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Abstract

A chaotic deterministic system exhibits robust extremes when the statistics of its extreme values

depend smoothly on the system’s control parameters. Such robustness can be exploited to enhance

the precision and accuracy of statistical estimators. It is conjectured here that robust chaos is

sufficient for robust extremes. This is demonstrated for 1D Lorenz maps and illustrated numerically

for the Lorenz63 model. It is also outlined how these ideas can be applied to more complex chaotic

systems.
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We consider how extreme values in chaotic deterministic systems respond to changes in

the system’s parameters. Extreme values can be associated with disruptive or catastrophic

events (in the climate system or in financial markets for example) and so their behaviour

is of both scientific and societal interest. Extreme-value theory (EVT) provides models for

extremes in stationary stochastic processes and progress has been made recently in extending

EVT to chaotic deterministic systems [1–5]. Understanding the response of deterministic

systems to variation of control parameters leads to the study of bifurcations [6], typically

associated with dramatic changes in behaviour [7]. Chaotic systems, however, often respond

regularly to parameter variation. This phenomenon is called robust chaos [8] and is found in

several systems, from neural networks [9] to (piecewise) smooth maps [10, 11]; see [12] and

references therein. In this note we take initial steps towards understanding robust extremes,

where the statistics of a system’s extreme values vary smoothly with its parameters. We

conjecture that robust chaos is sufficient for robust extremes and demonstrate that this is

the case for 1D Lorenz maps.

Robust extremes were discovered recently in the 192-dimensional ordinary differential

equation of [13]. This is a model for the atmospheric circulation at mid-latitudes in the

Northern Hemisphere, providing a simplified representation of key physical processes (baro-

clinic conversion, barotropic stabilisation, thermal diffusion and viscous-like dissipation).

The model has a robust chaotic attractor for suitable values of a parameter TE representing

baroclinic forcing [14]. The extremes of the system’s total energy have a smooth power law

in TE.

The following numerical study illustrates the robustness of extremes for the Lorenz63

model [15]:

ẋ = σ(y − x),

ẏ = x(ρ − z) − y, (1)

ż = xy − βz,

derived from the Rayleigh equations for convection in a fluid layer between two plates.

Here σ is the Prandtl and ρ the Rayleigh number; see [16] for a dynamical study. For the

“classical” values σ = 10, β = 8/3 and ρ = 28, (1) has a strange attractor [17], which is

robust in the sense of [18]. This definition is different from that of [8] although the practical

implications are similar.
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For each ρj = 27 + 0.05j (j = 0, 1, . . . , 20), time series of length 10n units are generated

from (1) for n = 5, 8. The time series consist of values of x, proportional to the intensity of

the convective motion [15], recorded every 0.5 time units along an orbit [39]. Maxima from

blocks of 1000 time units are extracted from each series [40] and their frequency distributions

are modelled with the generalised extreme value (GEV) distribution function

G(x; µ, σ, ξ) = exp

[

−

(

1 + ξ
x − µ

σ

)−1/ξ

+

]

, (2)

where σ > 0, ξ 6= 0 and w+ = max{w, 0}. The GEV model is justified by EVT and its

parameters (µ, σ, ξ) are estimated by maximum likelihood [19, 20].

The GEV parameter estimates converge to smooth functions of ρ for large n (Fig. 1 (a)-

(c)) but estimates of ξ for n = 5 oscillate wildly around the “truth” obtained with n = 8.

Accurate estimation of the tail index ξ is essential for extrapolating return levels to return

periods which are larger than the record length [20]. Climatic records seldom contain more

than 100 annual maxima [13], so fast convergence of estimators is desirable.

Robustness of extremes can be used to enhance the accuracy and precision of the GEV

estimators. If functional forms can be assumed for the variation of the GEV parameters

with ρ then the maxima {zj
t } when ρ = ρj can be pooled across all j to estimate these

functions. Consider µ(ρ) = µ0 + µ1ρ, σ(ρ) = σ0 + σ1ρ and ξ(ρ) = ξ0 for example. The

parameters (µ0, µ1, σ0, σ1, ξ0) are then estimated by maximising the global likelihood

∏

j,t

∂G

∂x
(zj

t ; µ(ρj), σ(ρj), ξ(ρj)). (3)

Estimates from this pooled model for n = 5 (Fig. 1 (d)-(f)) are much closer to the “truth”

than the former, independent fits (enhanced accuracy) and uncertainty is greatly reduced

(enhanced precision).

In [21] a linear time trend was imposed on TE in the model of [13] discussed previously.

Statistical models like (3) can also be used to analyse extremes in such non-stationary

systems. To justify this approach, an adiabatic Ansatz is required (beyond robustness of

extremes): the trend timescale must be smaller than the sampling time for the upper tail of

the energy distribution.

The above examples suggest that robust chaos may be a sufficient condition for robust

extremes in deterministic systems. A formal discussion is now required. Let f t
ρ : R

n → R
n
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FIG. 1: a)-c) Estimates of the GEV parameters µ, σ, ξ (resp.) vs. the value ρj used in (1) for time

series length 10n (see legend) with approximate 95% confidence intervals for n = 5. d)-f) Estimates

and confidence intervals obtained with (3) are labelled as “pooled”.

be a parametrised family of continuous-time dynamical systems defined by the solution of

a system of ordinary differential equations in the phase space R
n smoothly depending on

the parameter ρ. Let φ : R
n → R be an observable (the total energy of the system in [13],

or the projection on x for Lorenz63). Suppose that for fixed ρ the system has an attractor

Λρ: this is a compact invariant subset of R
n which is transitive (there exists x ∈ Λρ with

a dense orbit) and has an open trapping basin (there exists a neighbourhood U of Λρ such

that f t
ρ(U) ⊂ U for all t > 0 see [18]).

To define the statistical properties of the attractor, one must assume existence of a Sinai-

Ruelle-Bowen (SRB) measure µρ. This is a Borel probability measure in phase space R
n

which is invariant under the flow f t
ρ, is ergodic, singular with respect to the Lebesgue measure

in R
n and its conditional measures along unstable manifolds are absolutely continuous [22].

Moreover, µρ is a physical measure: there is a neighbourhood U of Λρ such that for every
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continuous observable φ the frequency-limit

lim
t→∞

1

t

∫ t

0

φ(f t
ρ(x))dt =

∫

φdµρ (4)

holds for orbits {f t
ρ(x)}t≥0 starting from Lebesgue-almost all x ∈ U . Invariance of the

measure implies that the random variables Xk = φ ◦ f
(k−1)t0
ρ , with t0 > 0 and k ∈ N, form

a stationary stochastic process on the probability space (Λρ, µρ). Eq. (4) means that the

first moment of X1 (right hand side) can be computed by averaging the observable along a

sufficiently long orbit.

If the normalised maxima of a stationary stochastic process converge to a non-degenerate

limit distribution H and a mixing condition called D(un) holds, then H is a GEV whose tail

index is determined by regular variation of the marginal distribution [23]. We now sketch

a proof of regular variation for 1D Lorenz maps, which are simplified geometric models for

the Lorenz63 flow [6, 16, 24]. Let Tγ : [−1, 1] \ {0} → [−1, 1], with T ′
γ(x) = l(x)|x|γ−1

for γ ∈ (0, 1) and l(x) slowly varying at 0 and Hölder continuous. The map Tγ admits

an absolutely continuous invariant measure with density θγ(x) = dµγ/dx of type bounded

variation whose support has upper endpoint at x+ = 1, where θγ(x) vanishes. For Tγ, the

attractor Λγ is the whole interval [−1, 1]. Given an observable φ, denote as φ+
γ the upper

endpoint of the distribution function F of X1 = φ. For g(u) = 1 − F (φ+
γ − 1/u) and t > 0,

g(ut)

g(u)
=

µγ[φ(x) > φ+
γ − 1/ut]

µγ[φ(x) > φ+
γ − 1/u]

. (5)

We distinguish two cases, according to where φ is maximised. Assume first φ+
γ = φ(x+):

loosely speaking, the maximum is “on the peel” of the attractor. Consider for example the

observable φ(x) = x. Using invariance of µγ and the Lebesgue differentiation theorem we

obtain

µγ[φ(x) > φ+
γ − 1/ut] = µγ[x > 1 − 1/ut] =

= µγ[T
−1
γ [x+ − 1/tu, x+]] = θγ(0)h(1/tu)(tu)−1/γ

+ o
(

h(1/tu)(tu)−1/γ
)

as u → ∞, (6)

where h(1/u) is a slowly varying function as u → ∞ and h(0) is bounded between zero

and infinity. By (6), Eq. (5) tends to t−1/γ as u → ∞, provided θγ(0) 6= 0 (which numer-

ical experiments indicate is so). This shows that F is regularly varying with index −1/γ.
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Furthermore, the D(un) condition holds by decay of correlations in Lorenz maps [25, 26].

Therefore F is in the domain of attraction of a GEV with shape parameter ξ = −γ [27].

An even simpler case is when the observable φ has a maximum at x0 ∈ [−1, 1]\{0}, with

θγ(x0) 6= 0. The latter condition means, loosely speaking, that x0 is “within the attractor”.

Consider φ(x) = C − D|x − x0|
δ, with D, δ > 0. By an argument as above, for Eq. (5) we

have
θγ(x0) + o(1)

θγ(x0) + o(1)
t−1/δ → t−1/δ (u → ∞). (7)

The tail index ξ = −δ is thus constant in γ: it only depends on the “curvature” of the

observable φ near the extremal point x0. Both (6) and (7) can be generalised to observables

with a strict absolute maximum at x0 (where x0 = x+ for (6)) such that φ(x) = C −D|x−

x0|
δ + o(|x − x0|

δ) as x → x0 with δ > 0. In summary: if the maxima in the 1D Lorenz

maps are GEV-distributed, then the tail index varies smoothly with the system parameter

γ for large classes of observables.

Returning to the flow of (1): for ρ ≈ 28 the attractor Λρ ⊂ R
3 supports a unique SRB

measure µρ [28]. Fig. 2 shows a histogram corresponding to the projected measure µρ ◦φ−1,

for φ(x, y, z) = x. A 1D Lorenz map Pγ is obtained by a smooth coordinate transformation

S in a Poincaré section for (1). Here γ = |λs|/λu, where λu is the unstable and λs the

weakly stable eigenvalue of the Lorenz63 flow at the origin [16, 26]. Therefore, ξ = −γ

smoothly depends on ρ for Pγ, for the case “on the peel”. The tail index for (1) with

φ(x, y, z) = x is equal to the value −|λs|/λu obtained for Pγ with φ(x) = x, multiplied

by a factor depending on the coordinate transformation S: robustness of the tail index is

preserved, since S is smooth in ρ. Note that the tail index for (1) is non-constant “on the

peel” (Fig. 3): the choice of constant ξ and linear µ and σ used for Fig. 1 (d)-(f) is a tangent

approximation (valid locally in ρ) for the shapes of the GEV parameters. These are, in

general, non-parametric functions of ρ induced by the scaling of the attractor Λρ.

The extreme statistics of Lorenz63 become non-robust under the observable φ(x, y, z) = x

for large ρ, discontinuities become visible near ρ = 60. Indeed, (6) no longer holds for ρ & 32:

hyperbolicity is destroyed by the appearance of folds in the return map. The folds correspond

to critical points in the 1D Lorenz map Pγ [24]. Therefore, the Loren63 attractor is no longer

robust in this parameter regime. This is very different from the case ρ ≈ 28, for which Pγ

is hyperbolic (except at the origin). However, the prediction (7) (maximum “within the

attractor”) is insensitive to hyperbolicity loss and to the coordinate transformation used to
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FIG. 2: Histogram and smoothed density from an orbit of Lorenz63 observed through φ(x, y, z) = x

for ρ = 28.
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FIG. 3: Maximum likelihood estimates of the tail index ξ for two observables with 105 maxima.

For each ρj ∈ [25, 66], uncertainty is twice the standard deviation of the 10 estimates obtained

with 10 “chunks” of 104 maxima.

obtain Pγ . For example, for the observable φ(x, y, z) = 1 − (x − 5)0.25 an average estimate

of ξ = −0.251 with standard deviation 0.002 is obtained over ρ ∈ [27, 66], as predicted

(Fig. 3). This observable is maximised on the plane {x = 5} ⊂ R
3, which intersects Λρ for

all ρ ∈ [27, 66]. In summary, the Lorenz63 model has both robust and non-robust extremes

(depending on the parameter range), with constant or non-constant ξ (depending on the

observable).

It is of considerable interest to extend these results to other systems and observables. If

φ is maximised “within the attractor”, the argument leading to (7) seems to be valid under

weak conditions. The resulting constancy of ξ is a rather general property: for it to hold it

is sufficient that the unprojected invariant measure µρ provides good sampling near the set

where φ is maximised. Caution is required if this set is a point x0: in general µρ is supported
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on a fractal set in phase space and parameter variations may bring x0 “outside the attractor”.

For robustness of extremes when φ is not maximised within Λρ, the projected measure must

be robust at its upper endpoint x+, as in (6) (x+ in general depends on ρ). Robustness

at x+ is therefore necessary for physical observables such as energy and vorticity [21, 29],

which are unbounded in phase space. Such robustness does not always hold, as shown in

Fig. 3. In fact, for low-dimensional systems one would often expect otherwise. Indeed, we

have examined the extremes “on the peel” of other chaotic attractors: the Hénon map [6]

(x, y) 7→ (1 − ax2, by) with b = 0.05 and a ranging from 1.43 to 1.44 with step 0.0001; and

the autonomous Lorenz84 model [30], varying the baroclinic forcing parameter. In both

cases the observable is the projection on x and non-robust extreme statistics are found.

Robustness of extremes may be expected for Axiom-A attractors, since the SRB measure

is differentiable in the parameter [31, 32]. The latter property has important physical conse-

quences, such as the existence of Onsager-type or Kramers-Kronig dispersion relations [33].

Unfortunately, for many physical systems of interest it is exceedingly difficult to prove ex-

istence of an SRB measure, let alone its differentiability. This difficulty led to the Chaotic

Hypothesis [34, 35], stating that a many particle system in a stationary state can be regarded,

for the purpose of computing macroscopic properties, as a smooth dynamical system with

a transitive axiom-A global attractor (a version exists for fluid dynamical systems [36]). In

line with this, we conjecture that various types of system may display robust extremes at

the experimental, observable level: robust chaotic systems [8, 12] (or robust attractors [18]),

many-particle and fluid dynamical systems [34, 36], high-dimensional systems [37], geophys-

ical flows [21, 29]. This may also explain the robustness which is observed in Fig. 3 for ρ

between 32 and 58.

Are meteo-climatic extremes robust with respect to variations of e.g. atmospheric CO2, or

do they exhibit tipping points (bifurcations)? This issue is of great relevance for prediction

and mitigation purposes, as well as for the rigorous quantification of trends in extremes.
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[38] À. Jorba and M. Zou, Experiment. Math. 14, 99 (2005).

[39] The variable-order adaptive-stepsize Taylor method of [38] is used for integration of (1), with

local absolute and relative truncation errors fixed at 10−8.

[40] In meteo-climatic applications, where the block length is often 1 year, this is called the annual

maximum method.

10


