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Abstract

Within the framework of nonrelativistic QED, we prove that, for
small values of the coupling constant, the energy function, E~P , of
a dressed electron is twice differentiable in the momentum ~P in a
neighborhood of ~P = 0. Furthermore, ∂2E~P

(∂|~P |)2
is bounded from below

by a constant larger than zero. Our results are proven with the help
of iterative analytic perturbation theory.
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I Description of the problem, definition of

the model, and outline of the proof

In this paper, we study problems connected with the renormalized electron
mass in a model of quantum electrodynamics (QED) with nonrelativistic
matter. We are interested in rigorously controlling radiative corrections to
the electron mass caused by the interaction of the electron with the soft
modes of the quantized electromagnetic field. The model describing interac-
tions between nonrelativistic, quantum-mechanical charged matter and the
quantized radiation field at low energies (i.e., energies smaller than the rest
energy of an electron) is the “standard model”, see [6]. In this paper, we
consider a system consisting of a single spinless electron, described as a non-
relativistic particle that is minimally coupled to the quantized radiation field,
and photons. Electron spin can easily be included in our description without
substantial complications.

The physical system studied in this paper exhibits space translations
invariance. The Hamiltonian, H, generating the time evolution, commutes
with the vector operator, ~P , representing the total momentum of the system,
which generates space translations. If an infrared regularization, e.g., an
infrared cutoff σ on the photon frequency, is imposed on the interaction
Hamiltonian, there exist single-electron or dressed one-electron states, as
long as their momentum is smaller than the bare electron mass, m, of the
electron. This means that a notion of mass shell in the energy momentum
spectrum is meaningful for velocities |~P |/m smaller than the speed of light c;
(with c ≡ m ≡ 1 in our units). Vectors {Ψσ} describing dressed one-electron
states are normalizable vectors in the Hilbert space H of pure states of the
system. They are characterized as solutions of the equations

HσΨσ = Eσ
~P
Ψσ , |~P | < 1 (I.1)

where Hσ is the Hamiltonian with an infrared cutoff σ in the interaction term
and Eσ

~P
, the energy of a dressed electron, is a function of the momentum

operator ~P . If in the joint spectrum of the components of ~P the support of
the vector Ψσ is contained in a ball centered at the origin and of radius less
than 1 ≡ mc then Eq. (I.1) has solutions; see [5]. Since [H, ~P ] = 0, Eq.

(I.1) can be studied for the fiber vectors, Ψσ
~̄P
, corresponding to a value, ~P , of

the total momentum; (both the total momentum operator and points in its

spectrum will henceforth be denoted by ~P – without danger of confusion).
Thus we consider the equation

Hσ
~P
Ψσ
~P

= Eσ
~P
Ψσ
~P
, (I.2)
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where Hσ
~P

is the fiber Hamiltonian at fixed total momentum ~P , and Eσ
~P

is the

value of the function Eσ
~z at the point ~z ≡ ~P . Physically, states {Ψσ} solv-

ing Eq. (I.1) describe a freely moving electron in the absence of asymptotic
photons.

It is an essential aspect of the “infrared catastrophe” in QED that Eq. (I.1)
does not have any normalizable solution in the limit where the infrared cut-
off σ tends to zero, and the underlying dynamical picture of a freely moving
electron breaks down; see [4]. Nevertheless, the limiting behavior of the
function Eσ

~P
is of great interest for the following reasons.

As long as σ > 0, a natural definition of the renormalized electron mass, mr,
is given by the formula

mr(σ) :=
[ ∂2Eσ

|~P |

(∂|~P |)2
|~P=0

]−1
. (I.3)

(Note that Eσ
~P
≡ Eσ

|~P | is invariant under rotations). Equation (I.3) is expected

to remain meaningful in the limit σ → 0. In particular, the quantity on
the R.H.S. of Eq. (I.3) is expected to be positive and bounded from above
uniformly in the infrared cutoff σ.
More importantly, one aims at mathematical control of the function

mr(σ, ~P ) :=
[ ∂2Eσ

|~P |

(∂|~P |)2

]−1
(I.4)

in a full neighborhood, S, of ~P = 0, corresponding to a slowly moving elec-
tron; (i.e., in the nonrelativistic regime). When combined with a number
of other spectral properties of the Hamiltonian of nonrelativistic QED the
condition

∂2Eσ
|~P |

(∂|~P |)2
> 0 , ~P ∈ S , (I.5)

uniformly in σ > 0, suffices to yield a consistent scattering picture in the
limit when σ → 0 in which the electron exhibits infraparticle behavior. In
fact, (I.5) is a crucial ingredient in the analysis of Compton scattering pre-
sented in [12], [4].

Main results
Assuming the coupling constant, α, small enough, the following results follow.
1) The function

Σ|~P | := lim
σ→0

∂2Eσ
|~P |

(∂|~P |)2
(I.6)
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is well defined for ~P ∈ S := {~P | |~P | < 1
3
}; furthermore, it is Hölder-

continuous in ~P .
2) The function

E~P := lim
σ→0

Eσ
~P

(I.7)

is twice differentiable in ~P ∈ S and

∂2E|~P |

(∂|~P |)2
= Σ|~P | . (I.8)

3)

2 >
∂2Eσ

|~P |

∂2|~P |
> 0 , ~P ∈ S , (I.9)

uniformly in σ.
We wish to mention some related earlier results. Using operator-theoretic

renormalization group methods, results (I.6) and (I.9) have been proven in

[1] for the special value ~P = 0. The point ~P = 0 is exceptional, because

the Hamiltonian H~P is infrared regular at ~P = 0; it has a normalizable
ground state. A highly non-trivial extension of the analysis of [1] to arbitrary

momenta ~P ∈ S has been described in [2].
With regard to ultraviolet corrections to the electron mass, we refer the reader
to [9], [10], [7], and [8].

I.1 Definition of the model

Hilbert space
The Hilbert space of pure state vectors of a system consisting of one non-
relativistic electron interacting with the quantized electromagnetic field is
given by

H := Hel ⊗ F , (I.10)

where Hel = L2(R3) is the Hilbert space for a single Schrödinger electron;
for expository convenience, we neglect the spin of the electron. The Hilbert
space, F , used to describe the states of the transverse modes of the quantized
electromagnetic field (the photons) in the Coulomb gauge is given by the Fock
space

F :=
∞⊕
N=0

F (N) , F (0) = C Ω , (I.11)
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where Ω is the vacuum vector (the state of the electromagnetic field without
any excited modes), and

F (N) := SN
N⊗
j=1

h , N ≥ 1 , (I.12)

where the Hilbert space h of state vectors of a single photon is

h := L2(R3 × Z2) . (I.13)

Here, R3 is momentum space, and Z2 accounts for the two independent
transverse polarizations (or helicities) of a photon. In (I.12), SN denotes
the orthogonal projection onto the subspace of

⊗N
j=1 h of totally symmetric

N -photon wave functions, which accounts for the fact that photons satisfy
Bose-Einstein statistics. Thus, F (N) is the subspace of F of state vectors
corresponding to configurations of exactly N photons.

Units
In this paper, we employ units such that Planck’s constant ~, the speed of
light c, and the mass of the electron m are equal to 1.

Hamiltonian
The dynamics of the system is generated by the Hamiltonian

H :=

(
− i~∇~x + α1/2 ~A(~x)

)2

2
+ Hf . (I.14)

The (three-component) multiplication operator ~x ∈ R3 represents the posi-

tion of the electron. The electron momentum operator is given by ~p = −i~∇~x.
Furthermore, α > 0 is the fine structure constant (which, in this paper,

plays the rôle of a small parameter), and ~A(~x) denotes the vector potential
of the transverse modes of the quantized electromagnetic field in the Coulomb
gauge,

~∇~x · ~A(~x) = 0 , (I.15)

cutoff at high photon frequencies.
Hf is the Hamiltonian of the quantized, free electromagnetic field. It is

given by

Hf :=
∑
λ=±

∫
d3k |~k| a∗~k,λ a~k,λ , (I.16)
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where a∗~k,λ and a~k,λ are the usual photon creation- and annihilation operators

satisfying the canonical commutation relations

[a~k,λ , a
∗
~k′,λ′

] = δλλ′ δ(~k − ~k′) , (I.17)

[a#
~k,λ
, a#

~k′,λ′
] = 0 (I.18)

for ~k,~k′ ∈ R3 and λ, λ′ ∈ Z2 ≡ {±}, where a# = a or a∗. The vacuum vector
Ω ∈ F is characterized by the condition

a~k,λ Ω = 0 , (I.19)

for all ~k ∈ R3 and λ ∈ Z2 ≡ {±}.
The quantized electromagnetic vector potential is given by

~A(~x) :=
∑
λ=±

∫
BΛ

d3k√
|~k|

{
~ε~k,λe

−i~k·~xa∗~k,λ + ~ε ∗~k,λe
i~k·~xa~k,λ

}
, (I.20)

where ~ε~k,−, ~ε~k,+ are photon polarization vectors, i.e., two unit vectors in

R3 ⊗ C satisfying

~ε ∗~k,λ · ~ε~k,µ = δλµ , ~k · ~ε~k,λ = 0 , (I.21)

for λ, µ = ±. The equation ~k · ~ε~k,λ = 0 expresses the Coulomb gauge condi-
tion. Moreover, BΛ is a ball of radius Λ centered at the origin in momentum
space. Here, Λ represents an ultraviolet cutoff that will be kept fixed through-
out our analysis. The vector potential defined in (I.20) is thus cut off in the
ultraviolet.

Throughout this paper, it will be assumed that Λ ≈ 1 (the rest energy of
an electron), and that α is sufficiently small. Under these assumptions, the
Hamitonian H is selfadjoint on D(H0), i.e., on the domain of definition of
the operator

H0 :=
(−i~∇~x)

2

2
+ Hf . (I.22)

The perturbation H −H0 is small in the sense of Kato.
The operator representing the total momentum of the system consisting

of the electron and the electromagnetic radiation field is given by

~P := ~p+ ~P f , (I.23)

with ~p = −i~∇~x, and where

~P f :=
∑
λ=±

∫
d3k ~k a∗~k,λ a~k,λ (I.24)
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is the momentum operator associated with the photon field.
The operators H and ~P are essentially selfadjoint on a common do-

main, and since the dynamics is invariant under translations, they commute,
[H, ~P ] = ~0. The Hilbert space H can be decomposed into a direct integral
over the joint spectrum, R3, of the three components of the momentum op-
erator ~P . Their spectral measure is absolutely continuous with respect to
Lebesgue measure, and hence we have that

H :=
∫ ⊕

H~P d
3P , (I.25)

where each fiber space H~P is a copy of Fock space F .

Remark Throughout this paper, the symbol ~P stands for both a vector in R3

and the vector operator on H, representing the total momentum, depending
on context. Similarly, a double meaning is given to arbitrary functions, f(~P ),
of the total momentum operator.

Given any ~P ∈ R3, there is an isomorphism, I~P ,

I~P : H~P −→ F b , (I.26)

from the fiber spaceH~P to the Fock space F b, acted upon by the annihilation-

and creation operators b~k,λ, b
∗
~k,λ

, where b~k,λ corresponds to ei
~k·~xa~k,λ, and b∗~k,λ

to e−i
~k·~xa∗~k,λ, and with vacuum Ωf := I~P (ei

~P ·~x). To define I~P more pre-

cisely, we consider a vector ψ(f (n);~P ) ∈ H~P with a definite total momentum
describing an electron and n photons. Its wave function in the variables
(~x;~k1, λ1; . . . , ~kn, λn) is given by

ei(
~P−~k1−···−~kn)·~xf (n)(~k1, λ1; . . . ;~kn, λn) (I.27)

where f (n) is totally symmetric in its n arguments. The isomorphism I~P acts
by way of

I~P

(
ei(

~P−~k1−···−~kn)·~xf (n)(~k1,1 ; . . . ;~kn, λn)
)

(I.28)

=
1√
n!

∑
λ1,...,λn

∫
d3k1 . . . d

3kn f
(n)(~k1, λ1; . . . ;~kn, λn) b

∗
~k1,λ1

· · · b∗~kn,λn
Ωf .

Because the HamiltonianH commutes with the total momentum, it preserves
the fibers H~P for all ~P ∈ R3, i.e., it can be written as

H =
∫ ⊕

H~P d
3P , (I.29)
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where
H~P : H~P −→ H~P . (I.30)

Written in terms of the operators b~k,λ, b
∗
~k,λ

, and of the variable ~P , the fiber

Hamiltonian H~P is given by

H~P :=

(
~P − ~P f + α1/2 ~A

)2

2
+ Hf , (I.31)

where

~P f =
∑
λ

∫
d3k ~k b∗~k,λ b~k,λ , (I.32)

Hf =
∑
λ

∫
d3k |~k|b∗~k,λb~k,λ , (I.33)

and
~A :=

∑
λ

∫
BΛ

dk√
|~k|

{
~ε~k,λb

∗
~k,λ

+ ~ε ∗~k,λb~k,λ

}
. (I.34)

Let

S := { ~P ∈ R3 : |~P | < 1

3
} . (I.35)

In order to give a mathematically precise meaning to the constructions pre-
sented in the following, we introduce an infrared cut-off at a photon frequency
σ > 0 in the vector potential. The calculation of the second derivative of
the energy of a dressed electron – in the following called the “ground state
energy” – as a function of ~P in the limit where σ → 0, and for ~P ∈ S, rep-
resent the main problem solved in this paper. Hence we will, in the sequel,
study the regularized fiber Hamiltonian

Hσ
~P

:=

(
~P − ~P f + α1/2 ~Aσ

)2

2
+ Hf , (I.36)

acting on the fiber space H~P , for ~P ∈ S, where

~Aσ :=
∑
λ

∫
BΛ\Bσ

dk√
|~k|

{
~ε~k,λb

∗
~k,λ

+ ~ε ∗~k,λb~k,λ

}
(I.37)

and where Bσ is a ball of radius σ centered at the origin. In the following,
we will consider a sequence of infrared cutoffs

σj := Λεj (I.38)

with 0 < ε < 1
2

and j ∈ N.
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I.2 Outline of the proof

Next, we outline the key ideas used in the proofs of our main results in Eqs.
(I.6), (I.8), and (I.9).

For ~P ∈ S, α small enough, and σ > 0, Eσ
~P

is an isolated eigenvalue of Hσ
~P
|Fσ ;

see Section II and Eq. (II.4). Because of the analyticity of Hσ
~P

in the variable
~P , it follows that

∂2Eσ
|~P |

(∂|~P |)2
= ∂2

iE
σ
|~P ||~P=Pi î

= (I.39)

= 1− 2〈 1

2πi

∫
γσ

1

Hσ
~P
− z

[∂iH
σ
~P
]

1

Hσ
~P
− z

dzΨσ
~P
, [∂iH

σ
~P
]Ψσ

~P
〉|~P=Pi î

,

where ∂i = ∂/∂Pi, î is the unit vector in the direction i, Ψσ
~P

is the normalized
ground state eigenvector of Hσ

~P
constructed in [5]; γσ is a contour path in

the complex energy plane enclosing Eσ
~P

and no other point of the spectrum
of Hσ

~P
, and such that the distance of γσ from spec (Hσ

~P
) is of order σ.

At first glance, the expression on the R.H. S. of (I.39) might become singular
as σ → 0, because the spectral gap above Eσ

~P
= inf spec (Hσ

~P
|Fσ) is of order

σ. To prove that the limit σ → 0 is, in fact, well defined, we make use
of a σ-dependent Bogoliubov transformation, Wσ(~∇Eσ

~P
); (see Section II, Eq.

(II.3)). This transformation has already been employed in [5] to analyze mass

shell properties. In fact, conjugation of Hσ
~P

by Wσ(~∇Eσ
~P
) yields an infrared

regularized Hamiltonian

Kσ
~P

:= Wσ(~∇Eσ
~P
)Hσ

~P
W ∗
σ (~∇Eσ

~P
) (I.40)

with the property that the corresponding ground state, Φσ
~P
, has a non-zero

limit, as σ → 0. The Hamiltonian Kσ
~P

has a “canonical form” derived in [5]
(see also [11], where a similar operator has been used in the analysis of the
Nelson model):

Kσ
~P

=
(~Γσ~P )2

2
+

∑
λ

∫
R3
|~k|δσ~P (k̂)b∗~k,λb~k,λd

3k + Eσ~P , (I.41)

where Eσ~P is a c-number, and ~Γσ~P is a vector operator defined in Section II.1.,
Eq. (II.40). By construction,

〈Φσ
~P
, ~Γσ~P Φσ

~P
〉 = 0 . (I.42)

This is a crucial property in the inductive construction of the limit of proof
of {Φσ

~P
} as σ → 0.
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Eq. (I.42) is also an important ingredient in the proof of (I.6), because, by

applying the unitary operator Wσ(~∇Eσ
~P
) to each term of the scalar product

on the R.H.S. of (I.39) and using (I.42), one finds that

(I.39) = 1− 2〈 1

2πi

∫
γσ

1

Kσ
~P
− z

(Γσ~P )i
1

Kσ
~P
− z

dz
Φσ
~P

‖Φσ
~P
‖
, (Γσ~P )i

Φσ
~P

‖Φσ
~P
‖
〉|~P=P i î

(I.43)
remains uniformly bounded in σ.
To see this we use the inequality∣∣∣〈(Γσ~P )i Φσ

~P
,

( 1

Kσ
~P
− z

)2
(Γσ~P )i Φσ

~P

〉∣∣∣ ≤ O(
1

α
1
2 σ2δ

) , (I.44)

for an arbitrarily small δ > 0, with z ∈ γσ. This inequality will be proven
inductively and will be combined with an improved (as compared to the
result in [5]) estimate of the rate of convergence of {Φσ

~P
} as σ → 0 .

By telescoping, one can plug these improved estimates into (I.43) to end up
with the desired uniform bound. The control of the rate of convergence of
the R.H.S. in (I.43), as σ → 0, combined with the smoothness in ~P , for

arbitrary infrared cutoff σ > 0, finally entails the Hölder-continuity in ~P of
the limiting quantity

Σ|~P | := 1−lim
σ→0

2〈 1

2πi

∫
γσ

1

Kσ
~P
− z

(Γσ~P )i
1

Kσ
~P
− z

dz
Φσ
~P

‖Φσ
~P
‖
, (Γσ~P )i

Φσ
~P

‖Φσ
~P
‖
〉|~P=P i î .

(I.45)
Our paper is organized as follows.

In Section II, we recall how to construct the ground states of the Hamiltonians
Hσ
~P

and Kσ
~P

by iterative analytic perturbation theory. This section contains
an explicit derivation of the formula of the transformed Hamiltonians and of
related algebraic identities that will be used later on.
In Section III, we first derive inequality (I.44) and the improved convergence
rate of {Φσ

~P
} as σ → 0. Section III.1 is devoted to an analysis of (I.39) that

culminates in the following main results.
Theorem

For α small enough,
∂2Eσ

|~P |

(∂|~P |)2 converges as σ → 0. The limiting function Σ|~P | :=

limσ→0

∂Eσ
|~P |

(∂|~P |)2 is Hölder continuous in ~P ∈ S. The bounds

2 > Σ|~P | > 0 (I.46)

(from above and below) hold true uniformly in ~P ∈ S.
Corollary
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For α small enough, the function E~P := limσ→0E
σ
~P
, ~P ∈ S, is twice differ-

entiable, and
∂2E|~P |

(∂|~P |)2
= Σ|~P | for all ~P ∈ S . (I.47)

II Sequences of ground state vectors

In this section, we report on results contained in [5] concerning the ground

states of the Hamiltonians H
σj

~P
, where ~P ∈ S and j ∈ N, and the existence of

a limiting vector for the sequence of ground state vectors of the transformed
Hamiltonians, K

σj

~P
, where the Bogoliubov transformation used to obtain K

σj

~P

from H
σj

~P
(derived in [3]) is determined by

b ∗~k,λ → Wσj
(~∇Eσj

~P
)b ∗~k,λW

∗
σj

(~∇Eσj

~P
) = b ∗~k,λ − α

1
2

~∇Eσj

~P
· ~ε ∗~k,λ

|~k| 32 δσj

~P
(k̂)

(II.1)

b~k,λ → Wσj
(~∇Eσj

~P
)b~k,λW

∗
σj

(~∇Eσj

~P
) = b~k,λ − α

1
2

~∇Eσj

~P
· ~ε~k,λ

|~k| 32 δσj

~P
(k̂)

, (II.2)

for ~k ∈ BΛ \ Bσj
, with

Wσj
(~∇Eσj

~P
) := exp

(
α

1
2

∑
λ

∫
BΛ\Bσj

d3k
~∇Eσj

~P

|~k| 32 δσj

~P
(k̂)

· (~ε~k,λb
∗
~k,λ
− h.c.)

)
. (II.3)

In [5], the first step consists in constructing the ground states of the regu-
larized fiber Hamiltonians H

σj

~P
. As shown in [5], H

σj

~P
has a unique ground

state, Ψ
σj

~P
, that can be constructed by iterative analytic perturbation theory,

as developed in [11]. To recall how this method works some preliminary
definitions and results are needed:

• We introduce the Fock spaces

Fσj
:= F b(L2((R3\Bσj

)×Z2)) , Fσj
σj+1

:= F b(L2((Bσj
\Bσj+1

)×Z2)) .
(II.4)

Note that
Fσj+1

= Fσj
⊗Fσj

σj+1
. (II.5)

If not specified otherwise, Ωf denotes the vacuum state in anyone of
these Fock spaces. Any vector φ in Fσj

can be identified with the
corresponding vector, φ⊗ Ωf , in F , where Ωf is the vacuum in Fσj

0 .
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• Momentum-slice interaction Hamiltonians are defined by

∆H~P |
σj
σj+1

:= α
1
2 ~∇~PH

σj

~P
· ~A|σj

σj+1
+
α

2
(A|σj

σj+1
)2 , (II.6)

where

~A|σj
σj+1

:=
∑
λ

∫
Bσj \Bσj+1

d3k√
|~k|

{
~ε~k,λb

∗
~k,λ

+ ~ε ∗~k,λb~k,λ

}
; (II.7)

• Four real parameters, ε, ρ+, ρ−, and µ, will appear in our analysis.
They have the properties

0 < ρ− < µ < ρ+ < 1− Cα <
2

3
(II.8)

0 < ε <
ρ−

ρ+
(II.9)

where Cα, with 1
3
< Cα < 1, for α small enough, is a constant such

that the inequality
Eσ
~P−~k > Eσ

~P
− Cα|~k| (II.10)

holds for all ~P ∈ S and any ~k 6= 0. Here Eσ
~P−~k := inf specHσ

~P−~k. We

note that Cα → 1
3
, as α→ 0; (see Statement (S4) of Theorem III.1. in

[5]).

By iterative analytic perturbation theory (see [5]), one derives the following
results, valid for sufficiently small α (depending on our choice of Λ, ε, ρ−, µ,
and ρ+):

1) E
σj

~P
is an isolated simple eigenvalue of H

σj

~P
|Fσj

with spectral gap larger

or equal to ρ−σj. Furthermore, E
σj

~P
is an isolated simple eigenvalue of

H
σj

~P
|Fσj+1

with spectral gap at least ρ+σj+1.

2) The ground-state energies E
σj

~P
and E

σj+1

~P
of the Hamiltonians H

σj

~P
and

H
σj+1

~P
, respectively, (acting on the same space Fσj+1

) satisfy the in-
equalities

0 ≤ E
σj

~P
≤ E

σj+1

~P
+ c α σ2

j , (II.11)

where c is a Λ-dependent, but j- and α-independent constant.

3) The ground state vectors, Ψ
σj+1

~P
, ofH

σj+1

~P
can be recursively constructed

starting from Ψσ0
~P
≡ Ωf with the help of the spectral projection

1

2πi

∮
γj+1

dzj+1
1

H
σj+1

~P
− zj+1

.
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More precisely,

Ψ
σj+1

~P
:=

1

2πi

∮
γj+1

dzj+1
1

H
σj+1

~P
− zj+1

Ψ
σj

~P
⊗ Ωf (II.12)

=
1

2πi

∞∑
j=0

∮
γj+1

dzj+1
1

H
σj

~P
− zj+1

[−∆H~P |
σj
σj+1

1

H
σj

~P
− zj+1

]n Ψ
σj

~P
⊗ Ωf , (II.13)

where γj+1 := {zj+1 ∈ C | |zj+1 − E
σj

~P
| = µσj+1}, with µ as in (II.8).

Ψ
σj+1

~P
is the ground state of H

σj+1

~P
|Fσ for any 0 ≤ σ ≤ σj+1.

II.1 Transformed Hamiltonians.

In this section, we consider the (Bogoliubov-transformed) Hamiltonians

K
σj

~P
:= Wσj

(~∇Eσj

~P
)H

σj

~P
W ∗
σj

(~∇Eσj

~P
) (II.14)

with ground state vectors Φ
σj

~P
, j = 0, 1, 2, 3, . . . . Some algebraic manipula-

tions to express K
σj

~P
in a “canonical form” appear to represent a crucial step

before iterative perturbation theory can be applied to the sequence of these
transformed Hamiltonians. In addition, some intermediate Hamiltonians,
denoted K̂

σj

~P
, must be introduced to arrive at the right kind of convergence

estimates.
The same algebraic relations that are used to obtain the “canonical form” of
K
σj

~P
also play an important role in the proof of our main result concerning

the limiting behavior, as σ → 0, of the second derivative of the ground state
energy Eσ

~P
. It is therefore useful to derive the ”canonical form” of K

σj

~P
and

the relevant algebraic identities in some detail.
The Feynman-Hellman formula (which holds because (H

σj

~P
)~P∈S is an an-

alytic family of type A, and E
σj

~P
is an isolated eigenvalue) yields the identity

~∇Eσj

~P
= ~P − 〈~P f − α

1
2 ~Aσj〉

ψ
σj
~P

, (II.15)

where, given an operator B and a vector ψ in the domain of B, we use the
notation

〈B〉ψ :=
〈ψ , B ψ〉
〈ψ , ψ〉

. (II.16)
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We define

~βσj := ~P f − α
1
2 ~Aσj (II.17)

δ
σj

~P
(k̂) := 1− k̂ · ~∇Eσj

~P
, k̂ :=

~k

|~k|
(II.18)

c ∗~k,λ := b ∗~k,λ + α
1
2

~∇Eσj

~P
· ~ε ∗~k,λ

|~k| 32 δσj

~P
(k̂)

(II.19)

c~k,λ := b~k,λ + α
1
2

~∇Eσj

~P
· ~ε~k,λ

|~k| 32 δσj

~P
(k̂)

. (II.20)

We rewrite H
σj

~P
as

H
σj

~P
=

(~P − ~βσj)2

2
+Hf , (II.21)

and, using (II.15) and (II.17),

~P = ~∇Eσj

~P
+ 〈~βσj〉

ψ
σj
~P

. (II.22)

We then obtain

H
σj

~P
=

~P 2

2
− (~∇Eσj

~P
+ 〈~βσj〉

ψ
σj
~P

) · ~βσj +
~βσj 2

2
+Hf (II.23)

=
~P 2

2
+
~βσj 2

2
− 〈~βσj〉

ψ
σj
~P

· ~βσj (II.24)

+
∑
λ

∫
R3\(BΛ\Bσj )

|~k|δσj

~P
(k̂)b ∗~k,λb~k,λd

3k (II.25)

+
∑
λ

∫
BΛ\Bσj

|~k|δσj

~P
(k̂)c ∗~k,λc~k,λd

3k (II.26)

−α
∑
λ

∫
BΛ\Bσj

|~k|δσj

~P
(k̂)

~∇Eσj

~P
· ~ε ∗~k,λ

|~k| 32 δσj

~P
(k̂)

~∇Eσj

~P
· ~ε ∗~k,λ

|~k| 32 δσj

~P
(k̂)

d3k . (II.27)
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Adding and subtracting 1/2 〈~βσj〉2
ψ

σj
~P

, one finds that

H
σj

~P
=

~P 2

2
−
〈~βσj〉2

ψ
σj
~P

2
+

(~βσj − 〈~βσj〉
ψ

σj
~P

)2

2
(II.28)

+
∑
λ

∫
R3\(BΛ\Bσj )

|~k|δσj

~P
(k̂)b ∗~k,λb~k,λd

3k (II.29)

+
∑
λ

∫
BΛ\Bσj

|~k|δσj

~P
(k̂)c ∗~k,λc~k,λd

3k (II.30)

−α
∑
λ

∫
BΛ\Bσj

|~k|δσj

~P
(k̂)

~∇Eσj

~P
· ~ε ∗~k,λ

|~k| 32 δσj

~P
(k̂)

~∇Eσj

~P
· ~ε ∗~k,λ

|~k| 32 δσj

~P
(k̂)

d3k . (II.31)

Next, we implement the Bogoliubov transformation

b ∗~k,λ → Wσj
(~∇Eσj

~P
)b ∗~k,λW

∗
σj

(~∇Eσj

~P
) = b ∗~k,λ − α

1
2

~∇Eσj

~P
· ~ε ∗~k,λ

|~k| 32 δσj

~P
(k̂)

, (II.32)

b~k,λ → Wσj
(~∇Eσj

~P
)b~k,λW

∗
σj

(~∇Eσj

~P
) = b~k,λ − α

1
2

~∇Eσj

~P
· ~ε ∗~k,λ

|~k| 32 δσj

~P
(k̂)

, (II.33)

for ~k ∈ BΛ \Bσj
, where Wσj

(~∇Eσj

~P
) is defined in (II.3). It is evident that Wσj

acts as the identity on F b(L2(Bσj
× Z2)) and on F b(L2((R3 \ BΛ)× Z2)).

We define the vector operators

~Π
σj

~P
:= Wσj

(~∇Eσj

~P
)~βσjW ∗

σj
(~∇Eσj

~P
)−〈Wσj

(~∇Eσj

~P
)~βσjW ∗

σj
(~∇Eσj

~P
)〉Ωf

, (II.34)

noting that, by (II.15), (II.17), and (II.34)

〈~βσj〉
ψ

σj
~P

= ~P − ~∇Eσj

~P
(II.35)

=
〈Φσj

~P
, ~Π

σj

~P
Φ
σj

~P
〉

〈Φσj

~P
, Φ

σj

~P
〉

+ 〈Wσj
(~∇Eσj

~P
)~βσjW ∗

σj
(~∇Eσj

~P
)〉Ωf

, (II.36)

where Φ
σj

~P
is the ground state of the Bogoliubov-transformed Hamiltonian

K
σj

~P
:= Wσj

(~∇Eσj

~P
)H

σj

~P
W ∗
σj

(~∇Eσj

~P
) . (II.37)

It is easy to see that

Wσj
(~∇Eσj

~P
)~βσjW ∗

σj
(~∇Eσj

~P
)− 〈~βσj〉

Ψ
σj
~P

= ~Π
σj

~P
− 〈~Πσj

~P
〉
Φ

σj
~P

. (II.38)
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The “canonical form” of K
σj

~P
is given by

K
σj

~P
=

(~Γ
σj

~P
)2

2
+

∑
λ

∫
R3
|~k|δσj

~P
(k̂)b∗~k,λb~k,λd

3k + Eσj

~P
, (II.39)

where
~Γ
σj

~P
:= ~Π

σj

~P
− 〈~Πσj

~P
〉
Φ

σj
~P

, (II.40)

so that
〈~Γσj

~P
〉
Φ

σj
~P

= 0 , (II.41)

and

Eσj

~P
:=

~P 2

2
−

(~P − ~∇Eσj

~P
)2

2
(II.42)

−α
∑
λ

∫
BΛ\Bσj

|~k|δσj

~P
(k̂)

~∇Eσj

~P
· ~ε ∗~k,λ

|~k| 32 δσj

~P
(k̂)

~∇Eσj

~P
· ~ε ∗~k,λ

|~k| 32 δσj

~P
(k̂)

d3k . (II.43)

Eq. (II.38) follows by using that

Wσj
(~∇Eσj

~P
)c ∗~k,λWσj

(~∇Eσj

~P
) = b ∗~k,λ , (II.44)

Wσj
(~∇Eσj

~P
)c~k,λWσj

(~∇Eσj

~P
) = b~k,λ , (II.45)

for ~k ∈ BΛ \ Bσj
.

An intermediate Hamiltonian, K̂
σj+1

~P
, is defined by

K̂
σj+1

~P
:= Wσj+1

(~∇Eσj

~P
)H

σj+1

~P
W ∗
σj+1

(~∇Eσj

~P
) , (II.46)

where

Wσj+1
(~∇Eσj

~P
) := exp

(
α

1
2

∑
λ

∫
BΛ\Bσj+1

d3k
~∇Eσj

~P

|~k| 32 δσj

~P
(k̂)

· (~ε~k,λb
∗
~k,λ
− h.c.)

)
.

(II.47)
We decompose K̂

σj+1

~P
into several different terms, similarly as K

σj

~P
. We recall

that

H
σj+1

~P
=

(~P − ~βσj+1)2

2
+Hf , (II.48)

and, by (II.35),
~P = ~∇Eσj

~P
+ 〈~βσj〉

ψ
σj
~P

. (II.49)
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It follows that (see also (II.28)-(II.31))

H
σj+1

~P
=

~P 2

2
− (~∇Eσj

~P
+ 〈~βσj〉

ψ
σj
~P

) · ~βσj+1 +
~βσj+12

2
+Hf (II.50)

=
~P 2

2
+
~βσj+12

2
− 〈~βσj〉

ψ
σj
~P

· ~βσj+1 (II.51)

+
∑
λ

∫
R3\(BΛ\Bσj+1 )

|~k|δσj

~P
(k̂)b ∗~k,λb~k,λd

3k (II.52)

+
∑
λ

∫
BΛ\Bσj+1

|~k|δσj

~P
(k̂)c ∗~k,λc~k,λd

3k (II.53)

−α
∑
λ

∫
BΛ\Bσj+1

|~k|δσj

~P
(k̂)

~∇Eσj

~P
· ~ε ∗~k,λ

|~k| 32 δσj

~P
(k̂)

~∇Eσj

~P
· ~ε ∗~k,λ

|~k| 32 δσj

~P
(k̂)

d3k . (II.54)

We now add and subtract 1/2 〈~βσj〉2
ψ

σj
~P

and conjugate the resulting operator

with the unitary operator Wσj+1
(~∇Eσj

~P
). After inspecting straightforward

operator domain questions (see [5]), we find that

K̂
σj+1

~P
=

(~Γ
σj

~P
+ ~Lσj

σj+1 + ~Iσj
σj+1)

2

2
(II.55)

+
∑
λ

∫
R3
|~k|δσj

~P
(k̂)b ∗~k,λb~k,λd

3k + Êσj+1

~P
, (II.56)

where

~Lσj
σj+1

:= −α
1
2

∑
σj

∫
Bσj \Bσj+1

~k
~∇Eσj

~P
· ~ε ∗~k,λb~k,λ + h.c.

|~k| 32 δσj

~P
(k̂)

d3k , (II.57)

−α
1
2 ~A|σj

σj+1
(II.58)

~Iσj
σj+1

:= α
∑
λ

∫
Bσj \Bσj+1

~k
~∇Eσj

~P
· ~ε ∗~k,λ

|~k| 32 δσj

~P
(k̂)

~∇Eσj

~P
· ~ε ∗~k,λ

|~k| 32 δσj

~P
(k̂)

d3k , (II.59)

+α
∑
λ

∫
Bσj \Bσj+1

[~ε~k,λ

~∇Eσj

~P
· ~ε ∗~k,λ

|~k| 32 δσj

~P
(k̂)

+ h.c.]
d3k√
|~k|

Êσj+1

~P
:=

~P 2

2
−

(~P − ~∇Eσj

~P
)2

2
(II.60)

−α
∑
λ

∫
BΛ\Bσj+1

|~k|δσj

~P
(k̂)

~∇Eσj

~P
· ~ε ∗~k,λ

|~k| 32 δσj

~P
(k̂)

~∇Eσj

~P
· ~ε ∗~k,λ

|~k| 32 δσj

~P
(k̂)

d3k .
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We also define the operators

~̂Π
σj

~P
:= Wσj

(~∇Eσj−1

~P
)W ∗

σj
(~∇Eσj

~P
)~Π

σj

~P
Wσj

(~∇Eσj

~P
)W ∗

σj
(~∇Eσj−1

~P
) , (II.61)

and
~̂Γ
σj

~P
:= ~̂Π

σj

~P
− 〈~̂Πσj

~P
〉
Φ̂

σj
~P

, (II.62)

which are used in the proofs of convergence of the ground state vectors. Here,
Φ̂
σj

~P
denotes the ground state vector of the Hamiltonian

K̂
σj

~P
:= Wσj

(~∇Eσj−1

~P
)W ∗

σj
(~∇Eσj

~P
)K

σj

~P
Wσj

(~∇Eσj

~P
)W ∗

σj
(~∇Eσj−1

~P
)

An important identity used in [5] and in the sequel of the present paper is

~̂Γ
σj

~P
− ~Γ

σj−1

~P
= ~∇Eσj

~P
− ~∇Eσj−1

~P
+ ~Lσj−1

σj
(II.63)

+α
∑
λ

∫
Bσj−1\Bσj

~k
~∇Eσj−1

~P
· ~ε~k,λ

|~k| 32 δσj−1

~P
(k̂)

~∇Eσj−1

~P
· ~ε ∗~k,λ

|~k| 32 δσj−1

~P
(k̂)

d3k

+α
∑
λ

∫
Bσj−1\Bσj

[~ε~k,λ

~∇Eσj−1

~P
· ~ε ∗~k,λ

|~k| 32 δσj−1

~P
(k̂)

+ h.c.]
d3k√
|~k|

.

Eq. (II.63) can be derived using (II.34), (II.36), (II.38), (II.40), (II.61), and
(II.62).

II.2 Convergence of the sequence {Φσj

~P
}∞j=0.

To pass from momentum scale j to j + 1, we proceed in two steps: First, we
construct an intermediate vector, Φ̂

σj+1

~P
, defined by

Φ̂
σj+1

~P
:=

∞∑
n=0

1

2πi

∫
γj+1

dzj+1
1

K
σj

~P
− zj+1

[−∆K~P |
σj
σj+1

1

K
σj

~P
− zj+1

]nΦ
σj

~P
,

(II.64)
where

∆K~P |
σj
σj+1

:= K̂
σj+1

~P
− Êσj+1

~P
+ Eσj

~P
−K

σj

~P
(II.65)

=
1

2

(
~Γ
σj

~P
· ( ~Lσj

σj+1
+ ~Iσj

σj+1
) + h.c.

)
+

1

2
( ~Lσj

σj+1
+ ~Iσj

σj+1
)2 . (II.66)

Subsequently, we construct Φ
σj+1

~P
by setting

Φ
σj+1

~P
:= Wσj+1

(~∇Eσj+1

~P
)W ∗

σj+1
(~∇Eσj

~P
)Φ̂

σj+1

~P
. (II.67)



FP-Ren. Elect. Mass., 27-June-2008 18

The series in (II.64) is termwise well-defined and converges strongly to a non-
zero vector, provided α is small enough (independently of j). The proof of
this claim is based on operator-norm estimates of the type used in controlling
the Neumann expansion in (II.13), which requires an estimate of the spectral

gap that follows from the unitarity of Wσj
(~∇Eσj

~P
) and Result 1) (after Eq.

(II.10)).
A key point in our proof of convergence of the sequence {Φσj

~P
} is to show

that the term
~Γ
σj

~P
· ( ~Lσj

σj+1
+ ~Iσj

σj+1
) + h.c. (II.68)

appearing in (II.66), which is superficially ”marginal” in the infrared, by
power counting, is in fact ”irrelevant” (using the terminology of renormal-
ization group theory). This is a consequence of the orthogonality condition

〈Φσj

~P
, ~Γ

σj

~P
Φ
σj

~P
〉 = 0 , (II.69)

which, combined with an inductive argument, implies that

‖( 1

K
σj

~P
− zj+1

)
1
2 [~Γ

σj

~P
· ( ~Lσj (+)

σj+1
+ ~Iσj

σj+1
)] (

1

K
σj

~P
− zj+1

)
1
2 Φ

σj

~P
‖ (II.70)

(where ~Lσj (+)
σj+1 stands for the part which contains only photon creation oper-

ators) is of order O(εηj), for some η > 0 specified in [5]. In particular, this
suffices to show that

‖Φ̂σj+1

~P
− Φ

σj

~P
‖ ≤ O(ε

j+1
2

(1−δ) . (II.71)

II.2.1 Key ingredients

To prove convergence of the sequence of {Ψσj

~P
} of ground state vectors of the

Hamiltonians K
σj

~P
, some further conditions on α, ε, and µ are required, in

particular an upper bound on µ and an upper bound on ε strictly smaller
than the ones imposed by inequalities (II.80), (II.81); (see Lemma A.3 in [5]).
We note that the more restrictive conditions on µ and ε imply new bounds
on ρ− and ρ+. Moreover, ε must satisfy a lower bound ε > Cα

1
2 , with a

multiplicative constant C > 0 sufficiently large.
Some key inequalities needed in our analysis of the convergence properties
of {Φσj

~P
} are summarized below. They will be marked by the symbol (B).

In order to reach some important improvements in our estimates of the con-
vergence rate of Φ

σj

~P
, as j → ∞ (discussed in the next section), a refined

estimate is needed that is stated in (B2), and a new inequality, see (B5),
(analogous to (B3) and (B4)) is required.
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• Estimates on the shift of the ground state energy and its gradient
There are constants C1, C

′
2 such that the following inequalities hold.

(B1)
|Eσj

~P
− E

σj+1

~P
| ≤ C1 α ε

j ; (II.72)

see [5].

• (B2)

|~∇Eσj+1

~P
− ~∇Eσj

~P
| ≤ C ′

2

(
‖Φ̂σj+1

~P
− Φ

σj

~P
‖F + α

1
4 εj+1

)
(II.73)

This is an improvement over a corresponding estimate in [5]: It can be
proven after the results stated in Theorem III.1 in [5], in particular the
uniform bound from below on 〈Φσj

~P
,Φ

σj

~P
〉, 〈Φσj

~P
,Φ

σj

~P
〉 > 2

3
, and following

the steps in the proof of Lemma A.2. in [5].

• Bounds relating expectations of operators to expectations of their abso-
lute values
There are constants C3, C4, C5 > 1 such that the following inequalities
hold.
(B3) For zj+1 ∈ γj+1,〈

(Γ
σj

~P
)i Φ

σj

~P
,

∣∣∣ 1

K
σj

~P
− zj+1

∣∣∣(Γσj

~P
)i Φ

σj

~P

〉
(II.74)

≤ C3

∣∣∣〈(Γ
σj

~P
)i Φ

σj

~P
,

1

K
σj

~P
− zj+1

(Γ
σj

~P
)i Φ

σj

~P

〉∣∣∣ , (II.75)

where (Γ
σj

~P
)i is the ith component of ~Γ

σj

~P
.

(B4) For zj+1 ∈ γj+1,〈
(Lσj (+)

σj+1
)l (Γ

σj

~P
)i Φ

σj

~P
,

∣∣∣ 1

K
σj

~P
− zj+1

∣∣∣(Lσj (+)
σj+1

)l (Γ
σj

~P
)i Φ

σj

~P

〉
(II.76)

≤ C4

∣∣∣〈(Lσj (+)
σj+1

)l (Γ
σj

~P
)i Φ

σj

~P
,

1

K
σj

~P
− zj+1

(Lσj (+)
σj+1

)l (Γ
σj

~P
)i Φ

σj

~P

〉∣∣∣ ,(II.77)

where (Lσj (+)
σj+1 )l is the lth component of ~Lσj (+)

σj+1 .

(B5) For zj+1 ∈ γj+1,〈
(Γ

σj

~P
)i Φ

σj

~P
,

∣∣∣ 1

K
σj

~P
− zj+1

∣∣∣2(Γσj

~P
)i Φ

σj

~P

〉
(II.78)

≤ C5

∣∣∣〈(Γ
σj

~P
)i Φ

σj

~P
, (

1

K
σj

~P
− zj+1

)2(Γ
σj

~P
)i Φ

σj

~P

〉∣∣∣ . (II.79)
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To prove (B3) and (B4), it suffices to exploit the fact that the spec-
tral support (with respect to K

σj

~P
) of the two vectors (Γ

σj

~P
)i Φ

σj

~P
and

(Lσj (+)
σj+1 )l(Γ

σj

~P
)i Φ

σj

~P
is strictly above the ground state energy of K

σj

~P
,

since they are both orthogonal to the ground state Φ
σj

~P
of this opera-

tor. In the proof of bound (B5), it is also required that ρ− > 3µε, as
will be assumed in the following.

Remark
The constants C1, . . . , C5 are independent of α, ε, µ, and j ∈ N, provided that
α, ε, and µ are sufficiently small, and ε > Cα.

Remark
For the convenience of the reader, we recapitulate the relations between the
parameters entering the construction:

0 < ρ− < µ < ρ+ < 1− Cα <
2

3
, (II.80)

0 < ε <
ρ−

ρ+
, (II.81)

ε > Cα , (II.82)

ρ− > 3µε . (II.83)

Moreover, we stress that the final result is a small coupling result, i.e., for
α small, and that, for technical reasons, small values of the parameters
ε, µ, ρ−, ρ+ are required within the constraints above.

The crucial estimate for the bound on Ψ
σj+1

~P
− Ψ

σj

~P
obtained in [5] (see

(II.71)) is ∣∣∣〈(Γ
σj

~P
)i Φ

σj

~P
,

1

K
σj

~P
− zj+1

(Γ
σj

~P
)i Φ

σj

~P

〉∣∣∣ ≤ R0

αεjδ
, (II.84)

where δ, 0 < δ < 1, can be taken arbitrarily small, and R0 is independent of
j. This estimate will be improved in the next section. As a consequence, the
estimate of the convergence rate of {Φσj

~P
} will be improved. As a corollary,

the second derivative of Eσ
~P

is proven to converge, as σ → 0.
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III Improved estimate of the convergence rate

of {Φσ
~P
}, as σ → 0, and uniform bound on

the second derivative of Eσ
~P
.

By repeating some steps of the proof of (II.84), we derive the inequality

∣∣∣〈(Γ
σj

~P
)i Φ

σj

~P
,

( 1

K
σj

~P
− zj+1

)2
(Γ

σj

~P
)i Φ

σj

~P

〉∣∣∣ ≤ R0

α
1
2 ε2jδ

, (III.1)

where 0 < δ < 1 and R0 is a constant independent of j ∈ N, for α and ε
sufficiently small.
For R0 and α small enough, inequality (III.1) implies (see the paragraph
Proof by induction of the inequality (III.1) below):

‖Φ̂σj

~P
− Φ

σj−1

~P
‖ ≤ α

1
4 εj(1−δ) , (III.2)

for any (1 >)δ > 0.
From now on, we assume the lower bounds

〈Φ̂σj+1

~P
, Φ̂

σj+1

~P
〉 , 〈Φσj

~P
,Φ

σj

~P
〉 > 2

3
(III.3)

uniformly in j ∈ N, which appear in the proof of Theorem III.1 of ref. [5],
(using the a-priori results stated as ingredients A1, . . . ,A4).
Proof by induction of the inequality (III.1)

• Inductive hypothesis We assume that, at scale j − 1, the following esti-
mate holds∣∣∣〈(Γ

σj−1

~P
)i Φ

σj−1

~P
,

( 1

K
σj−1

~P
− zj

)2
(Γ

σj−1

~P
)i Φ

σj−1

~P

〉∣∣∣ ≤ R0

α
1
2 ε2(j−1)δ

. (III.4)

This estimate readily implies that, for R0 and α small enough, but
uniformly in j,

‖Φ̂σj

~P
− Φ

σj−1

~P
‖ = (III.5)

= ‖
∞∑
n=1

1

2πi

∫
γj

dzj
1

K
σj−1

~P
− zj

[−∆K~P |
σj−1
σj

1

K
σj−1

~P
− zj

]nΦ
σj−1

~P
‖

≤ α
1
4 εj(1−δ) . (III.6)

An improved estimate on ‖Φ̂σj+1

~P
− Φ

σj

~P
‖ is based on the following

bounds:
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i)

‖ 1

K
σj−1

~P
− zj

∆K~P |
σj−1
σj

Φ
σj−1

~P
‖ ≤ O(R

1
2
0 α

1
4 εj(1−δ)) , (III.7)

whose proof requires (III.4) and a slightly modified version of
Lemma A3 in [5];

ii)

‖ 1

K
σj−1

~P
− zj

∆K~P |
σj−1
σj

‖Fσj
≤ O(α

1
2 ) , (III.8)

where we use the notation ‖A‖H = ‖A|H‖ for the norm of a
bounded operator A acting on Hilbert space H. This estimate
can be derived from standard bounds and using the pull-through
formula.

• Induction step from scale j − 1 to scale j

By unitarity of Wσj
(~∇Eσj−1

~P
)W ∗

σj
(~∇Eσj

~P
), we have that

∣∣∣〈(Γ
σj

~P
)i Φ

σj

~P
,

( 1

K
σj

~P
− zj+1

)2
(Γ

σj

~P
)i Φ

σj

~P

〉∣∣∣ =

=
∣∣∣〈(Γ̂

σj

~P
)i Φ̂

σj

~P
,

( 1

K̂
σj

~P
− zj+1

)2
(Γ̂

σj

~P
)i Φ̂

σj

~P

〉∣∣∣ . (III.9)

As α is small enough and ε > C α
1
2 , where C > 0 is large enough, we

may use (B1) to re-expand the resolvent and find that

∣∣∣〈(Γ̂
σj

~P
)i Φ̂

σj

~P
,

( 1

K̂
σj

~P
− zj+1

)2
(Γ̂

σj

~P
)i Φ̂

σj

~P

〉∣∣∣ (III.10)

≤ 2
∣∣∣〈(Γ̂

σj

~P
)i Φ̂

σj

~P
,

∣∣∣ 1

K
σj−1

~P
− zj+1

∣∣∣2(Γ̂σj

~P
)i Φ̂

σj

~P

〉∣∣∣ . (III.11)

It follows that

2
∣∣∣〈(Γ̂

σj

~P
)i Φ̂

σj

~P
,

∣∣∣ 1

K
σj−1

~P
− zj+1

∣∣∣2(Γ̂σj

~P
)i Φ̂

σj

~P

〉∣∣∣ ≤ (III.12)

≤ 4
∥∥∥∣∣∣ 1

K
σj−1

~P
− zj+1

∣∣∣ ((Γ̂σj

~P
)iΦ̂

σj

~P
− (Γ

σj−1

~P
)iΦ

σj−1

~P

∥∥∥2
(III.13)

+4
∣∣∣〈(Γ

σj−1

~P
)i Φ

σj−1

~P
,

∣∣∣ 1

K
σj−1

~P
− zj+1

∣∣∣2(Γσj−1

~P
)i Φ

σj−1

~P

〉∣∣∣ .(III.14)
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Our recursion relates (III.14) to the initial expression in (III.1), with
j replaced by j − 1, while (III.13) is a remainder term that can be
controlled as follows:

4
∥∥∥∣∣∣ 1

K
σj−1

~P
− zj+1

∣∣∣ ((Γ̂σj

~P
)iΦ̂

σj

~P
− (Γ

σj−1

~P
)iΦ

σj

~P
)
∥∥∥2

(III.15)

≤ 8
∥∥∥∣∣∣ 1

K
σj−1

~P
− zj+1

∣∣∣ ((Γ̂σj

~P
)iΦ̂

σj

~P
− (Γ

σj−1

~P
)iΦ̂

σj

~P
)
∥∥∥2

(III.16)

+8
∥∥∥∣∣∣ 1

K
σj−1

~P
− zj+1

∣∣∣ (Γσj−1

~P
)i(Φ̂

σj

~P
− Φ

σj−1

~P
)
∥∥∥2

(III.17)

≤ R1

ε2jδ
+
R2

ε2jδ
. (III.18)

Here R1 ≤ O(ε−2) and R2 ≤ O(ε−2) are constants independent of α,

µ, and j ∈ N, provided that α, µ are sufficiently small, and ε > Cα
1
2 .

In detail:

– Property (B4) and the two norm-bounds

‖ 1

K
σj−1

~P
− zj+1

(Γ
σj−1

~P
)i‖Fσj

≤ O(ε−(j+1)) , ‖Φ̂σj

~P
−Φ

σj−1

~P
‖ ≤ α

1
4 εj(1−δ)

(III.19)
(see (III.5)) justify the step from (III.17) to (III.18);

– concerning the step from (III.16) to (III.18), it is enough to con-
sider Eq. (II.63) and the two bounds

‖(Lσj−1
σj

)iΦ̂
σj

~P
‖ ≤ O(α

1
4 εj+1) , ‖Φ̂σj

~P
− Φ

σj−1

~P
‖ ≤ α

1
4 εj(1−δ) .

(III.20)

To bound the term (III.14), we use (B5) and the key orthogonality
property (II.69). For zj ∈ γj and zj+1 ∈ γj+1, we find that

4
∣∣∣〈(Γ

σj−1

~P
)i Φ

σj−1

~P
,

∣∣∣ 1

K
σj−1

~P
− zj+1

∣∣∣2(Γσj−1

~P
)i Φ

σj−1

~P

〉∣∣∣ (III.21)

≤ 4C5

∣∣∣〈(Γ
σj−1

~P
)i Φ

σj−1

~P
,

( 1

K
σj−1

~P
− zj+1

)2
(Γ

σj−1

~P
)i Φ

σj−1

~P

〉∣∣∣ (III.22)

≤ 8C2
5

∣∣∣〈(Γ
σj−1

~P
)i Φ

σj−1

~P
,

( 1

K
σj−1

~P
− zj

)2
(Γ

σj−1

~P
)i Φ

σj−1

~P

〉∣∣∣ . (III.23)

In passing from (III.22) to (III.23), we again use the constraint on the
spectral support (with respect to K

σj−1

~P
) of the vector (Γ

σj−1

~P
)i Φ

σj−1

~P
.
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Assuming that the parameters ε and α are so small that the previous
constraints are fulfilled and that

0 < R1 +R2 ≤ (1− 8C2
5ε

2δ)
R0

α
1
2

, (III.24)

we then conclude that∣∣∣〈(Γ
σj

~P
)i Φ

σj

~P
,

( 1

K̂
σj

~P
− zj+1

)2
(Γ

σj

~P
)i Φ

σj

~P

〉∣∣∣ (III.25)

≤ R1

ε2jδ
+
R2

ε2jδ
(III.26)

+8C2
5

∣∣∣〈(Γ
σj−1

~P
)i Φ

σj−1

~P
,

( 1

K
σj−1

~P
− zj

)2
(Γ

σj−1

~P
)i Φ

σj−1

~P

〉∣∣∣ (III.27)

≤ R0

α
1
2 ε2jδ

. (III.28)

• The zeroth step in the induction

Since
(Γσ0

~P
)i ≡ (~P f )i , Φσ0

~P
≡ Ωf , (III.29)

inequality (III.1) is trivially fulfilled for j = 0; thus (III.1) holds for
all j ∈ N ∪ 0 and for R0 arbitrarily small, provided α is small enough.

By standard arguments (see [11]), one obtains similar results for the ground
state vectors of the σ-dependent Hamiltonians Kσ

~P
, for arbitrary σ > 0. A

precise statement is as follows: For α small enough, the normalized ground
state vectors (that, with an abuse of notation, we call Φσ

~P
)

Φσ
~P

:=

1
2πi

∮
γσ
dz 1

Kσ
~P
−zΩf

‖ 1
2πi

∮
γσ

1
Kσ

~P
−zΩf‖

, (III.30)

where γσ := {z ∈ C | |z−Eσ
~P
| = ρ−

2
σ}, converges strongly to a nonzero vector

Φ~P , as σ → 0, with

‖Φσ
~P
− Φ~P‖ ≤ O(α

1
4

(σ
Λ

)1−δ
) (III.31)

for any 0 < δ(< 1).
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III.1 Convergence of the second derivative of the ground
state energy Eσ

~P
.

Because of rotational symmetry we have that Eσ
~P
≡ Eσ

|~P |. Moreover, (Hσ
~P
)~P∈S

is an analytic family of type A in ~P ∈ S, with an isolated eigenvalue Eσ
|~P |.

Thus, the second derivative
∂2Eσ

|~P |

(∂|~P |)2 is well defined and

∂2Eσ
|~P |

(∂|~P |)2
= ∂2

iE
σ
|~P ||~P=Pi î

, i = 1, 2, 3 , (III.32)

where ∂i := ∂
∂Pi

.
Without loss of generality, the following results are proven for the standard
sequence (σj)

∞
j=0 of infrared cutoffs. By simple arguments (see [11]), limiting

behavior as σ → 0 is shown to be ”sequence-independent”.
By analytic perturbation theory we have that

∂2
iE

σj

|~P ||~P=Pi î
= (III.33)

= 1− 2〈 1

2πi

∫
γj

1

H
σj

~P
− zj

[P i − (βσj)i]
1

H
σj

~P
− zj

dzj Ψ
σj

~P
, [P i − (βσj)i]Ψ

σj

~P
〉|~P=Pi î

,

where Ψ
σj

~P
is the normalized ground state eigenvector of H

σj

~P
.

Next, we make use of the Bogoliubov transformation implemented byWσj
(~∇Eσj

~P
)

to show that

〈 1

2πi

∫
γj

1

H
σj

~P
− zj

[P i − (βσj)i]
1

H
σj

~P
− zj

dzj Ψ
σj

~P
, [P i − (βσj)i]Ψ

σj

~P
〉 (III.34)

=
1

‖Φσj

~P
‖2
〈 1

2πi

∫
γj

1

K
σj

~P
− zj

[P i −Wσj
(~∇Eσj

~P
)(βσj)iW ∗

σj
(~∇Eσj

~P
)]

1

K
σj

~P
− zj

dzj Φ
σj

~P
,

, [P i −Wσj
(~∇Eσj

~P
)(βσj)iW ∗

σj
(~∇Eσj

~P
)]Φ

σj

~P
〉 , (III.35)

where Φ
σj

~P
is the ground state eigenvector of K

σj

~P
(iteratively constructed in

Section II).
Recalling the definitions

~Π
σj

~P
:= Wσj

(~∇Eσj

~P
)~βσjW ∗

σj
(~∇Eσj

~P
)− 〈Wσj

(~∇Eσj

~P
)~βσjW ∗

σj
(~∇Eσj

~P
)〉Ωf

,
(III.36)

~Γ
σj

~P
:= ~Π

σj

~P
− 〈~Πσj

~P
〉
Φ

σj
~P

, (III.37)

and because of the identity (Feynman-Hellman, see (II.36))

〈~βσj〉
ψ

σj
~P

= ~P − ~∇Eσj

~P
(III.38)

= 〈~Πσj

~P
〉
Φ

σj
~P

+ 〈Wσj
(~∇Eσj

~P
)~βσjW ∗

σj
(~∇Eσj

~P
)〉Ωf

, (III.39)
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we find that

P i −Wσj
(~∇Eσj

~P
)(βσj)iW ∗

σj
(~∇Eσj

~P
) = −(Γ

σj

~P
)i + ∂iE

σj

~P
; (III.40)

hence,

∂2
iE

σj

|~P ||~P=P i î = (III.41)

= 1− 2
1

‖Φσj

~P
‖2
〈 1

2πi

∫
γj

1

K
σj

~P
− zj

[∂iE
σj

~P
− (Γ

σj

~P
)i]

1

K
σj

~P
− zj

dzj Φ
σj

~P
,

, [∂iE
σj

~P
− (Γ

σj

~P
)i]Φ

σj

~P
〉|~P=P i î . (III.42)

Using the eigenvalue equation

K
σj

~P
Φ
σj

~P
= E

σj

~P
Φ
σj

~P
,

the terms proportional to (∂iE
σj

~P
)2 and to the mixed terms – i.e., proportional

to the product of ∂iE
σj

~P
and (Γ

σj

~P
)i – are seen to be identically 0, because the

contour integral vanishes for each i = 1, 2, 3; e.g.,∫
γj

〈 1

K
σj

~P
− zj

[∂iE
σj

~P
]

1

K
σj

~P
− zj

Φ
σj

~P
, [∂iE

σj

~P
]Φ

σj

~P
〉dz̄j = (III.43)

=
∫
γj

〈Φσj

~P
, Φ

σj

~P
〉
( ∂iE

σj

~P

E
σj

~P
− z̄j

)2
dz̄j = 0 .

It follows that

∂2
iE

σj

|~P ||~P=P i î = (III.44)

= 1 +
1

πi

∫
γj

dz̄j〈
1

Kσ
~P
− zj

(Γ
σj

~P
)i

1

Kσ
~P
− zj

Φ
σj

~P

‖Φσj

~P
‖
, (Γ

σj

~P
)i

Φ
σj

~P

‖Φσj

~P
‖
〉|~P=Pi î

(III.45)

= 1 +
1

πi

∫
γj

dz̄j
1

E
σj

~P
− z̄j

〈 (Γσj

~P
)i

1

K
σj

~P
− zj

(Γ
σj

~P
)i

Φ
σj

~P

‖Φσj

~P
‖
,

Φ
σj

~P

‖Φσj

~P
‖
〉|~P=Pi î

. (III.46)

We are now ready for the key estimate.

Lemma III.1. For α and ε small enough, the estimate below holds true:

∣∣∣ ∫
γj−1

〈
(Γ

σj−1

~P
)i

Φ
σj−1

~P

‖Φσj−1

~P
‖
,

1

K
σj−1

~P
− z̄j−1

(Γ
σj−1

~P
)i

Φ
σj−1

~P

‖Φσj−1

~P
‖

〉 1

E
σj−1

~P
− z̄j−1

dz̄j−1

−
∫
γj

〈
(Γ

σj

~P
)i

Φ
σj

~P

‖Φσj

~P
‖
,

1

K
σj

~P
− z̄j

(Γ
σj

~P
)i

Φ
σj

~P

‖Φσj

~P
‖

〉 1

E
σj

~P
− z̄j

dz̄j
∣∣∣ ≤ εj(1−2δ) .(III.47)



FP-Ren. Elect. Mass., 27-June-2008 27

Proof.
By unitarity of Wσj

(~∇Eσj−1

~P
)W ∗

σj
(~∇Eσj

~P
),

∫
γj

〈
(Γ

σj

~P
)i

Φ
σj

~P

‖Φσj

~P
‖
,

1

K
σj

~P
− z̄j

(Γ
σj

~P
)i

Φ
σj

~P

‖Φσj

~P
‖

〉 1

E
σj

~P
− z̄j

dz̄j = (III.48)

=
∫
γj

〈
(Γ̂

σj

~P
)i

Φ̂
σj

~P

‖Φ̂σj

~P
‖
,

1

K̂
σj

~P
− z̄j

(Γ̂
σj

~P
)i

Φ̂
σj

~P

‖Φ̂σj

~P
‖

〉 1

E
σj

~P
− z̄j

dz̄j . (III.49)

By assumption, α is so small that the Neumann series expansions of the
resolvents below converge:

1

K̂
σj

~P
− z̄j

=
1

K
σj−1

~P
− z̄j

+ Σ∞
1 (K

σj−1

~P
, z̄j) , (III.50)

1

E
σj

~P
− z̄j

=
1

E
σj−1

~P
− z̄j

+ ∆(E
σj−1

~P
, z̄j) , (III.51)

where:

Σ∞
1 (K

σj−1

~P
, z̄j) := (III.52)

=
∞∑
l=1

1

K
σj−1

~P
− z̄j

[−(∆K~P |
σj−1
σj

+ Êσj

~P
− Eσj−1

~P
)

1

K
σj−1

~P
− z̄j

]l ,

and ∆K~P |
σj−1
σj is defined in Eq. (II.66);

∆(E
σj−1

~P
, z̄j) :=

1

E
σj

~P
− z̄j

(E
σj−1

~P
− E

σj

~P
)

1

E
σj−1

~P
− z̄j

. (III.53)

We proceed by using the obvious identity:

∫
γj

〈
(Γ̂

σj

~P
)i

Φ̂
σj

~P

‖Φ̂σj

~P
‖
,

1

K̂
σj

~P
− z̄j

(Γ̂
σj

~P
)i

Φ̂
σj

~P

‖Φ̂σj

~P
‖

〉 1

E
σj

~P
− z̄j

dz̄j (III.54)

=
∫
γj

〈
(Γ̂

σj

~P
)i

Φ̂
σj

~P

‖Φ̂σj

~P
‖
,

1

K
σj−1

~P
− z̄j

(Γ̂
σj

~P
)i

Φ̂
σj

~P

‖Φ̂σj

~P
‖

〉 1

E
σj−1

~P
− z̄j

dz̄j (III.55)

+
∫
γj

〈
(Γ̂

σj

~P
)i

Φ̂
σj

~P

‖Φ̂σj

~P
‖
, Σ∞

1 (K
σj−1

~P
, z̄j)(Γ̂

σj

~P
)i

Φ̂
σj

~P

‖Φ̂σj

~P
‖

〉 1

E
σj−1

~P
− z̄j

dz̄j(III.56)

+
∫
γj

〈
(Γ̂

σj

~P
)i

Φ̂
σj

~P

‖Φ̂σj

~P
‖
,

1

K̂
σj

~P
− z̄j

(Γ̂
σj

~P
)i

Φ̂
σj

~P

‖Φ̂σj

~P
‖

〉
∆(E

σj−1

~P
, z̄j)dz̄j (III.57)
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Each of the expressions (III.55) and (III.56) can be rewritten by adding and

subtracting (Γ
σj−1

~P
)i

Φ
σj−1
~P

‖Φ
σj−1
~P

‖
. For (III.55) we get

(III.55) =

=
∫
γj

〈
(Γ

σj−1

~P
)i

Φ
σj−1

~P

‖Φσj−1

~P
‖
,

1

K
σj−1

~P
− z̄j

(Γ
σj−1

~P
)i

Φ
σj−1

~P

‖Φσj−1

~P
‖

〉 1

E
σj−1

~P
− z̄j

dz̄j (III.58)

+
∫
γj

〈
(Γ̂

σj

~P
)i

Φ̂
σj

~P

‖Φ̂σj

~P
‖
− (Γ

σj−1

~P
)i

Φ
σj−1

~P

‖Φσj−1

~P
‖
, (III.59)

,
1

K
σj−1

~P
− z̄j

[(Γ̂
σj

~P
)i

Φ̂
σj

~P

‖Φ̂σj

~P
‖
− (Γ

σj−1

~P
)i

Φ
σj−1

~P

‖Φσj−1

~P
‖
]
〉 1

E
σj−1

~P
− z̄j

dz̄j

+
∫
γj

〈
(Γ̂

σj

~P
)i

Φ̂
σj

~P

‖Φ̂σj

~P
‖
− (Γ

σj−1

~P
)i

Φ
σj−1

~P

‖Φσj−1

~P
‖
, (III.60)

,
1

K
σj−1

~P
− z̄j

(Γ
σj−1

~P
)i

Φ
σj−1

~P

‖Φσj−1

~P
‖

〉 1

E
σj−1

~P
− z̄j

dz̄j

+
∫
γj

〈
(Γ

σj−1

~P
)i

Φ
σj−1

~P

‖Φσj−1

~P
‖
, (III.61)

,
1

K
σj−1

~P
− z̄j

[(Γ̂
σj

~P
)i

Φ̂
σj

~P

‖Φ̂σj

~P
‖
− (Γ

σj−1

~P
)i

Φ
σj−1

~P

‖Φσj−1

~P
‖
]
〉 1

E
σj−1

~P
− z̄j

dz̄j .

The difference in Eq. (III.47) corresponds to the sum of the terms (III.56)-
(III.57) and of the terms (III.59)-(III.61). In fact, (III.58) corresponds to the
first term in (III.47) after a contour deformation from γj−1 to γj.
The sum of the remainder terms (III.56), (III.57), and (III.59)-(III.61) can
be bounded by εj(1−2δ), for R0 and α small enough but independent of j, for
any ~P ∈ S. (We recall that R0 can be taken arbitrarily small, provided α is
small enough). The details are as follows.
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• For (III.59)-(III.61) use the following inequalities

∥∥∥( 1

K
σj−1

~P
− z̄j

)
(Γ

σj−1

~P
)i Φ

σj−1

~P

∥∥∥ ≤ O(
R

1
2
0

α
1
4 ε(j−1)δ

) , (III.62)∥∥∥[(Γ̂σj

~P
)i − (Γ

σj−1

~P
)i

]
Φ̂
σj

~P

∥∥∥ ≤ O(α
1
4 εj(1−δ)) , (III.63)∥∥∥ 1

K
σj−1

~P
− z̄j

∥∥∥
Fσj

≤ O(
1

εj+1
) , (III.64)

∥∥∥( 1

K
σj−1

~P
− z̄j

)
(Γ

σj−1

~P
)i (Φ̂

σj

~P
− Φ

σj−1

~P
)
∥∥∥ ≤ O(

α
1
4 εj(1−δ)

εj+1
) ,(III.65)∥∥∥Φ̂σj

~P
− Φ

σj−1

~P

∥∥∥ ≤ α
1
4 εj(1−δ) . (III.66)

In order to derive the inequality in Eq. (III.63), one uses Eqs. (II.63),
(II.73), and (II.57).

• For (III.56), after adding and subtracting (Γ
σj−1

~P
)i

Φ
σj−1
~P

‖Φ
σj−1
~P

‖
, one also has

to use that

‖[−(∆K~P |
σj−1
σj

+Êσj

~P
−Eσj−1

~P
)]

1

K
σj−1

~P
− zj

(Γ
σj−1

~P
)iΦ

σj−1

~P
‖ ≤ O(α

1
2 εj−1 R

1
4
0

α
1
4 ε(j−1)δ

) ;

(III.67)

• To bound (III.57), note that

(III.57) = −2πi
〈
(Γ̂

σj

~P
)i

Φ̂
σj

~P

‖Φ̂σj

~P
‖
,

1

K̂
σj

~P
− E

σj

~P

(Γ̂
σj

~P
)i

Φ̂
σj

~P

‖Φ̂σj

~P
‖

〉
(III.68)

+2πi
〈
(Γ̂

σj

~P
)i

Φ̂
σj

~P

‖Φ̂σj

~P
‖
,

1

K̂
σj

~P
− E

σj−1

~P

(Γ̂
σj

~P
)i

Φ̂
σj

~P

‖Φ̂σj

~P
‖

〉
(III.69)

= −2πi
〈
(Γ̂

σj

~P
)i

Φ̂
σj

~P

‖Φ̂σj

~P
‖
,

(E
σj−1

~P
− E

σj

~P
)

K̂
σj

~P
− E

σj

~P

1

K̂
σj

~P
− E

σj−1

~P

(Γ̂
σj

~P
)i

Φ̂
σj

~P

‖Φ̂σj

~P
‖

〉
(III.70)

where |Eσj−1

~P
− E

σj

~P
| ≤ O(α εj−1). Then use the following inequality

analogous to (III.62)

∥∥∥( 1

K̂
σj

~P
− E

σj

~P

)
(Γ̂

σj

~P
)i Φ̂

σj

~P

∥∥∥ ≤ O(
R

1
2
0

α
1
4 εjδ

) . (III.71)
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Theorem III.2. For α small enough,
∂2Eσ

|~P |

(∂|~P |)2 converges, as σ → 0. The

limiting function, Σ|~P | := limσ→0

(∂2Eσ
|~P |

(∂|~P |)2 , is Hölder-continuous in ~P ∈ S (for

an exponent η > 0). The bounds from above and below

2 > Σ|~P | > 0 (III.72)

hold true uniformly in ~P ∈ S.

Proof
It is enough to prove the result for a fixed choice of a sequence {σj}∞j=0. The
estimate in Lemma III.1 (with δ < 1/2) implies the existence of limj→∞ ∂2

iE
σj

|~P ||~P=Pi î
.

We now observe that ∂2
iE

σ0

|~P ||~P=Pi î
= 1 (see Eq. (III.46)), because

(Γσ0
~P

)i ≡ (~P f )i , Φσ0
~P
≡ Ωf . (III.73)

For α small enough, we can take ε so small that Lemma III.1, combined with
(III.73), yields

∣∣∣ 1

πi

∫
γj

dz̄j
1

E
σj

~P
− z̄j

〈
Φ
σj

~P

‖Φσj

~P
‖
, (Γ

σj

~P
)i

1

K
σj

~P
− z̄j

(Γ
σj

~P
)i

Φ
σj

~P

‖Φσj

~P
‖
〉|~P=Pi î

∣∣∣ < 1 ,

(III.74)
uniformly in j ∈ N. Hence the bound (III.72) follows.

The Hölder-continuity in ~P of Σ|~P | is a trivial consequence of the analyticity

in ~P ∈ S of Eσ
|~P |, for any σ > 0, and of Lemma III.1; see [11] for similar

results.

Corollary III.3. For α small enough, the function E~P := limσ→0E
σ
~P
, ~P ∈ S,

is twice differentiable, and

∂2E|~P |

(∂|~P |)2
= Σ|~P | . (III.75)

Proof

The result follows from the Hölder-continuity of Σ|~P |, of limσ→0

∂Eσ
~P

∂|~P | , and

from the fundamental theorem of calculus applied to the functions E~P and

limσ→0

∂Eσ
~P

∂|~P | , because

•
∂Eσ

~P

∂|~P |
and

∂2Eσ
~P

(∂|~P |)2
(III.76)

converge pointwise, for ~P ∈ S, as σ → 0,
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• ∣∣∣∂Eσ
~P

∂|~P |

∣∣∣ and
∣∣∣ ∂2Eσ

~P

(∂|~P |)2

∣∣∣ (III.77)

are uniformly bounded in σ, for all ~P ∈ S.
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