see the effect of
the irradiation in this model, we have to analyse these four equations. This has already been
done in [26]. In fact, if we put δ := −µ + λρ as in [26], then these equations yield:

ρq =
4Ω

g2
δ , ρ0 =

4Ω

g2
(ε(q) + δ) , ρ̃q =

4

g2
(ε(q) + δ)δ (3.2)

and

ρ =
4Ω

g2
(ε(q)/2 + δ) + ρPBG(−δ), (3.3)

where ρPBG(µ) is particle density in the Perfect Bose-Gas (PBG), that is

ρPBG(µ) =

∫
ν(dk)

1

eβ(ε(k)−µ) − 1
. (3.4)

Finally we see that the boson part of the equilibrium state ωβ is the quasi-free state deter-
mined by the 1-point function

ωβ(a(f)) = f̂(0)
√

ρ0e
iα0 + f̂(0)

√
ρqe

−iαq

and by the 2-point truncated function given by

r(k)− 1 =
1

eβ(ε(k)+λρ−µ) − 1

with ρ0, ρq and ρ determined above.
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3.2 Pairing Boson Model with BCS and Mean-Field Interactions

The model was invented in [11] as an attempt to improve the Bogoliubov theory of the
weakly imperfect boson gas, see a detailed discussion in [6] and [32]. Using the notation of
the previous section the Hamiltonian of the Pairing Boson Model (PBH) is then given as in
[16, 25] by

HΛ = TΛ −
u

2V
Q∗

ΛQΛ +
v

2V
N2

Λ (3.5)

where
TΛ =

∑
k∈Λ∗

ε(k) a∗kak, QΛ =
∑
k∈Λ∗

λ(k)aka−k, NΛ =
∑
k∈Λ∗

a∗kak. (3.6)

The coupling λ is for simplicity a real L2-function on Rn satisfying λ(−k) = λ(k), 1 =
λ(0) ≥ |λ(k)|. The coupling constant v is positive and satisfies v− u > 0, implying that the
Hamiltonian defines a superstable system [25]. For a discussion of the origin of this model
see [25] and the references therein.

Again since the operators NΛ/V and QΛ/V are both space averages, by the arguments of
Section 2.3 this model is solvable in the sense of Definition 2.5 and the energy density is
given by

E(r, t, α, c) =

∫
ν(dk) (ε(k)− µ)(r(k)− 1)− µ|c|2 (3.7)

+
v

2

(∫
ν(dk) (r(k)− 1) + |c|2

)2

− u

2

∣∣∣∣λ(0)c2 +

∫
ν(dk) λ(k)s(k)

∣∣∣∣2 .

We have used the relations

ω(a∗kak) = 〈φk, (R− 1)φk〉+ |c|2V δk0, ω(aka−k) = 〈φk, Sφk〉+ c2V δk0. (3.8)

With ρ(k) = r(k)−1, c =
√

ρ0e
iα, ρ =

∫
ν(dk) ρ(k)+ρ0 and σ =

∫
ν(dk) λ(k)s(k), the energy

density E(r, t, α, c) becomes:

E(r, t, α, c) =

∫
ν(dk) ε(k)ρ(k)− µρ +

v

2
ρ2 − u

2

∣∣ρ0e
2iα + σ

∣∣2 . (3.9)

Since the cases u > 0 and u ≤ 0 are very different, we shall consider them separately.

3.2.1 BCS attraction u > 0: coexistence of BEC and boson pairing

First we consider u > 0. Clearly, in this case the minimum in (3.9) is attained when
2α = arg σ. Therefore, instead of (3.9) one can take for further analysis the function

Ẽ(r, t, c) := E(r, t, α = (arg σ)/2, c), which has the form:

Ẽ(r, t, c) =

∫
ν(dk) ε(k)ρ(k)− µρ +

v

2
ρ2 − u

2
(ρ0 + |σ|)2 . (3.10)

The corresponding entropy density S(ω) is given in (2.33). It is independent of ρ0 and
depends only on ρ(k) and |s(k)|. Then for real λ(k), after optimizing with respect to the
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argument of s(k), for 2α = arg σ the Euler-Lagrange equations in the parameters r, t and c,
take the form:

2ρ(k) + 1 =
f(k)

E(k)
coth(βE(k)/2), (3.11)

s(k) =
u(ρ0 + |σ|)λ(k)

2E(k)
coth(βE(k)/2), (3.12)

0 = −µ + vρ− u(ρ0 + |σ|) , (3.13)

where
f(k) = ε(k)− µ + vρ, (3.14)

and
E(k) =

{
f 2(k)− u2λ(k)2(ρ0 + |σ|)2

}1/2
. (3.15)

As usual these equations are useful only if they have solutions within the admissible domain
of r, t and c which corresponds to the positivity of the state. These three equations coincide
respectively with equations (2.8), (2.9) and (2.10) in [16]. The integrated form of the first
two equations also coincide with equations (5.1) and (5.2) in [25]:

ρ =
1

2

∫
Rn

ν(dk)

{
f(k)

E(k)
coth

1

2
βE(k)− 1

}
+ ρ0 , (3.16)

(|σ|+ ρ0) =
u (|σ|+ ρ0)

2

∫
Rn

ν(dk)
λ(k)2

E(k)
coth

1

2
βE(k) + ρ0 . (3.17)

On the other hand, we find that the condensate equation (2.46) with respect to a0/V
1/2 is

ρ0(−µ + vρ− u(ρ0 + |σ|)) = 0, (3.18)

cf (3.13), and that with respect to QΛ/V it takes the form:

(c2 + σ)

{∫
ν(dk) λ(k)(ε(k)− µ + vρ ) s(k) + (−µ + vρ ) c2

−u

[∫
ν(dk) λ(k)2(ρ(k) + 1/2) + ρ0

]
(c2 + σ)

}
= 0. (3.19)

Taking into account that |c|2 = ρ0, one can check that these condensate equations are
consistent with the Euler-Lagrange equations (3.11)-(3.13) and/or (3.16)-(3.17).

Remark 3.1. Notice that there is a relation between the condensate equation (3.18) and the
Euler-Lagrange equation (3.13). Indeed, by (3.10) the ρ0-dependent part of the variational
functional has the form

Ẽ0(ρ0) :=
1

2
(v − u)ρ2

0 − (µ− vρ + u|σ|)ρ0 ,

where ρ := ρ− ρ0. Since v > u, Ẽ0 is strictly convex and has a unique minimum at ρmin
0 . For

µ ≤ vρ− u|σ| one gets ρmin
0 = 0, which is not a stationary point, whereas for µ > vρ− u|σ|

the minimum occurs at the unique stationary point ρmin
0 = (µ − vρ + u|σ|)/(v − u) > 0.

These of course correspond to the solutions of the Euler-Lagrange equation (3.13), or the
condensate equation (3.18).
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Remark 3.2. We assumed above that E(k) ≥ 0. It is clear that E(k) corresponds to the
spectrum of the quasi-particles of the model (3.5) and that it should be real and non-negative
for all k. We can see this by applying the general and well-known inequality (see e.g. [34],
[20] or [23]): limV ω([X∗, [HV − µNV , X]]) ≥ 0 holding for each equilibrium state and for
each observable X. Let X = ãk, where ãk = ukak − vka

∗
−k, with

u2
k =

1

2

(
f(k)

E(k)
+ 1

)
, v2

k =
1

2

(
f(k)

E(k)
− 1

)
. (3.20)

Then one obtains limV ω([ã∗k, [HV − µNV , ãk]]) = E(k) ≥ 0.

There are two order parameters in the model (3.5), namely ρ0 (Bose condensate density)
and the function s(k), or the density of condensed BCS-type bosons pairs σ with opposite
momenta. By virtue of equations (3.16), (3.17) and (3.13) it is clear that there exists always
a trivial solution given by ρ0 = s(k) = 0, i.e. no boson condensation and no boson pairing.
The interesting question is about the existence of non-trivial solutions. The variational
problem for the Boson pairing model for constant λ has been studied in detail in [16]. It was
shown there that the phase diagram is quite complicated and it was only possible to solve
the problem for some values of u and v, see Fig. 2 in [16].

The first Euler-Lagrange equation (3.16) implies that for u > 0 (attraction in the BCS part
of the PBH (3.5)) the existence of Bose-Einstein condensation, ρ0 > 0 for large chemical
potentials µ, or the total particle density ρ. Moreover, it causes (in ergodic states) a boson
pairing, σ 6= 0. This clearly follows from the condensate equations (3.18), (3.19) or the
second Euler-Lagrange equation (3.17), since (3.17) is impossible for ρ0 > 0 and σ = 0.
However from the same equation it can be seen that the boson pairing σ 6= 0 can survive
without Bose-Einstein condensation i.e. for ρ0 = |c|2 = 0. This is proved in the next remark.

Remark 3.3. In this remark we prove that it is possible to have a solution of the condensate
equations (3.18), (3.19) with ρ0 = 0 and σ 6= 0. The proof is based on the analysis in [16].
For simplicity let us take n = 3 and λ(k) = 1. For x ≥ 0 we let

E(k, x) :=
{
(ε(k) + x)2 − x2

}1/2
. (3.21)

and for fixed v > 0

I2(x) =
v

2

∫
R3

ν(dk)

{
ε(k) + x

E(k, x)
coth

1

2
βE(k, x)− 1

}
. (3.22)

Let ρc be the critical density of the Perfect Bose Gas at inverse temperature β:

ρc :=

∫
R3

ν(dk)
1

eβε(k) − 1
. (3.23)

Let µ1 = supx≥0(I2(x)−x). From (3.22) one can check that I2(0) = vρc and I ′2(0) = +∞, and
therefore µ1 > vρc. Choose vρc < µ < µ1 and let x̂ be one of the solutions of µ = I2(x)− x.

Now for x ≥ 0, let

I1(x) =
v

2

∫
R3

ν(dk)
1

E(k, x)
coth

1

2
βE(k, x), (3.24)

A(x) = xI1(x)− I2(x). (3.25)
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One can check that A is a strictly concave increasing function of x with A(0) = −vρc. Let

α := (A(x̂) + µ)/x̂ + 1 = I1(x̂). (3.26)

Note that A(x̂) + µ > A(0) + µ > µ − vρc > 0 and therefore α > 1. Let the BCS coupling
constant u = v/α.

We now propose the following solution:

ρ0 = 0, (3.27)

ρ(k) =
ε(k) + x̂

2E(k, x̂)
coth

1

2
βE(k, x̂)− 1

2
, (3.28)

s(k) =
x̂

2E(k, x̂)
coth

1

2
βE(k, x̂). (3.29)

¿From the definitions above it can be verified that (s(k))2 ≤ ρ(k)(ρ(k) + 1). Then using the
identities

vρ = v

∫
R3

ν(dk)ρ(k) = I2(x̂) = µ + x̂,

uσ =
v

α
σ =

1

α
I1(x̂)x̂ = x̂,

we can check that the condensate equations (3.18), (3.19) are satisfied. Note that (3.27)-
(3.29) is also a solution of the Euler-Lagrange (3.11)-(3.13). In fact in [16] we have proved
that there is a whole region in the µ-α phase space for which this happens.

Now suppose that (ρ̃0 6= 0, ρ̃(k), s̃(k)) is another solution of (3.11)-(3.13) for the same values
of µ, v and u. Then from (3.13) we can let

y := v

∫
R3

ν(dk)ρ̃(k)− µ = u(ρ̃0 + |σ̃|) > 0 (3.30)

and so from (3.11) and (3.12) we obtain

ρ̃(k) =
ε(k) + y

2E(k, y)
coth

1

2
βE(k, y)− 1

2
,

s̃(k) =
y

2E(k, y)
coth

1

2
βE(k, y).

Integrating these identities we get

y + µ− vρ̃0 = I2(y),

αy − vρ̃0 = yI1(y)

and subtracting gives A(y) = (α − 1)y − µ. But from the properties of the function A
mentioned above the last equation has only one solution for µ > vρc and therefore y = x̂.
Thus the solution coincides with (3.27)-(3.29).
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3.2.2 BCS repulsion: u < 0 and generalized (type III) Bose condensation

This unusual “two-stage” phase transitions with one-particle ρ0 = |c|2 6= 0 and pair σ 6= 0
condensations is possible only for attractive BCS interaction u > 0. It was was predicted in
the physics literature (see for example [11, 15]) and proved in [16, 25]. The case of repulsion
(u ≤ 0) in the BCS part of the PBH (3.5) is quite different. The case u = 0, of course,
corresponds to the Mean-Field Bose gas.

Remark 3.4. Formally one deduces that (3.17) for u ≤ 0 implies only trivial solutions ρ0 =
0, σ = 0, but since the equation gives stationary points of the variational problem, this
observation can not be conclusive. On the other hand the condensate equations (3.18),
(3.19) give immediate but only partial information that for µ < 0 the Bose condensation
ρ0 and boson pairing σ must be zero. The inequalities of Remark 3.2 do not give more
information about those parameters.
The pressure for u ≤ 0 was obtained rigorously in [16], in fact for a wider class of interactions
then we consider here. The nature of the phase transition was studied in [25] where a method
of external sources was used to prove the variational principle. Below we give another
argument that solves the problem for the BCS repulsion in the PBH model (3.5).

Let us therefore take u < 0. Then clearly

E(r, t, α, c) ≥
∫

ν(dk) ε(k)ρ(k)− µρ +
v

2
ρ2. (3.31)

Therefore, since r 7→ r ln r − (r − 1) ln(r − 1) is increasing and r̃(k) ≤ r(k), we have

S(ωφ,R,S) ≤ S(ω
eR) ≤ S(ωR), (3.32)

where S(ωR) = S(ωφ,R,S=0) = S(ωφ=0,R,S=0) as in (2.32), the free-energy density f(ωβ) is
bounded below by the free-energy density fMF (β, µ) of the MF boson model. On the other
hand:

f(ωβ) = inf
ρ0, α, r, s

{βE(r, t, α, c)− S(ωφ,R,S)} ≤ inf
ρ0=0, s=0

{βE(r, t, α, c)− S(ωφ,R,S)}

= inf
ρ

{
β

(∫
ν(dk) ε(k)ρ(k)− µρ +

v

2
ρ2

)
− S(ωR)

}
, (3.33)

where ρ =
∫

ν(dk)ρ(k). It is well known that the last infimum gives the free-energy density
of the MF model (though this infimum is not attained with ρ0 = 0 for µ > vρc(β)) and
therefore f(ωβ) coincides with the free-energy density fMF (β, µ). Here ρc(β) is the critical
density for the Perfect Bose Gas (3.23). Thus we have the following: In the case of BCS
repulsion u < 0 the free energy for the PBH is the same as for the mean-field case:

f(ωβ) = fMF (β, µ) . (3.34)

Returning to the variational principle this means that the infimum of the free-energy func-
tional in the repulsive case is not attained for µ > vρc(β). Since the critical density ρc(β)
is bounded (for n > 2), we must have BEC in this domain. But now it cannot be a simple
accumulation of bosons in the mode k = 0, i.e. ρ0 6= 0, since it would imply that c 6= 0, and
by consequence a positive BCS energy in E(r, t, α, c), see PBH (3.5).
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The situation which one finds strongly suggests a relation to what is known as generalized
condensation. The possibility of such condensation was predicted by Casimir [36] and studied
extensively by van den Berg, Lewis and Pulé [37]. One form of generalized condensation is
called type III ; here the condensate is spread over an infinite number of single particle states
with energy near the bottom of the spectrum, without any of the states being macroscopically
occupied. To make contact with the large deviation and variational techniques developed
by van den Berg, Lewis and Pulé, see e.g. [4], [5], note that though the infimum in the
right-hand side of (3.33) cannot be reached within the space of regular measures ρ(k) with
ρ0 = 0, there is a sequence of regular measures {ρ(l)(k)}l such that ρ(l)(k) = 0 δ(k)+ρ(l)(k) →
ρ̃0δ(k) + ρ̃(k), l →∞. Here ρ̃0 > 0 when µ > vρc(β).

If F denotes the free-energy density functional in terms of (ρ0, ρ(k), s(k)), then we get:

lim
l→∞

F(0, ρ(l)(k), s(l)(k) = 0) = F(ρ̃0, ρ̃(k), s̃(k)). (3.35)

Mathematically this is because the functional F is not lower semi-continuous on the set
of regular measures. The physical explanation was given in [25]: In the case u < 0 this
model corresponds to the mean-field model but with type III Bose condensation, i.e. with
approximative regular measures that have no atom at k = 0. The fact that repulsive inter-
action is able to “spread out” the one-mode (type I ) condensation into the type III was also
discovered in other models [38], [39].
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[10] Lewis J., Pulè J.V.: The Equilibrium States of the Free Boson Gas, Commun. Math.
Phys. 36 1-18 (1974) .

[11] Zubarev D.N., Tserkovnikov Yu.A.: On the theory of phase transition in non-ideal
Bose-gas, Dokl. Akad. Nauk USSR 120, 991–994 (1958).

[12] Girardeau M., Arnowitt R.: Theory of many boson sytems, Pair theory, Phys.Rev.
113, 755-761 (1959).

[13] Luban M.: Statistical mechanics of a nonideal boson gas: Pair Hamiltonian model,
Phys. Rev. 128, 965-987 (1962).

[14] Kobe D.H.: Single particle condensate and pair theory of a homogeneous Bose system,
Ann. Phys. 47, 15-39 (1968).

[15] Iadonisi G., Marinaro M., Vsudevan R.: Possibility of two stages of phase transition
in an interacting Bose gas, Il Nuovo Cimento LXX B, 147-164 (1970).
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