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Abstract

Let the pair of operators, (H, T ), satisfy the weak Weyl relation:

Te−itH = e−itH(T + t),

where H is self-adjoint and T is closed symmetric. Suppose that g ∈ C2(R \K)
for some K ⊂ R with Lebesgue measure zero and that lim|λ|→∞ g(λ)e−βλ2

= 0
for all β > 0. Then we can construct a closed symmetric operator D such that
(g(H), D) also obeys the weak Weyl relation.

1 Weak Weyl relation and strong time operators

1.1 Introduction

The energy of a quantum system can be realized as a self-adjoint operator on some

Hilbert space, whereas time t is treated as a parameter, and not intuitively as an op-

erator. So, since the foundation of quantum mechanics, the energy-time uncertainty

relation has had a different basis than that underlying the position-momentum uncer-

tainty relation.

Let Q be the multiplication operator defined by (Qf)(x) = xf(x) with maximal

domain D(Q) = {f ∈ L2(R)| ∫ |x|2f(x)2dx < ∞} and let P = −id/dx be the weak

derivative with domain H1(R). In quantum mechanics, the position operator Q and the
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2 Time operators

momentum operator P in L2(R) obey the Weyl relation: e−isP e−itQ = e−iste−itQe−isP

for s, t ∈ R. From this we can derive the so-called weak Weyl relation:

Qe−itP = e−itP (Q + t), t ∈ R, (1.1)

and moreover the canonical commutation relation [P, Q] = −iI also holds. The strong

time operator T is defined as an operator satisfying (1.1) with Q and P replaced by T

and the Hamiltonian H of the quantum system under consideration, respectively.

More precisely, we explain the weak Weyl relation (1.1) as follows. Let H be a

Hilbert space over the complex field C. We denote by D(L) the domain of an operator

L. We say that the pair (H, T ) consisting of a self-adjoint operator H and a symmetric

operator T on H obeys the weak Weyl relation if and only if, for all t ∈ R,

(1) e−itHD(T ) ⊂ D(T );

(2) Te−itHΦ = e−itH(T + t)Φ for Φ ∈ D(T ).

Here T is referred to as a strong time operator associated with H and we denote it by

TH for T . Note that a strong time operator is not unique. Although from the weak

Weyl relation it follows that [H,TH ] = −iI, the converse is not true; a pair (A,B)

satisfying [A,B] = −iI does not necessarily obey the Weyl relation or the weak Weyl

relation. If TH is self-adjoint, then it is known that

e−isTHe−itH = e−iste−itHe−isTH (1.2)

holds. In particular when Hilbert space H is separable, by the von Neumann unique-

ness theorem the Weyl relation (1.2) implies that H and TH are unitarily equivalent

to ⊕nP and ⊕nQ with some n, respectively. This asserts that any strong time oper-

ators associated with a semibounded H on a separable Hilbert space are symmetric

non-self-adjoint. These facts may implicitly suggest that strong time operators are not

”observable”.

A time operator but not necessarily strong associated with a self-adjoint operator H

is defined as an operator T for which [H, T ] = −iI. As was mentioned above, although

a strong time operator is automatically a time operator, the converse is not true.

For example there is no strong time operator associated with the harmonic oscillator
1
2
(P 2 + ω2Q2), whereas its time operator is formally given by

1

2ω
(arctan(ωP−1Q) + arctan(ωQP−1)).
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See e.g. [AM08-b, Gal02, Gal04, LLH96, Dor84, Ros69]. The concept of time operators

was derived in the framework for the energy-time uncertainty relation in [KA94]. See

also e.g. [Fuj80, FWY80, GYS81-1, GYS81-2]. A strong connection with the decay

of survival probability was pointed out by [Miy01], where the weak Weyl relation was

introduced and then strong time operators were discussed. Moreover it was drastically

generalized in [Ara05] and some uniqueness theorems are established in [Ara08].

This paper is inspired by [Miy01, Section VII] and [AM08-a]. In particular Arai

and Matsuzawa [AM08-a] developed machinery for reconstructing a pair of operators

obeying the weak Weyl relation from a given pair (H, TH); in particular, they con-

structed a strong time operator associated with log |H|. The main result of the paper

is an extension of this work and we derive a time operator associated with general

Hamiltonian g(H).

1.2 Description of the main results

By (1.1) the strong time operator TP associated with P is unique and is given by

TP = Q. (1.3)

For the self-adjoint operator (1/2)P 2 in L2(R), it is established that

T(1/2)P 2 =
1

2
(P−1Q + QP−1) (1.4)

is an associated strong time operator referred to as the Aharonov-Bohm operator.

Comparing (1.3) with (1.4) we arrive at

T(1/2)P 2 =
1

2

(
f ′(P )−1TP + TP f ′(P )−1

)
, (1.5)

where f(λ) = (1/2)λ2. We wish to extend formula (1.5) for more general f ’s and for

any (H, TH).

More precisely let g be some Borel measurable function from R to R. We want to

construct a map T (g) such that T (g)TH = Tg(H) and to show that

Tg(H) =
1

2
(g′(H)−1TH + THg′(H)−1).

We denote the set of n times continuously differentiable functions on Ω ⊂ R with

compact support by Cn
0 (Ω). Throughout, we suppose that the following assumptions

hold.
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Assumption 1.1 (H, T ) obeys the weak Weyl relation and T is a closed symmetric

operator.

Note that if (H,T ) satisfies the weak Weyl relation, then so does (H, T ).

Assumption 1.2 (1) g ∈ C2(R \ K) for some K ⊂ R with Lebesgue measure zero;

(2) The Lebesgue measure of the set of zero points {λ ∈ R \K|g′(λ) = 0} is zero; (3)

lim
|λ|→∞

g(λ)e−βλ2

= 0 for all β > 0.

We fix (H, T ), K ⊂ R and g ∈ C2(R \K) in what follows. For a measurable function

ρ, ρ(H) is defined by ρ(H) =
∫

ρ(λ)dEλ for the spectral resolution Eλ of H. Let Z be

the set of singular points of 1/g′:

Z = {λ ∈ R \K|g′(λ) = 0} ∪K,

which has Lebesgue measure zero. Define the dense subspace XD
n , 0 ≤ n ≤ ∞, D ⊂ H ,

in H by

XD
n = L.H.{ρ(H)φ|ρ ∈ Cn

0 (R \ Z), φ ∈ D}, (1.6)

where L.H.{· · · } denotes the linear hull of {· · · } and C0
0 = C0. The next proposition

is fundamental.

Proposition 1.3 [Ara05] Let f ∈ C1(R) and let both f and f ′ be bounded. Then

f(H)D(T ) ⊂ D(T ) and

Tf(H)φ = f(H)Tφ + if ′(H)φ, φ ∈ D(T ). (1.7)

Proof: First suppose that f ∈ C∞
0 (R). Let f̌ denote the inverse Fourier transform

of f . Then for ψ ∈ D(T ),

(Tψ, f(H)φ) = (2π)−1/2

∫

R
(Tψ, e−iλHφ)f̌(λ)dλ

= (2π)−1/2

∫

R
f̌(λ)(ψ, e−iλH(T + λ)φ)dλ = (ψ, (f(H)T + if ′(H))φ).

So (1.7) follows for f ∈ C∞
0 (R). By a limiting argument on f and the fact that T is

closed, (1.7) follows for f ∈ C1(R) such that f and f ′ are bounded. qed

This proposition suggests that informally

Te−itg(H)φ = e−itg(H)Tφ + tg′(H)e−itg(H)φ
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and then Tg′(H)−1e−itg(H)φ = e−itg(H)(Tg′(H)−1 + t)φ. Symmetrizing Tg′(H)−1, we

expect that a strong time operator associated with g(H) will be given by

Tg(H) =
1

2
(g′(H)−1T + Tg′(H)−1). (1.8)

In order to establish (1.8), the remaining problem is to check the domain argument

and to extend Proposition 1.3 for unbounded f and f ′.

Lemma 1.4 It follows that

(1) T : X
D(T )
n → XH

n−1 for 1 ≤ n ≤ ∞.

(2) g′(H)−1 :

{
XD

n → XD
1 , 1 ≤ n ≤ ∞,

XD
0 → XD

0 , n = 0,
for any D ⊂ H .

Proof: Let Φ = ρ(H)φ ∈ X
D(T )
n . By Proposition 1.3, Φ ∈ D(T ) and we have TΦ =

iρ′(H)φ + ρ(H)Tφ. Then (1) follows. Note that ρ/g′ ∈ C1
0(R \K) for ρ ∈ Cn

0 (R \K)

with n ≥ 1, and ρ/g′ ∈ C0(R \ Z) for ρ ∈ C0(R \K). Then (2) follows. qed

Define the symmetric operator D̃ by

D̃ =
1

2
(g′(H)−1T + Tg′(H)−1)

⌈

X
D(T )
1

. (1.9)

D̃ is well defined by Lemma 1.4. Since the domain of the adjoint of D̃ includes the

dense subspace X
D(T )
1 , then D̃ is closable. We define

D =
1

2
(g′(H)−1T + Tg′(H)−1)d

X
D(T )
1

. (1.10)

The main theorem is as follows.

Theorem 1.5 Suppose Assumptions 1.1 and 1.2. Then (g(H), D) obeys the weak Weyl

relation.

Example 1.6 Examples of strong time operators are as follows:

(1) g is a polynomial.

(2) Let g(λ) = log |λ|. Then a strong time operator associated with log |H| is

1

2
(HT + TH)d

X
D(T )
1

.

This time operator is derived in [AM08-a].
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(3) Let (H,T ) = (P,Q) and g(λ) =
√

λ2 + m2, m ≥ 0. Then a strong time operator

associated with H(P ) =
√

P 2 + m2 is

1

2
(H(P )P−1Q + QP−1H(P ))d

D(X
D(Q)
1 )

.

H(P ) is a semi-relativistic Schrödinger operator.

(4) Strong time operators associated with (3) and P 2 can be generalized. Let Hα(P ) =

(P 2 + m2)α/2, α ∈ R \ {0}. Then a strong time operator associated with Hα(P )

is given by

1

2α
((P 2 + m2)P−1Hα(P )−1Q + QHα(P )−1P−1(P 2 + m2)) d

D(X
D(Q)
1 )

.

2 Proof of Theorem 1.5

In order to prove Theorem 1.5 we approximate g with some bounded functions. Define

gβ(λ) = g(λ)e−βλ2

, β ≥ 0. (2.1)

Lemma 2.1 Let Φ ∈ X
D(T )
1 . Then for sufficiently small β ≥ 0 (β possibly depending

on Φ),

(1) Φ ∈ D(g′β(H)−1) and g′β(H)−1Φ ∈ D(T );

(2) e−itgβ(H)g′β(H)−1Φ ∈ D(T );

(3) TΦ ∈ D(g′β(H)−1);

(4) e−itgβ(H)Φ ∈ D(T ) and Te−itgβ(H)Φ ∈ D(g′β(H)−1).

Proof: Let Φ = ρ(H)φ ∈ X
D(T )
1 with ρ ∈ C1

0(R \ Z) and φ ∈ D(T ). Put K = suppρ.

Note that Z 6⊂ K . Then in the case of β = 0, g′β has no zero point on K . We have

m < inf
λ∈K

|g′(λ)| ≤ sup
λ∈K

|g′(λ)| < M

for some m > 0 and M > 0. Let Zβ = {λ ∈ R \ K|g′β(λ) = 0}. Let a ∈ Zβ. Then

g′(a)/a = 2β from the definition of gβ. However infλ∈K |g′(λ)/λ| > c for some c > 0.

Thus for β such that

0 < β < c/2, (2.2)
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g′β has no zero points in K . Hence ρ/g′β ∈ C1
0(R \ Z) and then Φ ∈ D(g′β(H)−1). By

Lemma 1.3, g′β(H)−1Φ = g′β(H)−1ρ(H)φ ∈ D(T ) if (2.2) holds, and (1) follows.

We can also see that e−itgβρ/g′β ∈ C1
0(R \ Z) and that its derivative is bounded if

(2.2) holds. Then e−itgβ(H)g′β(H)−1Φ ∈ D(T ) follows by Lemma 1.3 and (2) follows.

Since Tρ(H)φ = iρ′(H)φ+ρ(H)Tφ, ρ, ρ′ ∈ C1
0(R \ Z) and ρ/gβ, ρ′/gβ ∈ C1

0(R \ Z),

we have TΦ ∈ D(g′β(H)−1) if (2.2) holds, and (3) follows.

Finally we show (4). Since h = e−itgβρ ∈ C1
0(R \ Z) and its derivative is bounded,

e−itgβ(H)Φ ∈ D(T ) and Th(H)φ = ih′(H)φ + h(H)Tφ follows. Here h′ ∈ C0(R \ Z).

From this we have Th(H)φ ∈ D(g′β(H)−1). qed

Define

Dβ =
1

2
(g′β(H)−1T + Tg′β(H)−1).

Note that for each Φ ∈ X
D(T )
1 , by taking sufficiently small β, we can see that Φ ∈

D(Dβ).

Lemma 2.2 Let Φ ∈ X. Then for sufficiently small β (possibly depending on Φ),

Dβe−itgβ(H)Φ = e−itgβ(H)(Dβ + t)Φ.

Proof: We divide the proof into three steps.

(Step 1)

Te−itgβ(H)g′β(H)−1Φ = e−itgβ(H)(Tg′β(H)−1 + t)Φ. (2.3)

Proof: From Lemma 1.3 it follows that e−itgβ(H)D(T ) ⊂ D(T ) and

Te−itgβ(H)Φ = e−itgβ(H)(T + tg′β(H))Φ. (2.4)

Since we have already shown in the previous lemmas that Φ ∈ D(g′β(H)−1) and

g′β(H)−1Φ ∈ D(e−itgβ(H)T )∩D(Te−itgβ(H)), we can substitute g′β(H)−1Φ for Φ in (2.4).

Then (2.3) follows.

(Step2)

g′β(H)−1Te−itgβ(H)Φ = e−itgβ(H)g′β(H)−1TΦ + te−itgβ(H)Φ. (2.5)

Proof: Let Φ ∈ X
D(T )
1 and Ψ ∈ X

D(T )
1 . (2.3) implies that

(Φ, T e−itgβ(H)g′β(H)−1Ψ− e−itgβ(H)Tg′β(H)−1Ψ) = t(Φ, e−itgβ(H)Ψ).

By Lemma 1.4, we can take the adjoint of both sides above. Then (2.5) follows if we

transform t to −t.

(Step3) Combining (2.3) and (2.5), we have the lemma. qed
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Lemma 2.3 Let Φ ∈ X
D(T )
1 . Then eitg(H)Φ ∈ D(T ) and

De−itg(H)Φ = e−itg(H)(D + t)Φ. (2.6)

Proof: It is enough to show that

g′β(H)−1Te−itgβ(H)Φ → g′(H)−1Te−itg(H)Φ, (2.7)

Tg′β(H)−1e−itgβ(H)Φ → Tg′(H)−1e−itg(H)Φ, (2.8)

e−itgβ(H)g′β(H)−1TΦ → e−itg(H)g′(H)−1TΦ, (2.9)

e−itgβ(H)Tg′β(H)−1Φ → e−itg(H)Tg′(H)−1Φ (2.10)

strongly as β → 0. Let hβ = e−itgβρ ∈ C1
0(R \ Z). Then

g′β(H)−1Thβ(H)φ = g′β(H)−1(ih′β(H) + hβ(H)T )Φ.

We have

‖g′β(H)−1h′β(H)φ− g′(H)−1h′0(H)φ‖2 =

∫

R

∣∣∣∣∣
h′β(λ)

g′β(λ)
− h′0(λ)

g′(λ)

∣∣∣∣∣

2

d‖Eλφ‖2 → 0,

‖g′β(H)−1hβ(H)Tφ− g′(H)−1h0(H)Tφ‖2 =

∫

R

∣∣∣∣∣
hβ(λ)

g′β(λ)
− h0(λ)

g′(λ)

∣∣∣∣∣

2

d‖EλTφ‖2 → 0

as β → 0 by dominated convergence. Thus (2.7) follows.

Let kβ = e−itgβρ/g′β ∈ C1
0(R \ Z). Then

Tg′β(H)−1e−itgβ(H)ρ(H)φ = ik′β(H)φ + kβ(H)Tφ.

We have

‖k′β(H)φ− k′0(H)φ‖2 =

∫

R
|k′β(λ)− k′0(λ)|2d‖Eλφ‖2 → 0,

‖kβ(H)Tφ− k0(H)Tφ‖2 =

∫

R
|kβ(λ)− k0(λ)|2d‖EλTφ‖2 → 0

as β → 0. Thus (2.8) follows. (2.9) is trivial to see.

Finally we show (2.10). Let lβ = ρ/g′β ∈ C1
0(R \ Z). Then

e−itgβ(H)Tg′β(H)−1Φ = e−itgβ(H)(il′β(H) + lβT )φ.
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Then

‖e−itgβ l′β(H)φ− e−itg(H)l′0(H)φ‖2 =

∫

R
|e−itgβ(λ)l′β(λ)− e−itg(λ)l′0(λ)|2d‖Eλφ‖2 → 0,

‖e−itgβ lβ(H)Tφ− e−itg(H)l0(H)Tφ‖2 =

∫

R
|e−itgβ(λ)lβ(λ)− e−itg(λ)l0(λ)|2d‖EλTφ‖2 → 0

as β → 0. Thus the proof is complete. qed

Proof of Theorem 1.5:

Let Φ ∈ D(D). There exists Φn ∈ X
D(T )
1 such that Φn → Φ and DΦn → DΦ as

n →∞ strongly. By Lemma 2.3, for each Φn, De−itg(H)Φn = e−itg(H)(D + t)Φn holds.

Since D is closed, the theorem follows by a limiting argument. qed

Acknowledgments: We thank A. Arai for helpful comments and careful reading of

the first manuscript.
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