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1. Introduction

We study the scattering by potentials and by magnetic fields with two compact
supports at large separation and analyze the asymptotic behavior of the time delay
as the separation of supports goes to infinity. We work in the two dimensional
space R2 throughout the whole exposition. In fact, it is in two dimensions that a
quite different method is employed in potential and magnetic scattering. This comes
from the fact that vector potentials corresponding to magnetic fields with compact
supports at large separation can not necessarily have separate support due to the
topological feature of dimension two. We make further comments on our motivation
of the present work at the end of the section.

We begin by making a brief review on the time delay in potential scattering. We
consider the Schrödinger operator

H = H0 + V, H0 = −Δ, V ∈ C∞
0 (R2 → R), (1.1)

acting on L2 = L2(R2), where V (x) is assumed to be a real smooth function
with compact support. The two operators H and H0 are essentially self–adjoint
in C∞

0 (R2). The self–adjoint realizations denoted by the same notation H and H0

have the same domain D(H) = D(H0) = H2(R2), Hs(R2) being the Sobolev space
of order s. If V is of compact support, then the difference between the semigroups
exp(−tH0) and exp(−tH), t > 0, generated by H0 and H is an operator of trace
class. The scattering matrix S(λ) : L2(S1) → L2(S1) at energy λ > 0 for the pair
(H0, H) is unitary and takes the form S(λ) = Id + T (λ) with operator T (λ) of
trace class, where S1 is the unit circle and Id denotes the identity operator. Hence
detS(λ) is well defined and is represented in the form

detS(λ) = exp(−2πiξ(λ)). (1.2)

According to the Birman–Krein theory ([6, 25]), ξ(λ) is extended for negative λ < 0
as a locally integrable function ξ(λ) ∈ L1

loc(R) and satisfies the trace formula

Tr (f(H) − f(H0)) =
∫
f ′(λ)ξ(λ) dλ, f ∈ C∞

0 (R), (1.3)
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where the integration without the domain attached is taken over the whole space. We
often use this abbreviation throughout the discussion in the sequel. The function
ξ(λ) is called the spectral shift function and is uniquely determined by the trace
formula (1.3) under the normalization that ξ(λ) vanishes away from the spectral
support of H . We further know ([17]) that ξ ∈ C∞(0,∞), and we can calculate
ξ′(λ) as

ξ′(λ) = − (2πi)−1 Tr [S(λ)∗ (dS(λ)/dλ)] (1.4)

by the well known formula (see [10, p.163] for example). The operator −iS(λ)∗S ′(λ)
is called the Eisenbud–Wigner time delay operator in physics literatures and its
trace describes the time delay for a monoenergetic beam at energy λ (see [4] for the
physical background).

We first consider the scattering by potential with two supports at large sepa-
ration. We do not need to restrict ourselves to the scattering in two dimensions.
The obtained results extend to the case of higher dimensions without any essential
changes. Let V1, V2 ∈ C∞

0 (R2 → R). Then we define the three operators by

Hd = H0 + Vd, H1d = H0 + V1d, H2d = H0 + V2d, (1.5)

where

Vd(x) = V1d(x) + V2d(x), V1d(x) = V1(x− d1), V2d(x) = V2(x− d2).

We denote by ξ1(λ), ξ2(λ) and ξ(λ; d) the spectral shift functions for three pairs
(H0, H1), (H0, H2) and (H0, Hd) respectively, where

H1 = H0 + V, H2 = H0 + V2. (1.6)

These spectral shift functions are uniquely determined under normalization that

ξ1(λ) = 0, ξ2(λ) = 0, ξ(λ; d) = 0 (1.7)

for λ � −1, and it is easy to see that the pairs (H0, Hj) and (H0, Hjd) define
the same spectral shift function. We shall state two theorems on the asymptotic
behavior as |d| = |d2 − d1| → ∞ of ξ′(λ; d).

Theorem 1.1 Let the notation be as above. Then ξ′(λ; d) satisfies

ξ′(λ; d) = ξ′1(λ) + ξ′2(λ) +O(|d|−N), |d| → ∞,

for any N � 1 in D′(R) (in the distribution sense). In other words,

∫
f ′(λ) (ξ(λ; d)− ξ1(λ) − ξ2(λ)) dλ = O(|d|−N), f ∈ C∞

0 (R).
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Next we look at the behavior of ξ′(λ; d) for λ > 0 fixed. A term highly oscillating
with |d| is hidden behind the asymptotic formula in the distributional sense. Such
a new term is added to the sum of ξ′1(λ) and ξ′2(λ) as the leading term. The new
term is described in terms of the amplitude aj(ω → θ;λ), j = 1, 2, for the scattering
by potential Vj from incident direction ω ∈ S1 to final direction θ at energy λ > 0.
The second theorem is stated as follows.

Theorem 1.2 Define a0(λ; d) by

a0(λ; d) = a1(−d̂→ d̂; λ)a2(d̂→ −d̂; λ), λ > 0,

with d̂ = d/|d| ∈ S1, d = d2 − d1. Then ξ′(λ; d) behaves like

ξ′(λ; d) = ξ′1(λ) + ξ′2(λ) − π−1Re
[
exp(i2λ1/2|d|)a0(λ; d)

]
λ−1/2 +O(|d|−1)

locally uniformly in λ > 0.

We make a comment on the term exp(i2λ1/2|d|)a0(λ; d). This term appears as
the period of the trajectory trapping between two supports suppV1 and suppV2. In
fact, it takes time 2|d|/(2λ1/2) for the free particle with mass 1/2 to go from suppV1

to suppV2 and back with velocity 2λ1/2. The period of the oscillating trajectory
gives rise to the time delay d

(
2λ1/2|d|

)
/dλ = 2|d|/(2λ1/2). As an application of

Theorem 1.2, we can derive the asymptotic formula as |d| → ∞ for the spectral
shift function ξ(λ; d) itself.

Theorem 1.3 Define ξ0(λ; d) by

ξ0(λ; d) = sin
(
2λ1/2|d|

)
Re a0(λ; d) + cos

(
2λ1/2|d|

)
Im a0(λ; d), λ > 0,

for a0(λ; d) as in Theorem 1.2. Then

ξ(λ; d) = ξ1(λ) + ξ2(λ) − π−1ξ0(λ; d)|d|−1 + o(|d|−1)

locally uniformly in λ > 0.

The theorem above has been verified by [17] in a quite different way for a wider
class of short–range potentials not necessarily supported compactly in three dimen-
sions. However it should be noted that Theorem 1.3 does not imply Theorem 1.2
in a simple manner. We prove Theorem 1.1 and then Theorem 1.3 in section 2,
accepting Theorem 1.2 as proved. Theorem 1.2 is verified in section 4 after making
a quick review on the stationary theory of scattering and on the representation for
time delay in terms of outgoing eigenfunctions in section 3.
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We proceed to the time delay in magnetic scattering. We fix the basic notation.
We write

H(A) = (−i∇− A)2

for the magnetic Schrödinger operator with vector potential A(x) : R2 → R2. We
set

ψ(x) = (2π)−1
∫

log |x− y| b(y) dy
for b ∈ C∞

0 (R2 → R) and define A(x) by

A(x) = (−∂2ψ(x), ∂1ψ(x)) , ∂j = ∂/∂xj . (1.8)

Then A defines the field ∇× A = Δψ = b and behaves like

A(x) = αΛ(x) +O(|x|−2)

at infinity, where α defined by α = (2π)−1
∫
b(x) dx is called the flux of field b, and

Λ(x) takes the form

Λ(x) =
(
−x2/|x|2, x1/|x|2

)
= (−∂2 log |x|, ∂1 log |x|) . (1.9)

The potential Λ(x), which is often called the Aharonov–Bohm potential in physics
literatures, defines the solenoidal field ∇× Λ(x) = Δ log |x| = 2πδ(x) with center
at the origin. We use the notation

tr (G1 −G2) =
∫

(G1(x, x) −G2(x, x)) dx

for two integral operators Gj with kernels Gj(x, y). If G1 − G2 is of trace class,
then this coincides with the usual trace Tr (G1 − G2). However the integral is well
defined even for G1 − G2 not necessarily belonging to trace class. If, for example,
G1 = f(H0) with f ∈ C∞

0 (R) and

G2 = f(K0), K0 = exp(−ig)H0 exp(ig)

for some smooth real function g, then tr (G1 −G2) = 0.

We set up the problem. Let b± ∈ C∞
0 (R2 → R) be given magnetic fields. We

assume that the total flux ∫
b+(x) dx+

∫
b−(x) dx = 0 (1.10)

vanishes. We set

α = (2π)−1
∫
b+(x) dx = −(2π)−1

∫
b−(x) dx.

We now consider the operator

Ld = H(Ad), Ad(x) = A+(x− d+) + A−(x− d−),
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where A±(x) is defined as

A±(x) = (−∂2ψ±(x), ∂1ψ±(x)) , ψ±(x) = (2π)−1
∫

log |x− y| b±(y) dy, (1.11)

in the same way as in (1.8). The potential A± behaves like

A±(x) = ±αΛ(x) +O(|x|−2)

at infinity, while Ad falls off like Ad(x) = O(|x|−2) by assumption (1.10). If |d| =
|d+ − d−| � 1, then Ad(x) defines the field

bd(x) = ∇× Ad(x) = b+(x− d+) + b−(x− d−)

having separate support. By (1.10) again, the integral
∫

C
Ad(x) · dx = 0 along closed

curves in the region {|x| > M |d|} with M � 1 large enough. This enables us to
construct a smooth real function gd(x) on R2 such that Ad = ∇gd over the above
region. We set

L̃d = exp(−igd)Ld exp(igd) = H (Ad −∇gd) .

Since gd(x) falls off at infinity, both the pairs (H0, Ld) and
(
H0, L̃d

)
define the same

scattering operator, so that the same spectral shift function is obtained from these
two pairs. As is easily seen, the spectral shift function does not depend on the choice
of gd. We denote by η(λ; d) the spectral shift function for the pair (H0, Ld). Then
we have the trace formula

tr (f(Ld) − f(H0)) =
∫
f ′(λ)η(λ; d) dλ, f ∈ C∞

0 (R).

The problem which we want to discuss is the asymptotic behavior as |d| = |d+ −
d−| → ∞ of the time delay η′(λ; d). The result is formulated in terms of the
spectral shift function for the operator L± = H(A±) with potential A±(x) defined
by (1.11). However the function is not expected to be defined for the pair (H0, L±)
because of the long–range property of A±(x). Thus we introduce the auxiliary
operator K± = H(±αΛ), where Λ(x) is defined by (1.9). Since Λ has a strong
singularity at the origin, the self–adjoint extension of symmetric operator K± over

C∞
0

(
R2 \ {0}

)
is realized by imposing the boundary condition lim

|x|→0
|u(x)| <∞ at

the origin ([1, 7]). We can easily see that an operator obtained from L± after a
suitable gauge transformation coincides with K± over the region {|x| > c} for some
c > 0. Hence the spectral shift function η±(λ) can be defined for the pair (K±, L±)
for the same reason as η(λ; d) is defined for the pair (H0, Ld), and the trace formula

tr (f(L±) − f(K±)) =
∫
f ′(λ)η±(λ) dλ, f ∈ C∞

0 (R),

holds true. The theorem below corresponds to Theorem 1.1 in potential scattering.
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Theorem 1.4 Let the notation be as above. Assume that the total flux of Ld =
H(Ad) vanishes. If f ∈ C∞

0 (R) fulfills f ′(λ) = 0 around the origin, then

tr (f(Ld) − f(H0)) = −κ(1 − κ)f(0)

+ tr (f(L−) − f(K−)) + tr (f(L+) − f(K+)) + o(|d|−1),

where κ = α − [α], 0 ≤ κ < 1, and the Gauss notation [α] denotes the greatest
integer not exceeding α. In other words, η(λ; d) satisfies

∫
f ′(λ)η(λ; d) dλ =

∫
f ′(λ) (η+(λ) + η−(λ)) dλ− κ(1 − κ)f(0) + o(|d|−1).

As a special but interesting case, we consider the scattering by two solenoidal
fields with center at large separation. Let Kd be defined by

Kd = H(Λd), Λd = αΛ(x− d+) − αΛ(x− d−). (1.12)

We know ([13]) that this symmetric operator (not necessarily essentially self–adjoint)
over C∞

0 (R2 \ {d−, d+}) has self–adjoint realization in L2 = L2(R2) with domain

D = {u ∈ L2 : (−i∇− Λd)
2 u ∈ L2, lim

|x−d±|→0
|u(x)| <∞}. (1.13)

We denote by the same notation Kd the self–adjoint realization and by ηδ(λ; d) the
spectral shift function for the pair (H0, Kd).

Theorem 1.5 Let f ∈ C∞
0 (R) be as in Theorem 1.4. Then

tr (f(Kd) − f(H0)) = −κ(1 − κ)f(0) + o(|d|−1).

In other words, ηδ(λ; d) satisfies the relation

∫
f ′(λ)ηδ(λ; d) dλ = −κ(1 − κ)f(0) + o(|d|−1).

Theorems 1.4 and 1.5 are helpful in deriving the asymptotic formula with error
estimate o(|d|−1) for the spectral shift functions η(λ; d) and ηδ(λ; d) respectively,
which is seen from the argument used to prove that Theorems 1.1 and 1.2 imply
Theorem 1.3. We prove only Theorem 1.5 in section 5 and skip the proof of Theorem
1.4. An essential idea is displayed in the proof of Theorem 1.5. The main body of
the present work is occupied by the proof of Theorems 1.2 and 1.5. Throughout the
proof, the time delay in potential and magnetic scattering is seen to be placed under
a quite different situation in two dimensions. In fact, the time delay is not neces-
sarily defined for scattering by magnetic fields compactly supported, if its flux does
not vanish. Even if the total flux vanishes, the support of potentials corresponding
to fields with compact supports at large separation widely extends without being
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completely separated. This prevents us from applying directly the idea developed in
the proof of Theorem 1.2 to the case of magnetic scattering. It is only in two dimen-
sions that such a difficulty occurs. We will explain additional technical difficulties
at the end section 4 after completing the proof of Theorem 1.2.

Our motivation of the present work comes from the derivation of the asymptotic
formula pointwise (not in the distribution sense) for the time delay η′δ(λ; d) in the
scattering by two solenoidal fields. Theorem 1.5 is an intermediate result and the
original purpose has not yet been achieved here. In the scattering by solenoidal
fields, the explicit asymptotic formula is expected for η′δ(λ; d) and ηδ(λ; d). In fact,
the scattering amplitude by the field 2παδ(x) with flux α and center at the origin
is known to be calculated as

sα(ω → θ;λ) = (2i/π)1/2 sin απ exp (i[α](ω+ − ω−))F (θ − ω), (1.14)

where ω ∈ S1 is identified with the azimuth angle from the positive x1 axis, and
F (z) is defined by F (z) = eiz/

(
1 − eiz

)
for z 	= 0 (see [2, 3, 22] for example). In

particular, the backward amplitude sα(ω → −ω;λ) takes the simple form

sα(ω → −ω;λ) = −(i/2π)1/2λ−1/4 (−1)[α] sin απ,

and hence we have

sα(d̂→ −d̂; λ)s−α(−d̂→ d̂; λ) = (i/2π)λ−1/2 sin2 απ

for d̂ = d/|d|, d = d+ − d−. According to Theorem 1.2, the time delay η′δ(λ; d) is
expected to obey

η′δ(λ; d) ∼ 2 (2π)−2 λ−1 sin2 απ sin
(
2λ1/2|d|

)
+O(|d|−1)

locally uniformly in λ > 0, and also we combine this relation with Theorem 1.5 to
see that ηδ(λ; d) satisfies

ηδ(λ; d) ∼ κ(1 − κ) − 2 (2π)−2 λ−1/2 sin2 απ cos
(
2λ1/2|d|

)
|d|−1 + o(|d|−1).

Thus ηδ(λ; d) is expected to be convergent to κ(1−κ) as |d| → ∞ locally uniformly
in λ > 0. Since η′δ(λ; d) highly oscillates with |d| for positive energy λ > 0, we may
understand that a contribution from zero energy only remains as the constant term
κ(1 − κ) in the leading term.

The other motivation lies in the semiclassical analysis on the time delay in mag-
netic scattering by two solenoidal fields. We consider the operator

Ĥh = (−ih∇− Φ)2 , 0 < h� 1,

where Φ(x) = αΛ(x− e+) − αΛ(x− e−) with e+ 	= e−. Then Ĥh is unitarily trans-
formed into K̂d = H(Φd), where

Φd(x) = βΛ(x− d+) − βΛ(x− d−), β = α/h− [α/h], d± = e±/h.
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Hence the semiclassical problem (h→ 0) is reduced to the large separation problem
(|d| → ∞). In our previous works [14, 23], we have developed the semiclassical
analysis on physical quantities such as scattering amplitudes and total cross sections
for magnetic scattering by two solenoidal fields.

The trace formula (1.3) is an important tool to study the location of resonances
in various scattering problems. For this reason, there are a lot of works on the
asymptotic analysis on spectral shift functions or time delay besides the work [17]
cited above. We refer to [9, 19, 20] for comprehensive references on related subjects.
In particular, [20] contains an excellent survey on the semiclassical spectral theory.

2. Proof of Theorems 1.1 and 1.3

We here prove Theorem 1.1 and show that Theorem 1.2, together with Theorem
1.1, implies Theorem 1.3. The proof is based on the Helffer–Sjöstrand calculus for
self–adjoint operators ([11]). According to the calculus, we have

f(Hd) = (i/2π)
∫
∂zf̃(z) (Hd − z)−1 dz dz (2.1)

for f ∈ C∞
0 (R), where f̃ ∈ C∞

0 (C) is an almost analytic extension of f such that f̃
has compact support in the complex plane C, fulfills f̃ = f on R and obeys

|∂m

z f̃(z)| ≤ CmL|Im z|L, m ≥ 1,

for any L� 1. We introduce a smooth nonnegative partition of unity {χ0, χ1, χ2}
normalized by χ0 + χ1 + χ2 = 1 over R2 such that

suppχj ⊂ {|x− dj | < 2δ|d|}, χj = 1 on {|x− dj| < δ|d|},

for j = 1, 2, δ > 0 being fixed small enough.

Lemma 2.1 Let Hjd, j = 1, 2, be as in (1.5) and let {χ0, χ1, χ2} be as above.
Denote by ‖ ‖tr the trace norm of operators on L2. If f ∈ C∞

0 (R), then

‖(f(Hd) − f(Hjd))χj‖tr = O(|d|−N), ‖(f(Hd) − f(H0))χ0‖tr = O(|d|−N)

and ‖(f(Hjd) − f(H0))(1 − χj)‖tr = O(|d|−N) for any N � 1.

Proof. We prove only the first bound for j = 1. A similar argument applies to
other bounds. We make repeated use of the resolvent identity to obtain that

(Hd − z)−1 − (H1d − z)−1 = −(Hd − z)−1V2d(H1d − z)−1

= −(Hd − z)−1V2d(H0 − z)−1 + (Hd − z)−1V2d(H0 − z)−1V1d(H1d − z)−1
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for z with Im z 	= 0. Since the distance between suppV1d and suppV2d satisfies

dist (suppV1d, suppV2d) ≥ c|d|, c > 0,

it is easy to see that∥∥∥V2d(H0 − z)−1V1d

∥∥∥
tr
≤ CN |Im z|−2N |d|−N

and similarly for V2d(H0 − z)−1χ1. Thus (2.1) yields the desired bound. �

Proof of Theorem 1.1. The theorem follows from Lemma 2.1 immediately. �

Proof of Theorem 1.3. Let ξ0(λ; d) be as in the theorem. Then we have

ξ′0(λ; d) = Re
[
exp(2iλ1/2|d|)a0(λ; d)

]
λ−1/2|d| +O(1), |d| → ∞. (2.2)

We fix E > 0 arbitrarily and take a smooth real function g ∈ C∞(R) such that
0 ≤ g ≤ 1 and

g = 0 on (−∞, E − 2ε], g = 1 on [E − ε,∞)

for ε > 0 fixed arbitrarily but small enough. Then ξ(E; d) is represented as

ξ(E; d) =
∫ E

−∞
g(λ)ξ′(λ; d) dλ+

∫ E

−∞
g′(λ)ξ(λ; d) dλ.

We apply Theorems 1.2 and 1.1 to the first and second integrals on the right side,
respectively. We note that g does not vanish only over (E − 2ε, E] in the interval
(−∞, E]. If we take account of (2.2), then we see by Theorem 1.2 that the first
integral behaves like

∫ E

−∞
g(λ)ξ′(λ; d) dλ = ξ1(E) + ξ2(E) − π−1ξ0(E; d)|d|−1

−
∫
g′(λ) (ξ1(λ) + ξ2(λ)) dλ+ εO(|d|−1) +O(|d|−N).

If we set f(λ) = g(λ) − 1, then f ′(λ) = g′(λ) and f(λ) = 0 for λ > E − ε. Since
ξ1(λ), ξ2(λ) and ξ(λ; d) all vanish for λ� −1 by (1.7), the second integral obeys

∫ E

−∞
g′(λ)ξ(λ; d) dλ =

∫
f ′(λ)ξ(λ; d) dλ =

∫
f ′(λ) (ξ1(λ) + ξ2(λ)) dλ+O(|d|−N)

by Theorem 1.1. Thus the desired relation is obtained. �

3. Preliminaries

This is a preliminary section toward the proof of Theorem 1.2. Throughout the
section, we put ourselves under the same situation

H = H0 + V, H0 = −Δ, V ∈ C∞
0 (R2 → R),
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as in (1.1), although the restriction to two dimensions does not matter. We state
three propositions without proof. The first two propositions (Propositions 3.1 and
3.2) are standard results in the stationary theory of scattering for (H0, H) (see [5, 18]
for details), and the third proposition already established in [21] is concerned with
the representation for time delay in terms of outgoing eigenfunctions.

We begin by fixing the notation. We denote by ( , ) the L2 scalar product
in L2 = L2(R2) and by R(z;T ), Im z 	= 0, the resolvent (T − z)−1 of self–adjoint
operator T acting on L2. We write L2

σ for the weighted L2 space L2(R2; 〈x〉σdx)
with weight 〈x〉σ = (1 + |x|2)σ/2

. We define R0(λ) as the boundary value

R0(λ) = R(λ+ i0;H0) = lim
ε↓0

R(λ+ iε;H0), λ > 0,

of resolvent R(λ+ iε;H0). The operator R0(λ) is the integral operator with kernel

G0(x, y;λ) = (i/4)H
(1)
0 (λ1/2|x− y|)

and is bounded as an operator from L2
2s → L2

−2s for s > 1/2, where H
(1)
0 (z) is the

Hankel function of first kind and of order zero. Since H
(1)
0 (z) obeys the asymptotic

formula

H
(1)
0 (z) = (2/π)1/2 exp(i(z − π/4))z−1/2

(
1 +O(|z|−1)

)
, |z| → ∞,

G0(x, y;λ) behaves like

G0(x, y;λ) = (ic(λ)/4π) exp(iλ1/2|x− y|)|x− y|−1/2
(
1 +O(|x− y|−1)

)
(3.1)

as |x− y| → ∞, where
c(λ) = (2π)1/2e−iπ/4λ−1/4. (3.2)

We denote by ϕ+(x;ω, λ) the outgoing eigenfunction of H with ω ∈ S1 as an incident
direction at energy λ > 0. By the principle of limiting absorption, the boundary
value

R(λ) = R(λ+ i0;H) = lim
ε↓0

R(λ+ iε;H)

exists as a bounded operator from L2
2s to L2

−2s for s > 1/2. The eigenfunction is
represented as

ϕ+(x;ω, λ) = ϕ0(x;ω, λ) − (R(λ)V ϕ0) (x), ϕ0 = exp(iλ1/2x · ω). (3.3)

Since ϕ+ admits the different representation ϕ+ = ϕ0 −R0(λ)V ϕ+, we obtain the
following proposition.

Proposition 3.1 R(λ)V ϕ0 = R0(λ)V ϕ+.
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The amplitude a(ω → θ;λ) for the scattering from incident direction ω to final
direction θ at energy λ is defined as

a(ω → θ;λ) = − (ic(λ)/4π) (V ϕ+(·;ω, λ), ϕ0(·; θ, λ)) (3.4)

through the asymptotic behavior

ϕ+(x;ω, λ) = ϕ0(x;ω, λ) + a(ω → x̂;λ) exp(iλ1/2|x|)|x|−1/2
(
1 +O(|x|−1)

)

at infinity along direction x̂ = x/|x|. We here make a comment on the smoothness
in λ of a(ω → θ;λ), which has been implicitly used in the proof of Theorem 1.3.
This follows from the fact that R(λ) is smooth in λ as a function with values in
bounded operators between appropriate weighted L2 spaces ([15]).

The scattering matrix S(λ) : L2(S1) → L2(S1) at energy λ is unitary and takes
the form S(λ) = Id+ T (λ) with operator T (λ) of trace class. If we write T (θ, ω;λ)
for the kernel of T (λ), then a(ω → θ;λ) is known to be related to T (θ, ω;λ) through
a(ω → θ;λ) = c(λ)T (θ, ω;λ), where c(λ) is defined by (3.2). As is well known, the
scattering process is reversible. Thus we have the following proposition.

Proposition 3.2 The scattering amplitude fulfills∫
a(ω → θ1;λ)a(ω → θ2;λ) dω = − (c(λ)a(θ2 → θ1;λ) + c(λ)a(θ1 → θ2;λ))

and a(−θ → −ω;λ) = a(ω → θ;λ).

The relations in the two propositions above are often used without further refer-
ences in proving Theorem 1.2. We end the section by mentioning the third propo-
sition which has been obtained as [21, Proposition 6.1], including the case of higher
dimensions.

Proposition 3.3 Let ξ(λ) be the spectral shift function for the pair (H0, H). Then
ξ′(λ) admits the representation

ξ′(λ) =
(
16π2λ

)−1
∫

(U(x)ϕ+(ω, λ), ϕ+(ω, λ)) dω, λ > 0,

where U = −2V − (x · ∇V ), and ϕ+(ω, λ) denotes the eigenfunction ϕ+(x;ω, λ).

4. Proof of Theorem 1.2

The proof of Theorem 1.2 is not short. The entire discussion throughout the
section is devoted to proving the theorem. We first recall the notation

Vd(x) = V1d(x) + V2d(x), V1d(x) = V1(x− d1), V2d(x) = V2(x− d2)
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for V1, V2 ∈ C∞
0 (R2 → R). We assume that |d1|, |d2| � 1 are both large enough.

We denote by ϕd(x;ω) the outgoing eigenfunction of Hd = H0 + Vd with ω as an
incident direction at energy E > 0. We fix E and skip the dependence on E of
eigenfunctions. By Proposition 3.3, the quantity ξ′(E; d) in question is represented
as

ξ′(E; d) =
(
16π2E

)−1
∫

(Udϕd(ω), ϕd(ω)) dω,

where Ud = −2Vd − x · ∇Vd. Let χ ∈ C∞
0 (R2 → R) be a nonnegative smooth

function such that χ = 1 on suppV1 ∪ suppV2. We set χjd(x) = χ(x− dj) and write
ϕd in the form

ϕd(x;ω) = (1 − χ1d − χ2d)ϕ0 + ϕ, ϕ0 = ϕ0(x;ω) = exp(iE1/2x · ω).

Then ϕ solves (Hd − E)ϕ = [H0, χ1d + χ2d]ϕ0, and hence we have

ϕd(x;ω) = (1 − χ1d − χ2d)ϕ0 +Rd[H0, χ1d + χ2d]ϕ0, Rd = R(E + i0;Hd).

Since suppχ1d ∩ suppχ2d = ∅ for |d| � 1, (1 − χ1d − χ2d)Ud = 0. Thus ξ′(E; d) is
decomposed into the sum of four terms

ξ′(E; d) =
(
16π2E

)−1 ∑
1≤j,k≤2

∫
(UdRd[H0, χjd]ϕ0(ω), Rd[H0, χkd]ϕ0(ω)) dω. (4.1)

The function Ud(x) admits the decomposition

Ud = U1d + U2d − |d1|W1d − |d2|W2d, (4.2)

where Ujd = −2Vjd − (x− dj) · ∇Vjd and

Wjd(x) =
(
d̂j · ∇Vjd

)
(x), d̂j = dj/|dj| ∈ S1. (4.3)

This enables us to decompose further ξ′(E; d) as the sum

ξ′(E; d) =
(
16π2E

)−1
(I(d) + J(d) −X(d) − Y (d)) ,

where

I(d) =
∑

1≤j,k≤2

∫
(U1dRd[H0, χjd]ϕ0(ω), Rd[H0, χkd]ϕ0(ω)) dω,

J(d) =
∑

1≤j,k≤2

∫
(U2dRd[H0, χjd]ϕ0(ω), Rd[H0, χkd]ϕ0(ω)) dω,

X(d) = |d1|
∑

1≤j,k≤2

∫
(W1dRd[H0, χjd]ϕ0(ω), Rd[H0, χkd]ϕ0(ω)) dω,

Y (d) = |d2|
∑

1≤j,k≤2

∫
(W2dRd[H0, χjd]ϕ0(ω), Rd[H0, χkd]ϕ0(ω)) dω.
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We assert that I(d) and J(d) behave like

I(d) ∼ 16π2E ξ′1(E), J(d) ∼ 16π2E ξ′2(E) (4.4)

as |d| = |d2 − d1| → ∞ and that X(d) and Y (d) behave like

X(d) ∼ −16π E1/2
(
d1 · d̂

)
Re

[
e2iE1/2|d|a0(E; d)

]
|d|−1, (4.5)

Y (d) ∼ 16π E1/2
(
d2 · d̂

)
Re

[
e2iE1/2|d|a0(E; d)

]
|d|−1,

where a0(E; d) is as in the theorem and the notation ∼ means that the difference
between terms on the left and right sides obey the bound O(|d|−1). We use the
abbreviation ∼ with the meaning ascribed above throughout the proof. The theorem
is obtained as an immediate consequence of this assertion.

We often use the stationary phase method for integrals over S1 to prove the asser-
tion. The next proposition follows as a special case of the general result [12, Theorem
7.7.5] and is used without further references.

Proposition 4.1 Let θ ∈ S1 be fixed and let g ∈ C∞(S1). Then

∫
exp(i|d|E1/2θ · ω)g(ω) dω

=
(
c(E)ei|d|E1/2

g(θ) + c(E)e−i|d|E1/2

g(−θ)
)
|d|−1/2 +O(|d|−3/2)

as |d| → ∞, where c(E) = (2π)1/2e−iπ/4E−1/4 is defined by (3.2).

The lemma below is concerned with the bound on the norm of resolvent Rd =
R(E + i0;Hd), which also plays an important role in analyzing the behavior of the
four terms in the assertion above. It has been essentially established in [16], but we
prove it later for completeness.

Lemma 4.1 Denote by ‖ ‖ the norm of bounded operators on L2 = L2(R2). Let
qj be the characteristic function of ball {|x− dj | < c} for c > 0. Then

‖qjRdqj‖ = O(1), ‖qjRdqk‖ = O(|d|−1/2), j 	= k.

We prove (4.4) for I(d) only. A similar argument applies to J(d). We define

Ijk(d) =
∫

(U1dRd[H0, χjd]ϕ0(ω), Rd[H0, χkd]ϕ0(ω)) dω, 1 ≤ j, k ≤ 2.

Then we claim that
I11(d) ∼ 16π2E ξ′1(E), (4.6)

I22(d) = O(|d|−1), I12(d) = O(|d|−1), I21(d) = O(|d|−1), (4.7)
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which implies (4.4). To prove the claim, we introduce the auxiliary resolvents

Rjd = R(E + i0;Hjd), Hjd = H0 + Vjd,

which enjoy the same properties as in Lemma 4.1. Hence the next lemma is obtained
by use of the resolvent identity.

Lemma 4.2 Let qj be again as in Lemma 4.1. Then

‖q1 (Rd − R1d) q1‖ = O(|d|−1), ‖q2 (Rd −R2d) q2‖ = O(|d|−1).

The above lemma shows that

I11(d) ∼
∫

(U1dR1d[H0, χ1d]ϕ0(ω), R1d[H0, χ1d]ϕ0(ω)) dω

and hence we get (4.6) by repeating the same argument as used to derive (4.1). The
bound I22(d) = O(|d|−1) also follows as a consequence of this lemma.

We shall show that I12(d) = O(|d|−1). We note that χ1d = 1 on suppV1d and
χ1d = 0 on suppV2d. We calculate

[H0, χ1d]ϕ0 = [H0 − E, χ1d]ϕ0 = (H0 −E)χ1dϕ0 = (H1d −E)χ1dϕ0 − V1dϕ0.

Since Rd = (Id− RdV2d)R1d by the resolvent identity, we obtain

Rd[H0, χ1d]ϕ0 = χ1dϕ0 − (Id− RdV2d)R1dV1dϕ0.

Similarly we have

Rd[H0, χ2d]ϕ0 = χ2dϕ0 − (Id− RdV1d)R2dV2dϕ0.

We insert these relations into the scalar product

Γ(ω) = (U1dRd[H0, χ1d]ϕ0(ω), Rd[H0, χ2d]ϕ0(ω))

associated with the integrand of I12(d). Since U1dχ1d = U1d and U1dχ2d = 0 and
since ‖U1dRdV2dR1dV1d‖ = O(|d|−1) by Lemma 4.1, Lemma 4.2 shows that

Γ(ω) ∼ − ((Id− R1dV1d)ϕ0(ω), U1d (Id−RdV1d)R2dV2dϕ0(ω))

∼ − ((Id− R1dV1d)ϕ0(ω), U1d (Id−R1dV1d)R2dV2dϕ0(ω))

uniformly in ω ∈ S1. We denote by ϕ1(x;ω) and ϕ2(x;ω) the outgoing eigenfunctions
of H1 = H0 + V1 and H2 = H0 + V2 respectively. Then the outgoing eigenfunction
ϕ1d(x;ω) of H1d is given by

ϕ1d(x;ω) = exp(iE1/2d1 · ω)ϕ1(x− d1;ω) = (Id−R1dV1d)ϕ0 (4.8)

and it follows from Proposition 3.1 that R2dV2dϕ0 = R0V2dϕ2d for the outgoing eigen-
function

ϕ2d(x;ω) = exp(iE1/2d2 · ω)ϕ2(x− d2;ω,E)

of H2d, where R0 = R0(E) = R(E + i0;H0). Thus we see that

Γ(ω) ∼ − (ϕ1d(ω), U1d (Id− R1dV1d)R0V2dϕ2d(ω)) .
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Lemma 4.3 Let c(E) be defined by (3.2) and let qj be as in Lemma 4.1. Then

q2R0q1 = (ic(E)/4π) |d|−1/2q2P0q1 +Op(|d|−3/2),

where P0 acts as

(P0u) (x) =
(
u, ϕ0(d̂)

)
ϕ0(x; d̂) =

(∫
u(y)ϕ0(y; d̂) dy

)
ϕ0(x; d̂)

on u(x), and the remainder Op(|d|−3/2) denotes a bounded operator the norm of
which obeys O(|d|−3/2).

Proof. The lemma is easy to prove. By (3.1), the kernel G0(x, y;E) of R0(E) obeys

G0(x, y;E) = (ic(E)/4π) exp(iE1/2|x− y|)|x− y|−1/2
(
1 +O(|x− y|−1)

)

as |x− y| → ∞. If |x− d2| < c and |y − d1| < c, then

|x− y| = (x− y) · d̂+O(|d|−1), d̂ = d/|d|, d = d2 − d1,

and hence we have

exp(iE1/2|x− y|) = exp(iE1/2x · d̂) exp(−iE1/2y · d̂)
(
1 +O(|d|−1)

)
.

This proves the lemma. �

We now denote by ajd(ω → θ) the scattering amplitude at energy E for the pair
(H0, Hjd). It is written as

ajd(ω → θ) = − (ic(E)/4π) (Vjdϕjd(ω), ϕ0(θ))

by (3.4), and ajd(ω → θ) is related to the amplitude aj(ω → θ) for the pair (H0, Hj)
through the relation

ajd(ω → θ) = exp
(
−iE1/2dj · (θ − ω)

)
aj(ω → θ). (4.9)

Then we use Lemma 4.3 and relation (4.8) to obtain that

Γ(ω) ∼ |d|−1/2a2d(ω → −d̂)
(
ϕ1d(ω), U1d (Id−R1dV1d)ϕ0(−d̂)

)
= |d|−1/2a2d(ω → −d̂)

(
U1dϕ1d(ω), ϕ1d(−d̂)

)
= |d|−1/2a2(ω → −d̂)e−iE1/2|d|e−iE1/2|d|d̂·ω (U1ϕ1(ω), ϕ1(−d̂)

)
,

where U1(x) = −2V1(x) − x · ∇V (x), and the last relation is simply obtained by
making change of the variables x− d1 → x. We apply the stationary phase method
to the integral∫

exp(−iE1/2|d|d̂ · ω)a2(ω → −d̂)
(
U1ϕ1(ω), ϕ1(−d̂)

)
dω
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to get the bound I12(d) = O(|d|−1). Similarly we have I21(d) = O(|d|−1). Hence
(4.4) is now verified.

We proceed to the asymptotic analysis on X(d) and Y (d). We consider only
X(d) and prove (4.5). The next lemma is helpful to analyze the behavior of X(d).
The proof is done at the end of the section.

Lemma 4.4 One has the following relations: (1)

(
W1dϕ1d(−d̂), ϕ1d(ω)

)
= −2E

∫
(d̂1 · x̂)a1d(−d̂→ x̂)a1d(ω → x̂) dx̂

+ 2E
(
c(E)(d̂1 · d̂)a1d(ω → −d̂) − c(E)(d̂1 · ω)a1d(−d̂→ ω)

)
.

(2)
∫

(W1dϕ1d(ω), ϕ1d(ω)) dω = 0.

The term X(d) is decomposed into the sum of four terms

X(d) =
∑

1≤j,k≤2

Xjk(d) =
∑

1≤j,k≤2

∫
Γjk(ω) dω,

where
Γjk(ω) = |d1| (W1dRd[H0, χjd]ϕ0(ω), Rd[H0, χkd]ϕ0(ω)) .

We first show that X11(d) behaves like

X11 ∼ −4E(d1 · d̂)Re
[
e2iE1/2|d| (|c(E)|2a0(E; d) + c(E)2b0(E; d)

)]
|d|−1

+ 4E
∫

(d1 · x̂)Re
[
e2iE1/2|d|c(E)a1(−d̂→ x̂)a1(d̂→ x̂)a2(d̂→ −d̂)

]
dx̂ |d|−1,

where b0(E; d) is defined by

b0(E; d) = a1(d̂→ −d̂)a2(d̂→ −d̂). (4.10)

We again calculate [H0, χ1d]ϕ0 as [H0, χ1d]ϕ0 = (H1d − E − V1d)χ1dϕ0. Since

V1dχ1d = V1d, W1dχ1d = W1d, V2dχ1d = 0,

the resolvent identity yields

W1dRd[H0, χ1d]ϕ0 = W1d (Id− RdV2d)R1d (H1d − E − V1d)χ1dϕ0

= W1d (Id− R1dV1d)ϕ0 +W1dRdV2dR1dV1dϕ0

= W1dϕ1d +W1dRdV2dR0V1dϕ1d.

Hence it follows from Lemma 4.1 that

Γ11(ω) ∼ |d1|
(
(W1dϕ1d(ω), ϕ1d(ω)) + 2Re (ϕ1d(ω),W1dRdV2dR0V1dϕ1d(ω))

)
.
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We see by Lemma 4.3 and (3.4) that the leading term of Γ11(ω) takes the form

|d1|
(
(W1dϕ1d(ω), ϕ1d(ω)) − 2|d|−1/2Re

[
a1d(ω → d̂)

(
ϕ1d(ω),W1dRdV2dϕ0(d̂)

)])
.

If we write W1dRdV2dϕ0 as

W1d (Id−RdV1d)R2dV2dϕ0 = W1d (Id− RdV1d)R0V2dϕ2d

by use of the resolvent identity, then we repeat a similar argument to obtain that
Γ11(ω) behaves like

Γ11(ω) ∼ |d1| (W1dϕ1d(ω), ϕ1d(ω))

+ 2|d1||d|−1Re
[
a1d(ω → d̂)a2d(d̂→ −d̂)

(
W1dϕ1d(−d̂), ϕ1d(ω)

)]

uniformly in ω ∈ S1. Hence Lemma 4.4 shows that

X11(d) ∼ 4E Re
[(
c(E)(d̂1 · d̂)Z1 − c(E)Z2

)
a2d(d̂→ −d̂)

]
|d1||d|−1

− 4E
∫

Re
[
(d̂1 · x̂)a1d(−d̂→ x̂)Z3(x̂)a2d(d̂→ −d̂)

]
dx̂ |d1||d|−1,

where Z1 =
∫
a1d(ω → d̂)a1d(ω → −d̂) dω and

Z2 =
∫

(d̂1 · ω)a1d(ω → d̂)a1d(−d̂→ ω) dω, Z3(x̂) =
∫
a1d(ω → d̂)a1d(ω → x̂) dω.

Proposition 3.2 enables us to calculate Z1 and Z3(x̂) as

Z1 = −
(
c(E)a1d(−d̂→ d̂) + c(E)a1d(d̂→ −d̂)

)
,

Z3(x̂) = −
(
c(E)a1d(x̂→ d̂) + c(E)a1d(d̂→ x̂)

)
.

Thus the leading term of X11(d) equals

−4E(d1 · d̂)Re
[(
|c(E)|2a1d(−d̂ → d̂) + c(E)2a1d(d̂→ −d̂)

)
a2d(d̂→ −d̂)

]
|d|−1

+ 4E
∫

Re
[
c(E)(d1 · x̂)a1d(−d̂→ x̂)a1d(d̂→ x̂)a2d(d̂→ −d̂)

]
dx̂ |d|−1.

If we take account of relation (4.9), then the desired leading term is obtained.

Next we show that X22(d) behaves like

X22 ∼ −4E(d1 · d̂)Re
[
|c(E)|2a1(d̂→ d̂)a2(d̂→ d̂)

]
|d|−1

− 4E(d1 · d̂)Re
[
c(E)2a1(d̂→ d̂)a2(d̂→ d̂)

]
|d|−1

+ 4E Re
[
c(E)a2(d̂→ d̂)

] ∫
(d1 · x̂)

∣∣∣a1(−d̂→ x̂)
∣∣∣2 dx̂ |d|−1.
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The resolvent identity yields

W1dRd[H0, χ2d]ϕ0 = −W1d (Id− RdV1d)R2dV2dϕ0 = −W1d (Id− RdV1d)R0V2dϕ2d,

so that the integrand Γ22(ω) associated with X22(d) behaves like

Γ22(ω) ∼ |d1| (W1d (Id−R1dV1d)R0V2dϕ2d(ω), (Id−R1dV1d)R0V2dϕ2d(ω))

∼
∣∣∣a2d(ω → −d̂)

∣∣∣2 (W1dϕ1d(−d̂), ϕ1d(−d̂)
)
|d1||d|−1

uniformly in ω. By Proposition 3.2,∫ ∣∣∣a2d(ω → −d̂)
∣∣∣2 dω =

∫ ∣∣∣a2(ω → −d̂)
∣∣∣2 dω

= −
(
c(E)a2(d̂→ d̂) + c(E)a2(d̂→ d̂)

)
= −2Re

[
c(E)a2(d̂→ d̂)

]

and hence the leading term of X22(d) is determined by Lemma 4.4 with ω = −d̂.
We consider the last two terms X21(d) and X21(d) = X12(d). We prove that the

leading term of 2ReX12(d) = X12(d) +X21(d) takes the form

2ReX12 ∼ 4E(d1 · d̂)Re
[
|c(E)|2a1(d̂ → d̂)a2(d̂→ d̂) + e−2iE1/2|d|c(E)2b0(E; d)

]
|d|−1

+ 4E(d1 · d̂)Re
[
c(E)2a1(d̂→ d̂)a2(d̂→ d̂) − e2iE1/2|d||c(E)|2a0(E; d)

]
|d|−1

− 4E
∫

(d1 · x̂)Re
[
e2iE1/2|d|c(E)a1(−d̂→ x̂)a1(d̂→ x̂)a2(d̂→ −d̂)

]
dx̂ |d|−1

− 4E Re
[
c(E)a2(d̂→ d̂)

] ∫
(d1 · x̂)

∣∣∣a1(−d̂→ x̂)
∣∣∣2 dx̂ |d|−1,

where b0(E; d) is defined by (4.10). If we insert the two relations

W1dRd[H0, χ1d]ϕ0 = W1dϕ1d +W1dRdV2dR0V1dϕ1d,

W1dRd[H0, χ2d]ϕ0 = −W1d (Id− RdV1d)R0V2dϕ2d

obtained above into the integrand Γ12(ω) associated with X12(d), then

Γ12(ω) ∼ a2d(ω → −d̂)
(
W1dϕ1d(ω), ϕ1d(−d̂)

)
|d1||d|−1/2

+ a2d(ω → −d̂)
(
W1dRdV2dR0V1dϕ1d(ω), ϕ1d(−d̂)

)
|d1||d|−1/2

∼ a2d(ω → −d̂)
(
W1dϕ1d(ω), ϕ1d(−d̂)

)
|d1||d|−1/2

− a2d(ω → −d̂)a1d(ω → d̂)
(
W1dRdV2dϕ0(d̂), ϕ1d(−d̂)

)
|d1||d|−1.

We have ∫
a2d(ω → −d̂)a1d(ω → d̂) dω = O(|d|−1/2)

by the stationary phase method. This, together with Lemma 4.1, implies that

Γ12(ω) ∼ a2d(ω → −d̂)
(
W1dϕ1d(−d̂), ϕ1d(ω)

)
|d1||d|−1/2.
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Hence it follows from Lemma 4.4 that

X12(d) ∼ 2E
(
(d1 · d̂)e−iE1/2|d|c(E)Y1 − e−iE1/2|d|c(E)Y2

)
|d|−1/2

− 2Ee−iE1/2|d|
∫

(d1 · x̂)Y3(x̂)a1(−d̂→ x̂) dx̂ |d|−1/2,

where

Y1 =
∫

exp
(
−i|d|E1/2d̂ · ω

)
a1(ω → −d̂)a2(ω → −d̂) dω,

Y2 =
∫

(d1 · ω) exp
(
−i|d|E1/2d̂ · ω

)
a1(−d̂→ ω)a2(ω → −d̂) dω,

Y3(x̂) =
∫

exp
(
−i|d|E1/2d̂ · ω

)
a1(ω → x̂)a2(ω → −d̂) dω.

The stationary phase method shows that the integrals behave as follows :

Y1 ∼ e−iE1/2|d|c(E)a1(d̂→ −d̂)a2(d̂→ −d̂)|d|−1/2

+ eiE1/2|d|c(E)a1(−d̂→ −d̂)a2(−d̂→ −d̂)|d|−1/2

=
(
e−iE1/2|d|c(E)b0(E; d) + eiE1/2|d|c(E)a1(d̂→ d̂)a2(d̂→ d̂)

)
|d|−1/2,

Y2 ∼ e−iE1/2|d|c(E)
(
d1 · d̂

)
a1(−d̂→ d̂)a2(d̂→ −d̂)|d|−1/2

− eiE1/2|d|c(E)
(
d1 · d̂

)
a1(−d̂→ −d̂)a2(−d̂→ −d̂)|d|−1/2

=
(
d1 · d̂

) (
e−iE1/2|d|c(E)a0(E; d) − eiE1/2|d|c(E)a1(d̂→ d̂)a2(d̂→ d̂)

)
|d|−1/2,

Y3(x̂) ∼ e−iE1/2|d|c(E)a1(d̂→ x̂)a2(d̂→ −d̂)|d|−1/2

+ eiE1/2|d|c(E)a1(−d̂→ x̂)a2(−d̂→ −d̂)|d|−1/2.

Thus we can get the the desired leading term of 2ReX12(d) after a little tedious but
direct calculation.

We now sum up the leading terms obtained for X11(d), X22(d) and 2ReX12(d).
We note that the last two integrals in the leading term of 2ReX12(d) cancel out the
integrals in the leading term of X11(d) and X22(d). Since

Re
[
−e2iE1/2|d|c(E)2b0(E; d) + e−2iE1/2|d|c(E)2b0(E; d)

]
= 0

and since |c(E)|2 = 2π E−1/2, we see that X(d) obeys

X(d) ∼ −8E|c(E)|2
(
d1 · d̂

)
Re
[
e2iE1/2|d|a0(E; d)

]
= −16πE1/2

(
d1 · d̂

)
Re

[
e2iE1/2|d|a0(E; d)

]
,

which proves (4.5).

We complete the proof of the theorem by proving Lemmas 4.1 and 4.4 which
remain unproved.
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Proof of Lemma 4.1. We may assume that the characteristic function qj around
dj satisfies qjVjd = Vjd for j = 1, 2. It is easy to show that R0 = R(E + i0;H0)
satisfies ‖qjR0qk‖ = O(|d|−1/2) for j 	= k (see Lemma 4.3). If we make use of the
resolvent identity Rjd = R0 − RjdVjdR0, then we see that Rjd = R(E + i0;Hjd) also
obeys the same bound. We set σ1 = ‖q1Rdq1‖ and σ2 = ‖q1Rdq2‖. We further use
the resolvent identity Rd = R1d − RdV2dR1d to obtain that

σ1 = O(1) +O(|d|−1/2)σ2.

Similarly the resolvent identity applied to pair (R2d, Rd) implies

σ2 = O(|d|−1/2) +O(|d|−1/2)σ1.

Hence we have σ1 = O(1) and σ2 = O(|d|−1/2). We can show in a similar way that
‖q2Rdq2‖ = O(1) and ‖q2Rdq1‖ = O(|d|−1/2). Thus the proof is complete. �

Proof of Lemma 4.4. Throughout the proof of the lemma, we use the notation
∂r = x̂ · ∇ and D1 = d̂1 · ∇.

(1) According to the above notation, we have W1d = D1V1d by (4.3), and the
outgoing eigenfunction ϕ1d of H1d with E as an eigenvalue fulfills

(H1d − E)D1ϕ1d = −W1dϕ1d.

Hence the scalar product
(
W1dϕ1d(−d̂), ϕ1d(ω)

)
under consideration equals(

W1dϕ1d(−d̂), ϕ1d(ω)
)

= −
(
(H1d − E)D1ϕ1d(−d̂), ϕ1d(ω)

)
= lim

R→∞

(〈
∂rD1ϕ1d(−d̂), ϕ1d(ω)

〉
R
−
〈
D1ϕ1d(−d̂), ∂rϕ1d(ω)

〉
R

)
by the Green formula, where the notation 〈 , 〉ρ denotes the L2 scalar product on
the circle |x| = ρ. The eigenfunction ϕ1d = ϕ1d(x;ω) obeys the following asymptotic
formulae :

ϕ1d = ϕ0(x;ω) + a1de
iE1/2|x||x|−1/2 +O(|x|−3/2)

∂rϕ1d = iE1/2
[
(x̂ · ω)ϕ0(x;ω) + a1de

iE1/2|x||x|−1/2
]
+O(|x|−3/2)

D1ϕ1d = iE1/2
[(
d̂1 · ω

)
ϕ0(x;ω) +

(
d̂1 · x̂

)
a1de

iE1/2|x||x|−1/2
]
+O(|x|−3/2)

and

∂rD1ϕ1d = −E
[(
d̂1 · ω

)
(x̂ · ω)ϕ0(x;ω) +

(
d̂1 · x̂

)
a1de

iE1/2|x||x|−1/2
]
+O(|x|−3/2),

where a1d = a1d(ω → x̂). We insert these relations into the L2 scalar product over
the circle {|x| = R}. We set

T0(R) = R
∫

exp
(
−i|R|E1/2x̂ · (ω + d̂)

)
t0(x̂) dx̂

T1(R) = R1/2
∫

exp
(
−i|R|E1/2(x̂ · d̂+ 1)

)
t1(x̂) dx̂

T2(R) = R1/2
∫

exp
(
−i|R|E1/2(x̂ · ω − 1)

)
t2(x̂) dx̂
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and T3 =
∫
t3(x̂) dx̂ with t3(x̂) = −2E(d̂1 · x̂)a1d(−d̂→ x̂)a1d(ω → x̂), where

t0(x̂) = E(d̂1 · d̂)
(
x̂ · (ω − d̂)

)
,

t1(x̂) = −E(d̂1 · d̂)
(
d̂ · x̂− 1

)
a1d(ω → x̂),

t2(x̂) = −E(d̂1 · x̂) (ω · x̂+ 1) a1d(−d̂→ x̂).

Then
(W1dϕ1d(−d̂), ϕ1d(ω)) = lim

R→∞
(T0(R) + T1(R) + T2(R)) + T3.

Since the two vectors ω+ d̂ and ω− d̂ are orthogonal to each other, it is easy to see
that T0(R) = 0 identically, and we apply the stationary phase method to get

lim
R→∞

T1(R) = 2E c(E)(d̂1 · d̂)a1d(ω → −d̂),
lim

R→∞
T2(R) = −2E c(E)(d̂1 · ω)a1d(−d̂→ ω).

Thus we combine these results to see that
(
W1dϕ1d(−d̂), ϕ1d(ω)

)
obeys the relation

in the lemma.

(2) The same argument as above yields

(W1dϕ1d(ω), ϕ1d(ω)) = −2E
∫

(d̂1 · x̂) |a1d(ω → x̂)|2 dx̂
− 2E

(
c(E)(d̂1 · ω)a1d(ω → ω) + c(E)(d̂1 · ω)a1d(ω → ω)

)
.

By Proposition 3.2,

∫ (∫
(d̂1 · x̂) |a1d(ω → x̂)|2 dx̂

)
dω =

∫
(d̂1 · x̂)

(∫
|a1d(ω → x̂)|2 dω

)
dx̂

= −
∫

(d̂1 · x̂) (c(E)a1d(x̂→ x̂) + c(E)a1d(x̂→ x̂)) dx̂.

Hence it follows that
∫

(W1dϕ1d(ω), ϕ1d(ω)) dω = 0, and the proof is complete. �

We conclude the section by making a comment on new difficulties arising in
magnetic scattering besides the difficulty stated at the end of section 1. One dif-
ficulty is the representation for the time delay. As is seen in Proposition 3.3, the
representation for ξ′(λ) contains the derivative ∇V of potential V (x). However the
Aharonov–Bohm potential Λ(x) has a strong singularity at the origin. Thus we
do not have a good representation for the time delay in magnetic scattering. The
other difficulty is the control of the forward scattering amplitude aj(ω → ω) which
has appeared in the proof of Theorem 1.2. The forward amplitude sα(ω → ω;λ)
in magnetic scattering is divergent, as is seen from (1.14). We have to overcome

21



these two difficulties in deriving the asymptotic formula for the time delay η′δ(λ; δ)
at λ > 0 fixed in scattering by two solenoidal fields.

5. Magnetic scattering by two solenoids: proof of Theorem 1.5

In this section we prove Theorem 1.5. We first state a basic proposition which
plays an essential role in proving the theorem. We again write H(A) for (−i∇− A)2

and consider the operator

K = H(σΛ), −1 < σ < 1, (5.1)

where Λ(x) is defined by (1.9). The potential σΛ(x) defines the solenoidal field
2πσδ(x) with center at the origin. We know ([1, 7]) that K is self–adjoint with
domain

D(K) = {u ∈ L2 : (−i∇− σΛ)2 u ∈ L2, lim
|x|→0

|u(x)| <∞}.

Let χ0 ∈ C∞
0 [0,∞) be a smooth cut–off function such that

0 ≤ χ0 ≤ 1, χ0 = 1 on [0, 1], χ0 = 0 over [2,∞). (5.2)

We set χ∞ = 1 − χ0. This cut–off function is employed throughout the discussion
in the sequel without further references. We also use the notation a ∼ b when the
difference a− b obeys o(|d|−1). The proof of Theorem 1.5 is based on the following
proposition.

Proposition 5.1 Let f ∈ C∞
0 (R) be as in Theorem 1.4. Set q0(r) = χ0(r/|d|).

Then
Tr [(f(K) − f(H0))q0] ∼

(
−|σ|/2 + σ2/2

)
f(0).

5.1. We accept Proposition 5.1 as proved and complete the proof of Theorem
1.5. The theorem is verified through a series of lemmas.

We now consider a triplet {v0, v1, v2} of smooth real functions over R2. These
functions may depend on d, but we skip the dependence. The triplet is assumed to
have the following properties :
(v.0) vj , ∇ vj and ∇∇ vj , 0 ≤ j ≤ 2, are bounded uniformly in d.
(v.1) v0v1 = v0 and v1v2 = v1.
(v.2) dist (supp v0, supp∇ v2) ≥ c |d| for some c > 0.

By (v.1), we have the relation supp v0 ⊂ supp v1 ⊂ supp v2, and

v1 = 1 on supp v0, v2 = 1 on supp v1.
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Lemma 5.1 Let {v0, v1, v2} be as above and let L = H(B) be a self–adjoint operator.
Assume that B = ∇g on supp v2 for some smooth real function g over R2. Set

K0 = H(∇g) = exp(ig)H0 exp(−ig).

Then ∥∥∥v1

(
(L− z)−1 − (K0 − z)−1

)
v0

∥∥∥
tr
≤ CN |Im z|−2N |d|−N

for any N � 1.

Proof. The lemma is easy to prove. We calculate

v1

(
(L− z)−1 − (K0 − z)−1

)
v0 = v1(L− z)−1 (v2K0 − Lv2) (K0 − z)−1v0

= v1(L− z)−1[v2, K0](K0 − z)−1v0 = v1(L− z)−1eig[v2, H0](H0 − z)−1v0e
−ig.

By (v.2), it follows that

∥∥∥[v2, H0](H0 − z)−1v0

∥∥∥
tr
≤ CN |Im z|−2N |d|−N ,

which completes the proof. �

We divide R2 into

R2 = Ω∞ ∪ Ω1 ∪ · · · ∪ Ωm ∪ Ω− ∪ Ω+

and introduce a partition of unity, where Ω∞ = {|x| > M0|d|} for M0 � 1 large
enough and

Ω± = {|x− d±| < |d|/3}, Ωj = {|x− ej | < δ |d|}, 1 ≤ j ≤ m,

for 0 < δ � 1 small enough, m being independent of d. We assume that |ej − d±| >
|d|/4. We denote by

{ω∞, ω1, . . . , ωm, ω−, ω+}
a smooth nonnegative partition of unity subject to the above division, where 0 ≤
ω∞ ≤ 1 and suppω∞ ⊂ Ω∞ and similarly for the other functions.

Lemma 5.2 Let ω∞ be as above and let

Kd = H(Λd), Λd(x) = αΛ(x− d+) − αΛ(x− d−),

be the self–adjoint operator defined by (1.12) with domain (1.13). If f ∈ C∞
0 (R),

then
|tr [(f(Kd) − f(H0))ω∞]| = O(|d|−N).
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Proof. The lemma is obtained as a simple application of Helffer–Sjöstrand calculus.

Let M0 � 1 be as above. Since the total flux vanishes, the integral
∫

C
Λd · dx = 0

along a closed curve C in the region {|x| > M0|d|/2}. Hence we can construct a real
smooth function g such that Λd = ∇g over the region above, g being dependent on
d, so that Kd = H(∇g) there, and

tr [(f(Kd) − f(H0))ω∞] = Tr [(f(Kd) − f(K0))ω∞] ,

where K0 = H(∇g). This, together with Lemma 5.1 with L = H(Λd), completes
the proof. �

Lemma 5.3 Let ωj, 1 ≤ j ≤ m, be as above. If f ∈ C∞
0 (R), then

|Tr [(f(Kd) − f(H0))ωj]| = O(|d|−N).

Proof. This lemma is also obtained easily. Let 0 < δ � 1 be as above. The flux
of Λd vanishes in the simply connected region {|x − ej | < 2δ |d|} and the integral∫

C
Λd · dx = 0 along a closed curve C in this region. Hence there exists a real smooth

function g such that Λd = ∇g there. Thus Lemma 5.1 with L = H(Λd) again proves
the lemma. �

Lemma 5.4 Let ω± be as above. Define K± = H(±αΛ±) with Λ± = Λ(x− d±). If
f ∈ C∞

0 (R), then
|Tr [(f(Kd) − f(K±))ω±]| = O(|d|−N).

Proof. We prove the lemma only for the ”-” case. We take a triplet {ω−, ω−1, ω−2}
with properties (v.0) ∼ (v.2) and denote by γ(x;ω) = γ(x̂;ω) the azimuth angle
from ω to x̂ = x/|x|, which satisfies the relation Λ(x) = ∇γ(x;ω). Hence we can
construct a real smooth function g depending on d such that

Kd = eigK−e−ig = H(−αΛ− + ∇g)
on suppω−2. In fact, we have only to define g as g = αγ(x− d+; d̂) there. We set
K̃d = H(−αΛ− + ∇g) and calculate

ω−1

(
(Kd − z)−1 − (K̃d − z)−1

)
ω− = ω−1(Kd − z)−1e−ig[ω−2, K−](K− − z)−1ω−eig.

We evaluate the trace norm of [ω−2, K−](K− − z)−1ω−. We can write it as

[ω−2, K−]
[
(K− − z)−1, ω−

]
= [ω−2, K−](K− − z)−1[ω−, K−](K− − z)−1.

We may assume that supp∇ω− ⊂ X1 = {c1|d| < |x− d−| < c2|d|} and

supp∇ω−2 ⊂ X2 = {c3|d| < |x− d−| < c4|d|}
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for 0 < c1 < c2 < c3 < c4. We divide X1 into X1 = Y1 ∪ Z1, where

Y1 = {x ∈ X1 : |γ(x− d−;−d̂) − π| < 2π/3},
Z1 = {x ∈ X1 : |γ(x− d−; d̂) − π| < 2π/3}.

Similarly we divide X2 and define Y2 and Z2. Then −αΛ−(x) = −α∇γ(x− d−;−d̂)
on Y1 and Y2. This implies that K− = H(∇g̃) on Y1 and Y2 for some real smooth
function g̃. A similar function is constructed over Z1 and Z2. Since

dist (supp∇ω−, supp∇ω−2) ≥ c |d|, c > 0,

we can show ∥∥∥[ω−2, K−](K− − z)−1[ω−, K−]
∥∥∥
tr
≤ CN |Im z|−2N |d|−N

in almost the same way as used to prove Lemma 5.1. Thus Helffer–Sjöstrand calculus
proves the lemma. �

Proof of Theorem 1.5. Let γ(x) = γ(x̂) be the azimuth angle from the positive x1

axis to x̂ = x/|x|. We define

ζ(x) = [α]γ(x− d+) − [α]γ(x− d−).

Then Kd is unitarily transformed to H(Λ̃d), where

Λ̃d(x) = Λd(x) −∇ζ(x) = κΛ(x− d+) − κΛ(x− d−)

with κ = α − [α]. Thus it suffices to prove the theorem in the case 0 ≤ α < 1. We
now assume that 0 ≤ α < 1. Then κ = α. By Lemmas 5.2, 5.3 and 5.4, we have

tr [f(Kd) − f(H0)] ∼ Tr [(f(K+) − f(H0))ω+] + Tr [(f(K−) − f(H0))ω−] .

Hence the desired relation is obtained as a consequence of Proposition 5.1 with
σ = ±α = ±κ and q0 = ω±. �

5.2. This is a preliminary subsection towards the proof of Proposition 5.1. The
operator K = H(σΛ) defined by (5.1) is rotationally invariant. We work in the polar
coordinate system (r, θ) to study the scattering problem for the pair (H0, K). Let
U be the unitary operator defined by

(Uu)(r, θ) = r1/2u(rθ) : L2 → L2((0,∞); dr)⊗ L2(S1).

Then K admits the partial wave expansion

K � UKU∗ =
∞∑

l=−∞
⊕ (kl ⊗ Id) , kl = −∂2

r + (ν2 − 1/4)r−2, (5.3)
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with ν = |l − σ|, where kl is self–adjoint in L2((0,∞); dr) under the boundary
condition

lim
r→0

r−1/2|u(r)| <∞.

The free Hamiltonian H0 also admits the expansion

H0 � UH0U
∗ =

∞∑
l=−∞

⊕ (h0l ⊗ Id) , h0l = −∂2
r + (l2 − 1/4)r−2, (5.4)

where h0l is self–adjoint under the same boundary condition as above. We write
∑

for the summation over all integers l, −∞ < l <∞. If we denote by T the trace in
Proposition 5.1, then

T =
∑

Tr [(f(kl) − f(h0l))q0] , (5.5)

where q0 = q0(r) is considered to be a function over the interval [0,∞). The aim
here is to prove the following lemma.

Lemma 5.5 Let σ, |σ| < 1, be as in Proposition 5.1 and let f ∈ C∞
0 (R). If

0 ≤ σ < 1, then

Tr [(f(kl) − f(h0l))] =

{
σf(0)/2, l ≥ 1,
−σf(0)/2, l ≤ 0,

and if −1 ≤ σ < 0, then

Tr [(f(kl) − f(h0l))] =

{
σf(0)/2, l ≥ 0,
−σf(0)/2, l ≤ −1.

The lemma is proved at the end of the subsection after making a quick review on
the scattering by a single solenoidal field, which is known to be an exactly solvable
model. We refer to [2, 3, 22] for details. We can explicitly calculate the scattering
matrix for the pair (h0l, kl) with l fixed. Let ϕ+(x;ω, λ) and ϕ−(x;ω, λ) be the
outgoing and incoming eigenfunctions of K with ω as an incident direction at energy
λ respectively. The eigenfunction ϕ± solves the equation

Kϕ± = λϕ±. (5.6)

As is well known, ez(t/−1/t)/2 is the generating function with the Bessel functions
Jl(z) as coefficients. Hence the plane wave ϕ0(x;ω, λ) = exp(iλ1/2x ·ω) is expanded
as

ϕ0(x;ω, λ) =
∑

exp(i|l|π/2) exp(ilγ(x̂;ω))J|l|(λ1/2|x|) (5.7)

in terms of Bessel functions Jp(r) ([24, p.15]), where γ(x̂;ω) again denotes the az-
imuth angle from ω to x̂ = x/|x|. The Bessel function Jp(r) of order p ≥ 0 obeys
the asymptotic formula

Jp(r) = (2/π)1/2r−1/2 cos(z − (2p+ 1)π/4) (1 + gN(r)) +O(r−N), r → ∞,
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where gN satisfies (d/dr)kgN(r) = O(r−1−k). If we set

e(r) = exp(−i|l|π/2)J|l|(r) − exp(−iνπ/2)Jν(r)

for ν = |l − σ|, then it follows from the asymptotic formula that

e(r) = exp(ir)
(
Clr

−1/2 +O(r−3/2)
)

+ exp(−ir)O(r−3/2)

for some constant Cl 	= 0. Thus e(r) fulfills the outgoing radiation condition e′−ie =
O(r−3/2) at infinity. If we further take account of the relation

exp(ilγ(x̂;−ω)) = exp(i|l|π + ilγ(x̂;ω))

between γ(x̂;ω) and γ(x̂;−ω), then (5.7) enables us to determine the outgoing
eigenfunction ϕ+(x;ω, λ) to (5.6) as

ϕ+(x;λ, ω) =
∑

exp(−iνπ/2) exp(ilγ(x̂;−ω))Jν(λ
1/2|x|), ν = |l − σ|.

The series converges locally uniformly. The incoming eigenfunction

ϕ−(x;ω, λ) =
∑

exp(iνπ/2) exp(ilγ(x̂;ω))Jν(λ
1/2|x|)

is calculated in a similar way. The scattering matrix S(λ) for the pair (H0, K) brings
ϕ+(x; ·, λ) to ϕ−(x; ·, λ). A simple computation shows that

ei(l−ν)π exp(iνπ/2) exp(−ilγ(x̂;−ω)) = exp(−iνπ/2) exp(−ilγ(x̂;ω)).

Thus the scattering matrix sl(λ) for the pair (hl0, kl) acts as

sl(λ) = exp (i(l − ν)π) , ν = |l − σ|, (5.8)

for each l fixed, although sl(λ) is independent of λ > 0.

Proof of Lemma 5.5. We consider the case σ ≥ 0 only. As is shown above, the
scattering matrix sl(λ) acts as the multiplication by

sl(λ) = exp (i(l − ν)π) = exp (−i2πξl(λ)) , ν = |l − σ|,
where ξl(λ) = −σ/2 for l ≥ 1 and ξl(λ) = σ/2 for l ≤ 0. If we set ξl(λ) = 0
for λ < 0, then this function determines the spectral shift function for the pair
(h0l, kl), because the spectral shift function continuously depends on the trace norm
of difference between the resolvents of h0l and kl. (see [25] for example). Hence the
Birman–Krein trace formula applied to pair (h0l, kl) yields the relation

Tr [f(kl) − f(h0l)] =
∫
f ′(λ)ξl(λ) dλ = σf(0)/2

for l ≥ 1, and Tr [f(kl) − f(h0l)] = −σf(0)/2 for l ≤ 0. This proves the lemma.
�
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5.3. The subsection is devoted to proving Proposition 5.1. The proof is lengthy
and is divided into several steps. Throughout the discussion, f ∈ C∞

0 (R) is assumed
to fulfill f ′(λ) = 0 around the origin.

(1) We first recall that the trace in the proposition is decomposed into sum
(5.5). Let χ0 be as in (5.2). We set

τ0(s) = χ0

(
M−1|s|/|d|

)
, τ∞(s) = 1 − τ0(s) = χ∞

(
M−1|s|/|d|

)
(5.9)

for M � 1 large enough. Then T = T0 + T∞, where

T0 =
∑

τ0(l)Tr [(f(kl) − f(h0l))q0] (5.10)

and T∞ =
∑

τ∞(l)Tr [(f(kl) − f(h0l))q0].

Lemma 5.6 T∞ = O(|d|−N) for any N � 1.

Proof. The orthonormal system of eigenfunctions{
ψ0l(r;λ)

}
, ψ0l = (r/2)1/2 J|l|(λ1/2r), h0lψ0l = λψ0l, λ > 0, (5.11)

is complete in L2((0,∞); dr) for each l. Hence f(h0l) has the integral kernel

e(r, ρ) = 2−1
∫ ∞

0
f(λ)r1/2ρ1/2J|l|(λ1/2r)J|l|(λ1/2ρ) dλ.

We now assume that λ ∈ supp f , f ∈ C∞
0 (R), and r ∈ supp q0 = χ0(·/|d|), r < 2|d|.

The Bessel function Jp(z) has the integral representation ([24, p.48])

Jp(z) = π−1/2 ((z/2)p/Γ(p+ 1/2))
∫ π

0
cos (z cos θ) sin2p θ dθ, p ≥ 0,

and the gamma function Γ(p+ 1/2) behaves like

Γ(p+ 1/2) ∼ (2π)1/2 e−p−1/2pp, p→ ∞,

by the Stirling formula. This implies that r|Jl(λ
1/2r)|2 ≤ CN2−|l||d|−N for any N �

1, provided that |l| > M |d|, M � 1 being as in (5.9). Hence we have

∑
τ∞(l)Tr [f(h0l)q0] = O(|d|−N).

If we have only to note that{
ψl(r;λ)

}
, ψl = (r/2)1/2 Jν(λ

1/2r), ν = |l − σ|,
is a complete orthonormal system of eigenfunctions associated with operator kl, a
similar argument applies to f(kl) and the proof is complete. �
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(2) We analyze the behavior of T0 defined by (5.10). We define

T1 =
∑

τ0(l)Tr [(f(kl) − f(h0l))] , T2 =
∑

τ0(l)Tr [(f(kl) − f(h0l))q∞] ,

where q∞ = q∞(r) = 1 − q0(r) = χ∞(r/|d|). Then we have

T = T0 + T∞ ∼ T0 = T1 − T2

by Lemma 5.6.

Lemma 5.7 T1 = −|σ|f(0)/2.

Proof. By definition, τ0(l) is an even function and τ0(l) = 1 at l = 0. Hence this is
an immediate consequence of Lemma 5.5. �

It follows from this lemma that

T ∼ −|σ|f(0)/2 − T2. (5.12)

The operators kl and h0l are realized as kl = UlKU
∗
l and h0l = UlH0U

∗
l by the

mapping

(Ulu) (r) = (2π)−1/2
∫ π

−π
u(rθ)r1/2e−ilθ dθ : L2 → L2((0,∞); dr).

Since q∞ = χ∞(r/|d|) is a function of r only and since U∗
l commutes with q∞, we

have
T2 = Tr [(f(K) − f(H0))q∞Q]

by the cyclic property of trace, where the norm of bounded operator

Q =
∑

τ0(l)U
∗
l Ul : L2 → L2

does not exceed one.

(3) The coefficients of K are smooth over the support of q∞. This enables us to
construct an approximate representation for f(K)q∞. The lemma below is proved
by making use of the commutator expansion formula obtained from the Helffer–
Sjöstrand calculus. However it is rather technical and deviates from the main body
of the proof of the proposition. We postpone its proof until the appendix (section
6).

Lemma 5.8 The operator f(K)q∞ is expanded as

f(K)q∞ = f(H0)q∞ + f ′(H0)
(
σ2r−2 + i2σr−2∂θ

)
q∞

+ f ′′(H0)
(
−2σ2r−4∂2

θ − 2σ2r−3∂r − i4σr−3∂r∂θ + i4σr−4∂θ + i2σ3r−4∂θ

)
q∞

+ f ′′′(H0)
(
8σ2r−5∂r∂

2
θ − i(8/3)σr−6∂3

θ + i8σr−4∂2
r∂θ − i(4/3)σ3r−6∂3

θ

)
q∞

+ {remainder},
where the trace norm of remainder operator obeys the bound O(|d|−2).
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The mapping U∗
l satisfies ∂θU

∗
l = ilU∗

l and commutes with ∂r. Hence the lemma
above implies

T2 ∼ σ2 (T3 + T4 − 2T5 − 8T6) − σΠ(σ), (5.13)

where T3, T4, T5, T6 and Π(σ) are defined as follows:

T3 =
∑

τ0(l)Tr
[
f ′(h0l)r

−2q∞
]
, T4 = 2

∑
l2τ0(l)Tr

[
f ′′(h0l)r

−4q∞
]
,

T5 =
∑

τ0(l)Tr
[
f ′′(h0l)r

−3∂rq∞
]
, T6 =

∑
l2τ0(l)Tr

[
f ′′′(h0l)r

−5∂rq∞
]

(5.14)

and

Π(σ) =
∑

lτ0(l)Tr
[
2f ′(h0l)r

−2q∞ + f ′′(h0l)
(
−4r−3∂r + 4r−4 + 2σ2r−4

)
q∞
]

+
∑

lτ0(l)Tr
[
f ′′′(h0l)

(
(8/3)l2r−6 + 8r−4∂2

r + (4/3)l2σ2r−6
)
q∞
]
.

Since sτ0(s) is an odd function, Π(σ) vanishes. Thus we combine (5.13) with (5.12)
to obtain that

T ∼ −|σ|f(0)/2 − σ2 (T3 + T4 − 2T5 − 8T6) . (5.15)

(4) We set

p0(r) = χ0(r/|d|2+ε), p∞(r) = 1 − p0(r) = χ∞(r/|d|2+ε) (5.16)

for 0 < ε� 1 fixed small enough. Then

q∞(r)p∞(r) = χ∞(r/|d|)χ∞(r/|d|2+ε) = χ∞(r/|d|2+ε) = p∞(r),

and T3 = T30 + T3∞ and T4 = T40 + T4∞, where

T30 =
∑

τ0(l) Tr
[
f ′(h0l)r

−2q∞p0

]
, T3∞ =

∑
τ0(l) Tr

[
f ′(h0l)r

−2p∞
]

and

T40 = 2
∑

l2τ0(l) Tr
[
f ′′(h0l)r

−4q∞p0

]
, T4∞ = 2

∑
l2τ0(l) Tr

[
f ′′(h0l)r

−4p∞
]
.

Lemma 5.9 T3∞ = o(|d|−1) and T4∞ = o(|d|−1).

Proof. We prove the lemma for T3∞ only. A similar argument applies to T4∞. Let{
ψ0l(r;λ)

}
be the complete orthonormal system of eigenfunctions defined by (5.11).

Then f ′(h0l) has the integral kernel

e(r, ρ) = 2−1
∫ ∞

0
f ′(λ)r1/2ρ1/2J|l|(λ1/2r)J|l|(λ1/2ρ) dλ.

The Bessel function J|l|(z) has the integral representation

J|l|(z) = (2π)−1
∫ 2π

0
cos (|l|θ − z sin θ) dθ.
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By assumption, f ′ is supported away from the origin. If |l| < 2M |d| and r > |d|2+ε,
then the stationary phase method shows that r1/2J|l|(λ1/2r) is bounded uniformly in

λ ∈ supp f ′ and l as above. Hence Tr
[
f ′(h0l)r

−2p∞
]

= O(|d|−2−ε). This yields the
bound in the lemma. �

By this lemma, it follows from (5.15) that

T ∼ −|σ|f(0)/2 − σ2 (T30 + T40 − 2T5 − 8T6) . (5.17)

(5) We here complete the proof of the proposition, accepting the three lemmas
below as proved.

Lemma 5.10 Let M � 1 be as in (5.9). Assume that f ′(λ) vanishes over (−δ, δ)
for some δ > 0. Then

T30 ∼ − (2π)−1 Π1f(0) + 4−1
∫ ∞

δ
f(λ)λ−1 dλ,

where
Π1 =

∫ ∞

0

∫ π

0
χ0(δ

1/2| cosμ|r/M)r−1p(r) dμ dr

and p(r) = q∞(|d|r)p0(|d|r) = χ∞(r)χ0(r/|d|1+ε).

Lemma 5.11 Let M � 1 and f ∈ C∞
0 (R) be as in Lemma 5.10. Then

T40 ∼ −
(
1/4 − (2π)−1 Π2

)
f(0) − 4−1

∫ ∞

δ
f(λ)λ−1 dλ,

where
Π2 = 2

∫ ∞

0

∫ π

0
cos2 μχ0(δ

1/2| cosμ|r/M)r−1p(r) dμ dr

with p(r) as in Lemma 5.10.

Lemma 5.12 T5 = o(|d|−1) and T6 = o(|d|−1).

Completion of Proof of Proposition 5.1. By Lemma 5.12 and (5.17), it suffices to
show that T30 + T40 ∼ −f(0)/2. Let Π1 and Π2 be as in Lemmas 5.10 and 5.11
respectively. We calculate

I = Π1 − Π2 = −
∫ ∞

0

∫ π

0
cos 2μχ0

(
δ1/2r| cosμ|/M

)
r−1p(r) dμ dr = E1 + E2

by partial integration in μ, where

E1 = −
(
δ1/2/2M

) ∫ ∞

0

∫ π/2

0
sin 2μ sinμχ′

0(δ
1/2r cosμ/M)p(r) dμ dr

E2 =
(
δ1/2/2M

) ∫ ∞

0

∫ π

π/2
sin 2μ sinμχ′

0(−δ1/2r cosμ/M)p(r) dμ dr.
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We further make change of variable r → ρ by ρ = δ1/2r cosμ. Then

E1 = −M−1
∫ ∞

0

∫ π/2

0
sin2 μχ′

0(ρ/M)p(r) dμ dρ

with r = ρ/(δ1/2 cosμ). We write p(r) as

p = χ∞(r)χ0(r/|d|1+ε) = χ∞(r)
(
1 − χ∞(r/|d|1+ε)

)
= χ∞(r) − χ∞(r/|d|1+ε).

Since χ′
0(ρ/M) has support in (M, 2M) as a function of ρ, r satisfies

r = ρ/(δ1/2 cosμ) ≥Mδ−1/2, 0 ≤ μ < π/2.

Hence we can take M � 1 so large that χ∞(r) = 1 for M < ρ < 2M . If cosμ >
2Mδ−1/2|d|−1−ε, then r < |d|1+ε for ρ as above, and hence χ∞(r/|d|1+ε) vanishes. If,
on the other hand, cosμ < 2Mδ−1/2|d|−1−ε, then |μ− π/2| = O(|d|−1−ε). Thus we
have ∫ ∞

0

∫ π/2

0
sin2 μχ′

0(ρ/M)χ∞(r/|d|1+ε) dμ dρ = o(|d|−1),

so that E1 obeys

E1 ∼ −
(∫ π/2

0
sin2 μ dμ

)(∫ ∞

0
(χ0(ρ/M))′ dρ

)
= π/4. (5.18)

Similarly E2 ∼ π/4, and hence I = Π1 − Π2 = E1 + E2 ∼ π/2. Thus it follows from
Lemmas 5.10 and 5.11 that

T30 + T40 ∼
(
−1/4 − (2π)−1(Π1 − Π2)

)
f(0) = −f(0)/2.

This completes the proof of the proposition. �

(6) We prove Lemmas 5.10, 5.11 and 5.12 which remain unproved.

Proof of Lemma 5.10. The proof is not short. It uses the Poisson summation
formula, the stationary phase method and the integral representation

Jl(z)
2 = π−1

∫ π

0
J0(2z sin θ) cos(2lθ) dθ = π−2

∫ π

0

∫ π

0
ei2z cos μ sin θ cos(2lθ) dθ dμ

for the Bessel function J|l|(z)2 = Jl(z)
2 ([24, p.32]). Let Tr

[
f ′(h0l)r

−2q
]

be the trace
in the sum T30 in question, where

q(r) = q∞(r)p0(r) = χ∞(r/|d|)χ0(r/|d|2+ε).

This is represented in the integral form

Tr
[
f ′(h0l)r

−2q
]

= 2−1
∫ ∞

0

∫ ∞

0
f ′(λ)r−1q(r)Jl(λ

1/2r)2 dλ dr.
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Let τ0(s) = χ0

(
M−1|s|/|d|

)
be as in (5.9). We insert the representation

Jl(λ
1/2r)2 =

(
2π2

)−1
∫ π

0

∫ π

0
ei2u(λ,r,μ,θ)

(
ei2lθ + e−i2lθ

)
dθ dμ

for Jl(λ
1/2r)2 into the above relation to define

g±(s) = (2π)−2 τ0(s)
∫ π

0

∫
W
e±i2sθei2uf ′(λ)r−1q(r) dw dθ,

where u = u(λ, r, μ, θ) = λ1/2r cosμ sin θ and

W = {w = (λ, r, μ) : λ > 0, r > 0, 0 < μ < π}.
Then we have T30 =

∑
(g+(l) + g−(l)). Since g± ∈ C∞

0 (R), the Poisson summation
formula leads us to

T30 = (2π)1/2
∑

(ĝ+(2πl) + ĝ−(2πl)) ,

where ĝ±(z) denotes the Fourier transform ĝ±(z) = (2π)−1/2
∫

exp(−izs)g±(s) ds.

We make repeated use of partial integration to see that ĝ+(2πl) = |l|−NO(|d|−N) for
l 	= 0, 1 and ĝ−(2πl) = |l|−NO(|d|−N) for l 	= 0,−1. Thus we have

T30 ∼ (2π)1/2 (ĝ+(0) + ĝ+(2π) + ĝ−(0) + ĝ−(−2π)) ,

where

ĝ±(0) = (2π)−5/2
∫ ∫ π

0

∫
W
e±i2sθei2uτ0(s)f

′(λ)r−1q(r) dw dθ ds,

ĝ±(±2π) = (2π)−5/2
∫ ∫ π

0

∫
W
e±i2s(θ−π)ei2uτ0(s)f

′(λ)r−1q(r) dw dθ ds.

A simple change of variables (±(θ − π) → θ, −θ → θ, μ → π − μ) shows that

ĝ+(2π) = (2π)−5/2
∫ ∫ 0

−π

∫
W
ei2sθei2uτ0(s)f

′(λ)r−1q(r) dw dθ ds,

ĝ−(0) = (2π)−5/2
∫ ∫ 0

−π

∫
W
ei2sθei2uτ0(s)f

′(λ)r−1q(r) dw dθ ds,

ĝ−(−2π) = (2π)−5/2
∫ ∫ π

0

∫
W
ei2sθei2uτ0(s)f

′(λ)r−1q(r) dw dθ ds.

Hence
T30 ∼ 2 (2π)−2

∫ ∫ π

−π

∫
W
ei2sθei2uτ0(s)f

′(λ)r−1q(r) dw dθ ds.

We now note that
∫
ei2sθτ0(s) ds = O(|d|−N) for |θ| > |d|−2/3. If we make change

of variables
s→ |d|s, r → |d|r, θ → |d|−2/3θ
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and if we write

q(|d|r) = q∞(|d|r)p0(|d|r) = χ∞(r)χ0(r/|d|1+ε) = p(r)

for p(r) as in the lemma, then we get

T30 ∼ 2 (2π)−2 |d|1/3
∫

W

[∫ ∫
exp(i2|d|1/3v)a ds dθ

]
f ′(λ)r−1p(r) dw,

where v(s, θ, w) =
(
s+ λ1/2r cosμ

)
θ and

a(s, θ, w) = exp
(
i2|d|λ1/2r cosμ

(
sin(θ/|d|2/3) − θ/|d|2/3

))
χ0(|θ|)χ0(|s|/M).

We apply the stationary phase method to the integral in the bracket. The stationary
point is determined as (s, θ) =

(
−λ1/2r cosμ, 0

)
. Assume that λ ∈ supp f ′ and

r ∈ supp p. Then λ > δ > 0 by assumption, and r satisfies r < 2|d|1+ε. Since

sin(θ/|d|2/3) − θ/|d|2/3 = O(|d|−2)θ3,

this implies that ∂k
s ∂

j
θa = O(|d|jε) uniformly in λ and r as above, and also ∂j

θa
vanishes at θ = 0 for j = 1, 2. According to [12, Theorem 7.7.5], we have∣∣∣∣∣∣|d|1/3

∫ ∫
exp(i2|d|1/3v)a ds dθ − π

m−1∑
j=0

|d|−j/3Lja

∣∣∣∣∣∣ = O(|d|−(m−1)/3+2mε)

uniformly in w, where

Lja = (2i)−j (∂s∂θ)
j a(−λ1/2r cosμ, 0, w).

We can take m so large that∫
W
O(|d|−(m−1)/3+2mε)f ′(λ)r−1p(r) dw = o(|d|−1),

and hence the remainder term does not make any contribution.

We look at the contribution

I = (2π)−1
∫

W
f ′(λ)χ0(λ

1/2r| cosμ|/M)r−1p(r) dw

from the leading term with j = 0. Since f(δ) = f(0) by assumption, we integrate
by parts in λ and make change of variable

r → ρ = λ1/2r| cosμ| (5.19)

to obtain that

I = − (2π)−1 Π1f(0) − (2π)−1 (2M)−1
∫ ∞

δ

∫ ∞

0

∫ π

0
f(λ)λ−1χ′

0(ρ/M)p(r) dμ dρ dλ
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with r = ρ/(λ1/2| cosμ|), where Π1 is as in the lemma. If we repeat the same
argument as used to derive (5.18), then the second integral on the right side behaves
like

4−1
(∫ ∞

δ
f(λ)λ−1 dλ

)(∫ ∞

0
(χ0(ρ/M))′ dρ

)
+ o(|d|−1) ∼ −4−1

∫ ∞

δ
f(λ)λ−1 dλ.

We can evaluate the other integrals arising from Lja with j ≥ 1 in a similar way.
As mentioned above, Lja vanishes for j = 1, 2. If j ≥ 4, then it is easy to see that

|d|−j/3
∫

W
(Lja) f

′(λ)r−1p(r) dw = o(|d|−1)

and the same bound

|d|−1
∫

W
(∂s∂θ)

3 a(−λ1/2r cosμ, 0, w)f ′(λ)r−1p(r) dw = o(|d|−1) (5.20)

remains true even in the case j = 3. In fact, the bound is obtained by evaluating
the integral

O(|d|−2)
∫

W
f ′(λ)λ1/2 cosμχ′′′

0

(
λ1/2r| cosμ|/M

)
p(r) dw

in the same way as used to derive (5.18). Thus the lemma is now proved. �

Proof of Lemma 5.11. The lemma is verified in almost the same way as in the proof
of Lemma 5.10. We give only a sketch for a proof.

We define

g±(s) = 2 (2π)−2 s2τ0(s)
∫ π

0

∫
W
e±i2sθei2uf ′′(λ)r−3q(r) dw dθ

with u = u(λ, r, μ, θ) = λ1/2r cosμ sin θ. Then T40 =
∑

(g+(l) + g−(l)). After mak-
ing use of the Poisson summation formula and of the stationary phase method, we
have

T40 ∼ 2 (2π)−1
∫

W
f ′′(λ)ρ2χ0(ρ/M)r−3p(r) dw (5.21)

with ρ = λ1/2r| cosμ|. We note that (d/ds)j s2τ0(s) with j ≥ 3 contains the deriva-
tive terms of τ0(s). This is important in evaluating the remainder terms. We denote
by I the integral on the right side of (5.21). We calculate it by partial integration
in λ to get the decomposition I = E1 + E2, where

E1 = −2 (2π)−1
∫

W
f ′(λ) cos2 μχ0(ρ/M)r−1p(r) dw,

E2 = − (2π)−1M−1
∫

W
f ′(λ)λ1/2 cos2 μ | cosμ|χ′

0(ρ/M)p(r) dw.

We further make change of variable r → ρ by (5.19) to obtain that

E2 ∼ − (2π)−1
(∫ ∞

0
f ′(λ) dλ

)(∫ π

0
cos2 μ dμ

)(∫ ∞

0
(χ0(ρ/M))′ dρ

)
= −f(0)/4.
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We analyze the behavior of E1. We continue integration by parts and again make
change of variable r → ρ to see that E1 = (2π)−1 Π2f(0) + E3, where Π2 is as in the
lemma and

E3 = (2π)−1M−1
∫ ∞

δ

∫ ∞

0

∫ π

0
f(λ)λ−1 cos2 μχ′

0(ρ/M)p(r) dμ dρ dλ

∼ (2π)−1
(∫ ∞

δ
f(λ)λ−1 dλ

)(∫ π

0
cos2 μ dμ

)(∫ ∞

0
(χ0(ρ/M))′ dρ

)

with r = ρ/(λ1/2| cosμ|). Hence E1 behaves like

E1 ∼ (2π)−1 Π2f(0) − 4−1
∫ ∞

δ
f(λ)λ−1 dλ.

Thus we get the relation

T40 ∼ −
(
1/4 − (2π)−1 Π2

)
f(0) − 4−1

∫ ∞

δ
f(λ)λ−1 dλ

and the proof is complete. �

Proof of Lemma 5.12. This lemma is also in almost the same way as in the proof
of Lemma 5.10. We prove the bound only for T5 defined in (5.14). We write the
trace in the sum T5 as

Tr
[
f ′′(h0l)r

−3∂rq∞
]

= Tr
[
∂rq∞f ′′(h0l)r

−3
]

by use of the cyclic property. The integral kernel of operator ∂rq∞f ′′(h0l)r
−3 is given

as in the proof of Lemma 5.6. If we further take account of the relation

λ1/2
(
∂rJl(λ

1/2r)
)
Jl(λ

1/2r) = 2−1∂rJl(λ
1/2r)2,

then integration by parts yields

Tr
[
∂rq∞f ′′(h0l)r

−3
]

= 4−1
∫ ∞

0

∫ ∞

0
f ′′(λ)

(
3r−3q∞ + r−2q′∞

)
Jl(λ

1/2r)2 dλ dr.

We again make use of the Poisson summation formula and of the stationary phase
method to obtain that

T5 ∼ (3/4) (2π)−1 |d|−2
∫

W
f ′′(λ)χ0(ρ/M)r−3p(r) dw

with ρ = λ1/2r| cosμ|. This implies T5 = o(|d|−1). �

6. Appendix : proof of Lemma 5.8 The appendix is devoted to proving
Lemma 5.8. The proof is based on the commutator expansion formula ([8, Lemma
C.3.1])

[B, f(A)] =
m∑

k=1

1

k!
f (k)(A) adk

AB +Rm+1(f, B,A), f ∈ C∞
0 (R), (6.1)
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where adk
AB is inductively defined as follows:

ad0
AB = B, ad1

AB = [B,A], adk+1
A B =

[
adk

AB,A
]
.

We use this formula with A = H0 and B = g to prove the lemma, where g(x) =
exp(iσγ(x)) with azimuth angle γ(x) from the positive x1 axis to x̂ = x/|x|. We
compute [g,H0], [[g,H0], H0] and [[[g,H0], H0], H0]. To do this, we work in the polar
coordinate system (r, θ) and use the following basic relations:

[r−k, H0] = [r−k,−∂2
r − r−1∂r − r−2∂2

θ ] = −2kr−k−1∂r + k2r−k−2,

[g, ∂θ] = −iσg, [∂θ, H0] = 0, [∂r, H0] = 2r−3∂2
θ + r−2∂r.

We first have

[g,H0] = −r−2 ([g, ∂θ]∂θ + ∂θ[g, ∂θ]) =
(
i2σr−2∂θ + σ2r−2

)
g

and

[[g,H0], H0] = i2σ[r−2∂θg,H0] + σ2[r−2g,H0]

= i2σr−2∂θ[g,H0] + i2σ[r−2, H0]∂θg + σ2r−2[g,H0] + σ2[r−2, H0]g

=
(
−4σ2r−4∂2

θ + i2σ3r−4∂θ

)
g +

(
−i8σr−3∂r∂θ + i8σr−4∂θ

)
g

+
(
i2σ3r−4∂θ + σ4r−4

)
g +

(
−4σ2r−3∂r + 4σ2r−4

)
g.

We now treat operators with coefficients falling off like O(r−4) at infinity as a neg-
ligible term. Since ∂θ = −x2∂1 + x1∂2, we get

[[g,H0], H0] ≈
(
−4σ2r−4∂2

θ − 4σ2r−3∂r

)
g+i

(
−8σr−3∂r∂θ + 8σr−4∂θ + 4σ3r−4∂θ

)
g.

We can approximately calculate [[[g,H0], H0], H0] as follows:

[[[g,H0], H0], H0] ≈ [−i8σr−3∂r∂θg − 4σ2r−4∂2
θg,H0]

= −i8σ
(
r−3∂r∂θ[g,H0] + r−3[∂r, H0]∂θg + [r−3, H0]∂r∂θg

)
− 4σ2

(
r−4∂2

θ [g,H0] + [r−4, H0]∂
2
θg
)

≈
(
16σ2r−5∂r∂

2
θ − i16σr−6∂3

θ + i48σr−4∂2
r∂θ − i8σ3r−6∂3

θ + 32σ2r−5∂r∂
2
θ

)
g.

Thus

[[[g,H0], H0], H0] ≈ 48σ2r−5∂r∂
2
θg + i

(
−16σr−6∂3

θ + 48σr−4∂2
r∂θ − 8σ3r−6∂3

θ

)
g.

We are now in a position to prove the lemma.

Proof of Lemma 5.8 We set ê = (1, 0) and

Σ±(c, R) = {x ∈ R2 : |γ(x;∓ê) − π| < c, r = |x| > R}
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for 0 < c < π and R > 0, where γ(x;ω) denotes the azimuth angle from ω to x̂.
Recall that q∞(r) defined by q∞ = χ∞(r/|d|) has support in {r > |d|}. We introduce
a smooth nonnegative partition of unity {q+, q−} normalized by q+ + q− = 1 over
{r > |d|}, such that

supp q± ⊂ Σ±(2π/3, |d|/3), q± = 1 on Σ(π/3, 2|d|/3)

and
∣∣∣∂β

x q±(x)
∣∣∣ ≤ Cβ (|x| + |d|)−|β|. We also take q̃± ∈ C∞(R2) in such a way that

q̃± has slightly wider support than q± and q̃± = 1 on the support of q±. We assume
that q̃± obeys the same estimate as q±. We now write (K − z)−1q+ as

(K − z)−1q̃+q+ = q̃+(K − z)−1q+ + (K − z)−1[q̃+, K](K − z)−1q+.

Then we get ∥∥∥[q̃+, K](K − z)−1q+
∥∥∥
tr

= O(|d|−N)

in almost the same way as in the proof of Lemma 5.4, so that

‖f(K)q∞ − (q̃+f(K)q+ + q̃−f(K)q−) q∞‖tr = O(|d|−N)

by formula (2.1). Since ∇γ(x;±ê) = Λ(x), we have the relation

K = H± = exp(ig±)H0 exp(−ig±) = H(∇g±), g± = σγ(x;∓ê),

on supp q̃±. Thus we obtain

∥∥∥q̃± ((K − z)−1 − (H± − z)−1
)
q±
∥∥∥
tr

= O(|d|−N)

again in the same way as in the proof of Lemma 5.4. This yields

‖q̃± (f(K) − f(H±)) q±‖tr = O(|d|−N).

Hence f(K)q∞ under consideration is approximated as

f(K)q∞ = eig+ q̃+f(H0)e
−ig+q+q∞ + eig− q̃−f(H0)e

−ig−q−q∞ + {remainder}.
We now employ the commutator expansion for [eig± q̃±, f(H0)]. Since

∫
|x|>|d|

O(|x|−4) dx = O(|d|−2),

pseudodifferential operators with symbols falling off like O(|x|−4) can be dealt with
as a negligible term. Thus the formula (6.1) with m = 3 implies the relation. �
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(1984), 207–225.

[16] V. Kostrykin and R. Schrader, Cluster properties of one particle Schrödinger
operators, Rev. Math. Phys. 6 (1994), 833–853.

[17] V. Kostrykin and R. Schrader, Cluster properties of one particle Schrödinger
operators, II, Rev. Math. Phys. 10 (1998), 627–683.

[18] M. Reed and B. Simon, Methods of Modern Mathematical Analysis, Vol. III,
Academic Press, 1979.

[19] D. Robert, Relative time-delay for perturbations of elliptic operators and semi-
classical asymptotics, J. Funct. Anal. 126 (1994), 36–82.

[20] D. Robert, Semi-classical approximation in quantum mechanics, A survey of
old and recent mathematical results, Helv. Phys. Acta 71 (1998), 44–116.

[21] D. Robert and H. Tamura, Semi-classical asymptotics for local spectral den-
sities and time delay problems in scattering processes, J. Funct. Anal. 80
(1988), 124–147.

[22] S. N. M. Ruijsenaars, The Aharonov–Bohm effect and scattering theory,
Ann. of Phys., 146 (1983), 1–34.

[23] H. Tamura, Semiclassical analysis for magnetic scattering by two solenoidal
fields: total cross sections, Ann. H. Poincaré 8 (2007), 1071–1114.
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