Strong time operators associated with generalized Hamiltonians

Fumio Hiroshima* ${ }^{*}$, Sotaro Kuribayashi ${ }^{\ddagger}$ and Yasumichi Matsuzawa ${ }^{\S}$

Abstract

Let the pair of operators, (H, T), satisfy the weak Weyl relation: $$
T e^{-i t H}=e^{-i t H}(T+t),
$$ where H is self-adjoint and T is closed symmetric. Suppose that $g \in C^{2}(\mathbb{R} \backslash K)$ for some $K \subset \mathbb{R}$ with Lebesgue measure zero and that $\lim _{|\lambda| \rightarrow \infty} g(\lambda) e^{-\beta \lambda^{2}}=0$ for all $\beta>0$. Then we can construct a closed symmetric operator D such that $(g(H), D)$ also obeys the weak Weyl relation.

1 Weak Weyl relation and strong time operators

1.1 Introduction

The energy of a quantum system can be realized as a self-adjoint operator on some Hilbert space, whereas time t is treated as a parameter, and not intuitively as an operator. So, since the foundation of quantum mechanics, the energy-time uncertainty relation has had a different basis than that underlying the position-momentum uncertainty relation.

Let Q be the multiplication operator defined by $(Q f)(x)=x f(x)$ with maximal domain $\mathrm{D}(Q)=\left\{\left.f \in L^{2}(\mathbb{R})\left|\int\right| x\right|^{2} f(x)^{2} d x<\infty\right\}$ and let $P=-i d / d x$ be the weak derivative with domain $H^{1}(\mathbb{R})$. In quantum mechanics, the position operator Q and the

[^0]momentum operator P in $L^{2}(\mathbb{R})$ obey the Weyl relation: $e^{-i s P} e^{-i t Q}=e^{-i s t} e^{-i t Q} e^{-i s P}$ for $s, t \in \mathbb{R}$. From this we can derive the so-called weak Weyl relation:
\[

$$
\begin{equation*}
Q e^{-i t P}=e^{-i t P}(Q+t), \quad t \in \mathbb{R} \tag{1.1}
\end{equation*}
$$

\]

and moreover the canonical commutation relation $[P, Q]=-i I$ also holds. The strong time operator T is defined as an operator satisfying (1.1) with Q and P replaced by T and the Hamiltonian H of the quantum system under consideration, respectively.

More precisely, we explain the weak Weyl relation (1.1) as follows. Let \mathscr{H} be a Hilbert space over the complex field \mathbb{C}. We denote by $\mathrm{D}(L)$ the domain of an operator L. We say that the pair (H, T) consisting of a self-adjoint operator H and a symmetric operator T on \mathscr{H} obeys the weak Weyl relation if and only if, for all $t \in \mathbb{R}$,
(1) $e^{-i t H} \mathrm{D}(T) \subset \mathrm{D}(T)$;
(2) $T e^{-i t H} \Phi=e^{-i t H}(T+t) \Phi$ for $\Phi \in \mathrm{D}(T)$.

Here T is referred to as a strong time operator associated with H and we denote it by T_{H} for T. Note that a strong time operator is not unique. Although from the weak Weyl relation it follows that $\left[H, T_{H}\right]=-i I$, the converse is not true; a pair (A, B) satisfying $[A, B]=-i I$ does not necessarily obey the Weyl relation or the weak Weyl relation. If T_{H} is self-adjoint, then it is known that

$$
\begin{equation*}
e^{-i s T_{H}} e^{-i t H}=e^{-i s t} e^{-i t H} e^{-i s T_{H}} \tag{1.2}
\end{equation*}
$$

holds. In particular when Hilbert space \mathscr{H} is separable, by the von Neumann uniqueness theorem the Weyl relation (1.2) implies that H and T_{H} are unitarily equivalent to $\oplus^{n} P$ and $\oplus^{n} Q$ with some n, respectively. This asserts that any strong time operators associated with a semibounded H on a separable Hilbert space are symmetric non-self-adjoint. These facts may implicitly suggest that strong time operators are not "observable".

A time operator but not necessarily strong associated with a self-adjoint operator H is defined as an operator T for which $[H, T]=-i I$. As was mentioned above, although a strong time operator is automatically a time operator, the converse is not true. For example there is no strong time operator associated with the harmonic oscillator $\frac{1}{2}\left(P^{2}+\omega^{2} Q^{2}\right)$, whereas its time operator is formally given by

$$
\frac{1}{2 \omega}\left(\arctan \left(\omega P^{-1} Q\right)+\arctan \left(\omega Q P^{-1}\right)\right)
$$

See e.g. [AM08-b, Gal02, Gal04, LLH96, Dor84, Ros69]. The concept of time operators was derived in the framework for the energy-time uncertainty relation in [KA94]. See also e.g. [Fuj80, FWY80, GYS81-1, GYS81-2]. A strong connection with the decay of survival probability was pointed out by [Miy01], where the weak Weyl relation was introduced and then strong time operators were discussed. Moreover it was drastically generalized in [Ara05] and some uniqueness theorems are established in [Ara08].

This paper is inspired by [Miy01, Section VII] and [AM08-a]. In particular Arai and Matsuzawa [AM08-a] developed machinery for reconstructing a pair of operators obeying the weak Weyl relation from a given pair $\left(H, T_{H}\right)$; in particular, they constructed a strong time operator associated with $\log |H|$. The main result of the paper is an extension of this work and we derive a time operator associated with general Hamiltonian $g(H)$.

1.2 Description of the main results

By (1.1) the strong time operator T_{P} associated with P is unique and is given by

$$
\begin{equation*}
T_{P}=Q \tag{1.3}
\end{equation*}
$$

For the self-adjoint operator $(1 / 2) P^{2}$ in $L^{2}(\mathbb{R})$, it is established that

$$
\begin{equation*}
T_{(1 / 2) P^{2}}=\frac{1}{2}\left(P^{-1} Q+Q P^{-1}\right) \tag{1.4}
\end{equation*}
$$

is an associated strong time operator referred to as the Aharonov-Bohm operator. Comparing (1.3) with (1.4) we arrive at

$$
\begin{equation*}
T_{(1 / 2) P^{2}}=\frac{1}{2}\left(f^{\prime}(P)^{-1} T_{P}+T_{P} f^{\prime}(P)^{-1}\right), \tag{1.5}
\end{equation*}
$$

where $f(\lambda)=(1 / 2) \lambda^{2}$. We wish to extend formula (1.5) for more general f 's and for any $\left(H, T_{H}\right)$.

More precisely let g be some Borel measurable function from \mathbb{R} to \mathbb{R}. We want to construct a map $\mathscr{T}(g)$ such that $\mathscr{T}(g) T_{H}=T_{g(H)}$ and to show that

$$
T_{g(H)}=\frac{1}{2}\left(g^{\prime}(H)^{-1} T_{H}+T_{H} g^{\prime}(H)^{-1}\right)
$$

We denote the set of n times continuously differentiable functions on $\Omega \subset \mathbb{R}$ with compact support by $C_{0}^{n}(\Omega)$. Throughout, we suppose that the following assumptions hold.

Assumption $1.1(H, T)$ obeys the weak Weyl relation and T is a closed symmetric operator.

Note that if (H, T) satisfies the weak Weyl relation, then so does (H, \bar{T}).
Assumption 1.2 (1) $g \in C^{2}(\mathbb{R} \backslash K)$ for some $K \subset \mathbb{R}$ with Lebesgue measure zero; (2) The Lebesgue measure of the set of zero points $\left\{\lambda \in \mathbb{R} \backslash K \mid g^{\prime}(\lambda)=0\right\}$ is zero; (3) $\lim _{|\lambda| \rightarrow \infty} g(\lambda) e^{-\beta \lambda^{2}}=0$ for all $\beta>0$.

We fix $(H, T), K \subset \mathbb{R}$ and $g \in C^{2}(\mathbb{R} \backslash K)$ in what follows. For a measurable function $\rho, \rho(H)$ is defined by $\rho(H)=\int \rho(\lambda) d E_{\lambda}$ for the spectral resolution E_{λ} of H. Let Z be the set of singular points of $1 / g^{\prime}$:

$$
Z=\left\{\lambda \in \mathbb{R} \backslash K \mid g^{\prime}(\lambda)=0\right\} \cup K
$$

which has Lebesgue measure zero. Define the dense subspace $X_{n}^{\mathscr{D}}, 0 \leq n \leq \infty, \mathscr{D} \subset \mathscr{H}$, in \mathscr{H} by

$$
\begin{equation*}
X_{n}^{\mathscr{D}}=\mathrm{L} . \mathrm{H} .\left\{\rho(H) \phi \mid \rho \in C_{0}^{n}(\mathbb{R} \backslash Z), \phi \in \mathscr{D}\right\}, \tag{1.6}
\end{equation*}
$$

where L.H. $\{\cdots\}$ denotes the linear hull of $\{\cdots\}$ and $C_{0}^{0}=C_{0}$. The next proposition is fundamental.

Proposition 1.3 [Ara05] Let $f \in C^{1}(\mathbb{R})$ and let both f and f^{\prime} be bounded. Then $f(H) \mathrm{D}(T) \subset \mathrm{D}(T)$ and

$$
\begin{equation*}
T f(H) \phi=f(H) T \phi+i f^{\prime}(H) \phi, \quad \phi \in \mathrm{D}(T) . \tag{1.7}
\end{equation*}
$$

Proof: First suppose that $f \in C_{0}^{\infty}(\mathbb{R})$. Let \check{f} denote the inverse Fourier transform of f. Then for $\psi \in \mathrm{D}(T)$,

$$
\begin{aligned}
(T \psi, f(H) \phi) & =(2 \pi)^{-1 / 2} \int_{\mathbb{R}}\left(T \psi, e^{-i \lambda H} \phi\right) \check{f}(\lambda) d \lambda \\
& =(2 \pi)^{-1 / 2} \int_{\mathbb{R}} \check{f}(\lambda)\left(\psi, e^{-i \lambda H}(T+\lambda) \phi\right) d \lambda=\left(\psi,\left(f(H) T+i f^{\prime}(H)\right) \phi\right)
\end{aligned}
$$

So (1.7) follows for $f \in C_{0}^{\infty}(\mathbb{R})$. By a limiting argument on f and the fact that T is closed, (1.7) follows for $f \in C^{1}(\mathbb{R})$ such that f and f^{\prime} are bounded.

This proposition suggests that informally

$$
T e^{-i t g(H)} \phi=e^{-i t g(H)} T \phi+t g^{\prime}(H) e^{-i t g(H)} \phi
$$

and then $T g^{\prime}(H)^{-1} e^{-i t g(H)} \phi=e^{-i t g(H)}\left(T g^{\prime}(H)^{-1}+t\right) \phi$. Symmetrizing $T g^{\prime}(H)^{-1}$, we expect that a strong time operator associated with $g(H)$ will be given by

$$
\begin{equation*}
T_{g(H)}=\frac{1}{2}\left(g^{\prime}(H)^{-1} T+T g^{\prime}(H)^{-1}\right) . \tag{1.8}
\end{equation*}
$$

In order to establish (1.8), the remaining problem is to check the domain argument and to extend Proposition 1.3 for unbounded f and f^{\prime}.

Lemma 1.4 It follows that
(1) $T: X_{n}^{\mathrm{D}(T)} \rightarrow X_{n-1}^{\mathscr{H}}$ for $1 \leq n \leq \infty$.
(2) $g^{\prime}(H)^{-1}:\left\{\begin{array}{ll}X_{n}^{\mathscr{D}} & \rightarrow X_{1}^{\mathscr{D}}, \\ X_{0}^{\mathscr{D}} \rightarrow X_{0}^{\mathscr{O}}, & 1 \leq n \leq \infty,\end{array} \quad\right.$ for any $\mathscr{D} \subset \mathscr{H}$.

Proof: Let $\Phi=\rho(H) \phi \in X_{n}^{\mathrm{D}(T)}$. By Proposition 1.3, $\Phi \in \mathrm{D}(T)$ and we have $T \Phi=$ $i \rho^{\prime}(H) \phi+\rho(H) T \phi$. Then (1) follows. Note that $\rho / g^{\prime} \in C_{0}^{1}(\mathbb{R} \backslash K)$ for $\rho \in C_{0}^{n}(\mathbb{R} \backslash K)$ with $n \geq 1$, and $\rho / g^{\prime} \in C_{0}(\mathbb{R} \backslash Z)$ for $\rho \in C_{0}(\mathbb{R} \backslash K)$. Then (2) follows.

Define the symmetric operator \widetilde{D} by

$$
\begin{equation*}
\widetilde{D}=\frac{1}{2}\left(g^{\prime}(H)^{-1} T+T g^{\prime}(H)^{-1}\right) \Gamma_{X_{1}^{\mathrm{D}(T)}} \tag{1.9}
\end{equation*}
$$

\widetilde{D} is well defined by Lemma 1.4. Since the domain of the adjoint of \widetilde{D} includes the dense subspace $X_{1}^{\mathrm{D}(T)}$, then \widetilde{D} is closable. We define

$$
\begin{equation*}
D=\frac{1}{2} \overline{\left(g^{\prime}(H)^{-1} T+T g^{\prime}(H)^{-1}\right) \Gamma_{X_{1}^{\mathrm{D}(T)}}} . \tag{1.10}
\end{equation*}
$$

The main theorem is as follows.
Theorem 1.5 Suppose Assumptions 1.1 and 1.2. Then $(g(H), D)$ obeys the weak Weyl relation.

Example 1.6 Examples of strong time operators are as follows:
(1) g is a polynomial.
(2) Let $g(\lambda)=\log |\lambda|$. Then a strong time operator associated with $\log |H|$ is

$$
\frac{1}{2} \overline{(H T+T H) \Gamma_{X_{1}^{\mathrm{D}(T)}}} .
$$

This time operator is derived in [AM08-a].
(3) Let $(H, T)=(P, Q)$ and $g(\lambda)=\sqrt{\lambda^{2}+m^{2}}, m \geq 0$. Then a strong time operator associated with $H(P)=\sqrt{P^{2}+m^{2}}$ is

$$
\frac{1}{2} \overline{\left(H(P) P^{-1} Q+Q P^{-1} H(P)\right) \Gamma_{\mathrm{D}\left(X_{1}^{\mathrm{D}(Q)}\right)}} .
$$

$H(P)$ is a semi-relativistic Schrödinger operator.
(4) Strong time operators associated with (3) and P^{2} can be generalized. Let $H_{\alpha}(P)=$ $\left(P^{2}+m^{2}\right)^{\alpha / 2}, \alpha \in \mathbb{R} \backslash\{0\}$. Then a strong time operator associated with $H_{\alpha}(P)$ is given by

$$
\frac{1}{2 \alpha} \overline{\left(\left(P^{2}+m^{2}\right) P^{-1} H_{\alpha}(P)^{-1} Q+Q H_{\alpha}(P)^{-1} P^{-1}\left(P^{2}+m^{2}\right)\right) \Gamma_{\mathrm{D}\left(X_{1}^{\mathrm{D}(Q)}\right)} .}
$$

2 Proof of Theorem 1.5

In order to prove Theorem 1.5 we approximate g with some bounded functions. Define

$$
\begin{equation*}
g_{\beta}(\lambda)=g(\lambda) e^{-\beta \lambda^{2}}, \quad \beta \geq 0 \tag{2.1}
\end{equation*}
$$

Lemma 2.1 Let $\Phi \in X_{1}^{\mathrm{D}(T)}$. Then for sufficiently small $\beta \geq 0$ (β possibly depending on Φ),
(1) $\Phi \in \mathrm{D}\left(g_{\beta}^{\prime}(H)^{-1}\right)$ and $g_{\beta}^{\prime}(H)^{-1} \Phi \in \mathrm{D}(T)$;
(2) $e^{-i t g_{\beta}(H)} g_{\beta}^{\prime}(H)^{-1} \Phi \in \mathrm{D}(T)$;
(3) $T \Phi \in \mathrm{D}\left(g_{\beta}^{\prime}(H)^{-1}\right)$;
(4) $e^{-i t g_{\beta}(H)} \Phi \in \mathrm{D}(T)$ and $T e^{-i t g_{\beta}(H)} \Phi \in \mathrm{D}\left(g_{\beta}^{\prime}(H)^{-1}\right)$.

Proof: Let $\Phi=\rho(H) \phi \in X_{1}^{\mathrm{D}(T)}$ with $\rho \in C_{0}^{1}(\mathbb{R} \backslash Z)$ and $\phi \in \mathrm{D}(T)$. Put $\mathscr{K}=\operatorname{supp} \rho$. Note that $Z \not \subset \mathscr{K}$. Then in the case of $\beta=0, g_{\beta}^{\prime}$ has no zero point on \mathscr{K}. We have

$$
m<\inf _{\lambda \in \mathscr{K}}\left|g^{\prime}(\lambda)\right| \leq \sup _{\lambda \in \mathscr{K}}\left|g^{\prime}(\lambda)\right|<M
$$

for some $m>0$ and $M>0$. Let $Z_{\beta}=\left\{\lambda \in \mathbb{R} \backslash K \mid g_{\beta}^{\prime}(\lambda)=0\right\}$. Let $a \in Z_{\beta}$. Then $g^{\prime}(a) / a=2 \beta$ from the definition of g_{β}. However $\inf _{\lambda \in \mathscr{K}}\left|g^{\prime}(\lambda) / \lambda\right|>c$ for some $c>0$. Thus for β such that

$$
\begin{equation*}
0<\beta<c / 2 \tag{2.2}
\end{equation*}
$$

g_{β}^{\prime} has no zero points in \mathscr{K}. Hence $\rho / g_{\beta}^{\prime} \in C_{0}^{1}(\mathbb{R} \backslash Z)$ and then $\Phi \in \mathrm{D}\left(g_{\beta}^{\prime}(H)^{-1}\right)$. By Lemma 1.3, $g_{\beta}^{\prime}(H)^{-1} \Phi=g_{\beta}^{\prime}(H)^{-1} \rho(H) \phi \in \mathrm{D}(T)$ if (2.2) holds, and (1) follows.

We can also see that $e^{-i t g_{\beta}} \rho / g_{\beta}^{\prime} \in C_{0}^{1}(\mathbb{R} \backslash Z)$ and that its derivative is bounded if (2.2) holds. Then $e^{-i t g_{\beta}(H)} g_{\beta}^{\prime}(H)^{-1} \Phi \in \mathrm{D}(T)$ follows by Lemma 1.3 and (2) follows.

Since $T \rho(H) \phi=i \rho^{\prime}(H) \phi+\rho(H) T \phi, \rho, \rho^{\prime} \in C_{0}^{1}(\mathbb{R} \backslash Z)$ and $\rho / g_{\beta}, \rho^{\prime} / g_{\beta} \in C_{0}^{1}(\mathbb{R} \backslash Z)$, we have $T \Phi \in \mathrm{D}\left(g_{\beta}^{\prime}(H)^{-1}\right)$ if (2.2) holds, and (3) follows.

Finally we show (4). Since $h=e^{-i t g_{\beta}} \rho \in C_{0}^{1}(\mathbb{R} \backslash Z)$ and its derivative is bounded, $e^{-i t g_{\beta}(H)} \Phi \in \mathrm{D}(T)$ and $T h(H) \phi=i h^{\prime}(H) \phi+h(H) T \phi$ follows. Here $h^{\prime} \in C_{0}(\mathbb{R} \backslash Z)$. From this we have $T h(H) \phi \in \mathrm{D}\left(g_{\beta}^{\prime}(H)^{-1}\right)$.
qed
Define

$$
D_{\beta}=\frac{1}{2}\left(g_{\beta}^{\prime}(H)^{-1} T+T g_{\beta}^{\prime}(H)^{-1}\right)
$$

Note that for each $\Phi \in X_{1}^{\mathrm{D}(T)}$, by taking sufficiently small β, we can see that $\Phi \in$ $\mathrm{D}\left(D_{\beta}\right)$.

Lemma 2.2 Let $\Phi \in X$. Then for sufficiently small β (possibly depending on Φ),

$$
D_{\beta} e^{-i t g_{\beta}(H)} \Phi=e^{-i t g_{\beta}(H)}\left(D_{\beta}+t\right) \Phi .
$$

Proof: We divide the proof into three steps.
(Step 1)

$$
\begin{equation*}
T e^{-i t g_{\beta}(H)} g_{\beta}^{\prime}(H)^{-1} \Phi=e^{-i t g_{\beta}(H)}\left(T g_{\beta}^{\prime}(H)^{-1}+t\right) \Phi \tag{2.3}
\end{equation*}
$$

Proof: From Lemma 1.3 it follows that $e^{-i t g_{\beta}(H)} \mathrm{D}(T) \subset \mathrm{D}(T)$ and

$$
\begin{equation*}
T e^{-i t g_{\beta}(H)} \Phi=e^{-i t g_{\beta}(H)}\left(T+t g_{\beta}^{\prime}(H)\right) \Phi . \tag{2.4}
\end{equation*}
$$

Since we have already shown in the previous lemmas that $\Phi \in \mathrm{D}\left(g_{\beta}^{\prime}(H)^{-1}\right)$ and $g_{\beta}^{\prime}(H)^{-1} \Phi \in \mathrm{D}\left(e^{-i t g_{\beta}(H)} T\right) \cap \mathrm{D}\left(T e^{-i t g_{\beta}(H)}\right)$, we can substitute $g_{\beta}^{\prime}(H)^{-1} \Phi$ for Φ in (2.4). Then (2.3) follows.
(Step2)

$$
\begin{equation*}
g_{\beta}^{\prime}(H)^{-1} T e^{-i t g_{\beta}(H)} \Phi=e^{-i t g_{\beta}(H)} g_{\beta}^{\prime}(H)^{-1} T \Phi+t e^{-i t g_{\beta}(H)} \Phi \tag{2.5}
\end{equation*}
$$

Proof: Let $\Phi \in X_{1}^{\mathrm{D}(T)}$ and $\Psi \in X_{1}^{\mathrm{D}(T)}$. (2.3) implies that

$$
\left(\Phi, T e^{-i t g_{\beta}(H)} g_{\beta}^{\prime}(H)^{-1} \Psi-e^{-i t g_{\beta}(H)} T g_{\beta}^{\prime}(H)^{-1} \Psi\right)=t\left(\Phi, e^{-i t g_{\beta}(H)} \Psi\right) .
$$

By Lemma 1.4, we can take the adjoint of both sides above. Then (2.5) follows if we transform t to $-t$.
(Step3) Combining (2.3) and (2.5), we have the lemma.

Lemma 2.3 Let $\Phi \in X_{1}^{\mathrm{D}(T)}$. Then $e^{i t g(H)} \Phi \in \mathrm{D}(T)$ and

$$
\begin{equation*}
D e^{-i t g(H)} \Phi=e^{-i t g(H)}(D+t) \Phi \tag{2.6}
\end{equation*}
$$

Proof: It is enough to show that

$$
\begin{align*}
& g_{\beta}^{\prime}(H)^{-1} T e^{-i t g_{\beta}(H)} \Phi \rightarrow g^{\prime}(H)^{-1} T e^{-i t g(H)} \Phi, \tag{2.7}\\
& T g_{\beta}^{\prime}(H)^{-1} e^{-i t g_{\beta}(H)} \Phi \rightarrow T g^{\prime}(H)^{-1} e^{-i t g(H)} \Phi, \tag{2.8}\\
& e^{-i t g_{\beta}(H)} g_{\beta}^{\prime}(H)^{-1} T \Phi \rightarrow e^{-i t g(H)} g^{\prime}(H)^{-1} T \Phi, \tag{2.9}\\
& e^{-i t g_{\beta}(H)} T g_{\beta}^{\prime}(H)^{-1} \Phi \rightarrow e^{-i t g(H)} T g^{\prime}(H)^{-1} \Phi \tag{2.10}
\end{align*}
$$

strongly as $\beta \rightarrow 0$. Let $h_{\beta}=e^{-i t g_{\beta}} \rho \in C_{0}^{1}(\mathbb{R} \backslash Z)$. Then

$$
g_{\beta}^{\prime}(H)^{-1} T h_{\beta}(H) \phi=g_{\beta}^{\prime}(H)^{-1}\left(i h_{\beta}^{\prime}(H)+h_{\beta}(H) T\right) \Phi .
$$

We have

$$
\begin{aligned}
& \left\|g_{\beta}^{\prime}(H)^{-1} h_{\beta}^{\prime}(H) \phi-g^{\prime}(H)^{-1} h_{0}^{\prime}(H) \phi\right\|^{2}=\int_{\mathbb{R}}\left|\frac{h_{\beta}^{\prime}(\lambda)}{g_{\beta}^{\prime}(\lambda)}-\frac{h_{0}^{\prime}(\lambda)}{g^{\prime}(\lambda)}\right|^{2} d\left\|E_{\lambda} \phi\right\|^{2} \rightarrow 0 \\
& \left\|g_{\beta}^{\prime}(H)^{-1} h_{\beta}(H) T \phi-g^{\prime}(H)^{-1} h_{0}(H) T \phi\right\|^{2}=\int_{\mathbb{R}}\left|\frac{h_{\beta}(\lambda)}{g_{\beta}^{\prime}(\lambda)}-\frac{h_{0}(\lambda)}{g^{\prime}(\lambda)}\right|^{2} d\left\|E_{\lambda} T \phi\right\|^{2} \rightarrow 0
\end{aligned}
$$

as $\beta \rightarrow 0$ by dominated convergence. Thus (2.7) follows.
Let $k_{\beta}=e^{-i t g_{\beta}} \rho / g_{\beta}^{\prime} \in C_{0}^{1}(\mathbb{R} \backslash Z)$. Then

$$
T g_{\beta}^{\prime}(H)^{-1} e^{-i t g_{\beta}(H)} \rho(H) \phi=i k_{\beta}^{\prime}(H) \phi+k_{\beta}(H) T \phi
$$

We have

$$
\begin{aligned}
& \left\|k_{\beta}^{\prime}(H) \phi-k_{0}^{\prime}(H) \phi\right\|^{2}=\int_{\mathbb{R}}\left|k_{\beta}^{\prime}(\lambda)-k_{0}^{\prime}(\lambda)\right|^{2} d\left\|E_{\lambda} \phi\right\|^{2} \rightarrow 0 \\
& \left\|k_{\beta}(H) T \phi-k_{0}(H) T \phi\right\|^{2}=\int_{\mathbb{R}}\left|k_{\beta}(\lambda)-k_{0}(\lambda)\right|^{2} d\left\|E_{\lambda} T \phi\right\|^{2} \rightarrow 0
\end{aligned}
$$

as $\beta \rightarrow 0$. Thus (2.8) follows. (2.9) is trivial to see.
Finally we show (2.10). Let $l_{\beta}=\rho / g_{\beta}^{\prime} \in C_{0}^{1}(\mathbb{R} \backslash Z)$. Then

$$
e^{-i t g_{\beta}(H)} T g_{\beta}^{\prime}(H)^{-1} \Phi=e^{-i t g_{\beta}(H)}\left(i l_{\beta}^{\prime}(H)+l_{\beta} T\right) \phi .
$$

Then
$\left\|e^{-i t g_{\beta}} l_{\beta}^{\prime}(H) \phi-e^{-i t g(H)} l_{0}^{\prime}(H) \phi\right\|^{2}=\int_{\mathbb{R}}\left|e^{-i t g_{\beta}(\lambda)} l_{\beta}^{\prime}(\lambda)-e^{-i t g(\lambda)} l_{0}^{\prime}(\lambda)\right|^{2} d\left\|E_{\lambda} \phi\right\|^{2} \rightarrow 0$,
$\left\|e^{-i t g_{\beta}} l_{\beta}(H) T \phi-e^{-i t g(H)} l_{0}(H) T \phi\right\|^{2}=\int_{\mathbb{R}}\left|e^{-i t g_{\beta}(\lambda)} l_{\beta}(\lambda)-e^{-i t g(\lambda)} l_{0}(\lambda)\right|^{2} d\left\|E_{\lambda} T \phi\right\|^{2} \rightarrow 0$
as $\beta \rightarrow 0$. Thus the proof is complete.
Proof of Theorem 1.5:
Let $\Phi \in \mathrm{D}(D)$. There exists $\Phi_{n} \in X_{1}^{\mathrm{D}(T)}$ such that $\Phi_{n} \rightarrow \Phi$ and $D \Phi_{n} \rightarrow D \Phi$ as $n \rightarrow \infty$ strongly. By Lemma 2.3, for each $\Phi_{n}, D e^{-i t g(H)} \Phi_{n}=e^{-i t g(H)}(D+t) \Phi_{n}$ holds. Since D is closed, the theorem follows by a limiting argument.

Acknowledgments: We thank A. Arai for helpful comments and careful reading of the first manuscript.

References

[Ara05] A. Arai, Generalized weak Weyl relation and decay of quantum dynamics, Rev. Math. Phys. 17 (2005), 1071-1109.
[Ara08] A. Arai, On the uniqueness of weak Weyl representations of the canonical commutation relation, to be published in Lett. Math. Phys.
[AM08-a] A. Arai and Y. Matsuzawa, Construction of a Weyl representation from a weak Weyl representation of the canonical commutation relation, Lett. Math. Phys. 83 (2008), 201-211.
[AM08-b] A. Arai and Y. Matsuzawa, Time operators of a Hamiltonian with purely discrete spectrum, to be published in Rev. Math. Phys.
[Gal02] E. A. Galapon, Self-adjoint time operator is the rule for discrete semi-bounded Hamiltonians, Proc. R. Soc. Lond. A 458 (2002), 2671-2689.
[Gal04] E. A. Galapon, R. F. Caballar and R. T. Bahague Jr, Confined quantum time of arrivals, Phys. Rev. Lett. 93 (2004), 180406.
[Dor84] G. Dorfmeister and J. Dorfmeister, Classification of certain pairs of operators (P, Q) satisfying $[P, Q]=-i \mathrm{Id}$, J. Funct. Anal. 57 (1984), 301-328.
[Fuj80] I. Fujiwara, Rational construction and physical signification of the quantum time operator, Prog. Theor. Phys. 64 (1980), 18-27.
[FWY80] I. Fujiwara, K. Wakita and H. Yoro, Explicit construction of time-energy uncertainty relationship in quantum mechanics, Prog. Theor. Phys. 64 (1980), 363-379.
[GYS81-1] T. Goto, K. Yamaguchi and N. Sudo, On the time opertor in quantum mechanics, Prog. Theor. Phys. 66 (1981), 1525-1538.
[GYS81-2] T. Goto, K. Yamaguchi and N. Sudo, On the time opertor in quantum mechanics. II, Prog. Theor. Phys. 66 (1981), 1915-1925.
[KA94] D. H. Kobe and V. C. Aguilera-Navarro, Derivation of the energy-time uncertainty relation. Phys. Rev. A 50 (1994), 933-938.
[LLH96] H. R. Lewis, W. E. Laurence and J. D. Harris, Quantum action-angle variables for the harmonic oscillator, Phys. Rev. Lett. 26 (1996), 5157-5159.
[Miy01] M. Miyamoto, A generalised Weyl relation approach to the time operator and its connection to the survival probability, J. Math. Phys. 42 (2001), 1038-1052.
[Ros69] D. M. Rosenbaum, Super Hilbert space and the quamntum-mechanical time operators, J. Math. Phys. 19 (1969), 1127-1144.

[^0]: *F.H. thanks for Grant-in-Aid for Science Research (B) 20340032 from JSPS for financial support.
 ${ }^{\dagger}$ Graduate School of Mathematics, Kyushu University 812-8581, Fukuoka, Japan
 ${ }^{\ddagger}$ Graduate School of Mathematics, Kyushu University 812-8581, Fukuoka, Japan
 ${ }^{\text {§ }}$ Department of Mathematics, Hokkaido University, Sapporo, 060-0810, Japan

