HAMILTONIANS WITH PURELY DISCRETE SPECTRUM

VLADIMIR GEORGESCU

ABSTRACT. We discuss criteria for a self-adjoint operator on $L^2(X)$ to have empty essential spectrum. We state a general result for the case of a locally compact abelian group X and give examples for $X = \mathbb{R}^n$.

1. Let Δ be the positive Laplacian on \mathbb{R}^n . We set $B_a(r) = \{x \in \mathbb{R}^n \mid |x-a| \le r\}$ and $B_a = B_a(1)$.

Proposition 1. Let V be a real locally integrable function on \mathbb{R}^n such that:

- (i) if $\lambda > 0$ then the measure ω_{λ} of the set $\{x \in B_a \mid V(x) < \lambda\}$ satisfies $\lim_{a \to \infty} \omega_{\lambda}(a) = 0$,
- (ii) the negative part of V satisfies $V_{-} \leq \mu \Delta + \nu$ for some positive real numbers μ, ν with $0 < \mu < 1$.

Then the spectrum of the self-adjoint operator H associated to the form sum $\Delta + V$ is purely discrete.

Remark 2. Let $V_{\pm} = \max\{\pm V, 0\}$ and for each $\lambda > 0$ let $\Omega_{\lambda} = \{x \mid V_{+}(x) < \lambda\}$. Then $\omega_{\lambda}(a)$ is the measure of the set $B_a \cap \Omega_{\lambda}$. From Lemma 5 it follows that the condition (i) is equivalent to

$$\lim_{a \to \infty} \int_{B_a} \frac{\mathrm{d}x}{1 + V_+(x)} = 0. \tag{1}$$

Remark 3. From Lemma 7 we get $\lim_{a\to\infty} \omega_{\lambda}(a) = 0$ if $\int_{\Omega_{\lambda}} \omega_{\lambda}^{p} dx < \infty$ for some p > 0. Thus Theorems 1 and 3 from [S] are consequences of Proposition 1. In the case $V \geq 0$ Proposition 1 is a consequence of Theorem 2.2 from [MS]. More general results will be obtained below. Note, however, that our techniques are not applicable in the framework considered in Theorem 2 from [S] and in [WW].

Proposition 1 is very easy to prove if condition (1) is replaced by $\lim_{x\to\infty}V_+(x)=\infty$. In fact, let us consider an arbitrary locally compact space X and let $\mathcal H$ be a Hilbert X-module, i.e. $\mathcal H$ is a Hilbert space and a nondegenerate *-morphism $\phi\mapsto\phi(Q)$ of $\mathcal C_{\rm o}(X)$ into $B(\mathcal H)$ is given. For example, one may take $\mathcal H=L^2(X,\mu)$ for some Radon measure μ . Then we have the following simple compactness criterion: if R is a bounded self-adjoint operator on $\mathcal H$ such that (i) if $\phi\in\mathcal C_{\rm o}(X)$ then $\phi(Q)R$ is a compact operator, (ii) one has $\pm R\leq \theta(Q)$ for some $\theta\in\mathcal C_{\rm o}(X)$, then R is a compact operator. Indeed, note first that the operator $R\phi\equiv R\phi(Q)$ will also be compact for all $\phi\in\mathcal C_{\rm o}(X)$. Let $\varepsilon>0$ and let us choose ϕ such that $0\leq\phi\leq 1$ and $\theta\phi^\perp\leq\varepsilon$, where $\phi^\perp=1-\phi$. Then $\pm\phi^\perp R\phi^\perp\leq\phi^\perp\theta\phi^\perp\leq\varepsilon$ which implies $\|\phi^\perp R\phi^\perp\|\leq\varepsilon$. So we have $\|R-\phi R-\phi^\perp R\phi\|\leq\varepsilon$ and $\phi R+\phi^\perp R\phi$ is a compact operator. Now let us say that a self-adjoint operator H on H is locally compact if $\phi(Q)(H+i)^{-1}$ is compact for all $\phi\in\mathcal C_{\rm o}(X)$. Then we get: If H is a locally compact self-adjoint operator on H and if there is a continuous function $\Theta:X\to\mathbb R$ such that $\lim_{x\to\infty}\Theta(x)=+\infty$ and $H\geq\Theta(Q)$, then the spectrum of H is purely discrete (the nondegeneracy of the morphism is needed for the definition of $\Theta(Q)$ for unbounded Θ).

2. On the other hand, Proposition 1 can be significantly generalized. For example, Δ may be replaced by a higher order operator with matrix valued coefficients and V does not have to be a function. These results are consequences of the following "abstract" fact. We fix a locally compact abelian group X, choose a finite dimensional Hilbert space E, and define $\mathcal{H} = L^2(X) \otimes E$. For $a \in X$ and $k \in X^*$ (the dual locally compact abelian group) we denote U_a and V_k the unitary operators on \mathcal{H} given by

$$(U_a f)(x) = f(x+a)$$
 and $(V_k f)(x) = k(x)f(x)$.

Date: October 27, 2008.

We denote additively the operations both in X and in X^* and denote 0 their neutral elements.

Theorem 4. Let H be a self-adjoint operator on \mathcal{H} such that for some (hence for all) $z \in \mathbb{C}$ not in the spectrum of H the operator $R = (H - z)^{-1}$ satisfies

$$\lim_{k \to 0} \|V_k R V_k^* - R\| = 0, \quad \lim_{a \to 0} \|(U_a - 1)R\| = 0.$$
 (2)

Then H has purely discrete spectrum if and only if w- $\lim_{a\to\infty} U_a R U_a^* = 0$.

Proof: If the spectrum of H is purely discrete then R is compact so w- $\lim_{a\to\infty} U_a R U_a^* = 0$. The reciprocal assertion is a consequence of Theorem 1.2 from [GI]. Indeed, with the terminology used there, all the localizations at infinity of H will be equal to ∞ hence the essential spectrum of H will be zero. \square

Some notations: if ϕ is a B(E)-valued Borel function on X then $\phi(Q)$ is the operator of multiplication by ϕ on \mathcal{H} ; if ψ is a similar function on X^* then $\psi(P) = \mathcal{F}^{-1}M_{\psi}\mathcal{F}$, where \mathcal{F} is the Fourier transformation and M_{ψ} is the operator of multiplication by ψ on $L^2(X^*) \otimes E$. Note that $V_k \psi(P)V_k^* = \psi(P+k)$.

If $\phi \in L^\infty(X)$ and $\phi \geq 0$ then it is easy to check that $\operatorname{w-lim}_{a \to \infty} U_a \phi(Q) U_a^* = 0$ if and only if $\operatorname{s-lim}_{a \to \infty} \phi(Q) U_a = 0$ and also if and only if there is a compact neighborhood of the origin W such that $\lim_{a \to \infty} \int_{a+W} \phi \mathrm{d}x = 0$. Then we say that ϕ is weakly vanishing (at infinity). See Section 6 in [GG] for further properties of this class of functions. Below W is a compact neighborhood of the origin, $W_a = a + W$, and we denote |M| the Haar measure of a set M.

Lemma 5. A positive function $\phi \in L^{\infty}(X)$ is weakly vanishing if and only if for any number $\lambda > 0$ the set $\Omega^{\lambda} = \{x \mid \phi(x) > \lambda\}$ has the property $\lim_{a \to \infty} |W_a \cap \Omega^{\lambda}| = 0$.

This follows from the estimates

$$\lambda |W_a \cap \Omega^\lambda| \leq \int_{W_a} \phi \, \mathrm{d} x \leq \|\phi\|_{L^\infty} |W_a \cap \Omega^\lambda| + \lambda |W|.$$

Proposition 6. Let H be an invertible self-adjoint operator satisfying (2) and such that $\pm H^{-1} \le \phi(Q)$ for some weakly vanishing function ϕ . Then H has purely discrete spectrum.

Indeed, we may take $R = H^{-1}$ and then for any $f \in \mathcal{H}$ we have $|\langle f|U_aRU_a^*\rangle| \leq |\langle f|U_a\phi(Q)U_a^*\rangle|$.

Proof of Proposition 1: Here $X=\mathbb{R}^n$ and we identify as usual X with its dual by setting $k(x)=\mathrm{e}^{ikx}$ for $x,k\in X$. Then if $P_j=-i\partial_j$ and $P=(P_1,\ldots,P_n)$ we get $V_kPV_k^*=P+k$. To simplify notations we write H for $\Delta+V+1+\nu$, so that $H\geq (1-\mu)\Delta+V_++1\geq V_++1\geq 1$. Then observe that the form domain of H is $\mathcal{G}\equiv D(H^{1/2})=\{f\in\mathcal{H}^1\mid V_+^{1/2}f\in L^2\}$ where \mathcal{H}^1 is the first order Sobolev space. Thus $R=H^{-1}:L^2\to\mathcal{H}^1$ is continuous and this implies the second part of condition (2). On the other hand, H extends to a continuous bijective operator $\mathcal{G}\to\mathcal{G}^*$ whose inverse is an extension of R to a continuous map $\mathcal{G}^*\to\mathcal{G}$. We keep the notations H,R for these extensions. Clearly V_k leaves invariant \mathcal{G} hence extends to a continuous operator on \mathcal{G}^* and the groups of operators $\{V_k\}$ are of class C_0 in both spaces. Now $H_k:=V_kHV_k^*=(P+k)^2+V=H+2kP+k^2$ in $B(\mathcal{G},\mathcal{G}^*)$ so if $R_k:=V_kRV_k^*$ then

$$R_k - R = R_k(H - H_k)R = -R_k(2kP + k^2)R$$

in $B(\mathcal{G}^*,\mathcal{G})$. Now clearly the first part of (2) is fulfilled. Finally, it suffices to show that $H^{-1} \leq \phi(Q)$ for a weakly vanishing function ϕ . But $H \geq 1 + V_+$ and we may take $\phi = (1 + V_+)^{-1}$ due to (1).

Remark 3 is a consequence of the next result.

Lemma 7. Let $\Omega \subset \mathbb{R}^n$ be a Borel set and let $\omega : \mathbb{R}^n \to \mathbb{R}$ be defined by $\omega(a) = |B_a \cap \Omega|$. If ω^p is integrable on Ω for some p > 0 then $\omega(a) \to 0$ as $a \to \infty$.

Proof: The main point is the following observation due to Hans Henrik Rugh: let ν be the minimal number of (closed) balls of radius 1/2 needed to cover a ball of radius one; then for any a there is a Borel set $A_a \subset B_a \subset \Omega$ with $|A_a| \ge \omega(a)/\nu$ such that $\omega(x) \ge \omega(a)/\nu$ if $x \in A_a$. Indeed, let N be a set

of ν points such that $B_a \subset \bigcup_{b \in N} B_b(1/2)$. If $D_b = B_a \cap B_b(1/2)$ then $\omega(a) \leq \sum_b |D_b \cap \Omega|$ hence there is b(a) such that $A_a = D_{b(a)} \cap \Omega$ satisfies $|A_a| \geq \omega(a)/\nu$. Since A_a has diameter smaller than one, for $x \in A_a$ we have $A_a \subset B_x \cap \Omega$ hence $\omega(x) \geq |A_a|$, which proves the remark. Now let us set R = |a| - 1 and denote $\Omega(R)$ the set of points $x \in \Omega$ such that $|x| \geq R$. Then we have

$$\int_{\Omega(R)} \omega^p dx \ge \int_{A_a} \omega^p dx \ge [\nu \omega(a)]^{p+1}$$

which clearly implies the assertion of the lemma.

3. We present here some consequences of Proposition 6. We refer to [GI] for general classes of operators verifying condition (2) and consider here only some particular cases. We mention that if H is a bounded from below operator satisfying (2) and if $\theta : \mathbb{R} \to \mathbb{R}$ is a continuous function such that $\theta(\lambda) \to +\infty$ when $\lambda \to +\infty$ the $\theta(H)$ also satisfies (2).

If $R \in B(\mathcal{H})$ satisfies the first part of (2) we say that R is a regular operator (or Q-regular). The regularity of the resolvent of a differential operators on \mathbb{R}^n is easy to check because $V_k P V_k^* = P + k$, cf. the proof of Proposition 1. The second part of (2) is equivalent to the existence of a factorization $R = \psi(P)S$ with $\psi \in \mathcal{C}_o(X^*)$ and $S \in B(\mathcal{H})$. If $X = \mathbb{R}^n$ then it suffices that the domain of H be included in some Sobolev space \mathcal{H}^m with M > 0 real. We now give an extension of Proposition 1 which is proved in essentially the same way. We assume $X = \mathbb{R}^n$ and work with Sobolev spaces but a similar statement holds for an arbitrary X: it suffices to replace the function $\langle k \rangle^m$ which defines \mathcal{H}^m by an arbitrary weight [GI] and the ball B_a by a + W where W is a compact neighborhood of the origin.

Proposition 8. Let H_0 be a bounded from below self-adjoint operator on \mathcal{H} with form domain equal to \mathcal{H}^m for some real m>0 and satisfying $\lim_{k\to 0}V_kH_0V_k^*=H_0$ in norm in $B(\mathcal{H}^m,\mathcal{H}^{-m})$. Let V be a positive locally integrable function such that $\lim_{a\to\infty}|\{x\in B_a\mid V(x)<\lambda\}|=0$ for each $\lambda>0$. Then the self-adjoint operator H associated to the form sum H_0+V has purely discrete spectrum.

Let $h: X \to B(E)$ be a continuous symmetric operator valued function with $c'|p|^{2m} \le h(p) \le c''|p|^{2m}$ (as operators on E) for some constants c', c'' > 0 and all large p. Let $W: \mathcal{H}^m \to \mathcal{H}^{-m}$ be a symmetric operator such that $W \ge -\mu h(P) - \nu$ with $\mu < 1$ and such that $V_k W V_k^* \to W$ in norm in $B(\mathcal{H}^m, \mathcal{H}^{-m})$ as $k \to 0$. Then the form sum h(P) + W is bounded from below and closed on \mathcal{H}^m and the self-adjoint operator H_0 associated to it satisfies the conditions of Proposition 8.

Assume that $m \geq 1$ is an integer and let $L = \sum_{\alpha,\beta} P^{\alpha} a_{\alpha\beta}(Q) P^{\beta} : \mathcal{H}^m \to \mathcal{H}^{-m}$ where α,β are multi-indices of length $\leq m$ and $a_{\alpha\beta}$ are functions $X \to B(E)$ such that $a_{\alpha\beta}(Q)$ is a continuous map $\mathcal{H}^{m-|\beta|} \to \mathcal{H}^{|\alpha|-m}$. If $\langle f|Lf \rangle \geq \mu \|f\|_{\mathcal{H}_m}^2 - \nu \|f\|_{\mathcal{H}}^2$ for some $\mu,\nu>0$ then L is a closed bounded from below form on \mathcal{H}^m and the self-adjoint operator H_0 associated to it verifies Proposition 8.

Acknowledgment. We thank Hans Henrik Rugh for the remark which made Lemma 7 obvious.

REFERENCES

- [GG] V. Georgescu, S. Golénia, Decay preserving operators and stability of the essential spectrum, J. Op. Th. 59 (2008), 115–155; a more detailed version is http://arxiv.org/abs/math/0411489.
- [GI] V. Georgescu, A. Iftimovici, Localizations at infinity and essential spectrum of quantum Hamiltonians: I. General theory, Rev. Math. Phys. 18 (2006), 417–483; see also http://arxiv.org/abs/math-ph/0506051.
- [MS] V. Maz'ya, M. Shubin, Discreteness of spectrum and positivity criteria for Schrödinger operators, Ann. Math. 162 (2005), 919–942.
- [S] B. Simon, Schrödinger operators with purely discrete spectrum, see preprint 08-191 at http://www.ma.utexas.edu/mp_arc/ or http://arxiv.org/abs/0810.3275v1.
- [WW] F.-Y. Wang, J.-L. Wu, Compactness of Schrödinger semigroups with unbounded below potentials, Bull. Sci. Math., to appear.

CNRS and University of Cergy-Pontoise 95000 Cergy-Pontoise, France

E-mail address: vlad@math.cnrs.fr