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Abstract

We consider a discrete-time stochastic growth model on d-dimensional lattice. The
growth model describes various interesting examples such as oriented site/bond perco-
lation, directed polymers in random environment, time discretizations of binary contact
path process. We show the equivalence between the slow population growth and a lo-
calization property in terms of “replica overlap”. This extends a result known for the
directed polymers in random environment to a large class of models. A new approach,
based on the multiplicative Doob’s decomposition, is adopted to overcome the difficulty
that the total population may get extinct even at finite time.
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1 Introduction

We write N = {0, 1, 2, ...}, N∗ = {1, 2, ...} and Z = {±x ; x ∈ N}. For x = (x1, .., xd) ∈ Rd,
|x| stands for the `1-norm: |x| =

∑d
i=1 |xi|. For ξ = (ξx)x∈Zd ∈ RZd

, |ξ| =
∑

x∈Zd |ξx|. Let
(Ω,F , P ) be a probability space. We write P [X] =

∫
X dP and P [X : A] =

∫
A X dP for a

random variable X and an event A.

1.1 The oriented site percolation (OSP)

We start by discussing the oriented site percolation as a motivating example. Let ηt,y, (t, y) ∈
N∗ ×Zd be {0, 1}-valued i.i.d. random variables with P (ηt,y = 1) = p ∈ (0, 1). The site (t, y)
with ηt,y = 1 and ηt,y = 0 are referred to respectively as open and closed. An open oriented
path from (0, 0) to (t, y) ∈ N∗ × Zd is a sequence {(s, xs)}t

s=0 in N × Zd such that x0 = 0,
xt = y, |xs − xs−1| = 1, ηs,xs = 1 for all s = 1, .., t. For oriented percolation, it is traditional
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to discuss the presence/absence of the open oriented paths to certain time-space location.
On the other hand, the model exhibits another type of phase transition, if we look at not
only the presence/absence of the open oriented paths, but also their number. Let Nt,y be the
number of open oriented paths from (0, 0) to (t, y) and let |Nt| =

∑
y∈Zd Nt,y be the total

number of the open oriented paths from (0, 0) to the “level” t. If we regard each open oriented
path {(s, xs)}t

s=0 as a trajectory of a particle, then Nt,y is the number of the particles which
occupy the site y at time t.

We now note that |N t|
def.= (2dp)−t|Nt| is a martingale, since each open oriented path from

(0, 0) to (t, y) branches and survives to the next level via 2d neighbors of y, each of which is
open with probability p. Thus, by the martingale convergence theorem, the following limit
exists a.s.:

|N∞| def= lim
t→∞

|N t|.

Moreover,

i) If d ≥ 3 and p is large enough, then, P (|N∞| > 0) > 0, which means that, at least
with positive probability, the total number of the paths |Nt| is of the same order as its
expectation (2pd)t as t → ∞.

ii) If d = 1, 2, then for all p ∈ (0, 1), P (|N∞| = 0) = 1, which means that the total number of
the paths |Nt| is of smaller order than its expectation (2pd)t a.s. as t → ∞. Moreover,
for d = 1, there is a non-random constant c > 0 such that |N t| = O(exp(−ct)) a.s. as
t → ∞.

This phase transition was predicted by T. Shiga in late 1990’s and the proof was given
recently in [15].

We denote the density of the population by:

ρt(x) =
Nt,x

|Nt|
1{|Nt|>0}, t ∈ N, x ∈ Zd. (1.1)

Interesting objects related to the density would be

ρ∗t = max
x∈Zd

ρt(x), and Rt = |ρ2
t | =

∑
x∈Zd

ρt(x)2. (1.2)

ρ∗t is the density at the most populated site, while Rt is the probability that two particles
picked up randomly from the total population at time t are at the same site. We call
Rt the replica overlap, in analogy with the spin glass theory. Clearly, (ρ∗t )

2 ≤ Rt ≤ ρ∗t .
These quantities convey information on localization/delocalization of the particles. Roughly
speaking, large values of ρ∗t or Rt indicate that the most of the particles are concentrated on
small numbers of “favorite sites” (localization), whereas small values of them imply that the
particles are spread out over large number of sites (delocalization).

As applications of results in this paper, we get the following result. It says that, in the
presence of an infinite open path, the slow growth |N∞| = 0 is equivalent to a localization
propety limt→∞Rt ≥ c > 0, Here, and in what follows, a constant always means a non-
random constant.

Theorem 1.1.1 There exists a constant c ∈ (0,∞) such that

{|Nt| > 0 for all t ∈ N and |N∞| = 0} =
{

lim
t→∞

Rt ≥ c
}

a.s. (1.3)

Note that P (|N∞| = 0) = 1 for all p ∈ (0, 1) if d ≤ 2. Thus, (1.3) means that, if d ≤ 2, the
path localization limt→∞Rt ≥ c occurs a.s. on the event of the percolation. Theorem 1.1.1 is
shown at the end of section 1.4 as a consequence of more general results for linear stochastic
evolutions.
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1.2 The linear stochastic evolution

We now introduce the framework in this article. Let At = (At,x,y)x,y∈Zd , t ∈ N∗ be a sequence
of random matrices on a probability space (Ω,F , P ) such that

A1, A2, ... are i.i.d. (1.4)

Here are the set of assumptions we assume for A1:

A1,x,y ≥ 0 for all x, y ∈ Zd. (1.5)
The columns {A1,·,y}y∈Zd are independent. (1.6)

P [A3
1,x,y] < ∞ for all x, y ∈ Zd, (1.7)

A1,x,y = 0 a.s. if |x − y| > rA for some non-random rA ∈ N. (1.8)

(A1,x+z,y+z)x,y∈Zd
law= A1 for all z ∈ Zd. (1.9)

The set {x ∈ Zd ;
∑

y∈Zd ax+yay 6= 0} contains a linear basis of Rd,
where ay = P [A1,0,y].

(1.10)

Depending on the results we prove in the sequel, some of these conditions can be relaxed.
However, we choose not to bother ourselves with the pursuit of the minimum assumptions
for each result.

We define a Markov chain (Nt)t∈N with values in [0,∞)Zd
by∑

x∈Zd

Nt−1,xAt,x,y = Nt,y, t ∈ N∗. (1.11)

In this article, we suppose that the initial state N0 is given by “a single particle at the origin”:

N0 = (δ0,x)x∈Zd (1.12)

Here and in what follows, δx,y = 1{x=y} for x, y ∈ Zd. If we regard Nt ∈ [0,∞)Zd
as a row

vector, (1.11) can be interpreted as

Nt = N0A1A2 · · ·At, t = 1, 2, ...

The Markov chain defined above can be thought of as the time discretization of the linear
particle system considered in the last Chapter in T. Liggett’s book [11, Chapter IX]. Thanks
to the time discretization, the definition is considerably simpler here. Though we do not
assume in general that (Nt)t∈N takes values in NZd

, we refer Nt,y as the “number of particles”
at time-space (t, y), and |Nt| as “total number of particles” at time t.

We now see that various interesting examples are included in this framework. We recall
the notation ay from (1.10).

• Generalized oriented site percolation (GOSP): We generalize OSP as follows. Let
ηt,y, (t, y) ∈ N∗ × Zd be {0, 1}-valued i.i.d. random variables with P (ηt,y = 1) = p ∈ [0, 1]
and let ζt,y, (t, y) ∈ N∗ × Zd be another {0, 1}-valued i.i.d. random variables with P (ζt,y =
1) = q ∈ [0, 1], which are independent of ηt,y’s. To exclude trivialities, we assume that either
p or q is in (0, 1). We refer to the process (Nt)t∈N defined by (1.11) with

At,x,y = 1|x−y|=1ηt,y + δx,yζt,y
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as the generalized oriented site percolation (GOSP). Thus, the OSP is the special case (q = 0)
of GOSP. The covariances of (At,x,y)x,y∈Zd can be seen from:

ay = p1{|y|=1} + qδy,0, P [At,x,yAt,ex,y] =


q if x = x̃ = y,
p if |x − y| = |x̃ − y| = 1,
ay−xay−ex if otherwise.

(1.13)

In particular, we have |a| = 2dp + q.

• Generalized oriented bond percolation (GOBP): Let ηt,x,y, (t, x, y) ∈ N∗×Zd×Zd be
{0, 1}-valued i.i.d.random variables with P (ηt,x,y = 1) = p ∈ [0, 1] and let ζt,y, (t, y) ∈ N∗×Zd

be another {0, 1}-valued i.i.d. random variables with P (ζt,y = 1) = q ∈ [0, 1], which are
independent of ηt,y’s. We refer to the process (Nt)t∈N defined by (1.11) with

At,x,y = 1{|x−y|=1}ηt,x,y + δx,yζt,y

as the generalized oriented bond percolation (GOBP). We call the special case q = 0 oriented
bond percolation (OBP). To interpret the definition, let us call the pair of time-space points
〈 (t−1, x), (t, y) 〉 a bond if |x−y| ≤ 1, (t, x, y) ∈ N∗×Zd×Zd. A bond 〈 (t−1, x), (t, y) 〉 with
|x − y| = 1 is said to be open if ηt,x,y = 1, and a bond 〈 (t − 1, y), (t, y) 〉 is said to be open
if ζt,y = 1. For GOBP, an open oriented path from (0, 0) to (t, y) ∈ N∗ × Zd is a sequence
{(s, xs)}t

s=0 in N × Zd such that x0 = 0, xt = y and bonds 〈 (s − 1, xs−1), (s, xs) 〉 are open
for all s = 1, .., t. If N0 = (δ0,y)y∈Zd , then, the number of open oriented paths from (0, 0) to
(t, y) ∈ N∗ × Zd is given by Nt,y.

The covariances of (At,x,y)x,y∈Zd can be seen from:

ay = p1{|y|=1} + qδy,0, P [At,x,yAt,ex,y] =
{

ay−x if x = x̃,
ay−xay−ex if otherwise.

(1.14)

In particular, we have |a| = 2dp + q.

• Directed polymers in random environment (DPRE): Let {ηt,y ; (t, y) ∈ N∗ × Zd}
be i.i.d. with exp(λ(β)) def.= P [exp(βηt,y)] < ∞ for any β ∈ (0,∞). The following expectation
is called the partition function of the directed polymers in random environment:

Nt,y = P 0
S

[
exp

(
β

t∑
u=1

ηu,Su

)
: St = y

]
, (t, y) ∈ N∗ × Zd,

where ((St)t∈N, P x
S ) is the simple random walk on Zd. We refer the reader to a review paper

[5] and the references therein for more information. Starting from N0 = (δ0,x)x∈Zd , the above
expectation can be obtained inductively by (1.11) with

At,x,y =
1|x−y|=1

2d
exp(βηt,y).

The covariances of (At,x,y)x,y∈Zd can be seen from:

ay =
eλ(β)1{|y|=1}

2d
, P [At,x,yAt,ex,y] = eλ(2β)−2λ(β)ay−xay−ex (1.15)

In particular, we have |a| = eλ(β).
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• The binary contact path process (BCPP): The binary contact path process is a
continuous-time Markov process with values in NZd

, originally introduced by D. Griffeath
[8]. In this article, we consider a discrete-time variant as follows. Let

{ηt,y = 0, 1 ; (t, y) ∈ N∗ × Zd}, {ζt,y = 0, 1 ; (t, y) ∈ N∗ × Zd},
{et,y ; (t, y) ∈ N∗ × Zd}

be families of i.i.d. random variables with P (ηt,y = 1) = p ∈ (0, 1], P (ζt,y = 1) = q ∈ [0, 1],
and P (et,y = e) = 1

2d for each e ∈ Zd with |e| = 1. We suppose that these three families are
independent of each other. Starting from an N0 ∈ NZd

, we define a Markov chain (Nt)t∈N
with values in NZd

by

Nt+1,y = ηt+1,yNt,y−et+1,y + ζt+1,yNt,y, t ∈ N.

We interpret the process as the spread of an infection, with Nt,y infected individuals at time
t at the site y. The ζt+1,yNt,y term above means that these individuals remain infected at
time t+1 with probability q, and they recover with probability 1−q. On the other hand, the
ηt+1,yNt,y−et+1,y term means that, with probability p, a neighboring site y − et+1,y is picked
at random (say, the wind blows from that direction), and Nt,y−et+1,y individuals at site y are
infected anew at time t + 1. This Markov chain is obtained by (1.11) with

At,x,y = ηt,y1et,y=y−x + ζt,yδx,y.

The covariances of (At,x,y)x,y∈Zd can be seen from:

ay =
p1{|y|=1}

2d
+ qδ0,y, P [At,x,yAt,ex,y] =

{
ay−x if x = x̃,
δx,yqay−ex + δ

ex,yqay−x if x 6= x̃.
(1.16)

In particular, we have |a| = p + q.

Remark: The branching random walk in random environment considered in [10, 14] can
also be considered as a “close relative” to the models considered here, although it does not
exactly fall into our framework.

1.3 The regular and slow growth phases

We now recall the following facts and notion from [15, Lemmas 1.3.1 and 1.3.2]. Let Ft be
the σ-field generated by A1, .., At.

Lemma 1.3.1 Define N t =
(
N t,x

)
x∈Zd by

N t,x = |a|−tNt,x. (1.17)

(a) (|N t|,Ft)t∈N is a martingale, and therefore, the following limit exists a.s.

|N∞| = lim
t→∞

|N t|. (1.18)

(b) Either
P [|N∞|] = 1 or 0. (1.19)

Moreover, P [|N∞|] = 1 if and only if the limit (1.18) is convergent in L1(P ).

5



We will refer to the former case of (1.19) as regular growth phase and the latter as slow growth
phase.

The regular growth means that, at least with positive probability, the growth of the
“total number” |Nt| of the particles is of the same order as its expectation |a|t|N0|. On the
other hand, the slow growth means that, almost surely, the growth of |Nt| is slower than its
expectation.

To present sufficient conditions for the slow growth phase (Proposition 1.3.2 below), we
introduce the following additional condition, which says that the entries of the matrix A1 are
positively correlated in the following weak sense: there is a constant γ ∈ (1,∞) such that∑

x,ex,y∈Zd

(
P [A1,x,y, A1,ex,y] − γay−xay−ex

)
ξxξ

ex ≥ 0 (1.20)

for all ξ ∈ [0,∞)Zd
such that |ξ| < ∞.

Remark: Cleary, (1.20) is satisfied if there is a constant γ ∈ (1,∞) such that

P [A1,x,y, A1,ex,y] ≥ γay−xay−ex for all x, x̃, y ∈ Zd. (1.21)

For OSP and DPRE, we see from (1.13) and (1.15) that (1.21) holds with

γ = 1/p and exp(λ(2β) − 2λ(β))

respectively for OSP and DPRE. For GOSP, GOBP and BCPP, (1.21) is no longer true.
However, one can check (1.20) for them with

γ = 1 +

{
2dp(1−p)+q(1−q)

(2dp+q)2
for GOSP and GOBP,

p(1−p)+q(1−q)
(p+q)2

for BCPP

[15, Remarks after Theorem 3.2.1].

We now recall from [15, Therems 3.1.1 and 3.2.1] the following criterion for slow growth
phase.

Proposition 1.3.2 P (|N∞| = 0) = 1 if∑
y∈Zd

P [A1,0,y lnA1,0,y] > |a| ln |a|, (1.22)

or if d = 1, 2 and (1.20) is satisfied.

The condition (1.22) roughly says that the matrix A1 is “random enough”. For DPRE, (1.22)
is equivalent to βλ′(β) − λ(β) > ln(2d).

1.4 The results

We define the density ρt(x) and the replica overlap Rt in the same way as (1.1) and (1.2).
We first show that, on the event of survival, the slow growth is equivalent to the local-

ization:

Theorem 1.4.1

{|Nt| > 0 for all t ∈ N and |N∞| = 0} ⊂

∑
t≥0

Rt = ∞

 a.s. (1.23)

On the other hand, the opposite inclusion holds a.s. if we suppose (1.20).
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Theorem 1.4.1 says that, conditionally on survival, the slow grwoth |N∞| = 0 is equivalent to
the localization

∑
t≥0 Rt = ∞. This result generalizes [3, Theorem 1.1] and [4, Theorem 1.1],

which are obtained in the context of DPRE. Similar results are also known for Brownian
directed polymers in random environment [6, Theorem 2.3.2] and for branching random
walk in random environment [10, Theorem 1.3.1]. The novelty in Theorem 1.4.1 is that it
establishes the relation (1.23) and its opposite even when the system may extinct at finite
time (i.e.,P (|Nt| = 0) > 0 for finite t). All the previous results are obtained only in the case
where no extinction at finite time is allowed, i.e., |Nt| > 0 for all t ≥ 0. In fact, the argument
in these literature is roughly to show that

− ln |N t| ³
t−1∑
u=0

Ru a.s. as t → ∞ (1.24)

by using Doob’s decomposition of the supermartingale ln |N t|. This argument does not seem
to be directly transportable to the case where the total population may extinct at finite time,
since ln |N t| is no longer well defined. What we do instead of (1.24) is to show that

Mt exp

(
−c1

t−1∑
s=0

Rs

)
≤ |N t|θ ≤ Mt exp

(
−c2

t−1∑
s=0

Rs

)
(1.25)

where θ ∈ (0, 1), c1, c2 > 0 are constants and Mt is a non-negative martingale. We will
prove (1.25) via “multiplicative” Doob’s decomposition, in which we decompose a general
non-negative process into the product of a martingale and a predictable process (cf. section
2.1 for details). The assumption (1.20) is used only for the second inequality of (1.25). Note
the limit M∞ = limt→∞ Mt exists a.s. by the martingale convergence theorem. We will also
prove that |Nt| > 0 for all t ∈ N and

∑
t≥0

Rt < ∞

 ⊂ {M∞ > 0} a.s. (1.26)

The inclusion (1.23) follows from (1.26) and the first inequality of (1.25). On the other
hand, the inclusion opposite to (1.23) follows from the second inequality of (1.25). We will
implement these in section 2.

Next, we present a result which says that, under a mild assumption, we can replace∑
t≥0

Rt = ∞

in Theorem 1.4.1 by a stronger localization property:

lim
t→∞

Rt ≥ c,

where c > 0 is a constant. To state the theorem, we introduce some notation related to the
random walk associated to our model. Let ((St)t∈N, P x

S ) be the random walk on Zd such that

P x
S (S0 = x) = 1 and P x

S (S1 = y) = ay−x/|a| (1.27)

and let (S̃t)t∈N be its independent copy. We then define

πd = P 0
S ⊗ P 0

eS
(St = S̃t for some t ≥ 1). (1.28)

Then, by (1.10),
πd = 1 for d = 1, 2 and πd < 1 for d ≥ 3 (1.29)
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Theorem 1.4.2 Suppose (1.20) and that

γ >
1
πd

, (1.30)

where γ and πd are from (1.20) and (1.28). Then, there exists a constant c > 0 such that∑
t≥0

Rt = ∞

 =
{

lim
t→∞

Rt ≥ c
}

a.s. (1.31)

This result generalizes [3, Theorem 1.2] and [4, Proposition 1.4 (b)], which are obtained in
the context of DPRE. Similar results are also known for branching random walk in random
environment [10, Theorem 1.3.2]. To prove Theorem 1.4.2, we will use the argument which
was initially applied to DPRE by P. Carmona and Y. Hu in [3] and then to the branching
random walk in random environment by Y. Hu and the author in [10]. What is new in the
present paper is to carry the arguments in above mentioned papers over to the case where
the extinction at finite time is possible. This will be done in section 3.1.

Remarks 1) We prove (1.31) by way of the following stronger estimate:

lim
t↗∞

∑t
s=0 R

3/2
s∑t

s=0 Rs

≥ c1, a.s.

for some constant c1 > 0. This in particular implies the following quantitative lower bound
on the number of times, at which the replica overlap is larger than a certain positive number:

lim
t↗∞

∑t
s=0 1{Rs≥c2}∑t

s=0 Rs

≥ c3, a.s.

where c2 and c3 are positive constants.
2) (1.31) is in contrast with the following delocalization result by M. Nakashima [13]: if d ≥ 3
and supt≥0 P [|N t|2] < ∞, then

Rt = O(t−d/2) in P ( · ||N∞| > 0)-probability .

See also [12] for the continuous-time case and [14] for the case of branching random walk in
random environment.
3) We see from (1.29) that (1.30) is automatically satisfied for d = 1, 2.

Finally, we state the following variant of Theorem 1.4.2, which says that even for d ≥ 3,
(1.30) can be dropped at the cost of some alternative assumptions. Following M. Birkner [1,
page 81, (5.1)], we introduce the following condition:

sup
t∈N,x∈Zd

P 0
S(St = x)

P 0
S ⊗ P 0

eS
(St = S̃t)

< ∞, (1.32)

which is obviously true for the symmetric simple random walk on Zd.

Theorem 1.4.3 Suppose d ≥ 3, (1.20), (1.32) and that there exist mean-one i.i.d. random
variables ηt,y, (t, y) ∈ N × Zd such that

At,x,y = ηt,yay−x. (1.33)

Then, (without assuming (1.30)) there exists a constant c > 0 such that (1.31) holds.
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Note that OSP and DPRE for d ≥ 3 satisfy all the assumptions for Theorem 1.4.3. The proof
of Theorem 1.4.3 is based on Theorem 1.4.2 and a criterion for the regular growth phase,
which is essentially due to M. Birkner [2]. Those will be explained in section 3.4.

Proof of Theorem 1.1.1: The theorem follows from Theorem 1.4.1 and Theorem 1.4.3. 2.

2 Proofs of Theorem 1.4.1

2.1 A multiplicative Doob’s decomposition

Here, we prepare a multiplicative version of Doob’s martingale decomposition in a general
setting. Let (Xt)t∈N be a non-negative integrable process defined on a probability space
(Ω,F , P ). We assume that (Xt)t∈N is adapted to a filtration (Ft)t∈N and that

{Xt > 0} ⊂ {Xt−1 > 0} ⊂ {P [Xt|Ft−1] > 0}. (2.1)

This assumption will turn out to be appropriate for our application laler on (cf. (2.5)). We
define M0 = G0 = 1, and for t ≥ 1,

Mt = χt

t∏
s=1

Xs

P [Xs|Fs−1]
=

t∏
s=1

Xs

P [Xs|Fs−1]
χs−1,

Gt = χt−1

t∏
s=1

P [Xs|Fs−1]
Xs−1

=
t∏

s=1

P [Xs|Fs−1]
Xs−1

χs−1,

(2.2)

where χt = 1{Xt 6=0}. The products in (2.2) are well defined because of (2.1). As an obvious
consequence of the definition, we obtain the following

Lemma 2.1.1 (Mt,Ft), t ∈ N is a mean-one martingale and

Xt = X0MtGt for all t ≥ 0.

Remark: The decomposition similar to Lemma 2.1.1 was already introduced long time ago,
at least for continuous-time processes, e.g. [9, page 16].

Since (Mt,Ft), t ∈ N is a non-negative martingale, the limit

M∞ = lim
t→∞

Mt

exists a.s. We have the following criterion for the positivity of the limit.

Lemma 2.1.2 Suppose that there exists a constant c ∈ (0,∞) such that

P [|X̃t||Ft−1]
P [Xt|Ft−1]

χt−1 ≤ c for all t ≥ 1. (2.3)

where X̃t = Xt − P [Xt|Ft−1]. Then,Xt 6= 0 for all t ≥ 0 and
∑
t≥1

P [|X̃t||Ft−1]
P [Xt|Ft−1]

< ∞

 ⊂ {M∞ > 0} a.s. (2.4)

To prove Lemma 2.1.2, we will use the following generalization of the Borel-Cantelli lemma:
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Lemma 2.1.3 Let (Yt)t∈N be a non-negative, integrable process defined on a probability space
(Ω,F , P ). We assume that (Yt)t∈N is adapted to a filtration (Ft)t∈N and that

sup
t≥1

P [Yt|Ft−1] ≤ c

for some constant c ∈ (0,∞). Then,

{
∑
t≥1

P [Yt|Ft−1] < ∞} ⊂ {
∑
t≥1

Yt < ∞} a.s.

Proof: Define

Zt =
t∑

s=1

Ys −
t∑

s=1

P [Ys|Fs−1].

Then, (Zt,Ft), t ∈ N is a martingale whose increments are bounded below by −c. Then,

P (C ∪ D) = 1,

where
C = {Zt converges as t → ∞} and D = {inf

t∈N
Zt = −∞}.

This can be seen from the proof of [7, page 236, (3.1)]. Clearly,

D ∩ {
∑
t≥1

P [Yt|Ft−1] < ∞} = ∅.

Thus, almost surely,

{
∑
t≥1

P [Yt|Ft−1] < ∞} = C ∩ {
∑
t≥1

P [Yt|Ft−1] < ∞} ⊂ {
∑
t≥1

Yt < ∞}.

2

Proof of Lemma 2.1.2: If s ≤ t and Xt 6= 0, then,

0 <
Xs

P [Xs|Fs−1]
= 1 +

X̃s

P [Xs|Fs−1]
= 1 +

X̃s

P [Xs|Fs−1]
χs.

Thus,

Mt = χtM̃t, with M̃t =
t∏

s=1

(
1 +

X̃s

P [Xs|Fs−1]
χs

)
> 0.

M̃t converges to a positive limit as t ↗ ∞ on the event∑
t≥1

|X̃t|
P [Xt|Ft−1]

χt−1 < ∞

 ,

where we have used that χt ≤ χt−1. On the other hand, by Lemma 2.1.3 and (2.3), the above
event a.s. contains ∑

t≥1

P [|X̃t||Ft−1]
P [Xt|Ft−1]

χt−1 < ∞

 .

Thus, we have proved Lemma 2.1.2. 2

10



2.2 Proof of Theorem 1.4.1

We set
Xt = |N t|θ with θ ∈ (0, 1). (2.5)

It clearly satisfy (2.1). We then define (Mt)t∈N and (Gt)t∈N by (2.2). Note that χt = 1{|Nt|>0}
in this setting.

Proofs of Theorem 1.4.1 is based on the following lemmas.

Lemma 2.2.1 (a) There exists θ0 ∈ (0, 1) such that

Gt ≥ χt−1 exp

(
−

t−1∑
s=0

Rs

)
, for all t ∈ N∗ and θ ∈ [θ0, 1). (2.6)

(b) Under the additional assumption (1.20), for any θ ∈ (0, 1), there exists a constant
c ∈ (0,∞) such that

Gt ≤ exp

(
−c

t−1∑
s=0

Rs

)
, for all t ∈ N∗. (2.7)

Lemma 2.2.2|Nt| > 0 for all t ∈ N and
∑
t≥0

Rt < ∞

 ⊂ {M∞ > 0} a.s. (2.8)

Since the proof of these lemmas are rather technical, we postpone them (section 2.3) to finish
the proof of Theorem 1.4.1.

Proof of Theorem 1.4.1: We have

(1) |N∞|θ = X∞ = M∞G∞.

Thus,|Nt| > 0 for all t ∈ N and
∑
t≥0

Rt < ∞

 (2.6),(2.8)
⊂ {M∞ > 0, G∞ > 0} a.s.

(1)
⊂ {|N∞| > 0}.

This proves the inclusion (1.23). On the other hand, (1) and (2.7) imply the inclusion oppsite
to (1.23). 2

2.3 Proof of Lemma 2.2.1 and Lemma 2.2.2

For f, g : Zd → [0,∞), we define their convolution f ∗ g by

(f ∗ g)(x) =
∑
y∈Zd

f(x − y)g(y), x ∈ Zd.

For the notational convenience, we also write a(y) for ay. We then introduce

ρt,s = ρt ∗ a ∗ ... ∗ a︸ ︷︷ ︸
s

, Rt,s = |ρ2
t,s|, (2.9)
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where a(x) = a(x)/|a|, x ∈ Zd. Note that ρt = ρt,0 and Rt = Rt,0 in this notation.
We will make a series of estimates on quantities involving a(x), ρt(x), Rt, and so on.

In the sequel, multiplicative constants are denoted by c, c1, c2, ... We agree that they are
non-random constants which do not depend on time variables t, s, .. ∈ N or space variables
x, y, ... ∈ Zd.

Lemma 2.3.1 For any s, t ∈ N,

Rt,s+1 ≤ Rt,s ≤
|a|2

|a2|
Rt,s+1. (2.10)

Proof: Let a(x) = a(x)/|a|, x ∈ Zd. We then have

|ρ2
t,s+1| = |(ρt,s ∗ a)2| ≤ |ρ2

t,s|

by Young’s inequality. This proves the first inequality. On the other hand,

|ρ2
t,s+1| = |(ρt,s ∗ a)2| =

∑
x∈Zd

 ∑
y∈Zd

ρt,s(x − y)a(y)

2

≥
∑
x∈Zd

∑
y∈Zd

ρt,s(x − y)2a(y)2 = |ρ2
t,s||a2|,

which proves the second inequality. 2

Lemma 2.3.2 Let Ut = 1
|a|

∑
x,y∈Zd ρt−1(x)At,x,y.

(a) There exists θ0 ∈ (0, 1) such that

P
[
U θ

t |Ft−1

]
≥ exp (−Rt−1) χt−1 for all t ∈ N∗ and θ ∈ [θ0, 1). (2.11)

(b) Suppose the additional assumption (1.20). Then, for any θ ∈ (0, 1), there is a constant
c ∈ (0, 1] such that

P
[
Uθ

t |Ft−1

]
≤ exp (−cRt−1) for all t ∈ N∗. (2.12)

Proof: (a): Let Ut =
∑

y∈Zd Ut,y, where Ut,y = 1
|a|

∑
x∈Zd ρt−1(x)At,x,y. Then, {Ut,y}y∈Zd

are independent under P (·|Ft−1). Using this, it is not difficult to see (cf. the proof of [15,
Lemma 3.2.2]) that, on the event {|Nt−1| > 0}:

(1) P [Ut,y|Ft−1] = ρt−1,1(y), P [Ut|Ft−1] = 1

(2) P
[
U2

t,y|Ft−1

]
≤ c1ρt−1(y)2

(3) P
[
(Ut − 1)2|Ft−1

]
=

∑
y∈Zd P

[
(Ut,y − ρt−1,1(y))2|Ft−1

]
≤ c1Rt−1,1.

The assumption (1.20) is not needed to show (1)–(3). We now note that

(4) 1 − uθ + θ(u − 1) ≤ (1 − θ)(u − 1)2 for all u ≥ 0.
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The proof of (4), though a routine, entails slightly annoying computations. Instead of leaving
the nuissance to the reader, we write it down. Let f(u) = (1− θ)(u− 1)2 + uθ − θ(u− 1)− 1.
Then,

f ′(u) = 2(1 − θ)(u − 1) + θuθ−1 − θ, f ′′(u) = (1 − θ)(2 − θuθ−2).

We see from these that f ′ decreases on [0, u1], increases on [u1,∞), and that f ′(u1) =
(2 − θ)(2u1 − 1) < 0, where u1 = (θ/2)

1
2−θ < 1/2. Therefore, f ′(u) has exactly two zeros

u = 1 and u = u2 ∈ (0, u1). Thus, f is increasing on [0, u2]∪ [1,∞) and decreasing on [u2, 1].
Moreover, f(0) = f(1) = 0. These prove (4).

On the event {|Nt−1| > 0}, we have

P
[
1 − Uθ

t |Ft−1

]
(1)
= P

[
1 − U θ

t + θ(Ut − 1)|Ft−1

] (4)

≤ (1 − θ)P
[
(Ut − 1)2|Ft−1

]
(3)

≤ (1 − θ)c1Rt−1,1

(2.10)

≤ (1 − θ)c1Rt−1.

To show (2.11), we take θ such that (1− θ)c1 ≤ c2
def.= 1− exp(−1). Then, (2.11) follows from

the elementary inequality: c2r ≤ 1 − exp(−r) for r ∈ [0, 1].
(b):The following estimate is obtained in [15, Lemma 3.2.2] under (1.20):

P
[
1 − Uθ

t |Ft−1

]
≥ c3Rt−1,1. (2.13)

It follows from (2.13) and (2.10) that

P
[
1 − U θ

t |Ft−1

]
≥ c4Rt−1.

We then use the elementary inequality: r ≥ 1 − exp(−r) for r ∈ [0,∞) to get (2.12). 2

Proof of Lemma 2.2.1: (a): We have

|N t| =
1
|a|

∑
x,y∈Zd

N t−1,xAt,x,y = |N t−1|Ut, (2.14)

where Ut is from Lemma 2.3.2. We then see from (2.11) that for θ ∈ (0, 1) in (2.11),

P [|N s|θ|Fs−1]
|N s−1|θ

χs−1 = P
[
Uθ

s |Fs−1

]
χs−1 ≥ exp (−Rs−1) χs−1.

By taking product for s = 1, .., t, we have the desired inequality.
(b): We use (2.12), instead of (2.11), to proceed in the same way as above. 2

Proof of Lemma 2.2.2: By Lemma 2.1.2, it is enough to prove that there exists a constant
c ∈ (0,∞) such that the following hold:

(1)
P [|X̃t||Ft−1]
P [Xt|Ft−1]

χt−1 ≤ cRt−1.

To prove this, we may and will assume that |Nt−1| > 0. We first note that

(2) P [Uθ
t |Ft−1]

(2.11)

≥ exp(−Rt−1) ≥ e−1.

We have by (2) that
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(3)
P [|X̃t||Ft−1]
P [Xt|Ft−1]

(2.14)
=

P [|U θ
t − P [U θ

t |Ft−1]||Ft−1]
P [U θ

t |Ft−1]
≤ eP [|U θ

t − P [U θ
t |Ft−1]||Ft−1].

Note that

(4) |uθ − 1| ≤ |u − 1| ≤ 2u2 + 2(u − 1)2 for all u ≥ 0.

We also know from the proof of (2.11) that

(5) P [(Ut − 1)2|Ft−1] ≤ P [U2
t |Ft−1] ≤ c1Rt−1,

Thus,

(6) P [|Uθ
t − 1||Ft−1]

(4)

≤ 2P [U2
t + (Ut − 1)2|Ft−1]

(5)

≤ 4c1Rt−1.

As a consequence,

P [|U θ
t − P [U θ

t |Ft−1]||Ft−1] = P [|(U θ
t − 1) − P [(U θ

t − 1)|Ft−1]||Ft−1]

≤ 2P [|U θ
t − 1||Ft−1]

(6)

≤ 8c1Rt−1.

Plugging this into (3), we obtain (1). 2

3 Proofs of Theorem 1.4.2 and Theorem 1.4.3

3.1 The argument by P. Carmona and Y. Hu

Referring to the random walk (1.27), we define

rt =
∑
x∈Zd

P 0
S(St = x)2, t ∈ N (3.1)

To interpret rt, let (S̃t)t∈N be the independent copy of ((St)t∈N, P 0
S). Then, rt is the prob-

ability of the event St = S̃t. In particular,
∑∞

t=0 rt is the Green function of the symmetric
random walk (St − S̃t) at the origin. Therefore, by (1.10)

∞∑
t=0

rt =
1

1 − πd

{
= ∞ if d = 1, 2
< ∞ if d ≥ 3

(3.2)

Recall also the notation (2.9). Proof of Theorem 1.4.2 is based on the following two lemmas.

Lemma 3.1.1 There is a constant c ∈ (0,∞) such that

P [Rt,s|Ft−1] ≥ Rt−1,s+1 + (γ − 1)rsRt−1,1 − cR3/2
t−1,1

for all s ∈ N and t ∈ N∗, where the constant γ is from (1.20) and r· is from (3.1).

Lemma 3.1.2 Let

Vt,s =
t∑

u=1

Ru,s, and Wt,s =
t∑

u=1

(Ru,s − P [Ru,s|Fu−1])

(W·,s is the martingale part of V·,s).Then, for any r, s ∈ N with r ≤ s,

{V∞,r = ∞} ⊂
{

lim
t→∞

Wt,s

Vt,r
= 0

}
a.s.
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Similar lemmas are also used in the proofs of [3, Theorem 2] and [10, Theorem 1.3.2]. The
progress made in the present article is that we prove the lemmas without relying on the
positivity of the total population. The proofs of Lemma 3.1.1 and Lemma 3.1.2 will be
presented respectively in section 3.2 and section 3.3. With Lemma 3.1.1 and Lemma 3.1.2
in hand, we can simply follow the argument in [3, Theorem 2] and [10, Theorem 1.3.2] to
complete the proof of Theorem 1.4.2, which we will reproduce below for the convenience of
the reader.

Proof of Theorem 1.4.2: We first note that there are ε > 0 and t0 ∈ N such that

(1)
t0∑

s=1

rs ≥
1 + ε

γ − 1
.

For d = 1, 2, we take ε = 1. Then, (1) holds for t0 large enough, since
∑∞

s=1 rs = ∞. For
d ≥ 3, the assumption (1.30) implies (1) for small enough ε > 0 and large enough t0. We
also recall (Vt,s)t≥0 and (Wt,s)t≥0 from Lemma 3.1.2.

It is enough to show that

(2) {V∞,1 = ∞}
a.s.
⊂

{
lim
t→∞

Rt ≥ c
}

for some constant c > 0.

Let s ≤ t0 < u. We see from Lemma 3.1.1 that

cR3/2
u−s−1,1 − (γ − 1) rsRu−s−1,1

≥ Ru−(s+1),s+1 − P [Ru−s,s|Fu−s−1]
= Ru−s,s − P [Ru−s,s|Fu−s−1] + Ru−(s+1),s+1 −Ru−s,s

= Wu−s,s − Wu−s−1,s + Ru−(s+1)1,s+1 −Ru−s,s,

Thus, by taking the summation on s = 1, ..., t0,

t0∑
s=1

(
cR3/2

u−s−1,1 − (γ − 1) rsRu−s−1,1

)
≥

t0∑
s=1

(Wu−s,s − Wu−s−1,s) −Ru−1,1.

We take another summation on u = t0 + 1, ..., t to obtain that

t∑
u=t0+1

t0∑
s=1

(
cR3/2

u−s−1,1 − (γ − 1) rs −Ru−s−1,1

)
≥

t0∑
s=1

(Wt−s,s − Wt0−s−1,s) − Vt−1,1. (3.3)

Now, note that

Vt−1,1 =
t∑

u=1

Ru−1,1 ≤
t∑

u=t0+1

Ru−s−1 + t0, s = 1, ..., t0,

and hence that

(γ − 1)
t∑

u=t0+1

t0∑
s=1

rsRu−s−1,1 ≥ (γ − 1)
t0∑

s=1

rs (Vt−1,1 − t0)

≥ (1 + ε)Vt−1,1 − c1, (3.4)

with c1 = (γ − 1)t0
∑t0

s=1 rs. On the other hand,

t∑
u=t0+1

t0∑
s=1

R3/2
u−s−1,1 =

t0∑
s=1

t∑
u=t0+1

R3/2
u−s−1,1 ≤ t0

t∑
u=0

R3/2
u,1 . (3.5)
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Plugging (3.5) and (3.4) into (3.3), we arrive at:

ct0

t∑
u=1

R3/2
u,1 − εVt−1,1 + c1 ≥

t0∑
s=1

(Wt−s,s − Wt0−s−1,s).

Thus, by Lemma 3.1.2,

{V∞,1 = ∞}
a.s.
⊂

{
lim
t→∞

1
Vt−1,1

t∑
u=1

R3/2
u,1 ≥ ε

ct0

}
⊂

{
lim
t→∞

Rt,1 ≥ (
ε

ct0
)2

}
,

which implies (2) via Lemma 2.3.1. 2

3.2 Proof of Lemma 3.1.1

The following technical lemma is an extension of [10, Lemma 3.1.1] to the case where the
random variables Ui ≥ 0 may vanish with positive probability.

Lemma 3.2.1 Let Xi ≥ 0, 1 ≤ i ≤ n (n ≥ 2) be independent random variables such that

P [U3
i ] < ∞ for i = 1, .., n and

∑n
i=1 mi = 1,

where mi = P [Ui].Then, with U =
∑n

i=1 Ui,

P

[
U1U2

U2
: U > 0

]
≥ m1m2 − 2m2var(U1) − 2m1var(U2), (3.6)

P

[
U2

1

U2
: U > 0

]
≥ P [U2

1 ] (1 + 2m1) − 2P [U3
1 ]. (3.7)

Proof: Note that x−2 ≥ 3 − 2x for x ∈ (0,∞). Thus, we have that

P

[
U1U2

U2
: U > 0

]
≥ P [U1U2(3 − 2U) : U > 0] = P [U1U2(3 − 2U)]

= P [U1U2(1 − 2(U − 1))] = m1m2 − 2P [U1U2(U − 1)]
P [U1U2(U − 1)] = P [U1U2(U1 − m1)] + P [U1U2(U2 − m2)]

= m2var(U1) + m1var(U2).

These prove (3.6). Similarly,

P

[
U2

1

U2
: U > 0

]
≥ P

[
U2

1 (3 − 2U) : U > 0
]

= P
[
U2

1 (3 − 2U)
]

= P
[
U2

1

]
− 2P

[
U2

1 (U − 1)
]
,

P
[
U2

1 (U − 1)
]

= P
[
U2

1 (U1 − m1)
]

= P
[
U3

1

]
− m1P

[
U2

1

]
.

These prove (3.7). 2

We assume (1.20) from here on.

Lemma 3.2.2 There is a constant c ∈ (0,∞) such that the following hold:

P [ρt(y)ρt(ỹ)|Ft−1]
≥ ρt−1,1(y)ρt−1,1(ỹ) − cρt−1,1(y)ρt−1,1(ỹ)2 − cρt−1,1(ỹ)ρt−1,1(y)2. (3.8)

for all t ∈ N∗, y, ỹ ∈ Zd with y 6= ỹ.

P [Rt|Ft−1] ≥ γRt−1,1 − cR3/2
t−1,1 for all t ∈ N∗. (3.9)
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Proof: Let Ut =
∑

y∈Zd Ut,y, where Ut,y = 1
|a|

∑
x∈Zd ρt−1(x)At,x,y. Then, {Ut,y}y∈Zd are

independent under P (·|Ft−1). Moreover, it is not difficult to see that (cf. proof of [15,
Lemma 3.2.2]), on the event {|N t−1| > 0},

(1) P [Ut,y|Ft−1] = ρt−1,1(y), P [Ut|Ft−1] = 1,

(2) P [U2
t,y|Ft−1] =

1
|a|2

∑
x1,x2,y∈Zd

ρt−1(x1)ρt−1(x2)P [At,x1,yAt,x2,y]

(3) P [Um
t,y|Ft−1] ≤ c1ρt,1(y)m, m = 2, 3.

Since
ρt(y)ρt(ỹ) = (Ut,yUt,ey/Ut)1{|Nt−1|>0}

and {Ut > 0} ⊂ {|N t−1| > 0}, we see from (1), (3) above and Lemma 3.2.1 that (3.8) holds
and that

(4) P
[
ρt(y)2|Ft−1

]
≥ P [U2

t,y|Ft−1] − 2c1ρt−1,1(y)3.

To prove (3.9), note that

(5)
∑
y∈Zd

ρt−1,1(y)3 ≤

 ∑
y∈Zd

ρt−1,1(y)2

3/2

= R3/2
t−1,1.

We then see that

P [Rt|Ft−1]
(4)

≥
∑
y∈Zd

(
P [U2

t,y|Ft−1] − 2c1ρt−1,1(y)3
)

(2),(5)

≥ 1
|a|2

∑
x1,x2,y∈Zd

ρt−1(x1)ρt−1(x2)P [At,x1,yAt,x2,y] − 2c1R3/2
t−1,1

(1.20)

≥ γ

|a|2
∑

x1,x2,y∈Zd

ρt−1(x1)ρt−1(x2)a(y − x1)a(y − x2) − 2c1R3/2
t−1,1

= γRt−1,1 − 2c1R3/2
t−1,1.

2

Proof of Lemma 3.1.1: We set b = a ∗ ... ∗ a︸ ︷︷ ︸
s

for simplicity (cf. (2.9)). Then,

Rt,s = |(ρt ∗ b)2| =
∑

x,y,ey∈Zd

b(x − y)b(x − ỹ)ρt(y)ρt(ỹ)

and thus,

P [Rt,s|Ft−1] =
∑

x,y,ey∈Zd

b(x − y)b(x − ỹ)P [ρt(y)ρt(ỹ)|Ft−1] = I + J,

where

I =
∑

x,y∈Zd

b(x − y)2P [ρt(y)2|Ft−1],

J =
∑

x,y,ey∈Zd

y 6=ey

b(x − y)b(x − ỹ)P [ρt(y)ρt(ỹ)|Ft−1].
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We start with the lower bound for I. Note that |b2| = rs ≤ 1. Thus,

I = rsP [Rt|Ft−1]
(3.9)

≥ γrsRt−1,1 − cR3/2
t−1,1.

As for J , we have

J
(3.8)

≥ J1,1 − cJ1,2 − cJ2,1,

where
Jm,n =

∑
x,y,ey∈Zd

y 6=ey

b(x − y)b(x − ỹ)ρt−1,1(y)mρt−1,1(ỹ)n

J1,1 can be computed exactly as follows:

J1,1 =

 ∑
x,y,ey∈Zd

−
∑

x,y,ey∈Zd

y=ey

 b(x − y)b(x − ỹ)ρt−1,1(y)ρt−1,1(ỹ)

= |(ρ1,t−1 ∗ b)2| − |b2||ρ2
1,t−1| = Rt−1,s+1 − rsRt−1,1.

To bound J1,2 from above, note that

max
x∈Zd

(ρt−1,1 ∗ b)(x)2 ≤ |(ρt−1,1 ∗ b)2| ≤ |ρ2
t−1,1| = Rt−1,1

and that
|ρ2

t−1,1 ∗ b| ≤ |ρ2
t−1,1| = Rt−1,1.

Thus,

J1,2 ≤
∑

x,y,ey∈Zd

b(x − y)b(x − ỹ)ρt−1,1(y)ρt−1,1(ỹ)2

=
∑
x∈Zd

(ρt−1,1 ∗ b)(x)(ρ2
t−1,1 ∗ b)(x)

≤ max
x∈Zd

(ρt−1,1 ∗ b)(x)|ρ2
t−1,1 ∗ b| ≤ R3/2

t−1,1.

Similarly, J2,1 ≤ R3/2
t−1,1. Putting things together, we get the lemma. 2

3.3 Proof of Lemma 3.1.2

Let (QW
t,s)t∈N be the quadratic variation of (Wt,s)t∈N:

QW
0,s = 0, QW

t,s =
t∑

u=1

(
P [R2

u,s|Fu−1] − P [Ru,s|Fu−1]2
)
, t ≥ 1,

and let

Ṽ0,s = 0, Ṽt,s =
t∑

u=1

P [Ru,s|Fu−1], t ≥ 1,

so that we have the following Doob’s decomposition:

(1) Vt,s = Wt,s + Ṽt,s.
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Since R2
u,s ≤ Ru,s ≤ Ru,r, we see from the above definitions that

(2) QW
t,s ≤ Ṽt,r, t ≥ 1.

By general facts on square-integrable martingales (e.g. [7, page 252, (4.9) and page 253,
(4.10)]), we have

(3) {QW
∞,s < ∞} ⊂ {lim

t
Wt,s converges.} a.s.

(4) {QW
∞,s = ∞} ⊂ {lim

t

Wt,s

QW
t,s

= 0} a.s.

Now, we conclude the proof of the lemma as follows. We have that

{V∞,r = ∞, QW
∞,s < ∞}

(3)
⊂ {lim

t

Wt,s

Vt,r
= 0} a.s.

On the other hand, we see that

{QW
∞,s = ∞}

(4)
⊂ {lim

t

Wt,s

QW
t,s

= 0} a.s.

(2)
⊂ {lim

t

Wt,s

Ṽt,s

= 0} a.s.

(1)
= {lim

t

Wt,s

Ṽt,s

= 0, lim
t

Vt,s

Ṽt,s

= 1}

⊂ {lim
t

Wt,s

Vt,s
= 0} ⊂ {lim

t

Wt,s

Vt,r
= 0},

since Vt,s ≤ Vt,r. These prove the lemma. 2

3.4 Proof of Theorem 1.4.3

We now state a criterion for the regular growth phase (Lemma 3.4.1). The criterion is an
extension of the one obtained by M. Birkner [2] for DPRE.

Let ((St)t∈N, P x
S ) be the random walk defined by (1.27) and let (S̃t)t∈N be its independent

copy. Since the random variable

V∞(S, S̃) =
∑
t≥1

1{St=eSt}

is geometrically distributed with the parameter πd, we have

1
πd

= sup
{

α ≥ 1 ; P 0
S ⊗ P 0

eS

[
αV∞(S,eS)

]
< ∞

}
. (3.10)

We now define π∗
d by

1
π∗

d

= sup
{

α ≥ 1 ; P 0
eS

[
αV∞(S,eS)

]
< ∞ P 0

S -a.s.
}

. (3.11)

Therefore, π∗
d ≤ πd in general. Moreover, the inequality is known to be strict if d ≥ 3 and

(1.32) is satisfied [1, page 82, Corollary 4].
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Lemma 3.4.1 Suppose d ≥ 3 and (1.33). Then,

P [η2
t,y] <

1
π∗

d

⇒ P [|N∞|] = 1.

Proof: Because of (1.33), we have that

Nt,x = |a|tP 0
S

[
t∏

u=1

ηu,Su

]
.

Using this expression, we can repeat the argument in [2] without change. (Here, unlike the
DPRE case, we may have P (ηt,y = 0) > 0. However, this does not cause any problem as far
as to prove this lemma.) 2

Proof of Theorem 1.4.3: (1.31) ⇒: Note that π∗
d < πd if d ≥ 3 and (1.32) is satisfied. If

|N∞| = 0 a.s., then we have by Lemma 3.4.1 that γ ≥ 1
π∗

d
> 1

πd
. Thus, we can apply Theorem

1.4.3.
(1.31) ⇐: This follows from Theorem 1.4.1. 2
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