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Abstract

We develop a resonance theory to describe the evolution of open systems with
time-dependent dynamics. Our approach is based on piecewise constant Hamilto-
nians: we represent the evolution on each constant bit using a recently developed
dynamical resonance theory, and we piece them together to obtain the total evo-
lution. The initial state corresponding to one time-interval with constant Hamil-
tonian is the final state of the system corresponding to the interval before. This
results in a non-markovian dynamics. We find a representation of the dynamics in
terms of resonance energies and resonance states associated to the Hamiltonians,
valid for all times t ≥ 0 and for small (but fixed) interaction strengths. The repre-
sentation has the form of a path integral over resonances. We present applications
to a spin-fermion system, where the energy levels of the spin may undergo rather
arbitrary crossings in the course of time. In particular, we find the probability for
transition between ground- and excited state at all times.

1 Introduction and outline of main results

We study the evolution of an open quantum system S in contact with a quantum heat
reservoir R. The Hamiltonian of S, as well as the interaction between the two systems
is time-dependent. Our goal is to derive the form of the reduced dynamics of S for
all times t ≥ 0 and for small (but fixed) values of the coupling constant governing the
strength of the interaction. An analysis of this kind for time-independent dynamics has
been carried out in [19, 20]. The approach adopted in the present work is based on the
methods developed in these references, which in turn are extensions of a recent theory of
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quantum resonances for the analysis of large-time asymptotics of open quantum systems
[14, 7, 11, 15, 17, 18] (see also the references in these works for further literature).

Within the context of the present paper, the long-time asymptotics has been exam-
ined for time-dependent dynamics in the following settings: in [12] for interaction op-
erators having some limit as t→∞, in [12, 2] for periodic interactions (using algebraic
scattering theory and Floquet theory, respectively), in [9, 10] for piecewise constant
dynamics and markovian reservoirs (repeated interaction systems) and in [1, 3] for adi-
abatic dynamics. All these works are concerned with the approach of the system to
an asymptotic state and with the thermodynamic properties of the latter. In contrast,
in the present paper, we examine the dynamics of the open system for all times and
for rather arbitrary time-dependences of the dynamics (not necessarily leading to an
asymptotic state of the system).

We develop a resonance theory for Hamiltonians of the form

H(t) = HS(t) +HR + λ(t)v(t), (1)

where HS(t) and HR are the Hamiltonians of S and R respectively, λ(t) is a coupling
constant, and v(t) is an interaction operator. We base our approach on piecewise
constant Hamiltonians of the form (1), meaning that the Heisenberg dynamics of an
observable A is given by

αN (A) = eit1H1 · · · eitNH
N
Ae−itNH

N · · · e−it1H1
, (2)

where tj > 0 and
Hj = Hj

S +HR + λjv
j . (3)

The dynamics (2) describes sudden changes in parameters of S and the interaction,
and it has its own interest. A piecewise constant dynamics may also be viewed as an
approximation of a continuous dynamics, in the appropriate limit tj → 0 and N →∞.
We illustrate both these settings on concrete models in Section 1.2.

The space of pure states HS of the open system S is a finite-dimensional Hilbert
space, and its Hamiltonian Hj

S is an arbitrary self-adjoint operator on HS. We model
the reservoir by a spatially infinitely extended (R3) gas of free Fermions in equilibrium
at temperature T > 0. The Hamiltonian of R is given by

HR =
∫

R3

|k|2a∗(k)a(k)d3k, (4)

where the a(k) and a∗(k) are fermionic annihilation and creation operators, satisfying
the standard canonical anti-commutation relations {a(k), a∗(l)} = δ(k− l), see e.g. [8].
We understand that in (4), and for all other quantities involving R, the thermodynamic
(infinite volume, continuous mode) limit has to be taken (this is the so called Araki-
Wyss representation [5], see also Section A.1 for further details). The equilibrium state
of R is the quasi-free state determined by the two-point function

ωR,β

(
a∗(k)a(l)

)
=

δ(k − l)
eβ|k|2 + 1

, (5)

2



where β = 1/T , see e.g. [8].
The interaction operator is a sum of terms of the form

vj = Gj ⊗ φ(gj), (6)

where Gj is any self-adjoint operator on HS, and

φ(gj) =
1√
2
[a∗(gj) + a(gj)] (7)

is the field operator smoothed out with a function gj ∈ L2(R3,d3k), called a form
factor. Here, the smoothed-out creation and annihilation operators are defined by

a∗(g) =
∫

R3

g(k)a∗(k)d3k, a(g) =
∫

R3

g(k)a(k)d3k (8)

(we take annihilation operators to be anti-linear in their arguments). Interactions of
the form (6) induce processes of absorption and emission of quanta of R by the system
S.

Our approach uses a spectral deformations (generated by translation in the energy
variable in a suitable Hilbert space). This method necessitates certain regularity of the
form factors gj . We represent gj(r, σ) in spherical coordinates (r, σ) ∈ R+ × S2 and
denote by gj its complex conjugate.

(R) Assumption on regularity (translation analyticity) of form-factors. The maps

R× S2 3 (u, σ) 7→ α(u)

√
|u|1/4

e−βu + 1

{
gj(
√
u, σ), if u ≥ 0,

gj(
√
−u, σ), if u < 0,

(9)

where α(u) = 1, e−βu, extend analytically (in u) to maps from (u, σ) ∈ {z ∈ C :
|Imz| < δ} × S2 to L2(R× S2,dudσ), for some δ > 0.

An example of a form factor satisfying this assumption is g(k) = |k|−1/2e−|k|
2
.

The next assumption concerns the “complete splitting of resonances”. We make it
merely for the purpose of a lighter exposition of our results. Fix j and let e ∈ {E−E′ :
E,E′ ∈ spec(Hj

S)} be an energy difference of the system S. In the resonance approach,
the evolution of S is described by resonance energies ε, which are complex in general
and reflect the non-unitary (irreversible) character of the reduced dynamics of S. As
the interaction between S and R is turned on, resonance energies ε bifurcate out of
each (real) energy difference e. The total multiplicity of resonance energies bifurcating
out of a given e equals mult(e) (the multiplicity of e viewed as an eigenvalue of the
operator Hj

S⊗1lS−1lS⊗Hj
S acting on HS⊗HS). We label the resonances by r = (e, s),

where e denotes the origin of bifurcation and 1 ≤ s ≤ mult(e) counts distinct resonance
energies.

(S) Assumption on complete splitting of resonances. At all time-steps j, for λj 6=
0 there are mult(e) distinct resonance energies ε associated to each eigenvalue
difference e.

One can deal equally well with degenerate resonance energies by adapting the ar-
guments of [20] to the time-dependent case. Assumption (S) can be verified by using a
perturbative analysis of the resonance energies (see (11) below).
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1.1 Dynamics of S

Let us explain our main result on the dynamics of the system S, whose precise statement
is given in Theorem 2.1 below. We consider initial states of the form ω0 = ωS,0⊗ωR,β ,
where ωS,0 is an arbitrary state of S, and ωR,β is given by (5).1 Theorem 2.1 gives
the following representation of the evolution of the average of an observable A of the
system S in the initial state ω0.

ω0

(
αN (A)

)
=

∑
r1,...,rN

ei
PN

j=1 tjε
j(rj)ρr1,...,rN (A) +O(max

j
|λj |
)
. (10)

The sum is taken over indices rj = (e, s) which label the resonance energies εj(rj)
associated to the system at step j. The ρr1,...,rN are linear functionals on the algebra
of observables MS = B(HS) (bounded operators). Both εj(rj) and ρr1,...,rN depend on
λj , and the remainder term depends on N as well, but is uniform in the tj > 0 (it also
depends on the interaction vj , (6)). The resonance energies have the expansion

εj = e+ λ2
jδ
j +O(λ4

j ) (11)

for small λj . Here, the δj are eigenvalues of an operator Λj(e) acting on the doubled
space HS ⊗ HS, called the level shift operator associated to e at time-step j (see the
definition (74)). We have Imδj ≥ 0.2

The functionals ρr1,...,rN can be expressed as

ρr1,...,rN (A) = P
(
Π0(r1, . . . , rN ) A⊗ 1lS

)
, (12)

where P is a linear functional on the algebra MS ⊗ 1lS acting on the doubled space
HS ⊗ HS. P depends on the initial state ω0 only. Π0 is a product of “transition
amplitudes” associated to r1, . . . , rN ,

Π0(r1, . . . , rN ) =

N−1∏
j=1

〈
η̃j(rj), ηj+1(rj+1)

〉 |η1(r1)〉〈η̃N (rN )|. (13)

Here, the ηj(r), η̃j(r) ∈ HS ⊗ HS are (the lowest order contributions of) resonance
eigenvectors, defined by

Λj(e)ηj(r) = εj(r)ηj(r) and [Λj(e)]∗η̃j(r) = εj(r)η̃j(r) (14)

and normalized as〈
ηj(r), η̃j(r)

〉
= 1,

〈
ηj(r), η̃j(r′)

〉
= 0 if r 6= r′ (15)

(recall that r = (e, s)). In (14), [Λj(e)]∗ denotes the adjoint operator of Λj(e).
1Our theory works as well for states which are local perturbations of such states, but we restrict

our exposition to product initial states.
2This can be seen by direct calculation in concrete models, and it can also be derived from general

considerations, see as well [18].
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Discussion of (10). – At each moment when the Hamiltonian changes, the system
starts a new dynamical process with an initial condition determined by the final state
of the previous process. Note that even if we start in an unentangled (product) state of
S + R, already after the first bit of interaction the state will become entangled. Since
S interacts with the same reservoir at each time-step, the dynamics is not markovian.
The cumulative effect of the interactions is encoded in the functionals ρr1,...,rN and the
product of increments of the dynamics eit1ε1(r1) · · · eitNε

N (rN ).
– The case of a time-independent dynamics can be recovered from (10) as follows.

If Hj is close to Hj+1, then ηj(r) is close to ηj+1(r) and the transition amplitude〈
η̃j(rj), ηj+1(rj+1)

〉
≈
〈
η̃j(rj), ηj(rj+1)

〉
(16)

is very small unless rj = rj+1, in which case it is roughly unity (see (15)). We can view
the sequence r1, . . . , rN as a “path” of resonances: the system hops from resonance rj
to resonance rj+1 as time passes the moment t1 + . . . + tj . Thus for small differences
Hj −Hj+1, the main contribution to the sum in (10) comes from the constant paths
rj = r = const, with associated propagator eitε(r). In this limit of a time-independent
Hamiltonian, (10) reduces to the dynamics of S derived in [19].

– If the interaction vj is energy exchanging then it typically drives the total system
S + R to its equilibrium state at a relaxation rate 1/τ jtherm. In the regime tj & τ jtherm

one then expects to find the system after each bit of constant interaction in equilibrium
relative to the dynamics at that moment. This is an adiabatic process during which
the state of the system follows its instantaneous equilibrium state, see also [1, 3].

1.2 Applications

We consider a spin-1
2 particle subject to a time-dependent Hamiltonian, coupled to a

thermal Fermi field. The space of pure states of the spin (system S) is C2, and the
Hamiltonian at time-step j is given by

Hj
S =

∆j

2
σz =

∆j

2

[
1 0
0 −1

]
, (17)

where ∆j ∈ R is the energy level spacing. At times j when ∆j switches its sign we say
we have a level crossing. The interaction of S with R is given by λv (constant in time),
where λ is a coupling constant, and (recall (7))

v = σx ⊗ φ(g) =
[

0 1
1 0

]
⊗ 1√

2
[a∗(g) + a(g)]. (18)

The parameter regime λ2 << minj |∆j | describes well separated resonances, while if λ2

is of the order of the ∆j , or if λ2 >> minj |∆j |, then we have “overlapping resonances”.

1.2.1 Regime of overlapping resonances

Our goal is to analyze the dynamics of the system for small but independent values
of λ and ∆j . In Theorem 3.1 and Proposition 3.2 we give the explicit form of the
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resonance data εj(r), ηj(r), η̃j(r) for this model, as well as the transition amplitudes〈
η̃j(r), ηj+1(r′)

〉
(recall (13)). As an illustration of these results, we present here the

case of a single sudden level crossing and the limit of continuous time-dependent dy-
namics.

Single sudden level crossing. Consider a single sudden level crossing at time
tc, whose evolution is generated by (18) and

Ht
S =

∆1

2
σz, 0 ≤ t ≤ tc, Ht

S = −∆2

2
σz, tc < t, (19)

where ∆1,∆2 > 0. Denote by pge(t) the probability that the system S is at time t in
the excited state of Ht

S, while at time zero it started off in the ground state of Ht=0
S .

(By ground state we mean the state with lowest energy.) We show in Section 3.1.1 that
for independently small values of λ and ∆max = max{∆1,∆2}, we have

pge(t) =
1
2

{
1− eitε if 0 ≤ t < tc,
1 + eitε if t > tc,

}
+O(|λ|+ ∆max), (20)

where
ε = iπλ2γ0 +O

(
λ2(|λ|+ ∆max)

)
(21)

with

γ0 = lim
r→0+

√
r

2

∫
S2

dσ|g(
√
r, σ)|2. (22)

It is assumed here that 0 < γ0 <∞, which amounts to an infra-red (|k| ∼ 0) behaviour
g(|k|, σ) ∼ |k|−1/2 in three space dimensions (spherical coordinates; see also Assumption
(R) in Section 1). Formula (20) shows in particular that at tc the probability jumps
up by an amount

δ = eitcε +O(|λ|+ ∆max) = e−πγ0λ
2tc[1+O(|λ|+∆max)] +O(|λ|+ ∆max). (23)

This is in part explained by the fact that the excited state itself jumps at tc from |+〉
to |−〉. As t→∞, pge(t) approaches 1/2 + O(|λ|+ ∆max), which is the probability of
finding S in the excited state when the total system S + R is in equilibrium, provided
λ and ∆max are small. This is the correct value of this asymptotic probability, since
the system exhibits return to equilibrium.

In a time-dependent setting where energy levels of a quantum system are brought
close together (but do not cross) in the course of time, say due to some external forc-
ing, a transition from one energy state to another is called a Landau-Zener transition.
Landau-Zener theory is important in physics and chemistry, see e.g. [13, 21]. The influ-
ence of dissipation on Landau-Zener transitions has been studied for different systems
and transition probabilities similar to (20) have been calculated [4, 23]. We mention
that our method allows for crossing of the energy levels in the course of time.

Continuum limit. We investigate the continuum limit of the model (17) by
setting tj = j tN , j = 1, . . . , N , with fixed t and letting N →∞. Our goal is to find the
limit of the dominant contribution to the dynamics, given by the sum in (10). We do
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not control the remainder term in (10) uniformly in N in this paper (work on this is
in progress).

We take ∆j = ∆(j tN ), where ∆(t) is a continuously differentiable function of t ≥ 0
(of course, one can deal with less regular ∆ if desired), and we define τ j and σ by

τ j =
∆j

σ
, σ =

π

2
λ2γ0, (24)

where γ0 is given in (22) above. For simplicity of the exposition, we will assume in
what follows that 0 < τmax < 1, where τmax := ∆max

σ and ∆max = supt≥0 |∆(t)|. This
regime is interesting since it accommodates the situation of level crossings (∆(t) = 0)
while λ is fixed.

We have seen above (see (16)) that if ∆j+1 − ∆j is small, then the transition
amplitude

〈
η̃j(r), ηj+1(r′)

〉
associated to a jump (r 6= r′) in the resonance path at j is

small. We show in the proof of Theorem 3.4 that this amplitude is at most of the size

τ ′max := sup
t≥0

|τ ′(t)|. (25)

(The ′ here means derivative.) The sum over all paths in (10) can be written as a sum
over all paths with k jumps, k = 0, . . . , N − 1. This sum becomes an infinite series in
the continuous time limit, and the summand associated to a path with k jumps is of
the order of (τ ′max)

k. For small τ ′max, one can thus (rigorously) approximate the series
by the first few terms. In Theorem 3.4 we show that the continuous time limit of the
sum in (10) is given by

4∑
r=1

ei
R t
0 ε(s,r)dsw(0, t, r) 〈ψ0, Bη(0, r)〉 〈η̃(t, r), Aψref〉 (26)

+
∫ t

0
ei

R s
0 ε(s

′,3)ds′+i
R t

s ε(s
′,4)ds′ w(0, s, 3)

y+(s)y′−(s)
1 + y+(s)2

w(s, t, 4)ds

×〈ψ0, Bη(0, 3)〉 〈η̃(t, 4), Aψref〉

+
∫ t

0
ei

R s
0 ε(s

′,4)ds′+i
R t

s ε(s
′,3)ds′ w(0, s, 4)

y−(s)y′+(s)
1 + y−(s)2

w(s, t, 3)ds

×〈ψ0, Bη(0, 4)〉 〈η̃(t, 3), Aψref〉
+ O

(
[τ ′maxt]

2 e2Cτ ′maxt
)
.

Here, ε(t, r) and η(t, r), η̃(t, r) are the resonance energies and resonance vectors at time
t ≥ 0 (with r = 1, . . . , 4; see Section 3.1.2 for their explicit form). The functions w
and y± are associated to the transition amplitudes, ψ0 is the (Gelfand-Naimark-Segal)
vector representative of the initial state of S (represented in the Hilbert space HS⊗HS),
ψref is the vector representing the trace state of S, and B ∈ 1lS ⊗ MS is the unique
operator satisfying ψ0 = Bψref . We refer the reader to Section 3.1.2 for the explicit
expressions of all quantities involved in (26).

The sum in (26) is the contribution coming from the constant paths, while the
two integrals come from paths having a single jump (taking place at the integration
variable s). Both these integrals are of the order of τ ′max. Naturally, the Riemann sum
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in the propagator of (10) has now become an integral, and the product of the transition
coefficients has turned into the factors w (associated to products without jumps) and
the fractions involving the y± (associated with single jumps). The remainder term
contains the contributions of all paths with more than one jump. In fact, it is not very
hard to find the continuous time limit of all paths with arbitrarily many jumps. We do
not present the corresponding formulas in this work since they are rather cumbersome.

1.2.2 Regime of isolated resonances

The regime of isolated resonances can be obtained as a limit (τ j >> 1) of the case
of overlapping resonances, but not the other way around. More specifically, the ex-
pressions for the resonance energies and resonance vectors obtained for overlapping
resonances (see Theorem 3.1) are still valid once equations (22) and (24) are replaced
by

γ(∆j) =

√
|∆j |
2

∫
S2

dσ
∣∣∣∣g(√|∆j |, σ

)∣∣∣∣2 , (27)

σ(∆j) =
π

2
λ2γ(∆j). (28)

We present the explicit form of the resonance data in Theorem 3.5.

Single sudden level crossing. With the same set-up as before, but now assuming
that ∆1,∆2 > 0 are fixed independently of λ,

pge(t) =
1− e−π

2λtγ(∆1)

eβ∆1 + 1
+O(|λ|) (29)

for t < tc and

pge(t) =
1

e−β∆2 + 1
+
e−πλ

2tcγ(∆1)

e−β∆1 + 1

[
e−πλ

2(t−tc)γ(∆2) − 1− e−β(∆1+∆2)

e−β∆2 + 1

]
+O(|λ|) (30)

for t > tc. Therefore, there is a jump up at tc equal to e−π
2λtcγ(∆1) +O(|λ|), in perfect

analogy to the situation before.

Acknowledgements. Parts of this work have been carried out during visits of each
author to the other’s institution. We are grateful for the support of the Mathematics
Departments of Memorial University and of the University of Rochester, and to the
NSERC and the NSF for their support. We also thank the referees for pointing out
some typographical errors.

2 Dynamical resonance theory

We give a precise definition of the model in Section 2.1. In Section 2.2 we prove formula
(10). The main result is Theorem 2.1.
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2.1 Description of the model

The Hilbert space of states of the system S + R is given by

H = HS ⊗HS ⊗F , (31)

where HS = Cd is the Hilbert space of pure states of S, and

F = F
(
L2(R× S2,du× dΣ)

)
(32)

is the fermionic Fock space over the one-particle space L2(R3 × S2,du× dΣ). H is the
(Gelfand-Naimark-Segal) representation Hilbert space associated to the reference state

ωref = ωS,ref ⊗ ωR,β. (33)

Here, ωS,ref is the trace state on the C∗ algebra of observables AS = B(HS) (bounded
operators on HS), and ωR,β is the equilibrium state of the infinitely extended free Fermi
gas (see also (5)) on the C∗ algebra AR generated by the creation and annihilation
operators {a(g), a∗(g) : g ∈ L2(R3,d3k)} (called the Canonical Anticommutation
Relation (CAR) algebra). We refer the reader to Appendix A.2 for more information
on this representation of the CAR algebra.

The Hilbert space (31) supports in particular all local modifications ω of ωref . Such
an ω has the form

ω(A) = 〈ψω, π(A)ψω〉 , (34)

for all A ∈ A = AS ⊗AR, for some ψω ∈ H, where π : M → B(H) is the representation
map.

The dynamics of the system generated by Hj , (3), is represented onH by a Liouville
operator Lj :

π
(
eitHj

Ae−itHj)
= eitLj

π(A)e−itLj
, (35)

for all A ∈ A and all t ∈ R. Consequently, (2) is represented on H as

eit1L1 · · · eitNL
N
π(A)e−itNL

N · · · e−it1L1
. (36)

(Of course, we understand that the thermodynamic limit has been performed.) The
Liouville operators have the form (see Appendix A.2)

Lj = Lj0 + λjV
j , (37)

where
Lj0 = LjS + LR. (38)

Here,
LjS = Hj

S ⊗ 1l− 1l⊗Hj
S (39)

acts on HS ⊗HS and
LR = dΓ(u) (40)

is the second quantization of multiplication by u ∈ R acting on F . The interaction
operator

V j = π(vj) (41)
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belongs to the C∗ algebra π(A).
It is useful and standard to consider the weak closure of A,

M =
(
AS ⊗ AR

)′′ = B(HS)⊗ 1lS ⊗ A′′
R. (42)

M is a von Neumann algebra acting on H. We introduce the reference state

ψref = ψS ⊗ ψR, (43)

where ψS ∈ HS ⊗HS represents the trace state of S, and where ψR ∈ F is the vacuum
vector of F , representing the equilibrium state of R. The vector ψref is cyclic and
separating for the von Neumann algebra M, and we denote by J = JS ⊗ JR, ∆ =
1lS ⊗ 1lS ⊗∆R the modular conjugation and the modular operator of the pair (M, ψref)
(see also [8, 15]). It follows from the form of the interaction, (6) and Assumption (R)
in Section 1 that ∆1/2V j∆−1/2 ∈ M for all j.

2.2 Proof of (10)

Our main result on the piecewise constant dynamics is the following.

Theorem 2.1 (Dominant paths) There is a constant c > 0 s.t. if maxj |λj | < c,
then we have the following. Let A ∈ MS be any observable of S, and let ψ0 be any
initial state of S + R, given by Bψref some B ∈ M′

S. Then〈
ψ0, eit1L1 · · · eitNL

N
Ae−itNL

N · · · e−it1L1
ψ0

〉
(44)

=
∑

r1,...,rN

ei
PN

j=1 tjε
j(rj) 〈ψ0, BΠ0(r1, . . . , rN )Aψref〉+O(max

j
|λj |),

where the εj(r) are the resonance eigenvalues (see (11) and also Propositon 2.7). The
error term in (44) is uniform in the tj ≥ 0. Let ηj(r), η̃j(r) be the resonance eigen-
vectors (see (14) and also (73)). Then

Π0(r1, . . . , rN )
= |η1(r1)〉

〈
η̃1(r1), η2(r2)

〉
· · ·
〈
η̃N−1(rN−1), ηN (rN )

〉
〈η̃N (rN )|. (45)

Remarks. 1. We think that a more detailed analysis of the remainder term in (44)
would yield an estimate O(maxj |λj |) uniformly in N , but we do not prove this here.

2. Theorem 2.1 implies formula (10).

The remaining part of this section is devoted to the proof of Theorem 2.1. We build
up the proof in several steps.

2.2.1 Passage from the operators Lj to the operators Kj

Let (V ′)j be any operator belonging to the commutant M′,3 and set Kj = Lj+λj(V ′)j

(with domain D(Kj) = D(Lj) = D(Lj0)). We define the operator eitKj
, t ∈ R, via the

3The commutant of M, (35), is defined as M′ = {A ∈ B(H) : AB = BA ∀B ∈ M}.
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operator-norm convergent Dyson series

eitKj
=
∑
k≥0

λkj

∫ t

0
ds1 · · ·

∫ sk−1

0
dsk(V ′)j(sk) · · · (V ′)j(s1)eitLj

, (46)

where (V ′)j(s) = eisLj
(V ′)je−isLj

.
Since J∆1/2Aψref = A∗ψref for all A ∈ M, and since V j = (V j)∗, we see that upon

choosing
(V ′)j = −J∆1/2V jJ∆1/2,

we have Kjψref = 0 and hence
eitKj

ψref = ψref .

Note that J∆1/2 = ∆−1/2J , and that JMJ = M′, so that (V ′)j ∈ M′ indeed.

Proposition 2.2 We have

eitKj
Ae−itKj

= eitLj
Ae−itLj

, (47)

for all t ∈ R, A ∈ M.

Proof. It is easy to verify directly that for φ ∈ D(Lj0), we have d
dte

itKj
φ = eitKj

Kjφ.
We write (46) as eitKj

= S′(t)eitLj
= eitLj

R′(t), where S′(t) is given by the series on
the r.h.s. of (46), and R′(t) = e−itLj

S(t)eitLj
. Both S′(t) and R′(t) belong to the

commutant M′. Consequently, we have for all A ∈ M

eitKj
Ae−itKj

= S′(t)eitLj
Ae−itLj

R′(−t) = eitLj
Ae−itLj

S′(t)R′(−t).

Furthermore, S′(t)R′(−t) = eitKj
e−itLj

eitLj
e−itKj

= 1l, and thus we obtain (47). �

2.2.2 Resolvent representation of propagators

Proposition 2.3 Let A ∈ M and ψ ∈ H. We have for t ≥ 0〈
ψ, eitKj

Aψref

〉
=
−1
2πi

∫
R−iγ

eizt
〈
ψ, (Kj − z)−1Aψref

〉
dz, (48)

if γ > C|λj | for some C > 0.

Proof. The function t 7→
〈
ψ, eitLj

Ae−itLj
ψref

〉
=
〈
ψ, eitKj

Aψref

〉
is bounded and

continuous in t ∈ R. It follows that〈
ψ, eitKj

Aψref

〉
=

1
2πi

∫ γ+i∞

γ−i∞

[
ezt
∫ ∞

0
e−zs

〈
ψ, eisKj

Aψref

〉
ds
]

dz

=
1

2πi

∫ γ+i∞

γ−i∞
ezt
〈
ψ, i(Kj + iz)−1Aψref

〉
dz

=
−1
2πi

∫
R−iγ

eizt
〈
ψ, (Kj − z)−1Aψref

〉
dz. (49)

In the first step, we use the Laplace inversion theorem (see e.g. [22], Chapter II,
Theorem 9.2) and in the second step we integrate the propagator to obtain the resolvent.
�
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2.2.3 Analytic continuation of matrix elements

For θ ∈ R we define the unitary group Uθ = eθdΓ(∂u) on F , (translation in the radial
variable u, see (32)), and we set

Lj0(θ) = UθL
j
0U

−1
θ (50)

An easy calculation gives Lj0(θ) = LjS + LR + θN , where N = dΓ(1l) is the number
operator on F . Accordingly, we define in the same way

Kj(θ) = Lj(θ) + λjI
j(θ), (51)

Ij(θ) = V j(θ) + (V ′)j(θ). (52)

Let θ0 > 0 be fixed and define the strip

Sθ0 = {θ ∈ C : |Imθ| < θ0}. (53)

In accordance with analytic spectral deformation theory, we assume the following an-
alyticity condition.

(C1) θ 7→ Ij(θ) has an analytic continuation as a map from Sθ0 to the bounded oper-
ators on H, and supθ∈Sθ0

‖Ij(θ)‖ = C <∞.

Proposition 2.4 If the form factors gj satisfy Assumption (R) in Section 1, then
Condition (C1) is satisfied.

The proof of this proposition is not hard (one examines directly the explicit expres-
sion for Ij(θ), see also Appendix A.2). The following is the key technical result of the
analytic deformation method.

Proposition 2.5 Take z with Imz < −C|λj |, where C is the constant in Condition
(C1) above. The map θ 7→ (Kj(θ)−z)−1 has an extension from θ ∈ R to 0 ≤ Imθ < θ0.
This extension (denoted by the same symbol) is an analytic map from {θ ∈ C : 0 <
Imθ < θ0} to the bounded operators of H, and it is continuous in the operator norm as
Imθ ↓ 0, at all θ 6= 0.

Proof of Proposition 2.5. We fix the index j and omit it from the notation. Let θ ∈
R. On D(L0)∩D(N) we have L0(θ) = L0+θN and so, by (C1), K(θ) = L0+θN+λI(θ)
has analytic continuation to θ ∈ Sθ0 (as a closed operator on D(L0) ∩ D(N)). The
spectrum of the normal operator L0 + θN consists of real eigenvalues e ∈ spec(LS) and
of horizontal lines {nθ + R : n ∈ N} of continuous spectrum. (Note that L0 + θN is
the sum of two commuting self-adjoint operators.) For Imθ 6= 0 the eigenvalues e are
isolated. It follows from standard perturbation theory that the spectrum of K(θ) lies
within a distance of |λ| ‖I(θ)‖ from that of L0 + θN .

For 0 ≤ Imθ < θ0, all Imz < −C|λ| (with C as in condition (C1)) belong to the
resolvent set of L0 + θN , as well as to the resolvent set of K(θ). For such z we express
the resolvent using the norm-convergent Neumann series

(K(θ)− z)−1 = (L0 + θN − z)−1
∑
n≥0

(−λ)n[I(θ) (L0 + θN − z)−1]n.

It follows that for all z with Imz < −C|λ|,

12



1*. N(K(θ)− z)−1 is bounded for all nonzero θ with 0 ≤ Imθ < θ0,

2*. (K(θ)− z)−1 is bounded uniformly in θ s.t. 0 ≤ Imθ < θ0,

3*. Ran(K(θ)− z)−1 ⊂ D(L0) ∩ D(N) for all nonzero θ s.t. 0 ≤ Imθ < θ0.

Let θ be s.t. 0 < Imθ < θ0 and take ∆θ to be small so that 0 < Im(θ+ ∆θ) < θ0. The
resolvent identity gives

(K(θ + ∆θ)− z)−1 − (K(θ)− z)−1 =
(K(θ + ∆θ)− z)−1

[
∆θ N + λI(θ + ∆θ)− λI(θ)

]
(K(θ)− z)−1. (54)

Relation (54) (together with the above points 1* and 2*.) shows that θ 7→ (K(θ)−z)−1

is continuous on {θ ∈ C : 0 < Imθ < θ0} in the topology of bounded operators.
Furthermore,

(K(θ + ∆θ)− z)−1 − (K(θ)− z)−1

∆θ
= (K(θ + ∆θ)− z)−1

[
N + λX(θ,∆θ)

]
(K(θ)− z)−1, (55)

where lim∆θ→0X(θ,∆θ) = ∂θI(θ). Combining (54), (55) and points 1*, 2* above, we
see that for all Imz < −C|λ| and θ s.t. 0 < Imθ < θ0,

∂θ(K(θ)− z)−1 = (K(θ)− z)−1
[
N + λ∂θI(θ)

]
(K(θ)− z)−1,

the r.h.s. being a bounded operator.
We now show that (K(θ) − z)−1 is continuous as θ = x + iy → x ∈ R\{0}, y > 0.

The resolvent identity gives

(K(x+ iy)− z)−1 =
(K(x)− z)−1 + (K(x+ iy)− z)−1

[
K(x)−K(x+ iy)

]
(K(x)− z)−1. (56)

We rewrite (56) in the form

(K(x+ iy)− z)−1[1l−W (y)] = (K(x)− z)−1,

where
W (y) := [K(x)−K(x+ iy)](K(x)− z)−1 −→ 0

in operator norm, as y → 0 (here it is important that x 6= 0). It follows that

lim
y→0+

(K(x+ iy)− z)−1 = lim
y→0+

(K(x)− z)−1[1l−W (y)]−1 = (K(x)− z)−1.

This completes the proof of Proposition 2.5. �
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2.2.4 Separating pole contributions

For A ∈ MS and 0 ≤ j ≤ N − 1 we set

Aj = eitj+1L
j+1 · · · eitNL

N
Ae−itNL

N
e−itj+1L

j+1
, (57)

and we define AN = A. Let B be the operator in the commutant M′
S satisfying ψ0 =

Bψref , and denote by PψR
= |ψR〉〈ψR| the orthogonal projection onto HS⊗HS⊗CψR.

If all λj = 0, then the dynamics of S and R decouple, and we have Aj ∈ MS ⊗ 1lR,
and thus Ajψref ∈ RanPψR

. The following result follows from an easy perturbation
expansion.

Lemma 2.6 Set PψR
= 1l− PψR

. We have∥∥PψR
Ajψref

∥∥ ≤ Cj max
j
|λj | ||A||.

Using this result, we arrive at the representation〈
ψ0, eit1L1

A1e−it1L1
ψ0

〉
=
〈
ψ0, Beit1K1

A1ψref

〉
=
〈
ψ0, Beit1K1

PψR
A1ψref

〉
+R1, (58)

where ‖R1‖ ≤ Cmaxj |λj | (with a constant C depending on N and ||A||). The scalar
product term on the right side of (58) can now be treated as〈

ψ0, Beit1K1
PψR

A1ψref

〉
=

〈
ψ0, Beit1K1

PψR
eit2K2

A2ψref

〉
=

〈
ψ0, Beit1K1

PψR
eit2K2

PψR
A2ψref

〉
+R2,

with ||R2|| ≤ Cmaxj |λj |. We iterate this procedure and arrive at〈
ψ0, eit1L1 · · · eitNL

N
Ae−itNL

N · · · e−it1L1
ψ0

〉
=
〈
ψ0, BPψR

eit1K1
PψR

· · ·PψR
eitNK

N
PψR

Aψref

〉
+R, (59)

where the remainder term

R =
N∑
j=1

Rj (60)

satisfies ||R|| ≤ Cmaxj |λj |, with C depending on N .
Using the resolvent representation (49), we obtain

PψR
eitjK

j
PψR

=
−1
2πi

∫
R−iγ

eitjzPψR
(Kj − z)−1PψR

dz. (61)

We now perform spectral deformation in the integrand on the right side of (61). For
θ ∈ R we have PψR

U∗
θ = PψR

= UθPψR
and it follows that

PψR
(Kj − z)−1PψR

= PψR
(Kj(θ)− z)−1PψR

. (62)
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Proposition 2.5 shows that (62) has an extension to values of θ in 0 ≤ Imθ < θ0, and
that this extension is analytic in the open strip 0 < Imθ < θ0, and continuous on
R\{0}, provided Imz < −Cmaxj |λj |. However, since (62) is constant for θ on the real
axis, it must actually be constant on the entire region {0 ≤ Imθ < θ0}.4 This shows
that (62) holds for Imz < −Cmaxj |λj | and 0 ≤ Imθ < θ0. We thus have

PψR
eitjK

j
PψR

=
−1
2πi

∫
R−iγ

eitjzPψR
(Kj(θ)− z)−1PψR

dz, (63)

for all θ with 0 ≤ Imθ < θ0, and where γ > Cmaxj |λj |. We analyze the integral on
the r.h.s. of (63) in more detail. The following is a standard result [19, 20, 14].

Proposition 2.7 Fix θ′ with 0 < θ′ < θ0. There is a constant c0 > 0 s.t. if |λ| ≤ c0/β
then the spectrum of Kj(θ), lying in the complex half-plane {z ∈ C : Imz < θ′/2},
is independent of θ in the region θ′ < Imθ < θ0. It consists of the distinct isolated
eigenvalues {

εj(e, s) : e ∈ spec(LjS), s = 1, . . . , ν(e)
}
,

where 1 ≤ ν(e) ≤ mult(e) counts the splitting of the eigenvalue e into distinct reso-
nances. Moreover, we have εj(e, s) → e as λ → 0, for all s, and Imε(e, s) ≥ 0. The
continuous spectrum of Kj(θ) lies in the region {Imz > 3θ′/4}.

We now “shift” the path of integration R − iγ of the integral in (63) to the path
R+3iθ′/4 in the upper half plane. Thereby we pick up contributions (residues) coming
from the poles of the integrand. Let Cj(e, s) be a small circle around εj(e, s), not
enclosing or touching any other spectrum ofKj(θ). Define the generally non-orthogonal
Riesz spectral projections

Qj(e, s) =
−1
2πi

∫
Cj(e,s)

(Kj(θ)− z)−1dz, (64)

and the operator

Qj(∞) = Qj(∞, tj , θ) =
−1
2πi

∫
R+3iθ′/4

eitjzj (Kj(θ)− zj)−1dzj . (65)

For any vectors ψ, φ ∈ H we have by standard contour deformation of complex integrals

−1
2πi

∫
R−iγ

eitjzj
〈
ψ, (Kj(θ)− zj)−1φ

〉
dzj (66)

=
∑

e∈spec(Lj
S)

ν(e)∑
s=1

eitjε
j(e,s)

〈
ψ,Qj(e, s)φ

〉
+
〈
ψ,Qj(∞)φ

〉
.

The operator Qj(∞) reduces to eitjL0(θ)PψR
for λj = 0, and one can show the following

result.
4Apply the Schwarz reflection principle to the analytic function F (θ) − F (0), where F (θ) equals

(62).
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Proposition 2.8 ([19]) We have ‖PψR
Qj(∞)PψR

‖ ≤ Cλ2
je
−3tjθ

′/4.

Combining relations (59), (63), (66) and Proposition 2.8, we obtain〈
ψ0, eit1L1 · · · eitNL

N
Ae−itNL

N · · · e−it1L1
ψ0

〉
(67)

=
∑

r1,...,rN

ei
PN

j=1 tjε
j(rj) 〈B∗ψ0,Π(r1, . . . , rN )Aψref〉+R′,

where the (multi-)indices rj are summed over {(e, s) : e ∈ spec(LjS), s = 1, . . . , ν(e)},
with εj(rj) = εj(e, s) if rj = (e, s) and where we introduce

Π(r1, . . . , rN ) = Q1(r1) · · ·QN (rN ), (68)

with Qj(rj) given by (64). The remainder term R′ in (67) satisfies ‖R‖ ≤ Cmaxj |λj |
(with C depending on N).

As explained in the introduction, we assume that

(S) Each projection Qj(e, s) has rank one (for λj > 0).

This assumption means that all resonance energies εj(e, s) are simple, and it is valid in
all our applications. One may modify the results of [20], where degenerate resonance
energies are treated for time-independent Hamiltonians, to eliminate Condition (S).

Having rank one, the projections are given by

Qj(rj) = |χj(rj)〉〈χ̃j(rj)|, rj = (e, s), (69)

where

Kj(θ)χj(rj) = εj(rj)χj(rj), (70)
[Kj(θ)]∗χ̃j(rj) = [εj(rj)]∗χ̃j(rj), (71)

and the resonance eigenvectors are normalized as〈
χj(rj), χ̃j(rj)

〉
= 1. (72)

Using perturbation theory (e.g. the Feshbach technique, [6, 19, 20]), one sees that
the resonance eigenvectors have the expansion

χj(rj) = ηj(rj)⊗ ψR +O(λj) and χ̃j(rj) = η̃j(rj)⊗ ψR +O(λj), (73)

where ψR is the vacuum vector of F , and where the vectors ηj(rj) and η̃j(rj), for
rj = (e, s), belong to the eigenspace of LjS associated to the eigenvalue e. Let P je be
the orthogonal spectral projection of LjS associated to the eigenvalue e. We define the
level shift operator Λj(e) by

Λj(e) = P je I
j P j(e)(Lj0 − e+ i0)−1 P j(e)IjP je , (74)
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where P j
e = 1l − P je and where Lj0 = P j

eL
j
0 P

j
e � RanP j

e. The vectors ηj(e, s) and
η̃j(e, s) are eigenvectors of Λj(e) and its adjoint [Λj(e)]∗,

Λj(e)ηj(e, s) = δj(e, s)ηj(e, s) and [Λj(e)]∗η̃j(e, s) = δj(e, s)η̃j(e, s), (75)

satisfying the normalization relation〈
ηj(e, s), η̃j(e, s)

〉
= 1. (76)

The resonance energies have the expansion

εj(e, s) = e− λ2
jδ
j(e, s) +O(λ4

j ). (77)

The proof of Theorem 2.1 is now complete by combining expansion (73) with (67) and
(68).

3 Applications: details and proofs

The setting of the applications is given in Section 1.2.

3.1 Regime of overlapping resonances

The explicit (perturbative) form of the resonance data for the system is given in the
following theorem. Recall that τ j and σ are defined in (24).

Theorem 3.1 (Resonances of K) There is a constant C s.t. if |λ|+maxj |∆j | < C,
then the resonances of Kj in the region {z ∈ C : Imz < θ0} are given by

εj(1) = 0 (78)
εj(2) = 2iσ +O

(
λ2(|λ|+ ∆max)

)
(79)

εj(3) = iσ + σ
√

(τ j)2 − 1 +O
(
λ2(|λ|+ ∆max)

)
, (80)

εj(4) = iσ − σ
√

(τ j)2 − 1 +O
(
λ2(|λ|+ ∆max)

)
, (81)

where the square root always means the principal branch, with branch-cut on the negative
real axis (the argument function takes values in (−π, π]). The resonance eigenvectors
χj(r) and χ̃j(r), r = 1, . . . , 4, are given by (73), with

ηj(1) = η̃j(1) =
1√
2
[ϕ++ + ϕ−−] (82)

ηj(2) = η̃j(2) =
1√
2
[ϕ++ − ϕ−−] (83)

ηj(3) = ϕ+− + yj+ϕ−+, η̃j(3) = αj+(ϕ+− + yj+ϕ−+) (84)

ηj(4) = ϕ+− + yj−ϕ−+, η̃j(4) = αj−(ϕ+− + yj−ϕ−+), (85)

where
yj± = −iτ j ± i

√
(τ j)2 − 1, αj± = [1 + (yj±)2]−1. (86)
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It follows from Theorem 3.1 that all resonances are non-degenerate provided (τ j)2 6=
1 for all j, a condition we assume to hold in this section. Hence condition (S) is satisfied
(see introduction as well as Section 2.2.4). We define the transition coefficients

T j(r, r′) =
〈
η̃j(r), ηj+1(r′)

〉
, r, r′ = 1, . . . , 4, j = 1, 2, . . . , (87)

in terms of which the dominant path Π0(r1, . . . , rN ), (45), can be written as

Π0(r1, . . . , rN ) =

N−1∏
j=1

T j(rj , rj+1)

 |η1(r1)〉〈η̃N (rN )|. (88)

Before proving Theorem 3.1, we mention that expressions (82)-(86) yield the following
result.

Proposition 3.2 (Transition coefficients) We have

T j(1, 1) = T j(2, 2) = 1,

T j(3, 3) = 1 + αj+y
j
+[yj+1

+ − yj+],

T j(4, 4) = 1 + αj−y
j
−[yj+1

− − yj−],

T j(3, 4) = αj+y
j
+[yj+1

− − yj−],

T j(4, 3) = αj−y
j
−[yj+1

+ − yj+].

All other transition coefficients vanish. (Note that if ∆j+1 = ∆j then T j(r, r′) = δr,r′

(Kronecker symbol)).
In the regime of separated resonances, where τmin := minj |τ j | >> 1, we have

T j(3, 3), T j(4, 4) = 1 +
τ j+1 − τ j

2τ j
∓ |τ j+1| − |τ j |

2τ j
+O

(
1/τ2

min

)
,

T j(3, 4), T j(4, 3) =
τ j+1 − τ j

2τ j
± |τ j+1| − |τ j |

2τ j
+O

(
1/τ2

min

)
.

In the regime of overlapping resonances, where τmax := maxj |τ j | << 1, we have

T j(3, 3), T j(4, 4) = 1± i
τ j+1 − τ j

2
+O

(
τ2
max

)
,

T j(3, 4), T j(4, 3) = ±i
τ j+1 − τ j

2
+O

(
τ2
max

)
.

Proof of Theorem 3.1. Throughout the proof, we consider j fixed and do not
display it. The unperturbed Liouville operator L0 = LR has a four-fold degenerate
eigenvalue at the origin, and absolutely continuous spectrum filling the entire real axis.
We have K = L0 + I, where

I =
∆
2
LS + λ[V − V ′], (89)
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with LS = σz ⊗ 1l − 1l ⊗ σz, V = σx ⊗ 1lS ⊗ ϕβ(g) and V ′ = 1lS ⊗ σx ⊗ ϕ̃β(g). The
spectrally deformed operator, for θ ∈ Sθ0 , is given by

K(θ) = L0 + θN + I(θ), (90)

where N = dΓ(1l) is the number operator in F , and where

I(θ) =
∆
2
LS + λ[V (θ) + V ′(θ)]. (91)

We consider θ = iθ′, with θ′ > 0. Let P be the projection onto HS ⊗HS ⊗ CψR, and
let P = 1l − P . We denote by T the restriction of an operator T to the range of P .
The estimate

∥∥P (LR + iθ′N − z)−1
∥∥ = [dist(z, iθ′N∗ + R)]−1 implies

∥∥P (LR + iθ′N − z)−1
∥∥ =

2
θ′
, for Imz < θ′/2. (92)

The Neumann series

P (K(iθ′)− z)−1 P

= P (LR + iθ′N − z)−1 P
∑
n≥0

(−1)n
[
I(iθ′)(LR + iθN − z)−1 P

]n (93)

converges for all Imz < θ′/2, provided that ‖I(iθ′)‖ 2
θ′ < 1. The latter condition is

satisfied for |∆| + |λ| < C(θ0), see the assumptions in Theorem 3.1. We consider
spectral points z with Imz < θ′/2. The Feshbach map method [19, 20, 6] tells us that
such a z belongs to the spectrum of K(iθ′) if and only if it belongs to the spectrum of
the Feshbach map applied to K(iθ′),

FP,z(K(iθ′)) = P
[
K(iθ′)− I(iθ′)P (K(iθ′)− z)−1 P I(iθ′)

]
P. (94)

Using (91) and (93) we obtain

FP,z(K(iθ′)) = P
∆
2
LS (95)

−λ2P [V (iθ′)− V ′(iθ′)]P (LR + iθ′N − z)−1 P [V (iθ′)− V ′(iθ′)]P
+O
(
λ2(|∆|+ |λ|)

)
.

Furthermore, the estimate (LR +iθ′N −z)−1 P = (LR +iθ′N)−1 P +O(|z|/(θ′)2) leads
to (fixed θ′)

FP,z(K(iθ′)) = Λ +O
(
λ2(|∆|+ |λ|+ |z|)

)
, (96)

where
Λ =

∆
2
LS − λ2ΛR (97)

is the level shift operator. Here,

ΛR = P [V − V ′]P (LR + i0)−1 P [V − V ′]P. (98)
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We understand (96), (97) and (98) as operators acting on RanP = C2 ⊗ C2. In (98)
we have eliminated the spectral deformation parameter iθ′ by analyticity in a standard
fashion, replacing it by the (operator norm) limit of (LR + iε)−1 P as ε ↓ 0.

Our next task is to calculate the eigenvalues and eigenvectors of the level shift
operator Λ. Using the explicit form of V and V ′ we obtain the following result by a
standard and straightforward calculation (see also [16, 9, 19, 20], for instance).

Lemma 3.3 We have λ2ΛR = −iσ + iσ (σx ⊗ σx), where σ = π
2λ

2γ0, with γ0 given in
(22), and where σx is the Pauli matrix (c.f. (18)).

In the ordered orthonormal basis {ϕ++, ϕ+−, ϕ−+, ϕ−−} of C2 ⊗ C2, the level shift
operator (97) is represented by the matrix

Λ = iσ +


0 0 0 −iσ
0 ∆ −iσ 0
0 −iσ −∆ 0
−iσ 0 0 0

 . (99)

It is now a simple matter to verify that

spec(Λ) = {0, 2iσ, iσ[1∓ i
√

(∆/σ)2 − 1]},

with corresponding eigenvectors η(1), . . . , η(4) given by (82)-(85) (with j fixed).
It follows from (96) and the isospectrality of the Feshbach map (mentioned before

(94)) that the resonance eigenvalues ε(r) are given by (78)-(80).
One equally easily finds the eigenvectors η̃(1), . . . , η̃(4) of the adjoint of (99).
This completes the proof of Theorem 3.1. �

3.1.1 Single sudden level crossing

The Hamiltonian is given by (19). The following is a proof of the expression (20) for
the transition probability pge(t).

The probability pge(t), for t > tc, is given by

pge(t) =
〈
ψ0, eitcL1

ei(t−tc)L2
(A⊗ 1lS ⊗ 1lR)e−i(t−tc)L2

e−itcL1
ψ0

〉
, (100)

where ψ0 = ϕ−− ⊗ ψR, and where A = |ϕ−〉〈ϕ−|. (Note that ϕ− is the excited state of
H2

S .). We use Theorem 2.1 with B =
√

2 1lS ⊗ |ϕ−〉〈ϕ−| (so that BψS = ϕ−−, where
ψS is the trace state of S). The sum in (44) has only two terms (since we have only
one jump in the Hamiltonian), and we obtain

pge(t) (101)

=
∑
r1,r2

eitcε1(r1)+i(t−tc)ε2(r2)T (r1, r2)
〈
ϕ−−, η

1(r1)
〉 〈
η̃2(r2), ϕ−−

〉
+O(|λ|+ ∆max),

where the remaider here contains an O(∆max) term since we carry out perturbation
theory in the coupling constant λ and the energy spacing ∆ simultaneously (overlapping
resonance regime). Theorem 3.1 and 3.2 then imply that

pge(t) =
1
2

+
1
2
eitcε1(2)+i(t−tc)ε2(2) +O(|λ|+ ∆max),
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which shows (20) for t > tc. The proof for 0 ≤ t < tc goes along the same lines (and is
actually easier, since there is no jump in the Hamiltonian in this case). �

3.1.2 Continuum limit and slow variation expansion (τ ′(t) small)

We investigate in this section the continuum limit, as explained in Section 1.2.
All quantities in Theorem 3.1 and Proposition 3.2 can be viewed as depending on

continuous time t by the substitution j 7→ j tN . For instance εj(3) = ε(j tN , 3), where

ε(t, 3) = iσ + iσ
√

1− τ(t)2 +O
(
λ2(|λ|+ ∆max)

)
, (102)

with τ j = τ(j tN ) and yj± = y±(j tN ) with

y±(t) = −iτ(t)∓
√

1− τ(t)2.

Similarly, the continuous time resonance vectors are denoted by η(t, r), η̃(t, r); for
instance,

η(t, 3) = ϕ+− + y+(t)ϕ−+, η̃(t, 3) = α+(t)
(
ϕ+− + y+(t)ϕ−+

)
, (103)

and so on.
We define for s, t ≥ 0 the quantities w(s, t, 1) = w(s, t, 2) = 1, and

w(s, t, 3) =

√
1 + y+(t)2

1 + y+(s)2
, w(s, t, 4) =

√
1 + y−(t)2

1 + y−(s)2
. (104)

It is quite clear (see the proof of Theorem 3.4 below for details) that the transition
coefficients T j(r, r′) associated to a jump (r 6= r′) are of the size

τ ′max := sup
t≥0

|τ ′(t)|. (105)

Now the sum over all paths in (44) can be written as a sum over all paths with k
jumps, k = 0, . . . , N − 1. This sum becomes an infinite series in the continuous time
limit. Each path with k jumps is of the order of (τ ′max)

k, and so for small τ ′max, one
can approximate the series by the first few terms.

Theorem 3.4 (Continuous time limit) Let η(t, r) and η̃(t, r) be the resonance vec-
tors at time t ≥ 0, where r = 1, . . . , 4 (see (103)). The continuous time limit of
the main term of (44),

∑
r1,...,rN

ei
PN

j=1 tjε
j(rj) 〈B∗ψ0,Π0(r1, . . . , rN )Aψref〉, is given by

(26).

Proof of Theorem 3.4. By the mean value theorem we have

yj+1
± − yj± =

t

N

[
−iτ ′(t1)± τ ′(t2)

τ(t2)√
1− τ(t2)2

]
,
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where t1, t2 ∈ (jt/N, (j + 1)t/N). Thus the transition coefficients satisfy

T j(r, r) = 1 +O
(
τ ′maxt/N

)
, ∀j, r (106)

T j(3, 4) =
t

N

y+(jt/N)
1 + y+(jt/N)

[
y′+(jt/N) +O(τ ′maxt/N)

]
, (107)

and T j(4, 3) is given by the r.h.s. of (107) with y+ replaced by y−. The remainders
O
(
τ ′maxt/N

)
are uniform in j and r. Relations (106), (107) show that for “slow varia-

tions” of τ(t) the transition coefficient associated to a jump 3 ↔ 4 is small, proportional
to τ ′(t)t/N , while no-jump transitions have weight one.

We write the sum over all paths in (44) as a sum over all paths with exactly k jumps,
where k = 0, 1, . . . , N−1. (A jump happens if one value of rj changes to a different value
of rj+1). There are exactly four paths without any jumps, corresponding to Π0(r, . . . , r),
r = 1, 2, 3, 4. The paths with a single jump are given by Π0(r, . . . , r, r′, . . . r′), where
(r, r′) = (3, 4) or (r, r′) = (4, 3), and where the jump takes place at location k =
1, . . . , N − 1. Note that the only jumps allowed are between r = 3 and r = 4, since
T j(r, r′) = 0 if r 6= r′ and r, r′ 6∈ {3, 4} (see Proposition 3.2).

It is thus clear that we have exactly 2
(
N
k

)
paths with k jumps. The factor 2 takes

into account that r1 can take either of the values 3 or 4. For k fixed, the summand in
(44) is bounded by∣∣∣ei

PN
j=1 tjε

j(rj) 〈B∗ψ0,Π0(r1, . . . , rN )Aψref〉
∣∣∣ ≤ C0C

k
1C

N−k
2 , (108)

where

C0 = ‖B∗ψ0‖ ‖A‖,
C1 = max

j
max
r 6=r′

|T j(r, r′)| = O
(
τ ′maxt/N

)
,

C2 = max
j

max
r
|T j(r, r)| = 1 +O

(
τ ′maxt/N

)
.

The last estimates on C1 and C2 follow from (107) and (106), respectively. The sum
over all paths (N fixed) in (44) has the upper bound

2C0

N−1∑
k=0

(
N

k

)
Ck1C

N−k
2 = 2C0

[
(C1 + C2)N − CN1

]
≤ 2C0

(
1 + 2Cτ ′maxt/N

)N
,

where C is such that C1 ≤ Cτ ′maxt/N and C2 ≤ 1 + Cτ ′maxt/N . The limit as N → ∞
of the r.h.s. 2C0e2Cτ ′maxt. This implies that we can truncate in a controlled way the
series over the number of jumps obtained in the continuous time limit. If we truncate
at k ≤ K, then the remaining tail of the series is estimated from above by

2C0

N∑
k=K+1

(
N

k

)
Ck1C

N−k
2 ≤ 2C0(C1/C2)K+1e2Cτ ′maxt = O

(
(τ ′maxt)

K+1 e2Cτ ′maxt
)
.

For bounded t, the tail of the series is thus O
(
(τ ′max)

K+1
)
.
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Contribution of paths without jumps. The products of transition coefficients for
the constant paths with rj = 1, 2 are 1. Also,

T 1(3, 3) · · ·TN−1(3, 3) =
N−1∏
j=1

[
1 +

y+(jt/N)
1 + y+(jt/N)2

(
y+((j + 1)t/N)− y+(jt/N)

)]
(109)

and for r = 4 the product is given by the r.h.s. of (109) with y+ replaced by y−. By
taking the logarithm of (109) the product transforms into a Riemann sum, and so one
easily obtains

lim
N→∞

T 1(3, 3) · · ·TN−1(3, 3) = exp
{∫ t

0

y+(s)y′+(s)
1 + y+(s)2

ds
}

=

√
1 + y+(t)2

1 + y+(0)2
.

The limit of the products with r = 4 is given by the latter square root with y+ replaced
by y−. Finally, the limits of the exponential factors in (44) are

lim
N→∞

ei
PN

j=1 tjε
j(rj) = ei

R t
0 ε(s,rj)ds, (110)

where ε(s, r) is defined as in (102). This gives the first line in (26).
Contribution of paths with one jump. Let j0 ∈ {1, . . . , N − 1} be the location

of the jump. We have r1 = · · · = rj0 = r and rj0+1 = · · · = rN−1 = r′, where
either (r, r′) = (3, 4) or (r, r′) = (4, 3). We treat the first the transition 3 → 4. The
contribution to the sum in (44) is given by

〈B∗ψ0, J1 |η(0, 3)〉〈η̃(t, 4)|Aψref〉 , (111)

where

J1 =
N−1∑
j0=1

ei t
N

Pj0
j=1 ε

j(3)+i t
N

PN
j=j0+1 ε

j(4)

j0−1∏
j=1

T j(3, 3)

T j0(3, 4)

 N−1∏
j=j0+1

T j(4, 4)

 .
(112)

The continuous time limit of J1 is∫ t

0
ei

R s
0 ε(s

′,3)ds′+i
R t

s ε(s
′,4)ds′ w(0, s, 3)

y+(s)y′−(s)
1 + y+(s)2

w(s, t, 4), (113)

with w defined in (104). The corresponding quantity for the transition 4 → 3 is obtained
from (113) by interchanging the indices 3 ↔ 4, replacing y+ by y− and y′− by y′+. This
completes the proof of Theorem 3.4. �

3.2 Regime of isolated resonances

In the regime of isolated resonances we can use Theorem 2.1. All that remains is to
calculate the eigenvalues δj and eigenvectors ηj and η̃j of the level shift operator (74).
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Theorem 3.5 (Resonances) Suppose all gaps ∆j are numbers, well separated from
0, independent of λ. The resonances are

εj(1) = 0 , εj(2) = λ2
jδ
j(2) +O(λ4

j ) , (114)

εj(3) = ∆j + λ2
jδ
j(3) +O(λ4

j ) , εj(4) = −∆j + λ2
jδ
j(4) +O(λ4

j ) , (115)

where,

δj(2) = iπγ(∆j) , (116)

δj(3) =
iπγ(∆j)

2
− 1

2

〈
P
(

1
r2 − 1

)
, γ(r∆j)

〉
, (117)

δj(4) =
iπγ(∆j)

2
+

1
2

〈
P
(

1
r2 − 1

)
, γ(r∆j)

〉
, (118)

γ(r) =

√
|r|
2

∫
S2

dσ|g(
√
|r|, σ)|2 (119)〈

P
(

1
r2 − 1

)
, γ(r∆j)

〉
= lim

ε→0

∫ ∞

−∞

1− χ(−ε,ε)(r2 − 1)
r2 − 1

γ(r∆j) dr (120)

and the eigenvectors are

ηj(1) = ϕ++ + ϕ−− , η̃j(1) =
1

e−β∆j + 1
[e−β∆j

ϕ++ + ϕ−−] , (121)

ηj(2) = ϕ++ − ϕ−− , η̃j(2) =
1

e−β∆j + 1
[ϕ++ − e−β∆j

ϕ−−] , (122)

ηj(3) = η̃j(3) = ϕ+− , ηj(4) = η̃j(4) = ϕ−+ . (123)

The transition coefficients are T j(r, r′) = 〈η̃j(r), ηj+1(r′)〉, which equal

T j(1, 1) = T j(2, 2) = T j(3, 3) = T j(4, 4) = 1, (124)

T j(1, 2) =
sinh(β[∆j+1 −∆j ]/2)

2 cosh(β∆j/2) cosh(β∆j+1/2)
. (125)

All other transition coefficients vanish.

Remarks. 1. If we consider the asymptotic regime where ∆j � 1, we obtain
εj(1) = 0, εj(2) = 2iσ, εj(3) = ∆j + iσ, εj(4) = −∆j + iσ. (To see this, note that
〈 1
r2−1

, γ(r∆j)〉 = O((∆j)2) in this regime.) This agrees with Theorem 3.1 if one takes
τ j →∞, which signifies λ2 � ∆j � 1. The biggest change is the change to τ j , which
previously was just ∆j/σj . Now we have

σ(∆j)τ(∆j) = ∆j − lim
ε↓0

∫ ∞

0

1− χ(−ε,ε)(r2 − 1)
r2 − 1

γ(r∆j)dr. (126)

The principal value integral appearing in (126) vanishes in the limit ∆j → 0, and is
therefore part of the remainder in the setting of Theorem 3.1.
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2. Clearly the full analysis of the overlapping region is more involved than taking the
limit of the answers from the non-overlapping region. For instance, the limit above does
not give the correct answer for the eigenvectors, and hence nalso for the transmission
coefficients.

3. Once Theorem 3.5 is proved, the calculations leading to (29) and (30) for the
single sudden crossing are done exactly in analogy to Section 3.1.1, and in fact are
easier.

Proof. We have to calculate, and diagonalize the level shift operator (74). For this
purpose we will take j to be fixed, in order to prove (114) – (123). (The calculation
of the transition coefficients follows trivially from these, using the definition (87).) We
will consider the gap ∆j to be positive. Then I = V −JR∆1/2

R V∆−1/2
R JR. Using (147),

(148) and (150), we see that

I = σx ⊗ 1lS ⊗ φ(τβg)− 1lS ⊗ σx ⊗
[
a∗(τβg)(−1)N + (−1)Na(e−βuτβg)

]
(127)

and the level shift operator at energy e is

Λ(e) = PeIP̄e(LR + LS − e+ i0)−1P̄eIPe, (128)

with LS = ∆
2 (σz ⊗ 1lS − 1lS ⊗ σz) ⊗ 1lR and LR = 1lS ⊗ 1lS ⊗ dΓ(u). Also P0 is the

projection onto the span of {ϕ++ ⊗ Ω, ϕ−− ⊗ Ω}. So, in this basis

Λ(0) =
[
Λ11(0) Λ12(0)
Λ21(0) Λ22(0)

]
(129)

where

2Λ11(0) =
〈
τβg, (u−∆ + i0)−1τβg

〉
+
〈
e−βuτβg, (u+ ∆ + i0)−1τβg

〉
(130)

2Λ22(0) =
〈
τβg, (u+ ∆ + i0)−1τβg

〉
+
〈
e−βuτβg, (u−∆ + i0)−1τβg

〉
(131)

−2Λ21(0) =
〈
e−βuτβg, (u−∆ + i0)−1τβg

〉
+
〈
τβg, (u+ ∆ + i0)−1τβg

〉
(132)

−2Λ12(0) =
〈
e−βuτβg, (u+ ∆ + i0)−1τβg

〉
+
〈
τβg, (u−∆ + i0)−1τβg

〉
(133)

where the inner products are in L2(R × S2,du dσ). Noting that e−βu|[τβg](u, σ)|2 =
|[τβg](−u, σ)|2, we see that

Λ11(0) = −Λ12 = i
〈
τβg, Im[(u−∆ + i0)−1]τβg

〉
, (134)

Λ22(0) = −Λ21 = i
〈
τβg, Im[(u+ ∆ + i0)−1]τβg

〉
. (135)

But now we use the well-known formula that limε↓0 Im[(u− u0 + iε)−1] = −πδ(u− u0),
as a distribution to obtain

Λ(0) = −iπ
∫
S2

[
|τβg(∆, σ)|2 −|τβg(∆, σ)|2

−|τβg(−∆, σ)|2 |τβg(−∆, σ)|2
]

dσ

= − iπγ(∆)
e−β∆ + 1

[
1 −1

−e−β∆ e−β∆

]
.

(136)
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It is easy to see that the eigenvalues are δ(1) = 0 and δ(2) from (116), with eigenvectors
η(1), η(2), η̃(1) and η̃(2) from (121) and (122).

For e = ±∆ there is only one eigenvector, each. Let us consider e = ∆ whose
eigenvector (left and right) is ϕ+−. In this case the action of σx⊗ 1lS and 1lS⊗ σx both
serve to map ϕ+− to eigenvectors of LS with eigenvalue 0. On the other hand, e = ∆
appears in the resolvent. So

2Λ(∆) =
〈
τβg, (u−∆ + i0)−1τβg

〉
+
〈
e−βuτβg, (u−∆ + i0)−1τβg

〉
=
〈
τβg,

[
(u−∆ + i0)−1 + (−u−∆ + i0)−1

]
τβg
〉
.

(137)

(We again used e−βu|[τβg](u, σ)|2 = |[τβg](−u, σ)|2.) Now we use the well-known for-
mula that limε↓0(u−u0+iε)−1 = −iπδ(u−u0)+P( 1

u−u0
), where P( 1

u−u0
) is the Cauchy

principle value distribution, P( 1
u−u0

) = limε→0
χ|u−u0|>ε

u−u0
, where the limit is in the space

of distributions. So in this case we do get a “Lamb shift” in addition to the purely
imaginary resonance

2Λ(∆) = 〈τβg, [−iπ[δ(u−∆) + δ(u+ ∆)] + P(u−∆)− P(u+ ∆)]τβg〉 . (138)

Consideration of this formula leads to (117), and (118) then follows by symmetry
arguments.

We can treat the case of negative gaps ∆j by conjugating by σx to change to −∆j .
This does not affect the resonances but it does affect the eigenvectors. However, all that
happens is that some vectors ηj(r) are multiplied by −1 and this is always accompanied
by the same change to the corresponding dual eigenvector η̃j(r). This type of gauge
transformation does not affect any physical quantities. �

A Araki-Wyss representation

A.1 The representation

Here we will outline the Araki-Wyss representation [5] in order to be self-contained.
We use similar notation to [10] (starting on page 24). The Araki-Wyss representation
of the CAR is a representation on the tensor product of two fermionic Fock spaces
F(L2(R3, d3k)) ⊗ F(L2(R3, d3k)), such that the smoothed-out creation operators are
represented by the formula

a∗β(g) = a∗

(
1√

e−β|k|2 + 1
g

)
⊗ 1l + (−1)N ⊗ a

(
1√

eβ|k|2 + 1
ḡ

)
, (139)

where N is the number operator N = dΓ(1l). The annihilation operators are aβ(g) =
[a∗β(g)]

∗. Let us write µβ = (1 + e−β|k|
2
)−1. In this context, the modular operator and

modular conjugation combine to give

ãβ(g) = JR∆1/2
R aβ(g)∆

−1/2
R JR

= a∗

(
eβ|k|

2/2√
eβ|k|2 + 1

g

)
(−1)N ⊗ (−1)N + 1l⊗ (−1)Na

(
eβ|k|

2/2√
e−β|k|2 + 1

ḡ

)
,

(140)
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and

ã∗β(g) = JR∆1/2
R a∗β(g)∆

−1/2
R JR

= (−1)Na

(
e−β|k|

2/2√
eβ|k|2 + 1

g

)
⊗ (−1)N + 1l⊗ a∗

(
e−β|k|

2/2√
e−β|k|2 + 1

ḡ

)
(−1)N .

(141)

A.2 Regularity of form factors

Let g ∈ L2(R+ × S2, |k|2d|k|dσ) be a form factor represented in spherical coordinates
(dσ being the uniform measure on S2). We introduce a new radial coordinate r = |k|2
so that the dispersion relation of the Fermions reads ω = |k|2 = r, i.e., HR = dΓ(r)
on the Fock space F(L2(R+× S2,

√
r

2 dr dσ)) (see (4)). The Araki-Wyss representation
Hilbert space associated to the thermal equilibrium is

F
(
L2(R+ × S2,

√
r

2 dr dσ)
)
⊗F

(
L2(R+ × S2,

√
r

2 dr dσ)
)
. (142)

For the purpose of spectral deformation, it is advantageous to use the maps

a#(f)⊗ 1l 7→ a#(f ⊕ 0) (−1)N ⊗ a#(f) 7→ a#(0⊕ f) (143)

to define an isometric isomorphism between (142) and the Hilbert space

F
(
L2(R+ × S2,

√
r

2 dr dσ)⊕ L2(R+ × S2,
√
r

2 dr dσ)
)
. (144)

In (143), N is the number operator. A further isometric isomorphism between (144)
and

HR = F
(
L2(R× S2,du dσ)

)
(145)

(see also (32)) is induced by such an isomorphism between the one-particle spaces,
given by

f ⊕ g 7→ h, h(u, σ) =
|u|1/4√

2

{
f(u, σ) if u ≥ 0,
g(−u, σ) if u < 0,

(146)

where f, g ∈ L2(R+ × S2,
√
r

2 dr dσ) and h ∈ L2(R× S2,du dσ).
Under these isomorphisms, the field operator φ(g), in the Araki-Wyss representa-

tion, has the expression
φβ(g) = φ(τβg), (147)

where φ on the r.h.s. is the field operator on the fermionic Fock space (144), and where

[τβg](u, σ) =
1√
2

√
|u|1/2

e−βu + 1

{
g(
√
u, σ), if u ≥ 0,

g(
√
−u, σ), if u < 0.

(148)

Using the explicit transformations introduced above, the expressions (37)-(41) are easily
found. Furthermore, it is not hard to analyze the explicit action of the deformation
transformation Uθ (see before (50)). For instance, for h ∈ L2(R×S2,dudσ) and θ ∈ R,
we have

Uθφ(h)U∗
θ = φ(eθ∂uh), (149)
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where (eθ∂uh)(u, σ) = h(u+θ, σ). One can now combine (149) with h = τβg
j (see (147),

(148)) and check that due to Condition (R) in Section 1 (with α(u) = 1), θ 7→ Uθφ(h)U∗
θ

admits an analytic continuation into a strip |Imθ| < θ0. One can proceed similarly to
check analyticity of (V j)(θ) by using the explicit form ∆R = e−βLR for the modular
operator of R. For reference in the body of the paper, let us note explicitly that

JR∆1/2
R φβ(g)JR∆1/2

R = a∗(τβg)(−1)N + (−1)Na(e−βuτβg) , (150)

in this representation F(L2(R × S2,du dσ)). This can also be seen by comparing to
(140) and (141).
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