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Abstract

We show the full large deviation principle for KMS-states and C*-
finitely correlated states on a quantum spin chain. We cover general local
observables. Our main tool is Ruelle’s transfer operator method.




1 Introduction

While the large deviation for classical lattice spin systems constitutes a rather
complete theory, our knowledge on large deviations in quantum spin systems
is still restricted. Large deviation results for observables that depend only on
one site were established in high temperature KMS-states, in [NR], using clus-
ter expansion techniques. In [LR], large deviation upper bounds were proven
for general observables, for KMS-states in the high temperature regime and
in dimension one. Furthermore, it was shown that a state in one dimension,
which satisfies a certain factorization property satisfies a large deviation upper
bound [HMO]. This factorization property is satisfied by KMS-states as well
as C*-finitely correlated states. It was also shown in [HMO] that the distribu-
tions of the ergodic averages of a one-site observable with respect to an ergodic
C*-finitely correlated state satisfy full large deviation principle.

In spite of these progresses, the theory in quantum spin systems is not com-
pleted: we do not know if the large deviation lower bound holds for general
observables, nor if the large deviation upper bound holds in the intermediate
temperature KMS-states, for more than two dimensional spin systems. In this
paper, we solve a part of the problem: we prove the full large deviation principle
in dimension one.

The infinite spin chain with one site algebra M;(C) is given by the UHF
C*-algebra

s

Q[Z = ®Md((C)C s
Z

which is the C*- inductive limit of the local algebras

{QLA::®Md((C)| ACZ, A|<oo}.
A

For any subset S of Z, we identify g := @ Md((C)C with a subalgebra of 21z
under the natural inclusion. The algebra of local observables is defined by

Ajoe 1= U\A|<ooQ[A-

Let ;, j € Z be the lattice translation. A state w is called translation-invariant
if wo~; =w for all j € Z. An interaction is a map ® from the finite subsets of
Z into Az such that ®(X) € Ax and ®(X) = ®(X)* for any finite X C Z. In
this paper, we will always assume that ® is a finite range translation-invariant
interaction, i.e., there exists » € N such that

O(X)=0, if diam(X)>r,
and ® is invariant under 7,

(X +j) = (®(X)), Vj€Z, VYXCL.



For finite A C Z, we set

Hg(A) ==Y ®(I).

ICA
The distribution of %H@([l,n]) with respect to a state w is the probability

n(B) = (15 Ha([1,]))), B eB,

where B denotes the Borel sets of R and 15(+He([1,n])) € Aj1,,,) is the spectral
projection of %Hq)([l, n]) corresponding to the set B.

Let I : B — [0,00] be a lower semicontinuous mapping. We say that we have a
large deviation upper bound for a closed set C' if

lim supllogw <1C <in>([1,n]))> < — inf I(x).

n—oo n zeC

Similarly, we have a large deviation lower bound for an open set O if
1 1
lim inf — 1 lo | —He([1 > — inf I(x).
i inf 2oz (10 (He((1n)) ) = - i 1)

We say that {u,} satisfies the (full) large deviation principle if we have upper
and lower bound for all closed and open sets, respectively. Furthermore, I is
said to be a good rate function if all the level sets {x : I(z) < a}, a € [0,00)
are compact subsets of R( see [DZ]).

In this paper, we show the full large deviation principle for any kind of local
observable, in KMS-states and C*-finitely correlated states on quantum spin
chain.

KMS-states Let U be a translation-invariant finite range interaction, and
define the finite volume Hamiltonian associated with a finite subset A C Z by

Hy(A) =Y W(I).
ICA
It is known that there exists a strongly continuous one parameter group of
x-automorphisms 7¢ on 2z, such that

Jim, HTQ(A)  eitHu(A) go—itHu(A) H —0, VteR, VAe;.

The equilibrium state corresponding to the interaction ¥ is characterized by the
KMS condition. A state w over 2y is called a (7y, 3)-KMS state, if

w(ATy(B)) = w(BA),

holds for any pair (A, B) of entire analytic elements for 7y. It is known that one
dimensional quantum spin system has a unique (7y, 5)-KMS state for all 8 € R
[A1]. In this paper, we prove the large deviation principle for the (7y, 5)-KMS
state:



Theorem 1.1 Let ¥ be a translation-invariant finite range interaction and w
a (g, B)-KMS state. Furthermore, let ® be another translation-invariant finite
range interaction and ji,.o the distribution of +Hg([1,n]) with respect to w.
Then the sequence {fin.a }nen satisfies large deviation principle with a good rate
Sfunction.

Finitely correlated states The following recursive procedure to construct
states on 20z was introduced in [FNW], where the states obtained were called C*-
finitely correlated states. For the construction one needs a triple (B, &, p), where
B is a finite dimensional C*-algebra, £ : My(C) ® B — B a unital completely
positive map and p a faithful state on B with density operator p. Further, one
has to assume that £ and p are related so that 77y, c)€*(p) = p holds. Then

pri=E () pn = (idfe) ® €)oo (iduyc) ® E7)oE™ () =23,
defines a state on My(C)®" @ B for each n € N, and

(:)n = TTB@H

gives a state w, on Md((C)®". There exists a unique translation-invariant state

w with local restrictions wly, ,; = wp. This is the C*-finitely correlated state
generated by (B,&,p). In this paper, we prove large deviation principle for
C*-finitely correlated states:

Theorem 1.2 Letw be a C*-finitely correlated state and ® a translation-invariant
finite range interaction. Let pu, o be the distribution of L He([1,n]) with respect
to w. Then the sequence {iin o }tnen satisfies large deviation principle with a
good rate function.

In order to study the large deviations, we consider the corresponding loga-
rithmic moment generating function, defined by

1
fle@) = lim = logw(e®enD)y, (1)

n—oo N

Theorem 1.3 (Gartner-Ellis) Let {uy tnen be a sequence of probability mea-
sures on the Borel sets of R. Assume that the limit

f(a) = lim llog/e’””o“"cd,un(ac)

n—oo N

exists and is differentiable for all o € R. Let

I(z) := sup{az — f(a)}.

a€R

Then {u,} satisfies the large deviation principle, i.e., we have

1
li —log j1n (C) < — inf I(z),
Jim sup —log pn (C) < — inf I(z)



and

1
lim inf — 1 O)>—inf I
Jim inf —log 11 (0) = — inf I(x),
for any closed set C' and any open set O, respectively. Furthermore, I is a good
rate function.

In this paper, we use this Theorem to prove the large deviation principle, i.e., we
prove the existence and differentiability of the logarithmic moment generating
function f(a) (1). Our main tool is the transfer operator technique introduced
by D.Ruelle for classical spin systems [R]. H. Araki applied this method to
quantum spin systems and showed the analyticity of the mean free energy [Al].
This paper is basically an extension of this result. The non-commutative Ruelle
transfer operator was further generalized in [GN] and [M]. We take advantage
of these extensions.

The structure of this paper is as follows. In Section 2, we present a brief
introduction to the non-commutative Ruelle transfer operator technique. In
Section 3 and Section 4, we prove the large deviation principle, for KMS-states
and C*-finitely correlated states, respectively.

2 Non-commutative Ruelle transfer operator

In this section, we give a brief introduction of non-commutative Ruelle transfer
operators studied in [A1l] [GN] and [M]. We represent a generalized form but
it can be proven in the same way as in [M]. We follow the notation in [M] and
consider one-sided infinite system 2l(; ). We also introduce a finite dimensional
C*-algebra B. By QU), j € N, we denote the element of 1z ® A1 ,00) With @
in the jth component of the tensor product of ; ) and the unit in any other
component. Similarly, by Q(® we denote an element in B® Lay .- Weintroduce
a C*-algebra
O :=(BRAp o)) © (BRA,00))

and consider automorphisms {0, },en of O determined by

12QW, fork>j
0, (Q(’” ®1) = @ Jork2i
QW @1, for k < j,

*) @1 > j
0, (1w) ={ @ “L Jork=d
1®Q(k)7 fork <j

For any element @ in B ® 21 ), we set
var;(Q) == [0;(Q® 1) —Q®1|, jeN.
For any 6 satisfying 0 <0 <1 and Q € B® 2[1 ), we set

var; () .
1@l = max {2 jeny.




By Fp we denote the dense subalgebra of B ® 2[; ) consisting of elements @
with finite ||Q||,, and introduce the norm |[||Q||| of Fy via the following equation:

QI = max{[|Q], |Qll}-

Fy is complete in this norm.

We need the x-isomorphism 7.y, (resp. 7._) of B®Ajp o) 2 B® Loy, @A 00
onto BRRA o) (resp. Ao, 21 @ 1o, @B 2 Ao 2 @B onto Ao, 1)@ B)
determined by

Tey (2 @ idyg1y ®y) =2 @y,
for all z € B and y € A1 ), (resp.
Tee (y ®idag-1y ®2) =y @z,

for all z € B and y € A(_o —1]-)

We now introduce a Ruelle transfer operator L:

Assumption 2.1 Let a be an element in 1 ), and
E: B M;C)—B

a completely positive unital map. Define a Ruelle transfer operator L on B ®
A1,00) bY

L(Q) :==Tey (E®idpoy) (a*Qa), Q€ B AU o). (2)
Assume that
(i) The element a is in Fp N A o) and invertible.
(ii) There exists an invariant state ¢ of L.

(iii) There exists a positive constant K such that the following bound is valid:
Let Q be any strictly positive element in B® (Ujoc N A1 00)). There evists
a positive integer N = N(Q) satisfying

L™Q) < Kinf L™(Q), Vn > N.

If Assumption 2.1 is valid, the restriction of L to the Banach space Fy gives a

bounded operator on Fy. Assumption 2.1 guarantees the following properties of
L.

Theorem 2.1 Let L be a Ruelle transfer operator satisfying Assumption 2.1.
Then

(1) There exists an element h in Fy and a positive constant m > 0 such that

L(h)=h, m<h, ¢h)=1



(ii) Define an operator Ly and a state op, by
Ln(Q) = h~ 3L (h%Qh%) ht, QEB®U ),

and
()
SOh(Q) = W, Q S B®m[1700)

Then Ly, gives a bounded operator on the Banach space Fy and there exists
61 > 0 and C1 > 0 such that

IIL7(Q) = en(Q)I] < Cre™[[|QIl], (3)
for alln € N and Q € Fp.
(iii) lim,—o [|L™(1) — h[| = 0.

(iv) As a bounded operator on Fy, L has a simple eigenvalue 1 and rest of the

5
spectrum has modulus less than e~ 3.

Proof The proof is completely analogous to that in [M]. We omit the details. O

Now we consider a family of Ruelle transfer operators {L, }acr-

Theorem 2.2 Let {La}acr be a family of operators on B ® Ajy . Suppose
that each Ly is of the form (2) with a = a(a) € Ay o0y and £ : B& My(C) — B,
satisfying (i), (iii) of Assumption 2.1. Assume that the map

R>aw— L, € B(Fp)

has a B(Fp)-valued analytic extension to a neighborhood of R. Then, as a
bounded operator on Fy, each Lo, has a strictly positive simple eigenvalue A(«)
such that

(1) M«) has a strictly positive eigenvector h(«) € Fy, and

lim |[A(a) "L%(1) = h(a)|| =0,

n—oo
(ii) R > a — A(a) is differentiable.

Remark 2.1 An analogous result for left-side chain A(_ _1) holds.
Proof

There exists a state ¢, and a strictly positive scalar A(«) such that L ¢, =
Ma)pq. In fact, by the invertibility of a(«) and unitality of £, we have

L,(1) > Ha(oz)_1H72 > 0.



Accordingly, if v is a state of B ® 2|1 ), a state

Y(La(Q))
v(La(1))”
is well defined. This map G is weak™*continuous on the state space. Therefore,
using Schaudar Tychonov theorem, we can show the existence of a fixed point of
G, i.e., a state p, and a strictly positive scalar A(«) such that L g, = AMa)@q.
(See [A1]).

The operator A\(a)~1L, satisfies Assumption 2.1. Applying Theorem 2.1
to AM(a)~!L4, we obtain (i). By (iv) of Theorem 2.1 and regular perturbation
theory, differentiability of A(a)) can be proven. [

G(V)(Q) = QeB® Q‘[l,oo)

We will construct Ruelle operators L, so that the eigenvalue A(«) in The-
orem 2.2 corresponds to the logarithmic moment generating function f(«) in

(1).

3 Large deviation principle for KMS-states

Let ¥ be a finite range interaction and w a unique (7y, §)-KMS state. Let ® be
another finite range interaction. In this section, we prove large deviation prin-
ciple of the distribution of %H@([l, n]) in w, Theorem 1.1. By the Gértner-Ellis
Theorem, it suffices to show the existence and differentiability of the logarithmic
moment generating function

fla) = lim llog<.u(e"‘17[<1’([1’”])), Vo € R. (4)

n—oo N

Lemma 3.1 Let p,(a) be
pn(@) = Tr (e—gH\p[1,n]equ>[1,n]e—§H\p[1,71]) . acR
It suffices to prove the existence and differentiability of the limit

1
lim —logp,(a), VaeR. (5)

n—oo N

Proof In [LR], it was shown that there exists a positive constant C; such that
Ol_lwn S w|91[1,n] S Olwn: (6)
where w,, is a state on 241 ,) given by

_ T’I‘[l’n]e_ﬂH‘P[l’n]A

wn(4) Tryy e PHwlln]

From this inequality, we have

1
lim — (logpn(a) _ logw(echp[l,’n,]) ~log T?“[Ln]e_ﬁH‘I’[l’”])

n—oo N

1
= lim — (logwn(eaH“’[l’"]) — logw(eo‘H‘i’[l’"]D =0.

n—oo N



As the existence of the limit

1
lim —log Ty ) e B[]

n—oo N

is known, it suffices to prove the existence and differentiability of the limit (5).0

By Lemma 3.1, we shall confine our attention to the analysis of p,(a). We
will freely use the notations in Appendix A.

We now define a family of Ruelle transfer operators {L, }acr, given in the
form of (2): we set B = My(C), and define a completely positive unital map
& : My(C)® M4(C) — My(C), through the formula £(a®b) := d~ T, c)(a)b.
Furthermore, for each o € R, we define a(«) by

—i3 5 agy B & o a
a(a) =14 % <E (—QH\I,(l); ~SHu[2,00)) ) B, <§H¢(1); S Hol2. oo)) € A oo)-
The Ruelle transfer operator on B ® 21 o) = Ajp o) is given by

Lo(Q) :=7-1 (dilTr{O} ® id[1,oo)) (a*(@)Qa()) . (7)

In order to apply Theorem 2.2, we have to check that each L, satisfies the
Assumption 2.1, (i) and (iii) :

Lemma 3.2 Fach L, o € R satisfies the Assumption 2.1, (i), (iii).

Proof It was shown in [A1] that for any local element @ in 2 ), a subset
I C [1,00), and a finite range interaction ®, E,.(Q;He(I)) is an invertible
element in 20y, which is the subalgebra of Fy defined by (24). Furthermore,
any element in 2A; is entire analytic for 74,, and 74, acts on 2(; as a group
of automorphisms with one complex parameter.(See Appendix A.) Therefore,
a(a) belongs to 2y and invertible in 2(1, so a(«) belongs to Fy and invertible in
Fy. Hence, (i) of Assumption 2.1 is satisfied.

The proof of (iii) goes parallel to the argument in [M], where an example
of Ruelle transfer operator was considered. We shall first write L7, in a more
tractable form. By an inductive calculation, we obtain

L2Q) = d " y—n o (Trio,n—1] ® id[n,o0)) © (@5, () Qan(cv))

where we denoted a(a)v1(a(a))y2(a(@)) - - ym—-1)(a(a)) by @, (). It is not hard
to prove

i) =i, (B (5 a0 =S+ 1.00) ) ) B (S50 S (i + 1,9
using (25). Let an(a), n > 2 be

an(a) == dn(a)egH“[l’nfl]ef%H‘i’[l’"fl].



Using the relation (25) again, we can show

one) =t (B (~5W5 =5 (a0~ 1) + Huln+1,0)) )
B, (SWa(n)i 5 (Ho[l,n = 1]+ Ho(In +1,00)) ) -

Furthermore, we define a completely positive unital map ¢, : 2o o0) — HAj0,00), 7 =
2, by

@n(Q) ::p;il(a)dil'}/—n o (TT[O,nfl] ® Zd[n,oo))
(e—qu,[l,n—l]e%H@[Ln—l]Qe%H(p[1,n—1]e—§H\p[17n—1]) .

Using these notations, we can rewrite L as

L(Q) =d " Vp, 1 (a)pn(an(@)*Qan(a)), n>2. (8)

Next we evaluate (8), using the properties of a,(«) given in Lemma A.1:
that is,

lim [/[@, an()]]| =0, VQ € Ao, (9)

n—oo
and that there exists a positive constant C' such that

sup lan (@) sup | (an(@) | < C. (10)
neN neN

Let @ be any strictly positive element in 2 .. By (9), we can choose € > 0
and N(Q) € N so that

o

e <inf @,
and

N(Q) > no + 1, H[Qian(a)]H <& ¥n > N(Q).

As ¢, is a completely positive unital map, we have ||, || = ||¢n(1)|| = 1. Note
that ¢, (Q) is a scalar if n — 1 > ng. Thus we get

L(Q) < 4™ Vpuoa(a) (C*eu(@) + 20 @3

<d= " Vp,_1(a) (22,2 + 02> on(Q),

@, an(a])

and

12Q) 2 0 pa(a) (-2 @3 0% ant]| + (@)

1

> d_(n_l)pnfl (a) TCQS%(Q%

10



for all n > N(Q). Hence we obtain (iii) of Assumption 2.1:
Ly (Q) < (1+2C%)inf LE(Q),

for all n > N(Q). O

Proof of Theorem 1.1

Note that
R>aw Ly € B(F))

has a B(Fjp)-valued analytic extension to a neighborhood of R. We thus can ap-
ply Theorem 2.2 to {L,}. Accordingly, each L, has a strictly positive eigenvalue
A(«@) associated with a strictly positive eigenvector h(«) such that

lim [[A(c) " L2(1) — h(a)|| = 0.

n—oo

Furthermore, R 5 « — A(a) is differentiable. By (8) and (10), we have

d_("_l)pn_l(oz)C'_2 <L) = d_("_l)pn_l(a)gon(an(a)*lan(a)) < d_("_l)pn_l(a)C'z.
(11)

Hence for any state v on (g ), we have

1
lim — (log pn—1(a) —logv(A(e) " L72(1)) — nlog A(@r) — (n — 1) log d)
= lim 1 (log pn(a)) — log A(a) — logd = 0.
n—oo n

Therefore, the limit
1
lim - log pp () = log A(a) +logd, Va €R. (12)

exists and is differentiable. Applying Lemma 3.1, we have thus proved the
Theorem. [

4 Large deviation principle for C*-finitely corre-
lated states

In this section, we prove the large deviation principle for finitely correlated
states, Theorem 1.2. Let w be a C*-finitely correlated state generated by a finite
dimensional C*-algebra B, a completely positive unital map £ : My(C)® B — B
and a faithful state p. By the translation invariance of w, it suffices to show
that the limit

. 1 aHg[—n,—1]
nh_)rgoglogw (e @ ) (13)

exists and is differentiable. We define a completely positive unital map & :B—
B through the formula & (b) := E(1®b), b € B.

11



Lemma 4.1 It suffices to show the existence and differentiability of the limit
(13) for w generated by a triple (B, &, p) satisfying the following condition: there
exists a positive constant s > 0 such that

s71p(b) < (51) (b) < sp(b), 0<Vb, beB. (14)

Proof 1t is known that every C*-finitely correlated state has a unique decom-
position as a finite convex combination of extremal periodic states, which are
again C*-finitely correlated [FNW]. That is, we can write w as a finite sum
w =Y Nw;, 0< X, Y A = 1, where each w; is an extremal p; peri-
odic state. Furthermore, w; is a C*-finitely correlated state on (My(C)®Pi)z,
generated by a triple (B;,&;, p;), such that 1 is the only eigenvector of (51)1
with eigenvalue one, and rest of the spectrum has modulus strictly less than 1.
Therefore, it suffices to consider w generated by a completely positive map &
such that & has a simple eigenvalue 1 and rest of the spectrum has modulus
strictly less than 1. We shall confine our attention to this case.

Next we claim that there exists an integer ! and a positive constant s > 0
such that

s1p(b) < (él)l (b) < sp(b), 0<b, beB. (15)

To see this, let P be a spectral projection of & corresponding to the eigenvalue
1, and set P = 1 — P. By assumption, the range of P is C1. As p is a faithful
state on a finite dimensional C*-algebra, there exists ¢ > 0 such that p > cl.
Accordingly, we have ¢ ||b|| < p(b), Vb > 0,b € B. By the assumption, if we take
[ large enough, we have

[Enpw)| < Sen, wes.
Furthermore, we have

p(b) = Tim p (E1()) = p(P(B)).

n—oo

We thus obtain the claim: there exists [ such that

50(0) < p(0) — = bl] < EL(5) = EL(PH) +EL(Pb) = p(b) + &} (PB)) < p(b) + & B < 20(0),

for 0 <b, beB.
Note that w is a C*-finitely correlated state on ((My(C))®')z, generated by

(B,EW, p), where £ is the I-th iterate of £. Furthermore, we have E0); = (&)
Therefore, it suffices to consider w generated by a triple (B, £, p) satisfying (14).
O

We shall confine our attention to w satisfying (14).

12



As a transfer operator, we consider a map from 24_ @B to A(_, _1)®B.
For each a € R, we define L, by

Lo(Q) :=Te— 0 (id(—0o,—2) ® E) (a*(a)Qa()), Q€ A_oo_1®B

Here, a(a) is an element of 2, _q) given by

ala) = E, (%Hg,(_m; %}Lp(—oo, _2]) .

Lemma 4.2 Each L., o € R satisfies (i), (iii) of Assumption 2.1.

Proof As in Section 3, a(«) is an invertible element of Fp and (i) holds.
We prove (iii).We shall first write L” in a more tractable form. By an inductive
calculation, we obtain

Ly(Q) = (Tc— © (id(,oo7,2] ® 5))n (@n ()" Qan(a)),

where
(@) = a(@)1-1(a(@)) -7y (ala)).
Let a,(a),n > 2 be
an(a) == dn(a)e*%H“’[*”H’*l].

For each n > 2, we define a positive constant p,(a), a completely positive map
d,, by

prl@) :=w (eaH‘?[*”H’*l])

(Q) 1= 1 () (re- o (id( oo, 3 @ €))" (eFFrlmi bt e Hnlonir o))

Using these notations, we can write L, as
Ly (Q) = pu()®p(an() Qan(a)), Q€A _-11®B, n>2. (17)

Next, note that for R € 2[_,, 11, _1) ® B, n > 2, an element
(Te— © (id(— 00,2y ® E))" " (e%H“I’[_"H’_”Re%Hd’[_"H’_”) (18)
belongs to 1o, _,; ® B, and (identifying Lo, _,) ® B with B,)

p ((Tc— 0 (id(—o0,—2) ® €)™ (EQHCD[?”HA])) = w(eer Tl = p ().

Accordingly,

ou(R) = pa(0) 0 (7o 0 (idoe, 2y @ €))" " (cFHalrs1 o e Ml 1) )

13



defines a state on 2A_,, 1 _1) ® B. We claim
57 on(R) < ®,(R) < spn(R), VR>0, REW_pp, @B (19)

To see this, we denote (18) by Lot ooy ® br. We have

Du(R) = (@) (7o © (id o, 2 @ E)) ((Tem 0 (id( e, 2 ©E))" " (eFHrlntL 1 e Halnin o)) )
= (@) (T2 ey @ E1(0R)) -

Therefore, from the bound (14), we obtain the claim:

s en(B) = 51, (@)pr) < 0a(R) = p (@) (Lo © E1(bm) ) < 59 (@)plbr) = 50 (R)
(20)

From (19), we have 0 < ®,(1) < s. As ®,, is completely positive, we obtain
@0 = [@a(1)]] < 5.

We now check the condition (iii). As in Section 3, there exists a positive
constant C' > 0 such that

sup ||an ()|, sup Han(a)_lu < C. (21)
neN neN

Furthermore, we have

nh—>Holo ||[Qa an(aﬂ H = 07 VQ S Qlloc-
For a strictly positive element @ in 2_, 1) ® B, we can choose € > 0 and
N(Q) € N so that
1
72572 inf Q,

2 HQ% <356

and

no +1 < N(Q), H[Q%,an(a)]H <& Vn > N(Q).
Thus, due to the inequality (19), for n > N(Q), we have
L2(Q) = pu(@)@n(an(0)’ Qan() < 2C @]l Q% an(a)]]| | @} || pa(e) + C2spa(a)en(@)

<mnfe) (5eas + %) (@)

55 al(@a(e) 2 pule)on(Q) 575!

LE(Q) > =2 @, | C’H[Q%,an(a)}H HQ% .

pnla) +

Hence for n > N(Q), we obtain
1
n 2 —1 2 : n
L2 (Q) <2C°s (2023 +C s) inf L2(Q).

14



We thus showed (iii). O

Proof of Theorem 1.2
Note that the map
R>aw Ly € B(F)p)

has a B(Fy)-valued analytic extension to a neighborhood of R. We thus can
apply the left-side version of Theorem 2.2 to {L,}, and obtain

lim ||)\(a)*”LZ(1) - h(a)H =0,

n—oo

for some strictly positive element h(a) in 2(_oo,—1) ® B and a strictly positive
constant A\(«). Furthermore, A(«) is differentiable with respect to a. By (17),
(19)and (21), we have

épn(a) < C_Qpn(a)<1>n(l) < LZ(l) = pn(a)q)n(an(a)*an(a)) < CQPn(a)q)n(l) < CQSPn(a)-
(22)

For any state v on 2((_, 1] ® B, we obtain

1 1 1
lim —logw (e"H“’[_”’_l]) = lim —logp,(a) = lim —logv (L,"(1)) =log A(«).

n—oo N n—oo N n—oo n
(23)

As log A(«) is differentiable, we have proved the Theorem. [
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A Analyticity of local elements

Let I be any subset of Z and ® a finite range interaction. We define a new
interaction ®; by

O(X), ifXCI

0, otherwise

(I)I(X) = {

This new interaction gives a time evolution 74,. We define 2; by
Ay = {QEF@QQ[[LOO):O<9<1}. (24)

In [A1], H.Araki showed that 2; is a x— algebra and that any element in 2 is
entire analytic for 7¢,. For a local element @, we define E,.(Q; Ho(I)) by

oo 1 51 Bn-1
(QHs(I) =Y [ s [ s [ dBra Q)7 Q).
E@:ta(1) = 3 / 8, / 5, / Bura P (Q) - 75 (Q)
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It was shown in [Al] that E,.(Q;He(I)) is an element in 20;. Furthermore,
following relations hold:

E.(Q1+ Q2 Ho(I) = E.(Q1;Q2+ Hao(I))E(Q2; Ha (1)),
En(Q; Ho(D)73,(Q) = 7,1 o(@)E(Q: He(D)),  (25)

for all Q1,Q2,Q € Ujoe and Q' € A;. Here, 7¢,4¢ is a perturbed dynamics of
Te, by a bounded perturbation Q. If @ € Uj,., then for any x > 1, there exists
a constant C such that

jsvlé%fEN | EN(Q; Ho(I)) — Ex(Q; He (I N[N, +N)))| < Cs.

We use the following notations:

I:ICTI;(n) = Z (b(I) € Ql[l,oo) N Qllocy
IC[1,00),IN[1,n]#¢

ﬁfi’(n) = Z (I)(I) € Ql(foo,fl] N Aioc,
IC(—o0,—1],IN[—n,—1]#¢

W&;(?’L) = Z (I)(I) € Ql[1,00) n Qlloc;
IC[1,00),I¢Z[1,n—1],I¢Z[n+1,00)

Wh(n) = > (1) € Aoo—1) N Atoe.

IC(—o00,—1L,IZ[-n+1,-1],IZ(—00,—n—1]
We may apply the same argument as [A1] to show the following facts:

Lemma A.1 Let ® and ¥ be finite range interactions with range less than
r > 0. Then operators

ente) =gl (B (~5 Wt~ (Halld + Huln + 1,00) ) )

E, (5Wa(n): 5 (HolLin] + Hyln +1,0)))
aX(0) ~—T<;[12NH+NW (E( S =5 (Ho(ln = Non N[1,60) + Halln + L+ N ) )
i

a,€C, neN

(Ha([n— N,n] N1[1,00)) + Hafn+ 1L,n+ N))

are well-defined invertible elements in Ay and Ay, N_r iy N4rn[1,00), TESPEC-
tively. For any compact set S in C, there exists a positive constant Cg such
that

sup sup ||an(a)|, sup supH an (e )71H < Csg,
aceS neN aeS neN

Sup sup sup Ha a)l||, sup sup sup H (anN(a))ilH < Cs.
NeNaeS neN NeNaeSneN
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Furthermore, for any x > 1, there exists a positive constant Cy such that

sup sup sup z” - Han(a) — aff(a)” < C,.
NeNaeS neN
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