STRONG TIME OPERATORS ASSOCIATED WITH GENERALIZED HAMILTONIANS

FUMIO HIROSHIMA^{*†}, SOTARO KURIBAYASHI[‡] and Yasumichi Matsuzawa[§]

Abstract

Let the pair of operators, (H, T), satisfy the weak Weyl relation:

$$Te^{-itH} = e^{-itH}(T+t),$$

where H is self-adjoint and T is closed symmetric. Suppose that $g \in C^2(\mathbb{R} \setminus K)$ for some $K \subset \mathbb{R}$ with Lebesgue measure zero and that $\lim_{|\lambda|\to\infty} g(\lambda)e^{-\beta\lambda^2} = 0$ for all $\beta > 0$. Then we can construct a closed symmetric operator D such that (g(H), D) also obeys the weak Weyl relation.

1 Weak Weyl relation and strong time operators

1.1 Introduction

The energy of a quantum system can be realized as a self-adjoint operator on some Hilbert space, whereas time t is treated as a parameter, and not intuitively as an operator. So, since the foundation of quantum mechanics, the energy-time uncertainty relation has had a different basis than that underlying the position-momentum uncertainty relation.

Let Q be the multiplication operator defined by (Qf)(x) = xf(x) with maximal domain $D(Q) = \{f \in L^2(\mathbb{R}) | \int |x|^2 f(x)^2 dx < \infty\}$ and let P = -id/dx be the weak derivative with domain $H^1(\mathbb{R})$. In quantum mechanics, the position operator Q and the

^{*}F.H. thanks for Grant-in-Aid for Science Research (B) 20340032 from JSPS for financial support.

[†]Graduate School of Mathematics, Kyushu University 812-8581, Fukuoka, Japan

 $^{^{\}ddagger}\mathrm{Graduate}$ School of Mathematics, Kyushu University 812-8581, Fukuoka, Japan

[§]Department of Mathematics, Hokkaido University, Sapporo, 060-0810, Japan

momentum operator P in $L^2(\mathbb{R})$ obey the Weyl relation: $e^{-isP}e^{-itQ} = e^{-ist}e^{-itQ}e^{-isP}$ for $s, t \in \mathbb{R}$. From this we can derive the so-called weak Weyl relation:

$$Qe^{-itP} = e^{-itP}(Q+t), \quad t \in \mathbb{R},$$
(1.1)

and moreover the canonical commutation relation [P, Q] = -iI also holds. The strong time operator T is defined as an operator satisfying (1.1) with Q and P replaced by T and the Hamiltonian H of the quantum system under consideration, respectively.

More precisely, we explain the weak Weyl relation (1.1) as follows. Let \mathscr{H} be a Hilbert space over the complex field \mathbb{C} . We denote by D(L) the domain of an operator L. We say that the pair (H, T) consisting of a self-adjoint operator H and a symmetric operator T on \mathscr{H} obeys the weak Weyl relation if and only if, for all $t \in \mathbb{R}$,

(1)
$$e^{-itH} D(T) \subset D(T);$$

(2)
$$Te^{-itH}\Phi = e^{-itH}(T+t)\Phi$$
 for $\Phi \in D(T)$

Here T is referred to as a strong time operator associated with H and we denote it by T_H for T. Note that a strong time operator is not unique. Although from the weak Weyl relation it follows that $[H, T_H] = -iI$, the converse is not true; a pair (A, B) satisfying [A, B] = -iI does not necessarily obey the Weyl relation or the weak Weyl relation. If T_H is self-adjoint, then it is known that

$$e^{-isT_{H}}e^{-itH} = e^{-ist}e^{-itH}e^{-isT_{H}}$$
(1.2)

holds. In particular when Hilbert space \mathscr{H} is separable, by the von Neumann uniqueness theorem the Weyl relation (1.2) implies that H and T_H are unitarily equivalent to $\oplus^n P$ and $\oplus^n Q$ with some n, respectively. This asserts that any strong time operators associated with a semibounded H on a separable Hilbert space are symmetric non-self-adjoint. These facts may implicitly suggest that strong time operators are not "observable".

A time operator but not necessarily strong associated with a self-adjoint operator H is defined as an operator T for which [H, T] = -iI. As was mentioned above, although a strong time operator is automatically a time operator, the converse is not true. For example there is no strong time operator associated with the harmonic oscillator $\frac{1}{2}(P^2 + \omega^2 Q^2)$, whereas its time operator is formally given by

$$\frac{1}{2\omega}(\arctan(\omega P^{-1}Q) + \arctan(\omega QP^{-1})).$$

See e.g. [AM08-b, Gal02, Gal04, LLH96, Dor84, Ros69]. The concept of time operators was derived in the framework for the energy-time uncertainty relation in [KA94]. See also e.g. [Fuj80, FWY80, GYS81-1, GYS81-2]. A strong connection with the decay of survival probability was pointed out by [Miy01], where the weak Weyl relation was introduced and then strong time operators were discussed. Moreover it was drastically generalized in [Ara05] and some uniqueness theorems are established in [Ara08].

This paper is inspired by [Miy01, Section VII] and [AM08-a]. In particular Arai and Matsuzawa [AM08-a] developed machinery for reconstructing a pair of operators obeying the weak Weyl relation from a given pair (H, T_H) ; in particular, they constructed a strong time operator associated with $\log |H|$. The main result of the paper is an extension of this work and we derive a time operator associated with general Hamiltonian g(H).

1.2 Description of the main results

By (1.1) the strong time operator T_P associated with P is unique and is given by

$$T_P = Q. \tag{1.3}$$

For the self-adjoint operator $(1/2)P^2$ in $L^2(\mathbb{R})$, it is established that

$$T_{(1/2)P^2} = \frac{1}{2}(P^{-1}Q + QP^{-1})$$
(1.4)

is an associated strong time operator referred to as the Aharonov-Bohm operator. Comparing (1.3) with (1.4) we arrive at

$$T_{(1/2)P^2} = \frac{1}{2} \left(f'(P)^{-1} T_P + T_P f'(P)^{-1} \right), \qquad (1.5)$$

where $f(\lambda) = (1/2)\lambda^2$. We wish to extend formula (1.5) for more general f's and for any (H, T_H) .

More precisely let g be some Borel measurable function from \mathbb{R} to \mathbb{R} . We want to construct a map $\mathscr{T}(g)$ such that $\mathscr{T}(g)T_H = T_{g(H)}$ and to show that

$$T_{g(H)} = \frac{1}{2} (g'(H)^{-1} T_H + T_H g'(H)^{-1}).$$

We denote the set of n times continuously differentiable functions on $\Omega \subset \mathbb{R}$ with compact support by $C_0^n(\Omega)$. Throughout, we suppose that the following assumptions hold. **Assumption 1.1** (H,T) obeys the weak Weyl relation and T is a closed symmetric operator.

Note that if (H, T) satisfies the weak Weyl relation, then so does (H, \overline{T}) .

Assumption 1.2 (1) $g \in C^2(\mathbb{R} \setminus K)$ for some $K \subset \mathbb{R}$ with Lebesgue measure zero; (2) The Lebesgue measure of the set of zero points $\{\lambda \in \mathbb{R} \setminus K | g'(\lambda) = 0\}$ is zero; (3) $\lim_{|\lambda| \to \infty} g(\lambda) e^{-\beta\lambda^2} = 0$ for all $\beta > 0$.

We fix (H,T), $K \subset \mathbb{R}$ and $g \in C^2(\mathbb{R} \setminus K)$ in what follows. For a measurable function ρ , $\rho(H)$ is defined by $\rho(H) = \int \rho(\lambda) dE_{\lambda}$ for the spectral resolution E_{λ} of H. Let Z be the set of singular points of 1/g':

$$Z = \{\lambda \in \mathbb{R} \setminus K | g'(\lambda) = 0\} \cup K,$$

which has Lebesgue measure zero. Define the dense subspace $X_n^{\mathscr{D}}$, $0 \leq n \leq \infty$, $\mathscr{D} \subset \mathscr{H}$, in \mathscr{H} by

$$X_n^{\mathscr{D}} = \text{L.H.}\{\rho(H)\phi|\rho \in C_0^n(\mathbb{R} \setminus Z), \phi \in \mathscr{D}\},\tag{1.6}$$

where L.H.{ \cdots } denotes the linear hull of { \cdots } and $C_0^0 = C_0$. The next proposition is fundamental.

Proposition 1.3 [Ara05] Let $f \in C^1(\mathbb{R})$ and let both f and f' be bounded. Then $f(H)D(T) \subset D(T)$ and

$$Tf(H)\phi = f(H)T\phi + if'(H)\phi, \quad \phi \in \mathcal{D}(T).$$
(1.7)

PROOF: First suppose that $f \in C_0^{\infty}(\mathbb{R})$. Let \check{f} denote the inverse Fourier transform of f. Then for $\psi \in D(T)$,

$$(T\psi, f(H)\phi) = (2\pi)^{-1/2} \int_{\mathbb{R}} (T\psi, e^{-i\lambda H}\phi)\check{f}(\lambda)d\lambda$$

= $(2\pi)^{-1/2} \int_{\mathbb{R}} \check{f}(\lambda)(\psi, e^{-i\lambda H}(T+\lambda)\phi)d\lambda = (\psi, (f(H)T+if'(H))\phi).$

So (1.7) follows for $f \in C_0^{\infty}(\mathbb{R})$. By a limiting argument on f and the fact that T is closed, (1.7) follows for $f \in C^1(\mathbb{R})$ such that f and f' are bounded. **qed**

This proposition suggests that *informally*

$$Te^{-itg(H)}\phi = e^{-itg(H)}T\phi + tg'(H)e^{-itg(H)}\phi$$

Time operators

and then $Tg'(H)^{-1}e^{-itg(H)}\phi = e^{-itg(H)}(Tg'(H)^{-1} + t)\phi$. Symmetrizing $Tg'(H)^{-1}$, we expect that a strong time operator associated with g(H) will be given by

$$T_{g(H)} = \frac{1}{2} (g'(H)^{-1}T + Tg'(H)^{-1}).$$
(1.8)

In order to establish (1.8), the remaining problem is to check the domain argument and to extend Proposition 1.3 for unbounded f and f'.

Lemma 1.4 It follows that

(1) $T: X_n^{\mathcal{D}(T)} \to X_{n-1}^{\mathscr{H}} \text{ for } 1 \le n \le \infty.$ (2) $g'(H)^{-1}: \begin{cases} X_n^{\mathscr{D}} \to X_1^{\mathscr{D}}, & 1 \le n \le \infty, \\ X_0^{\mathscr{D}} \to X_0^{\mathscr{D}}, & n = 0, \end{cases} \text{ for any } \mathscr{D} \subset \mathscr{H}.$

PROOF: Let $\Phi = \rho(H)\phi \in X_n^{D(T)}$. By Proposition 1.3, $\Phi \in D(T)$ and we have $T\Phi = i\rho'(H)\phi + \rho(H)T\phi$. Then (1) follows. Note that $\rho/g' \in C_0^1(\mathbb{R} \setminus K)$ for $\rho \in C_0^n(\mathbb{R} \setminus K)$ with $n \ge 1$, and $\rho/g' \in C_0(\mathbb{R} \setminus Z)$ for $\rho \in C_0(\mathbb{R} \setminus K)$. Then (2) follows. qed

Define the symmetric operator \widetilde{D} by

$$\widetilde{D} = \frac{1}{2} (g'(H)^{-1}T + Tg'(H)^{-1}) \bigg|_{X_1^{\mathcal{D}(T)}}.$$
(1.9)

 \widetilde{D} is well defined by Lemma 1.4. Since the domain of the adjoint of \widetilde{D} includes the dense subspace $X_1^{\mathcal{D}(T)}$, then \widetilde{D} is closable. We define

$$D = \frac{1}{2} \overline{(g'(H)^{-1}T + Tg'(H)^{-1})} \Big|_{X_1^{\mathrm{D}(T)}}.$$
 (1.10)

The main theorem is as follows.

Theorem 1.5 Suppose Assumptions 1.1 and 1.2. Then (g(H), D) obeys the weak Weyl relation.

Example 1.6 Examples of strong time operators are as follows:

- (1) g is a polynomial.
- (2) Let $g(\lambda) = \log |\lambda|$. Then a strong time operator associated with $\log |H|$ is

$$\frac{1}{2}\overline{(HT+TH)}\big\lceil_{X_1^{\mathcal{D}(T)}}.$$

This time operator is derived in [AM08-a].

(3) Let (H,T) = (P,Q) and $g(\lambda) = \sqrt{\lambda^2 + m^2}$, $m \ge 0$. Then a strong time operator associated with $H(P) = \sqrt{P^2 + m^2}$ is

$$\frac{1}{2}\overline{\left(H(P)P^{-1}Q+QP^{-1}H(P)\right)\left[_{\mathcal{D}(X_{1}^{\mathcal{D}(Q)})}\right]}.$$

H(P) is a semi-relativistic Schrödinger operator.

(4) Strong time operators associated with (3) and P² can be generalized. Let H_α(P) = (P² + m²)^{α/2}, α ∈ ℝ \ {0}. Then a strong time operator associated with H_α(P) is given by

$$\frac{1}{2\alpha}\overline{((P^2+m^2)P^{-1}H_{\alpha}(P)^{-1}Q+QH_{\alpha}(P)^{-1}P^{-1}(P^2+m^2))} \Big|_{\mathcal{D}(X_1^{\mathcal{D}(Q)})}\Big|_$$

2 Proof of Theorem 1.5

In order to prove Theorem 1.5 we approximate g with some bounded functions. Define

$$g_{\beta}(\lambda) = g(\lambda)e^{-\beta\lambda^2}, \quad \beta \ge 0.$$
 (2.1)

Lemma 2.1 Let $\Phi \in X_1^{D(T)}$. Then for sufficiently small $\beta \ge 0$ (β possibly depending on Φ),

- (1) $\Phi \in D(g'_{\beta}(H)^{-1})$ and $g'_{\beta}(H)^{-1}\Phi \in D(T);$
- (2) $e^{-itg_{\beta}(H)}g'_{\beta}(H)^{-1}\Phi \in D(T);$
- (3) $T\Phi \in D(g'_{\beta}(H)^{-1});$
- (4) $e^{-itg_{\beta}(H)}\Phi \in D(T)$ and $Te^{-itg_{\beta}(H)}\Phi \in D(g'_{\beta}(H)^{-1}).$

PROOF: Let $\Phi = \rho(H)\phi \in X_1^{D(T)}$ with $\rho \in C_0^1(\mathbb{R} \setminus Z)$ and $\phi \in D(T)$. Put $\mathscr{K} = \operatorname{supp}\rho$. Note that $Z \not\subset \mathscr{K}$. Then in the case of $\beta = 0$, g'_{β} has no zero point on \mathscr{K} . We have

$$m < \inf_{\lambda \in \mathscr{K}} |g'(\lambda)| \le \sup_{\lambda \in \mathscr{K}} |g'(\lambda)| < M$$

for some m > 0 and M > 0. Let $Z_{\beta} = \{\lambda \in \mathbb{R} \setminus K | g'_{\beta}(\lambda) = 0\}$. Let $a \in Z_{\beta}$. Then $g'(a)/a = 2\beta$ from the definition of g_{β} . However $\inf_{\lambda \in \mathscr{K}} |g'(\lambda)/\lambda| > c$ for some c > 0. Thus for β such that

$$0 < \beta < c/2, \tag{2.2}$$

Time operators

 g'_{β} has no zero points in \mathscr{K} . Hence $\rho/g'_{\beta} \in C^{1}_{0}(\mathbb{R} \setminus Z)$ and then $\Phi \in D(g'_{\beta}(H)^{-1})$. By Lemma 1.3, $g'_{\beta}(H)^{-1}\Phi = g'_{\beta}(H)^{-1}\rho(H)\phi \in D(T)$ if (2.2) holds, and (1) follows.

We can also see that $e^{-itg_{\beta}}\rho/g'_{\beta} \in C_0^1(\mathbb{R} \setminus Z)$ and that its derivative is bounded if (2.2) holds. Then $e^{-itg_{\beta}(H)}g'_{\beta}(H)^{-1}\Phi \in D(T)$ follows by Lemma 1.3 and (2) follows.

Since $T\rho(H)\phi = i\rho'(H)\phi + \rho(H)T\phi$, $\rho, \rho' \in C_0^1(\mathbb{R} \setminus Z)$ and $\rho/g_\beta, \rho'/g_\beta \in C_0^1(\mathbb{R} \setminus Z)$, we have $T\Phi \in D(g'_\beta(H)^{-1})$ if (2.2) holds, and (3) follows.

Finally we show (4). Since $h = e^{-itg_{\beta}}\rho \in C_0^1(\mathbb{R} \setminus Z)$ and its derivative is bounded, $e^{-itg_{\beta}(H)}\Phi \in D(T)$ and $Th(H)\phi = ih'(H)\phi + h(H)T\phi$ follows. Here $h' \in C_0(\mathbb{R} \setminus Z)$. From this we have $Th(H)\phi \in D(g'_{\beta}(H)^{-1})$. qed

Define

$$D_{\beta} = \frac{1}{2} (g_{\beta}'(H)^{-1}T + Tg_{\beta}'(H)^{-1}).$$

Note that for each $\Phi \in X_1^{D(T)}$, by taking sufficiently small β , we can see that $\Phi \in D(D_\beta)$.

Lemma 2.2 Let $\Phi \in X$. Then for sufficiently small β (possibly depending on Φ),

$$D_{\beta}e^{-itg_{\beta}(H)}\Phi = e^{-itg_{\beta}(H)}(D_{\beta} + t)\Phi.$$

PROOF: We divide the proof into three steps.

(Step 1)

$$Te^{-itg_{\beta}(H)}g'_{\beta}(H)^{-1}\Phi = e^{-itg_{\beta}(H)}(Tg'_{\beta}(H)^{-1} + t)\Phi.$$
(2.3)

Proof: From Lemma 1.3 it follows that $e^{-itg_{\beta}(H)}D(T) \subset D(T)$ and

$$Te^{-itg_{\beta}(H)}\Phi = e^{-itg_{\beta}(H)}(T + tg'_{\beta}(H))\Phi.$$
 (2.4)

Since we have already shown in the previous lemmas that $\Phi \in D(g'_{\beta}(H)^{-1})$ and $g'_{\beta}(H)^{-1}\Phi \in D(e^{-itg_{\beta}(H)}T) \cap D(Te^{-itg_{\beta}(H)})$, we can substitute $g'_{\beta}(H)^{-1}\Phi$ for Φ in (2.4). Then (2.3) follows.

(Step 2)

$$g'_{\beta}(H)^{-1}Te^{-itg_{\beta}(H)}\Phi = e^{-itg_{\beta}(H)}g'_{\beta}(H)^{-1}T\Phi + te^{-itg_{\beta}(H)}\Phi.$$
 (2.5)

Proof: Let $\Phi \in X_1^{D(T)}$ and $\Psi \in X_1^{D(T)}$. (2.3) implies that

$$(\Phi, Te^{-itg_{\beta}(H)}g'_{\beta}(H)^{-1}\Psi - e^{-itg_{\beta}(H)}Tg'_{\beta}(H)^{-1}\Psi) = t(\Phi, e^{-itg_{\beta}(H)}\Psi).$$

By Lemma 1.4, we can take the adjoint of both sides above. Then (2.5) follows if we transform t to -t.

(Step3) Combining (2.3) and (2.5), we have the lemma. qed

Time operators

Lemma 2.3 Let $\Phi \in X_1^{D(T)}$. Then $e^{itg(H)}\Phi \in D(T)$ and

$$De^{-itg(H)}\Phi = e^{-itg(H)}(D+t)\Phi.$$
 (2.6)

PROOF: It is enough to show that

$$g'_{\beta}(H)^{-1}Te^{-itg_{\beta}(H)}\Phi \to g'(H)^{-1}Te^{-itg(H)}\Phi,$$
 (2.7)

$$Tg'_{\beta}(H)^{-1}e^{-itg_{\beta}(H)}\Phi \to Tg'(H)^{-1}e^{-itg(H)}\Phi,$$
 (2.8)

$$e^{-itg_{\beta}(H)}g'_{\beta}(H)^{-1}T\Phi \to e^{-itg(H)}g'(H)^{-1}T\Phi,$$
 (2.9)

$$e^{-itg_{\beta}(H)}Tg'_{\beta}(H)^{-1}\Phi \to e^{-itg(H)}Tg'(H)^{-1}\Phi$$
 (2.10)

strongly as $\beta \to 0$. Let $h_{\beta} = e^{-itg_{\beta}} \rho \in C_0^1(\mathbb{R} \setminus Z)$. Then

$$g'_{\beta}(H)^{-1}Th_{\beta}(H)\phi = g'_{\beta}(H)^{-1}(ih'_{\beta}(H) + h_{\beta}(H)T)\Phi.$$

We have

$$\|g_{\beta}'(H)^{-1}h_{\beta}'(H)\phi - g'(H)^{-1}h_{0}'(H)\phi\|^{2} = \int_{\mathbb{R}} \left|\frac{h_{\beta}'(\lambda)}{g_{\beta}'(\lambda)} - \frac{h_{0}'(\lambda)}{g'(\lambda)}\right|^{2} d\|E_{\lambda}\phi\|^{2} \to 0,$$

$$\|g_{\beta}'(H)^{-1}h_{\beta}(H)T\phi - g'(H)^{-1}h_{0}(H)T\phi\|^{2} = \int_{\mathbb{R}} \left|\frac{h_{\beta}(\lambda)}{g_{\beta}'(\lambda)} - \frac{h_{0}(\lambda)}{g'(\lambda)}\right|^{2} d\|E_{\lambda}T\phi\|^{2} \to 0.$$

as $\beta \to 0$ by dominated convergence. Thus (2.7) follows.

Let $k_{\beta} = e^{-itg_{\beta}}\rho/g'_{\beta} \in C^1_0(\mathbb{R} \setminus Z)$. Then

$$Tg'_{\beta}(H)^{-1}e^{-itg_{\beta}(H)}\rho(H)\phi = ik'_{\beta}(H)\phi + k_{\beta}(H)T\phi.$$

We have

$$\|k_{\beta}'(H)\phi - k_{0}'(H)\phi\|^{2} = \int_{\mathbb{R}} |k_{\beta}'(\lambda) - k_{0}'(\lambda)|^{2} d\|E_{\lambda}\phi\|^{2} \to 0,$$

$$\|k_{\beta}(H)T\phi - k_{0}(H)T\phi\|^{2} = \int_{\mathbb{R}} |k_{\beta}(\lambda) - k_{0}(\lambda)|^{2} d\|E_{\lambda}T\phi\|^{2} \to 0.$$

as $\beta \to 0$. Thus (2.8) follows. (2.9) is trivial to see.

Finally we show (2.10). Let $l_{\beta} = \rho/g'_{\beta} \in C_0^1(\mathbb{R} \setminus Z)$. Then

$$e^{-itg_{\beta}(H)}Tg'_{\beta}(H)^{-1}\Phi = e^{-itg_{\beta}(H)}(il'_{\beta}(H) + l_{\beta}T)\phi.$$

Then

$$\|e^{-itg_{\beta}}l_{\beta}'(H)\phi - e^{-itg(H)}l_{0}'(H)\phi\|^{2} = \int_{\mathbb{R}} |e^{-itg_{\beta}(\lambda)}l_{\beta}'(\lambda) - e^{-itg(\lambda)}l_{0}'(\lambda)|^{2}d\|E_{\lambda}\phi\|^{2} \to 0,$$

$$\|e^{-itg_{\beta}}l_{\beta}(H)T\phi - e^{-itg(H)}l_{0}(H)T\phi\|^{2} = \int_{\mathbb{R}} |e^{-itg_{\beta}(\lambda)}l_{\beta}(\lambda) - e^{-itg(\lambda)}l_{0}(\lambda)|^{2}d\|E_{\lambda}T\phi\|^{2} \to 0.$$

as $\beta \to 0$. Thus the proof is complete.

Proof of Theorem 1.5:

Let $\Phi \in D(D)$. There exists $\Phi_n \in X_1^{D(T)}$ such that $\Phi_n \to \Phi$ and $D\Phi_n \to D\Phi$ as $n \to \infty$ strongly. By Lemma 2.3, for each Φ_n , $De^{-itg(H)}\Phi_n = e^{-itg(H)}(D+t)\Phi_n$ holds. Since D is closed, the theorem follows by a limiting argument. **qed**

Acknowledgments: We thank A. Arai for helpful comments and careful reading of the first manuscript.

References

- [Ara05] A. Arai, Generalized weak Weyl relation and decay of quantum dynamics, *Rev. Math. Phys.* 17 (2005), 1071–1109.
- [Ara08] A. Arai, On the uniqueness of weak Weyl representations of the canonical commutation relation, to be published in *Lett. Math. Phys.*
- [AM08-a] A. Arai and Y. Matsuzawa, Construction of a Weyl representation from a weak Weyl representation of the canonical commutation relation, *Lett. Math. Phys.* 83 (2008), 201-211.
- [AM08-b] A. Arai and Y. Matsuzawa, Time operators of a Hamiltonian with purely discrete spectrum, to be published in *Rev. Math. Phys.*
- [Gal02] E. A. Galapon, Self-adjoint time operator is the rule for discrete semi-bounded Hamiltonians, Proc. R. Soc. Lond. A 458 (2002), 2671–2689.
- [Gal04] E. A. Galapon, R. F. Caballar and R. T. Bahague Jr, Confined quantum time of arrivals, *Phys. Rev. Lett.*93 (2004), 180406.
- [Dor84] G. Dorfmeister and J. Dorfmeister, Classification of certain pairs of operators (P, Q) satisfying [P, Q] = -iId, J. Funct. Anal. 57 (1984), 301–328.
- [Fuj80] I. Fujiwara, Rational construction and physical signification of the quantum time operator, Prog. Theor. Phys. 64 (1980), 18–27.
- [FWY80] I. Fujiwara, K. Wakita and H. Yoro, Explicit construction of time-energy uncertainty relationship in quantum mechanics, Prog. Theor. Phys. 64 (1980), 363–379.
- [GYS81-1] T. Goto, K. Yamaguchi and N. Sudo, On the time operator in quantum mechanics, Prog. Theor. Phys. 66 (1981), 1525–1538.
- [GYS81-2] T. Goto, K. Yamaguchi and N. Sudo, On the time opertor in quantum mechanics. II, Prog. Theor. Phys. 66 (1981), 1915–1925.
- [KA94] D. H. Kobe and V. C. Aguilera-Navarro, Derivation of the energy-time uncertainty relation. *Phys. Rev.* A 50 (1994), 933 - 938.

- [LLH96] H. R. Lewis, W. E. Laurence and J. D. Harris, Quantum action-angle variables for the harmonic oscillator, Phys. Rev. Lett. 26 (1996), 5157-5159.
- [Miy01] M. Miyamoto, A generalised Weyl relation approach to the time operator and its connection to the survival probability, J. Math. Phys. 42 (2001), 1038–1052.
- [Ros69] D. M. Rosenbaum, Super Hilbert space and the quamntum-mechanical time operators, J. Math. Phys.19 (1969), 1127–1144.