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Abstract Chern insulators are periodic band insulators with the property that their

projector into the occupied bands have non-zero Chern number. For a Chern insulator

with a homogeneous edge, it is known that the insulating gap is filled with continuum

spectrum. The local density of states corresponding to this part of the spectrum is

localized near the edge, hence the name edge spectrum. An interesting question arises,

namely, if a rough edge, which can be seen as a strong random potential acting on

these quasi 1-dimensional states, would destroy the continuum edge spectrum. The

typical argument against such scenario is the absence of back-scattering channels, but

this argument is difficult to be translated in a complete proof. This paper gives a

fairly elementary proof that Chern insulators with random edges have continuous edge

spectrum, whose degeneracy is no less than the total Chern number of the occupied

bands.

1 Introduction

For magnetic Schrodinger operators in half-plane, Hatsugai gave a proof of a fundamen-

tal result [1,2], which works for homogeneous edges with Dirichlet boundary condition

and for rational magnetic fluxes, result that says that the number of conducting chan-

nels forming in the gap of the bulk system due to the presence of the edge is equal

to total Chern number of the bands below that gap. Almost 10 years later, using an

advance mathematical machinery, Kellendonk, Richter and Schulz-Baldes established

[3] a new link between the bulk and edge theory, which ultimately allowed them to gen-

eralize Hatsugai’s statement to half-plane magnetic Schrodinger operators with weak

random potentials, irrational magnetic fluxes and general boundary conditions (the

result was first announced in Ref. [4]). The result was later extended to continuous

magnetic Schrodinger operators in Ref. [5]. These breakthrough results are especially

important since they relate directly the quantization of the edge currents to a new
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topological invariant, the index of a Fredholm operator. Using this new invariant, one

can directly explore the topology of the edge states under quite general (and physically

relevant) boundary conditions, without the need of any gedanken experiments that

employ artificial boundary conditions. The new topological invariant was shown to be

equal to the Chern number of the occupied states [3]. The result of Ref. [3] was for-

mulated for general tight-binding Hamiltonians with one quantum state per site. The

conditions in which the result holds are not entirely general: the boundary condition

at the edge must be homogeneous, the random potential must be sufficiently weak

and the region of the spectrum where the edge states were counted was assumed to

have continuous integrated density of states. Under similar assumptions, the equality

between bulk and edge Hall conductance was also demonstrated by Elbau and Graf,

soon after the publication of Ref. [6], this time using more traditional methods.

For continuous magnetic Schrodinger operators, most of the above limitations have

been lifted in Ref. [7]. In this work, the edge appears at the separation between a

left and a right potential, which can assume quite general forms, in particular, they

can include strong disorder. A similar result was established for discrete Schrodinger

operators in Ref. [8]. We should mentioned that certain regularization of the edge

conductance is necessary for the case of strong disorder.

In 1988, Haldane introduced a new model which exhibits the Integer Quantum Hall

effect even thought the net magnetic flux per primitive cell is zero [9]. This strange

property is a consequence of the non-trivial Chern number associated to the occupied

bands of the model. This work lead to the discovery of a new class of insulators that

now bear the name Chern insulators. It was argued in the literature [10,11] that, due to

their non-trivial topological properties, finite samples of Chern insulators must posses

edge conducting channels that wind around the sample similar to what happens in the

magnetic case. Thus, Chern insulators will display remarkable edge physics, without

the need of a macroscopic magnetic field. We should mention that no crystals of Chern

insulators were discovered so far. It was argued, however, that by patterning ferroelec-

tric materials one could fabricate a photonic crystal [12] with similar properties.

Theoretically, Chern insulators are as ubiquitous as the normal insulator. Generally,

thight-binding Hamiltonians with more than one quantum state per site and with

broken time reversal symmetry can be always tuned to exhibit bands with non-zero

Chern number. One of the simplest example of a Chern insulator is given by

H =
P

n,i=0,1,2
{|n, 1〉〈n + bi, 2|+ |n + bi, 2〉〈n, 1|}

+
P

n,i=1,2
{t|n, 1〉〈n + bi, 1|+ t∗|n + bi, 1〉〈n, 1|

+t∗|n, 2〉〈n + bi, 2|+ t|n + bi, 2〉〈n, 2|},

(1)

where n denotes a point of a planar lattice generated by b1 and b2, b0=0 and Im[t] 6=0.

This model is unitarily equivalent to the original Haldane’s model and, in the bulk, it

exhibits two bands with Chern numbers equal to ±1. The edge structure of the model

was studied in great detail in Ref. [11] and the numerical calculations shows one edge

channel forming along the edge of the sample, in accordance to what one will predict

from the topology of the bulk bands (in these calculations one rather sees two channels

since the calculations were performed for slabs rather than half-plane samples). The

calculations were, of course, performed for homogeneous edges.

Our main question here is what happens to the edge channels for a rough edge. The

question is puzzling since the edge channels are localized near the edge, thus they have
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a quasi-one dimensional character, and the rough edge can be seen as a strong random

potential acting on them. The main question is if this random potential can destroy the

edge conducting channels. Our answer is negative. The proof is a fairly straightforward

application of a general technique developed in Ref. [5] and further discussed in [13]. It

follows that the edge current is equal to the index of certain Fredholm operator. Using

the exceptional properties of the index, we show that it is independent of the shape of

the edge. This fact allows us to compute the index using homogeneous edges, which in

turn allows us to use results from literature and connect this index to the total Chern

number of the occupied bands of the bulk system. The result tells us that a Chern

insulator with rough edge will exhibit a number of conducting edge channels no lesser

than the bulk Chern number.

The results of the present paper rely on decay estimates for certain kernels, which

are stated in Section 2 and derived in the Appendix. It will follow that all the conditions

required in Ref. [13] are satisfied by the Chern insulator with rough edge. The problem

is formulated in Section 3, where we also state our main result and give a discussion of

the its implications. For the sake of the exposition, in Section 4 we present a complete

proof of the quantization of edge current by using the technique of Ref. [13], which

simplifies considerably for the discrete Hamiltonians considered in this work.

Regarding the relation between of our work and the previous works [4,3,6,8] on

discrete Schrodinger operators, we should mentioned that all of the later could be

adapted to handle the Chern insulators and the type of edges considered here. Some

precautions are necessary, because all these works consider a smooth half plane and the

irregularities of the edges are introduced via potentials localized along the edge. To get

the edges considered in this paper, it will require infinitely strong edge potentials, which

could lead to complications. In any case, we see our present work as an application of

the technique introduced in Ref. [13], which provides a more simplified picture of the

whole problem, fact that can help disseminate these ideas within the condensed matter

community.

2 Definition of the physical systems

In this section we define a bulk system, whose dynamics is determined by a very general

tight-binding Hamiltonian H0. Then we define and parametrize what we call a rough

edge Γ . A probability measure is introduced over the set of all admissible edges, which

will be used for averaging. An auxiliary Hamiltonian H and the Hamiltonian HΓ for

the system with an edge Γ is also introduced in this Section. We describe the most

important properties of these systems, whose derivations will be given in the Appendix.

2.1 The bulk system.

We consider a tight-binding Hamiltonian H0 defined on the 2-dimensional lattice Z2,

which has K number of quantum states per site. We use n=(n1, n2) to represent the

sites of the lattice. The Hilbert space H is spanned by the vectors

|n, α〉,n ∈ Z2, α = 1, . . . ,K; 〈n, α|n′, α′〉 = δn,n′δαα′ . (2)
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Fig. 1 The non-zero hopping terms of H0 link site n with sites that are confined in the square
drawn with the dashed line. The square contains (2L+ 1)× (2L+ 1) number of sites.

We adopt a very general form of the tight-binding Hamiltonian:

H0 =
X

n∈Z2

X
m

KX
α,β=1

[Γm
αβ |n, α〉〈n + m, β|+ Γm∗

αβ |n + m, β〉〈n, α|]. (3)

The sum over m runs over a finite number of points of Z2. To be specific, we consider

that these points are contained in a square of (2L + 1) × (2L + 1) number of sites,

centered at the origin (see Fig. 1). An important assumption on H0 is the existence of

an insulating gap ∆=[E−,E+] in the spectrum. In these conditions, the bulk system

has the following general property.

Proposition 1. The resolvent of H0 has the exponential decay property:

〈n, α|(H0 − z)−1|n′, β〉 ≤ e−q|n−n′|

dist(z, σ(H0))− ζ(q) , (4)

where ζ(q) is specified in Eq. 63. z is an arbitrary point in the complex energy plane,

away from the spectrum σ(H0) of H0. The above estimate holds only when q is small

enough so that the the denominator in the right hand side is positive.

2.2 The system with a rough edge

We define now the system with a rough edge. We consider a line Γ like in Fig. 2, where

the only constraint we impose is that all points of Γ be confined within a distance D

from the line n1=0. The line Γ can be described by a sequence {γn}n, where γn gives

the deviation of Γ from the axis n1=0 at the row n2=n of our lattice, as exemplified

in Fig. 2. We have γn ∈ I, with I = {−D + 1/2,−D + 3/2, . . . , D − 1/2}. We recall

that we use n=(n1, n2) to describe a point of the lattice. Thus, Γ can be considered

as a point of the set Ω = I×∞: Γ={. . . , γ−1, γ0, γ1, . . .}. On the set Ω, we introduce

the product probability measure, denoted by dΓ , which is the infinite product of the
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Fig. 2 Exemplification of a rough edge Γ and of the definition of γn.
.

simplest probability measure ν on I:
R
f(n)dν(n) = 1

2D

P
n∈I f(n), f(n) being any

function defined on I. We remark that dΓ obtained this way is ergodic relative to

the discrete translations along the vertical direction of our lattice. We will use the

probability measure dΓ to average over all possible contours Γ .

We assign a sign to the points of the lattice, depending on their position relative

to the curve Γ :

sn =


−1 if n is to the left of Γ

+1 if n is to the right of Γ
(5)

The Hilbert space H decomposes in a direct sum H = H+ ⊕H−, where

H± = span{|n, α〉, sn = ±1} (6)

We first introduce a very useful Hamiltonian H, which is obtained from H0 by erasing

the hopping terms that cross the contour Γ . Using the sign function introduced above,

we can write the Hamiltonian H as:

H =
X

sn·sn+m>0

X
αβ

[Γm
αβ |n, α〉〈n + m, β|+ Γm∗

αβ |n + m, β〉〈n, α|]. (7)

It is also important to notice that H = H0 −∆V with:

∆V =
X

sn·sn+m<0

X
αβ

[Γm
αβ |n, α〉〈n + m, β|+ Γm∗

αβ |n + m, β〉〈n, α|]. (8)

The sums involve only sites that are localized near the edge, more precisely those with

the first coordinate n1 in the interval [-D-L+1,D+L-1]. It is also interesting to notice
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that H describes two decoupled systems with edges. Indeed, H decomposes into a

direct sum H=H−⊕H+, where

H− : H− → H−,

H− =
P

sn,sn+m<0

P
αβ

[Γm
αβ |n, α〉〈n + m, β|+ Γm∗

αβ |n + m, β〉〈n, α|] (9)

and
H+ : H+ → H+,

H+ =
P

sn,sn+m>0

P
αβ

[Γm
αβ |n, α〉〈n + m, β|+ Γm∗

αβ |n + m, β〉〈n, α|]. (10)

The system with edge Γ is defined by the Hamiltonian HΓ=H+. We list three impor-

tant properties of the system with the edge.

Proposition 2. Let φ(ε) be a smooth function with support in the spectral gap of H0.

We consider that the support of φ is separated from the spectrum of H0 by at least a

distance δ>0; δ will be considered fixed from now on.

1. Consider two lattice points, n and n′ in the ”+” side of the lattice. Then there

exists A(q)>0, independent of n and n′ and Γ , such that:

|〈n, α|φ(HΓ )|n′, β〉 ≤ A(q)e−q(n1+n′1), (11)

for q small enough.

2. Fix a positive integer N . There exists BN>0, independent of n and n′ and Γ , such

that:

|〈n, α|φ(HΓ )|n′, β〉 ≤ BN
(|n− n′|+ 1)N

. (12)

3. There exists CN (q) > 0, independent of n and n′ and Γ , such that:

|〈n, α|φ(HΓ )|n′, β〉| ≤ CN (q)
e−q(n1+n′1)

(|n2 − n′2|+ 1)N
, (13)

where q must be taken small enough.

All derivations in this paper are based on these three fundamental properties.

3 The problem and the result.

We define first the central observable, the operator ŷΓ defined on HΓ , which gives the

vertical coordinate:

ŷΓ |n, α〉 = n2|n, α〉, n = (n1, n2). (14)

The index Γ is there to indicate that the operator is defined on HΓ . The observable

ŷΓ has discrete spectrum, σ(ŷΓ )=Z, each eigenvalue being infinitely degenerate. Let

πΓ (n) denote the spectral projector of ŷΓ onto the eigenvalue n. We have the following

explicit expression:

πΓ (n) =
X

n1>γn,α

|n, α〉〈n, α|, (15)
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where {γn}n∈Z is the sequence corresponding to the contour Γ , as discussed in the

previous Section.

On the large Hilbert space H, we can implement the discrete lattice translations

group along the vertical direction by:

un|(n1, n2), α〉 = |(n1, n2 − n), α〉. (16)

The discrete lattice translations along the vertical direction can also be extended to a

map tn acting on the space Ω of all possible contours Γ . The map tn simply shifts a

contour downwards by n sites.

Let us collect now the important facts into the following list (which shows that our

systems satisfy the assumptions A made in Ref. [13]):

– We have defined the family of self-adjoint Hamiltonians HΓ :HΓ→HΓ , Γ ∈ Ω.

– The observable ŷ obeys:

unŷΓu
∗
n = ŷtnΓ + n (17)

– The family of Hamiltonians HΓ is covariant, namely, un is an isometry that sends

HΓ into HtnΓ and unHΓu
∗
n = HtnΓ .

– On the set Ω we defined the probability measure dΓ , which is ergodic and invariant

relative to the mappings tn.

We now define the trace (notation tr0) over the states of zero expectation value for

ŷΓ :

tr0{A} = Tr{πΓ (0)AπΓ (0)}, (18)

and we use tr0 to define the current:

JΓ = tr0


ρ(HΓ )

dŷΓ (t)

dt

ff
= itr0 {ρ(HΓ )[HΓ , ŷΓ ]} . (19)

Here ρ(ε) is the statistical distribution of the quantum states. Since we are interested in

the contribution to the current coming from the edge states, we assume that the support

of ρ(ε) is entirely contained in the interval [E− + δ, E+ − δ] and that
R
ρ(ε)dε=1. We

assume that ρ(ε) is a smooth function. Note that tr0 above is finite precisely because

of the properties stated in Proposition 2.

Main Theorem. Let F (ε) ≡
R∞
ε ρ(ε). Note that F (ε) is smooth and equal to 1 below

E− + δ and to 0 above E+ − δ; also F ′(ε)=−ρ(ε). We recall that E± are the edges of

the spectral gap of the bulk Hamiltionian H0. Using the spectral calculus, we define

the following unitary operators:

UΓ = e−2πiF (HΓ ). (20)

If π+
Γ is the projector onto the non-negative spectrum of ŷΓ , then:

Z
Ω
dΓ JΓ =

1

2π
Ind

n
π+
Γ UΓπ

+
Γ

o
. (21)

The index is an integer number, independent of the shape of ρ(ε) or the contour Γ .
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Fig. 3 Example of a finite deformation of contours: Γ ↔ Γ ′.
.

The proof of the statement is given in the following sections. We continue here with

a discussion of the index, more precisely its invariance property and how to compute

it. The index is defined on the class of Fredholm operators as:

IndA = dimKer[A]− dimKer[A∗], (22)

for A : X → Y , with X and Y two Hilbert spaces. The index has several important

properties:

1. IndA∗ = −IndA.

2. IndBA = IndB + IndA, for A : X → Y and B : Y → Z two Fredholm operators.

3. Ind(A+ C) = IndA if C is compact (in particular, if C is finite rank).

4. The index is invariant to norm-continuous deformations of the operators.

Based on these general properties, we argue that the index is independent of the

contour Γ . We consider a finite deformation as shown in Fig. 3, where the contour Γ

is deformed to the left, in a finite region, into the contour Γ ′. We can equivalently say

that Γ ′ is deformed to the right into Γ . In any case, HΓ ⊂ HΓ ′ . Let i : HΓ → HΓ ′ be

the inclusion map and p : HΓ ′ → HΓ be the projection

p
X

n2≥γ′n2

an|n, α〉〈nα| =
X

n2≥γn2

an|n, α〉〈nα|. (23)

Note that p = i∗, p ◦ i = 1HΓ and i ◦ p = πHΓ (the projector from HΓ ′ to HΓ ).

Because the two curves differ only in a finite region, dimKer[p] <∞ (Ker[i] is empty)

and the two operators are Fredholm. The insertion of π+
Γ UΓπ

+
Γ in the HΓ ′ given by

i ◦ π+
Γ UΓπ

+
Γ ◦ p has same index since

Ind i ◦ π+
Γ UΓπ

+
Γ ◦ p = Ind i+ Ind π+

Γ UΓπΓ + Ind i∗ (24)
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and the first and last indexes cancel each other. The action of i ◦ π+
Γ UΓπ

+
Γ ◦ p on the

Hilbert space HΓ ′ is very simple,

i ◦ π+
Γ UΓπ

+
Γ ◦ p = (i ◦ π+

Γ ◦ p)(i ◦ UΓ ◦ p)(i ◦ π
+
Γ ◦ p)

= (i ◦ π+
Γ ◦ p)e

−2πiF (i◦HΓ ◦p)(i ◦ π+
Γ ◦ p).

(25)

We notice first that the projectors i ◦ π+
Γ ◦ p and πΓ ′ differ by a finite rank operator.

Consequently,

Ind (i ◦ π+
Γ ◦ p)e

−2πiF (i◦HΓ ◦p)(i ◦ π+
Γ ◦ p) (26)

and

Ind π+
Γ ′e
−2πiF (i◦HΓ ◦p)π+

Γ ′ (27)

are the same. We also notice that i◦HΓ ◦p, acting on HΓ ′ , has the same expression as

HΓ , thus i◦HΓ ◦p and HΓ ′ differ by a finite set of hopping terms. As the estimates of

the next Sections will show, we can continuously switch on the missing hopping terms

in HΓ until it becomes identical to HΓ ′ and keep

π+
Γ ′e
−2πiF (Hdeformed)π+

Γ ′ (28)

in the Fredholm class during the process. Due to the invariance of the index under

norm-continuous deformations, we can conclude

Ind πΓUΓπΓ = Ind πΓ ′UΓ ′πΓ ′ . (29)

Using successive deformations of the type describe above, we can always deform a

contour into another and the conclusion is that the index is independent of Γ .

The index can now be computed by taking the contour Γ as a straight vertical

line, in which case we can use the translational invariance, more precisely, the Bloch

decomposition. Let us denote by Γ0 such a straight contour. Definitely the theorem

stated above applies equally well to the case when the set Ω reduces to one point, the

contour Γ0 (all we have to do is to take D=0). Then we have the following practical

way of computing the index:

Indπ+
Γ0
UΓ0πΓ0 = Tr{πΓ0(0)ρ(HΓ0)[HΓ0 , ŷΓ0 ]πΓ0(0)}

=
P
n

πR
k=−π

ρ(εn,k)∂kεn,k dk =
P
n
αn.

(30)

where εn,k are the edge bands and αn are defined in Fig. 4 (we used here the fact

that
R
ρ(ε)dε=1). In other words, the index gives the difference between the number

of forward and backward moving edge bands. This is a very simple but important

result because the edge bands can be easily computed numerically for the homogenous

case. Moreover, if necessary, one can further simplify the computation of the index by

considering continuous deformations of the bulk Hamiltonian that keep the insulating

gap opened. Using the fundamental result of Kellendonk, Richter and Schulz-Baldes

[3], we now know that the number computed in Eq. 30 is equal to the Chern number

of the bulk states below the insulating gap.

As a final remark for this Section, note that our main statement is about the average

of the edge current and not the current itself. However, since the family {HΓ }Γ∈Ω is

covariant relative to translations, which act ergodically on Ω, the spectrum of {HΓ } is

non-random. This implies that, if the edge spectrum becomes localized for a non-zero
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Fig. 4 The figure lists all possible ways an edge band (blue lines) can cross the energy window
[E− + δ, E+ − δ]. Below each configuration the figure presents the value of the coefficient αn.

measure set of Ω, it will be localized for all contours, except a possible zero measure

set. But this cannot happen, exactly because the average of the edge current is non-zero

for Chern insulators. This allows us to conclude that the rough edge cannot destroy

the edge conducting channels.

4 Proof of the Main Statement

Before starting the proof of our main theorem, we collect a set of technical facts, which

all follow from the estimates given in Propositions 1 and 2.

4.1 Technical results

Along this paper, the following notations ‖ ‖ and ‖ ‖HS represent the operator and the

Hilbert-Schmidt norms, respectively.

Proposition 3. The following statements are true:

1. (UΓ − I)πΓ (n) are Hilbert-Schmidt. Moreover, their Hilbert-Schmidt norm is less

than an upper bound, which is independent of Γ .

2. With the notation

KΓ (n, n′) = ‖πΓ (n)(UΓ − I)πΓ (n′)‖2HS, (31)

there exists GN > 0, independent of Γ , sucht that

KΓ (n, n′) ≤ GN
(1 + |n− n′|)N

, (32)

for any positive integer N .

3. If π−Γ denotes the projector onto the negative spectrum of ŷΓ and ΣΓ ≡ π+
Γ − π

−
Γ ,

then [ΣΓ , UΓ ] are Hilbert-Schmidt. Moreover, their Hilbert-Schmidt norm is less

than an upper bound, which is independent of Γ .

4. [ŷΓ , UΓ ]πΓ (n) are Hilbert-Schmidt. Moreover, their Hilbert-Schmidt norm is less

than an upper bound, which is independent of Γ .
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Fig. 5 Illustration of several definitions used in the text.

Let us also state a fundamental property of tr0, essential for the proof of our main

statement.

Proposition 4. If {AΓ }Γ∈Ω and {BΓ }Γ∈Ω are two covariant families of operators

such that πΓ (0)AΓ , AΓπΓ (0), πΓ (0)BΓ and BΓπΓ (0) are Hilbert-Schmidt with uni-

formly bounded norms, then:Z
dΓ tr0{AΓBΓ } =

Z
dΓ tr0{BΓAΓ } <∞. (33)

We also need to introduce an approximate spectral projector onto the support of

ρ(ε). For this, we consider a smooth function G(ε) which is equal to 0 below E−+ δ/2,

to 1/2 on the interval [E− + δ, E+ − δ], and to 1 above E+ − δ/2 (see Fig. 5). In this

case,

πs =
1

2

“
I − e−2πiG(HΓ )

”
(34)

leaves invariant the states corresponding to the spectral interval of support of ρ(ε). By

construction, πs has similar properties as UΓ − I, which are listed stated below. Note

that πs depends on Γ , in fact {πs}Γ form a covariant family. The dependence on Γ

will not be stated explicitly.

4.2 The Proof

The proof makes use of the following non-commutative version of the Residue Theorem,

whose proof can be found in Ref. [13]:

A Non-Commutative Residue Theorem. Let f(z) be analytic in a strip around the

unit circle. If {UΓ }Γ∈Ω a covariant family of unitary operators such that (UΓ−I)πΓ (0)

and [ŷΓ , UΓ ]πΓ (0) are Hilbert-Schmidt, then:R
dΓ tr0{(f(UΓ )− f(I))[ŷΓ , UΓ ]} = b1

R
dΓ tr0{(U∗Γ − I)[ŷΓ , UΓ ]}, (35)

where b1 is the coefficient appearing in the Laurent expansion:

f(z) =
X

n=1,∞
bnz
−n +

X
n=0,∞

anz
n. (36)
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Now from Proposition 4 we know that [ΣΓ , UΓ ] is Hilbert-Schmidt. Then π+
Γ UΓπ

+
Γ

is Fredholm and we can use Connes’ result in non-commutative geometry:

Ind{π+
Γ UΓπ

+
Γ } = −1

4
Tr{ΣΓ [ΣΓ , U

∗
Γ ][ΣΓ , UΓ ]}, (37)

which, by using elementary manipulations [13], can be reformulated in a slightly dif-

ferent format:

Ind{π+
Γ UΓπ

+
Γ } = −1

2

X
β=±

Tr{πβΓ (U∗Γ − I)[ΣΓ , UΓ ]πβΓ }. (38)

We use the projectors πΓ (n) to expand

Ind{π+
Γ UΓπ

+
Γ } = − 1

2

P
n

Tr{πΓ (n)(U∗Γ − I)[ΣΓ , UΓ ]πΓ (n)}. (39)

We now consider the average over Γ . Since the index is independent of Γ , the average

over Γ can be omitted for the left side. On the right hand side, we use the fact that

the trace of trace-class operators is invariant to unitary transformations and the fact

that the measure dΓ is invariant to the mappings tn, to write:

Ind{π+
Γ UΓπ

+
Γ }

= − 1
2

R
dΓ
P
n

Tr{unπΓ (n)(U∗Γ − I)[ΣΓ , UΓ ]πΓ (n)u∗n}

= − 1
2

R
dΓ
P
n

Tr{πtnΓ (0)(U∗tnΓ − I)[unΣΓu
∗
n, UtnΓ ]πtnΓ (0)}

= − 1
2

R
dΓ
P
n

Tr{πΓ (0)(U∗Γ − I)[unΣt−nΓu
∗
n, UΓ ]πΓ (0)}

(40)

The key observation at this step is that:X
n

unΣt−nΓu
∗
n = 2ŷΓ + I, (41)

whose graphical representation is given in Fig. 6, which leads to the intermediated

conclusion that:

Ind{π+
Γ UΓπ

+
Γ } = −

Z
dΓ tr0{(U∗Γ − I)[ŷΓ , UΓ ]}. (42)

The integrand of the last integral is finite, fact that can be seen from Proposition

3. Before we go further we will do two things. First, we will place an approximate

projector squared π2
s in front of (U∗Γ − I), which is legitimate since πs acts as identity

on the space where (U∗Γ − I) is non-zero. It is easy to see that the conditions of the

Proposition 4 are satisfied and for that reason we can move π2
s all the way to the right,

inside tr0.

The second thing we do is, by using the Non-Commutative Residue Theorem,

replace U∗Γ − I by 1
b1

(f(UΓ ) − f(I)), with f(z) analytic in a strip around the unit

circle. This step will become crucial at a later point in the proof, but it must be done

at this step. Thus, we arrived at

Ind{π+
Γ UΓπ

+
Γ } = − 1

b1

R
dΓ tr0{(f(UΓ )− f(I))[ŷΓ , UΓ ]π2

s}. (43)
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-7

-5

-3

-1

1

3

5

7

!
u-1!u1

u-2!u2

u-3!u3

u1!u-1

u2!u-2

u3!u-3

n

Fig. 6 A graphical representation of
P
n unΣt−nΓu

∗
n =

P
n(2n + 1)πΓ (n). The top lines

represent the spectral representations of uxnΣt−nΓu
∗
xn

, which are discrete Heaviside functions
shifted by n sites. All these operators act on HΓ . The sum of the top lines results in the stair
like function shown at the bottom.

Like in Ref. [5], we evaluate the commutator using Duhamel’s identity

[ŷΓ , UΓ (HΓ )] = −
R
dtφ̃(t)(1 + it)

R 1
0 dq×

e−(1−q)(1+it)HΓ [ŷΓ , HΓ ]e−q(1+it)HΓ ,
(44)

with φ̃ being the Laplace transform of e−2πiF (x) − 1, which is a smooth function with

support in [E− + δ, E+ − δ]. Then:

Ind{π+
Γ UΓπ

+
Γ } = 1

b1

R
dΓ
R
dtφ̃(t)(1 + it)

R 1
0 dq×

tr0{(f(UΓ )− f(I))UΓ e
−(1−q)(1+it)HΓ [ŷΓ , HΓ ]πse

−q(1+it)HΓ πs}.
(45)

We will use now Proposition 4 to move e−q(1+it)HΓ πs all the way to the left, inside

tr0. Before doing that, we must be sure that the conditions of the Proposition 4 are

satisfied. And indeed, the operators e−q(1+it)HΓ πsπΓ (0) and πΓ (0)e−q(1+it)HΓ πs are

Hilbert-Schmidt, which follows from point (i) of Proposition 3 and the fact that πs has

same properties as UΓ − I. For the same reasons,

πΓ (0)(f(UΓ )− f(I))UΓ e
−(1−q)(1+it)HΓ [ŷΓ , HΓ ]πs (46)

and

(f(UΓ )− f(I))UΓ e
−(1−q)(1+it)HΓ [ŷΓ , HΓ ]πsπΓ (0) (47)

are Hilbert-Schmidt. After moving e−q(1+it)HΓ πs all the way to the left, inside tr0, we

use the observation that all the operators to the left of [ŷΓ , HΓ ] commute and that πs
can be replaced with the identity, to obtain

Ind{π+
Γ UΓπ

+
Γ } = 1

b1

R
dΓ
R
dtφ̃(t)(1 + it)

R 1
0 dq×

tr0{(f(UΓ )− f(I))UΓ e
−(1+it)HΓ [ŷΓ , HΓ ]πs}

= 1
b1

R
dΓ tr0{(f(UΓ )− f(I))φ′(HΓ )[ŷΓ , HΓ ]πs}

= 2πi
b1

R
dΓ tr0{(f(UΓ )− f(I))UΓF

′(HΓ )[ŷΓ , HΓ ]πs}

(48)
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We now take

f(z) =
z − 1

z − 1 + ε

1

z
, ε > 0, (49)

for which b1=1. Then

1

b1
(f(UΓ )− f(I))UΓ = (UΓ − I)(UΓ − (1− ε)I)−1, (50)

and by taking the limit ε→ 0, we obtain:

Ind{π+
Γ UΓπ

+
Γ } = 2πi

Z
dΓ tr0{ρ(HΓ )[ŷΓ , HΓ ]πs}. (51)

The last equation is precisely the one of the theorem because πs acts as the identity

over the space where ρ(HΓ ) is non-zero.

5 Conclusions

We presented a fairly elementary proof that the edge channels of Chern insulators are

not destroyed by a rough edge. In the process, we demonstrated the use of the new

topological invariant introduced in Ref. [3] for solving interesting problems in condensed

matter.

The technical estimates derived in this paper hold for very general tight-binding

Hamiltonians, in particular for lattice systems with spin. Thus the paper provides the

technical ground for applications to spin-Hall effect. In other words, the formalism can

be applied line by line to this case too, the only thing that remains to be identified is

what observable should one use instead of ŷΓ to get a non-zero value for the index.

We announce here that we already identified this observable and that the result will

be presented soon.

6 Appendix

6.1 Proof of Proposition 1.

This will be an elementary application of the Combes-Thomas principle [14]. We do

not seek here optimal estimates, which could be obtained with the technique developed

in Ref. [15], but rather the simplest proof of the above estimate. For this, consider the

invertible transformation:

|nα〉 → Uq|n, α〉 = e−qn|n, α〉, q ∈ R2. (52)

With the notation Hq ≡ U−qH0Uq, we have:

Hq =
X

n,m,α,β

[Γm
αβe

qm|n, α〉〈n + m, β|+ Γm∗
αβ e

−qm|n + m, β〉〈n, α|]. (53)

We write Hq = H0 +Wq, with

Wq =
P

n,m,α,β
[Γm
αβ [eqm − 1]|n, α〉〈n + m, β|

+Γm∗
αβ [e−qm − 1]|n + m, β〉〈n, α|].

(54)
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Suppose we can show that Wq is small when q is small. To be more precise, assume

that the operator norm ‖Wq‖ goes to zero as q(≡ |q|) goes to zero (recall that ‖A‖ =

sup |〈g|A|f〉|, where supremum goes over all ‖f‖ = ‖g‖ = 1). Then

‖Hq − z‖ = ‖H0 − z +Wq‖

≥ ‖H0 − z‖ − ‖Wq‖

≥ dist(z, σ(H0))− ‖Wq‖.

(55)

The above inequality has substance only if the right hand side is positive, which is the

case if q is small enough. This estimate gives

‖(Hq − z)−1 ≤ 1

dist(z, σ(H0))− ‖Wq‖
, (56)

which becomes useful in the following way:

|〈n, α|(H0 − z)−1|n′, β〉|eq(n−n′)

= 〈n, α|Uq(H0 − z)−1U−q|n′, β〉|

= |〈n, α|(Hq − z)−1|n′, β〉|

≤ (dist(z, σ(H0))− ‖Wq‖)−1.

(57)

If we orient q parallel to n− n′ we obtain

|〈n, α|(H0 − z)−1|n′, β〉| ≤ e−q|n−n′|

dist(z, σ(H0))− sup|q|=q ‖Wq‖
. (58)

It remains to estimate ‖Wq‖. One can directly compute:

〈n + m, β|Wq|n, α〉 = (e−qm − 1)[Γ−m
βα + Γm∗

αβ ]. (59)

We consider now two arbitrary unit vectors

f =
P

n,α an,α|n, α〉, g =
P

n,α bn,α|n, α〉,P
n,α |an,α|

2 =
P

n,α |bn,α|
2 = 1,

(60)

and we use the Schwarz inequality to derive an upper bound for ‖Wq‖:

|〈g|Wq|f〉| =

˛̨̨̨
˛ Pn′,β b∗n′,β〈n′, β|Wq|f〉

˛̨̨̨
˛ ≤

" P
n′,β
|〈n′, β|Wq|f〉|2

#1/2

=

24 P
n′,β

˛̨̨̨
˛Pn,α〈n′, β|Wq|n, α〉an,α

˛̨̨̨
˛
2
351/2

≤

"
K(2L+ 1)2 P

n′,β

P
n,α
|〈n′, β|Wq|n, α〉|2|an,α|2

#1/2

.

(61)
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In the last step we used the fact that the number of non-zero terms in the sum over n

and α cannot exceed K(2L+ 1)2. We continue:

|〈g|Wq|f〉| ≤

"
K(2L+ 1)2 P

n,α

P
m,β

˛̨̨
〈n + m, β|Wq|n, α〉|2|an,α

˛̨̨2#1/2

= (2L+ 1)
√
K

"P
n,α

P
m,β

(e−qm − 1)2|Γ−m
βα + Γm∗

αβ |
2|an,α|2

#1/2

≤ (2L+ 1)
√
K sup

α

" P
m,β

(e−qm − 1)2|Γ−m
βα + Γm∗

αβ |
2

#1/2

.

(62)

We can then take

ζ(q) = (2L+ 1)
√
K sup
α,|q|=q

24X
m,β

(e−qm − 1)2|Γ−m
βα + Γm∗

αβ |
2

351/2

, (63)

which evidently decays to zero as q → 0.

6.2 Proof of Proposition 2.

(i) First, we point out that

|〈n, α|φ(HΓ )|n′, β〉 = |〈n, α|φ(H)|n′, β〉, (64)

if both n and n′ are in the ”+” zone of the lattice. Thus we can work with H instead

of HΓ . Let us use the notation R0(z)=(H0− z)−1 and R(z)=(H − z)−1. We make use

of the following simple identity:

R(z) = R0(z) +R0(V )∆V R0(z) +R0(z)∆V R(z)∆V R0(z), (65)

and we do the functional calculus via the Stone’s formula:

φ(H) = lim
ε→0

Z
R

[R(λ+ iε)−R(λ− iε)]φ(λ)
dλ

2πi
, (66)

where the limit is in the weak operator topology. Using Eq. 65 and the fact that the

support of φ is in the gap of H0, we obtain

〈n, α|φ(H)|n′, β〉 = lim
ε→0

P
m,k,α′,β′

R
R

dλ
2πi φ(λ)×

〈n, α|R0(λ)|m, α′〉〈k, β′|R0(λ)|n′, β〉×

〈m, α′|∆V [R(λ+ iε)−R(λ− iε)]∆V |k, β′〉.

(67)

It is important to notice that, due to the localization properties of ∆V , the sum over

m and k can be restricted to the sites with first coordinate within the interval [-D-

L+1,D+L-1]. We consider the following vectors:

ψm,α′ = ∆V |m, α′〉, ψk,β′ = ∆V |k, β′〉. (68)
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The norm of the two vectors is bounded by

‖ψm,α′‖, ‖ψk,β′‖ ≤ 2K(2L+ 1)2 max{|Γm
αβ |}. (69)

We will call Q the constant appearing to the right. With the notation

Ψm,α′ = ψm,α′/‖ψm,α′‖, Ψk,β′ = ψk,β′/‖ψk,β′‖, (70)

we continue as follows:

〈n, α|φ(H)|n′, β〉

= lim
ε→0

P
m,k,α′,β′

‖ψm,α′‖‖ψk,β′‖e−(q+ξ)(|n−m|+|n′−k|) R
R

dλ
2πi×

φ(λ)〈n, α|R0(λ)|m, α′〉e(q+ξ)|n−m|〈k, β′|R0(λ)|n′, β〉e(q+ξ)|n
′−k|×

〈Ψm,α′ |[R(λ+ iε)−R(λ− iε)]|Ψk,β′〉,

(71)

where q>0 and ξ>0 are chosen so that Proposition 1 applies with q replaced by q+ξ.

We consider the following function,

Fαα
′β′β

nmkn′ (λ) = φ(λ)〈n, α|R0(λ)|m, α′〉e(q+ξ)|n−m|

×〈k, β′|R0(λ)|n′, β〉e(q+ξ)|n
′−k|

(72)

and observe that Eq. 71 can be written as:

〈n, α|φ(H)|n′, β〉 =
P

m,k,α′,β′
‖ψm,α′‖‖ψk,β′‖

×e−(q+ξ)(|n−m|+|n′−k|) R
R

Fαα
′β′β

nmkn′ (λ)dµ(λ)
(73)

where dµ(λ) is the spectral measure of H, projected on Ψm,α′ and Ψk,β′ , which are

unit vectors. Thus, we can obtain an upper bound in the following way:

|〈n, α|φ(H)|n′, β〉| ≤ Q2
X
m,k

e−q(|n−m|+|n′−k|) X
α′,β′

sup
λ
|Fαα

′β′β
nmkn′ (λ)|. (74)

From Proposition 1 we have:

sup
λ
|Fαα

′β′β
nmkn′ (λ)| ≤ supλ φ(λ)

[δ − ζ(q + ξ)]2
(75)

Also, for the remaining sums we haveX
m

e−(q+ξ)|n−m| ≤ Sξe−qn1 ,
X
k

e−(q+ξ)|n′−k| ≤ Sξe−qn
′
1 (76)

where Sξ is a positive parameter depending only on ξ. If we put everything together

we obtain:

|〈n, α|φ(H)|n′, β〉| ≤ Q2K2S2
ξ

supλ φ(λ)

[δ − ζ(q + ξ)]2
e−q(n1+n′1). (77)
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(ii) Here we do the functional calculus using a technique introduced by Helffer and

Sjostrand [16]. We consider the domain D in the complex plane defined by all those

z with |Imz|≤v0 and Rez ∈ [E− + δ, E+ + δ]. We recall that the distance from the

support of φ and the spectrum of H0 is at least δ. We will take v0 less than this δ.

Since φ(ε) is smooth, for any positive integer N , one can construct a function f :D→C

such that

a) fN (z, z̄)=φ(z) when z is on the real axis.

b) |∂z̄fN (z, z̄) ≤ αN |Imz|N .

Such function is called an almost analytic extension of φ. Using such function, one has

φ(H) =
1

2π

Z
D

∂z̄fN (z, z̄)(H − z)−1d2z. (78)

It is easy to see that the result stated in Proposition 1 applies equally well to the

resolvent of H:

〈n, α|(H − z)−1|n′β〉 ≤ e−q|n−n′|

dist(z, σ(H))− ζ(q) , (79)

for q small enough such that the denominator is positive. The difference between the

two cases is that H may not have a spectral gap like H0 (see Fig. 5). Still, the result

is of interest to us since it gives the behavior of R(λ) for z in D and away from the

real axis. One can repeat the estimates on Wq, with the links crossing the contour Γ

erased, and convince himself that the function ζ(q) remains the same. If z=u+ iv, then

dist(z, σ(H))≥|v|. Looking at the expression for ζ function given in Eq. 63, we see that

it behaves linearly with q for small values of q. Thus, if we take q=|v|/M , with M large

enough, there is a θ > 0 such that

dist(z, σ(H))− ζ(|v|/M) > θ|v| > 0, (80)

for any z ∈ D. This gives us an upper bound on the resolvent for all z in D:

〈n, α|(H − u− iv)−1|n′β〉 ≤ e−|v||n−n′|/M

θ|v| . (81)

Then we can continue

|〈n, α|φ(H)|n′, β〉|

=

˛̨̨̨
˛ 1
2π

R
du

v0R
−v0

dv ∂z̄fN (z, z̄)〈n, α|(H − u− iv)−1|n′, β〉

˛̨̨̨
˛

≤ αN
πθ

R
du

v0R
0

dv vN−1e−v|n−n′|/M

≤ αN
πθ e

v0/M
R
du

v0R
0

dv vN−1e−v(|n−n′|+1)/M

≤ αN∆M
N

πθ(|n−n′|+1)N
ev0/M

v0(|n−n′|+1)/MR
0

dx xN−1e−x

≤ αN∆M
N

πθ(|n−n′|+1)N
ev0/M

∞R
0

dx xN−1e−x =
αNM

NΓ (N)
πθ(|n−n′|+1)N

ev0/M .

(82)
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(iii) Replace q by 2q at point (i) and and replace N by 2N at point (ii) and take the

product of Eqs. 11 and 12 to obtain:

|〈n, α|φ(H+)|n′, β〉|2 ≤ A(2q)B2N
e−2q(n1+n′1)

(|n− n′|+ 1)2N
. (83)

The statement follows because we can replace |n− n′| by |n2 − n′2| any time.

6.3 Proof of Proposition 3.

Proof. (i) We will show that the Hilbert-Schmidt norms are uniformly bounded:

‖(UΓ − I)πΓ (n)‖2HS = Tr{πΓ (n)(U∗Γ − I)(UΓ − I)πΓ (n)}. (84)

Since

(U∗Γ − I)(UΓ − I) = (e2πiF (HΓ ) − 1)(e−2πiF (HΓ ) − 1) (85)

and the function (e2πiF (x) − 1)(e−2πiF (x) − 1) is smooth and with support in the

interval [E− + δ, E+ − δ], we can apply Proposition 2 to conclude at this step that

〈n, α|(U∗Γ − I)(UΓ − I)|n′, β〉 ≤ A(q)e−q(n1+n′1). (86)

Then
Tr{πΓ (n)(U∗Γ − I)(UΓ − I)πΓ (n)}

=
P

n1>γn,α
〈n, α|(U∗Γ − I)(UΓ − I)|n, α〉

≤ K
P

n1>γn

A(q)e−2qn1

≤ K
P

n1>−D
A(q)e−2qn1 ≤ ∞.

(87)

(ii)

‖πΓ (n)(UΓ − I)πΓ (n′)‖2HS

= Tr{πΓ (n′)(U∗Γ − I)πΓ (n)(UΓ − I)πΓ (n′)}

=
P

n1>γn

P
n′1>γn′

P
α,β
|〈(n1, n), α|(UΓ − I)|(n′1, n′), β〉|2

(88)

and by applying Proposition 2 point (iii) we have

‖πΓ (n)(UΓ − I)πΓ (n′)‖2HS

≤ K2 P
n1>γn

P
n′1>γn′

AN (q)2 e−2q(n1+n′1)

(|n−n′|+1)2N

≤ K2

(|n−n′|+1)2N

 P
n1>−D

AN (q)e−qn1

!2

.

(89)

(iii) We proceed as follows.

‖[ΣΓ , UΓ ]‖2HS =
P
n,n′
‖πΓ (n)[ΣΓ , UΓ ]πΓ (n′)‖2HS

=
P

n·n′≤0
‖πΓ (n)(Uω − I)πΓ (n′)‖2HS =

P
n·n′≤0

KΓ (n, n′).
(90)
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In the last two sums, we must exclude the term n=n′=0. If we take N > 3 at point

(ii), the final sum is convergent and uniformly bounded.

(iv) We use the following equivalent expression for the commutator [ŷΓ , UΓ ]:

[ŷΓ , UΓ ] =
P
n,n′

(n− n′)πΓ (n)(UΓ − I)πΓ (n′) (91)

to obtain:

‖[ŷΓ , UΓ ]πΓ (n)‖2HS =
P
n′
|n− n′|2‖πΓ (n)(UΓ − I)πΓ (n′)‖2HS

=
P
n′
|n− n′|2KΓ (n, n′).

(92)

If we take N > 3 at point (ii), the final sum is convergent and uniformly bounded.

6.4 Proof of Proposition 4.

Proof. Let π(M) =
MP
−M

πΓ (n). Then πΓ (0)AΓπ(M)BΓπΓ (0) are trace class and

R
dΓ Tr{πΓ (0)AΓπ(M)BΓπΓ (0)}

=
R
dΓ

MP
n=−M

Tr{πΓ (0)AΓπΓ (n)BΓπΓ (0)}

=
R
dΓ

MP
n=−M

Tr{πΓ (n)BΓπΓ (0)AΓπΓ (n)}

(93)

At this point we use the invariance of the trace (on trace class operators) under the

unitary transformations to continue:

. . . =
R
dΓ

MP
n=−M

Tr{unπΓ (n)BΓπΓ (0)AΓπΓ (n)u∗n}

=
R
dΓ

MP
n=−M

Tr{πtnΓ (0)BtnΓπtnΓ (n)AtnΓπtnΓ (0)}

=
R
dΓ

MP
n=−M

Tr{πΓ (0)BΓπΓ (n)AΓπΓ (0)}.

(94)

At the end of above argument we used the invariance of dΓ relative to the transforma-

tions tn. We then have thatR
dΓ Tr{πΓ (0)AΓπ(M)BΓπΓ (0)}

=
R
dΓ Tr{πΓ (0)BΓπ(M)AΓπΓ (0)},

(95)

and the affirmation follows by letting M go to infinity.
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