
Bourbaki’s “Integration”: How, and why1

Ref: N. Bourbaki, Integration (2 vols.), Springer, 2004.

Who is Bourbaki? Ref: Maurice Mashaal, Bourbaki: A Secret So-

ciety of Mathematicians, Amer. Math. Soc., 2006.
Approximately faithful to the original French version published

in February, 2000.

First conspirators: André Weil, Henri Cartan (while at U. of Stras-
bourg)

Original objective: Write a modern “Traité d’analyse” (to replace
Goursat, Vallée Poussin, etc.).

Date of Birth: Academic year 1934–35 (first working meeting, De-
cember 10, 1934). Ref: French version, p. 8.

{Richard Nixon’s 1st year at Duke law school.}

Place of birth: Café A. Capoulade, 63 bd. St.-Michel, Paris.
{Now extinct—replaced by a fast-food outlet.}

In attendance (6): Weil, Cartan, Jean Dieudonné, Jean Delsarte,
Claude Chevalley, René Possel.

First meeting for which minutes are extant (January 14, 1935):
Attending: The above 6, plus Jean Leray (who soon dropped out).

Ref: Interview of Henri Cartan (Notices of the AMS, August
1999, pp. 782–788).

First Congress: July, 1935, Besse-en-Chandesse (47 km SSW of
Clermont-Ferrand). Subsequently 3 per year.

Attending: The above 6, plus Charles Ehresmann, Szolem Man-
delbrojt (Uncle of Benôıt), Jean Coulomb (geophysics/math).

First task: Agree on a provisional outline (subsequently reviewed at
the end of each Congress). Eventually:

The Foundations (Books I–VI):
Set Theory (S), Algebra (A), General Topology (GT), Topolog-

ical Vector spaces (TVS), Functions of a Real Variable (FRV), Inte-
gration (INT).

1Document prepared as a ‘data base’ for a talk with this title, presented
at the Mathematics Seminar of the University of North Carolina at Asheville,
September 19, 2007.
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Specialized Books:

Théories Spectrales (TS), Commutative Algebra (CA), Lie Groups
and Lie Algebras (LIE), Differential and Analytic Varieties (VAR).

{Off the reservation: Séminaire Bourbaki ; Dieudonné’s 9-volume
Éléments d’analyse (has been translated by Academic Press); Car-
tan’s Elementary theory of analytic functions of one or several com-

plex variables, Jacques Dixmier’s books on C*-algebras and von Neu-
mann algebras, Serge Lang’s books on just about everything, ... .}

The “Founding Fathers” (Ref: Interview with Pierre Cartier, The

Mathematical Intelligencer, 1998, pp. 22–28; A. Weil, The apprentice-

ship of a mathematician, Birkhäuser, 1998):

[year entered ENS; age]

André Weil [1922; 16], Henri Cartan [1923; 19], Jean Dieudonné
[1924; 18], Jean Delsarte [1922; 18], Claude Chevalley [1926; 17]

Why secret?: “Avoid the temptation of self-aggrandizement” (Pierre
Samuel). Other hypotheses: evolving authorship, freedom to “plagia-
rize” (“let no one else’s work evade your eyes”; Tom Lehrer) without
having to supply a mountain of attributions.

Membership: about 12 at any given time (over the years, ∼ 40).
Mandatory retirement at age 50.

Second generation: Laurent Schwartz, Jean-Pierre Serre, Pierre
Samuel, Jean-Louis Koszul, Jacques Dixmier, Roger Godement, Samuel
Eilenberg.

Third generation: Armand Borel, Alexandre Grothendieck, François
Bruhat, Pierre Cartier, Serge Lang, John Tate.

Fourth generation: “ . . . more or less a group of students of
Grothendieck”. {Ref: P. Cartier, loc. cit.).

Other members signalled in Mashaal’s book: Alain Connes, Michel
Demazure, Adrien Douady, Jean-Louis Verdier, Armand Beauville,
Claude Chabauty, Charles Pisot, Bernard Teissier, F. Raynaud, Jean-
Christophe Yoccoz.

Collaborative: Universal participation for all subjects, unanimous
decisions, self-education (visible in the evolution of editions, notably
the Books A, TVS, INT; personal benefits attested to by Schwartz,
Dieudonné, Serre, Samuel, Cartier, ... ).
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Fields medals: Schwartz (1950), Serre (1954), Grothendieck (1966),
Connes (1982), Yoccoz (1994).

Age limit (< 40) and WW II cancellation of ICM excluded the
generation of the Founding Fathers from consideration.

Which integral?: Bourbaki offers two theories of integration: 1) an
elementary integral as substitute for the Riemann integral, and 2) an
industrial-strength integral for more demanding applications.

Bourbaki’s elementary integral (exposed in FRV):
The ‘integrable functions’ are the regulated functions. A function

f : I → E ( I an interval in R , E = R or a Banach space over R—
including C = R2 ) is said to be regulated if it has one-sided limits
in E at every point in I . Examples: f a step function (a linear
combination of characteristic functions of intervals); f continuous or
monotone in I .

Fact 1: When I is a closed interval [a, b] , f is regulated if and
only if it is the uniform limit of a sequence (fn) of step functions,
i.e., ‖fn − f‖ → 0 (FRV, Ch. II, §1, No. 3, Def. 3 and Th. 3).

Fact 2: Every regulated function f has a primitive, that is, there
exists a continuous function F : I → E such that F ′(x) = f(x) for all
but countably many values of x , so to speak, F ′ = f c.e. (countably
many exceptions) (loc. cit., Th. 2). Example: If f is a step function
then F is piecewise linear.

Fact 3: F is unique up to a constant (FRV, Ch. I, §2, No. 3, Cor.
of Th. 2).

The definition of integral: For [a, b] ⊂ I one defines
∫ b

a
f =

F (b) − F (a) .

For a fixed [a, b] ⊂ R , the function f 7→
∫ b

a
f is a linear function

on the vector space of regulated functions on [a, b] .
{Linearity of integration is a familiar requirement: to integrate a

polynomial, it suffices to be able to integrate xn for n = 0, 1, 2, 3, . . . .}

Regulated functions seem not to have caught on in the U.S. Why?
My guess: in undergraduate courses, the Riemann integral prevails
owing to its relative accessibility and popularity, whereas graduate
courses head straight for the Lebesgue integral; so to speak, regulated
functions fell between two chairs.

The theory of regulated functions is exposed in Dieudonné’s Foun-

dations of modern analysis (Academic Press, 1960), essentially a grad-
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uate level text, written in his years at Northwestern University. {Did
any other American textbook ever follow suit?} In a textbook by
Dixmier addressed to first-year University students, the theory is
limited to real or complex valued functions that are piecewise con-
tinuous and have finite one-sided limits at the endpoints (Cours de

mathématiques du premier cycle. 1re année, Gauthier-Villars, 1973).

Bourbaki’s global strategy:

Les mathématiques 7→ la Mathématique.

Take apart the diverse mathematics, decide on the fundamen-
tal building-blocks (order structure, algebraic structure, topological
structure), put them back together in various ways to get specific
themes: simple structures (e.g., commutative rings, well-ordered sets,
locally compact spaces); multiple structures (topological vector spaces,
vector lattices, order topology), ‘crossroads structures’, for example,
the field R of real numbers (order, algebra, topology), Integration
(draws from all 5 of the preceding Books, GT and TVS especially in-
tensively). In practice, Book I is generally ignored, but its Summary

of Results is indispensable for notation and definitions.

Somewhat orphaned: Combinatorics, Probability. I’m not com-
petent to assess the treatment of geometry; some naive remarks from
an outsider follow. Algebraic geometry is fueled by CA and its contin-
uation outside Bourbaki by Grothendieck. Classical groups of linear
mappings are treated in A and especially in INT (Ch. VII, §3). Surely
VAR and LIE encompass vast realms of geometry. I am out of my
depth.

The originally contemplated (“1000–1200 pages”) Traité d’analyse

as such never took form. FRV takes a good bite, TVS paves the way
for Schwartz’s theory of distributions and its ramifications for partial
differential equations, INT generalizes the Lebesgue integral handily
and leads to a succinct treatment of abstract harmonic analysis in TS.

Fast rewind to 1933: A chronology:

The chronology begins with some items that were ‘recent’ at the
time that Bourbaki contemplated an up-to-date Traité d’analyse, and
continues with some key dates in the life of INT and TVS.

4



(1932) Banach’s book (Théorie des opérations linéaires, War-
saw, 1932):

p. 1: Review of the Lebesgue integral (Leçons sur l’intégration et

la recherche des fonctions primitives, Gauthier–Villars, 1904; 2nd. edn.,
1928).

p. 27, 28: ‘Hahn-Banach theorem’.
p. 60, 61: F. Riesz’s representation (1909) of a continuous linear

form on C ([0, 1]) as an integral.
p.64: (Lp)′ = Lq (for 1 < p < +∞, 1/p + 1/q = 1), due to

M. Fréchet (1907) for p = 2 , and to F. Riesz (1910) for general p .
p. 65: (L1)′ = L∞ , due to H. Steinhaus (1918).

(1933) Existence of an invariant measure on a second-countable
locally compact group [A. Haar, Ann. of Math., 34 (1933), 147–169].

(1935) Definition of locally convex spaces by J. von Neumann
[“On complete topological spaces”, Trans. Amer. Math. Soc. 37 (1935),
1-20].

{Historical Note: “Our theory ... is based on von Neumann’s
observation (loc. cit.) that a convex topology may be described by
pseudo-norms [G. W. Mackey, same Trans. 60 (1946), 519–537, esp.
p. 520]. “ ... la définition générale des espaces localement convexes,
donneé par J. von Neumann en 1935 ” [N. Bourbaki, Éléments d’histoire

des mathématiques, pp. 244–245, Hermann, Paris, 1960]. Such spaces
are of capital importance for Bourbaki’s treatise, especially in TVS
and INT.}

(1936) Uniqueness of Haar measure on a second-countable lo-
cally compact group [J. von Neumann, Mat. Sbornik N.S. 1 (1936),
721–734].

(1937) ‘Stone-Weierstrass theorem’ [M.H. Stone, Trans. Amer.
Math. Soc. 41 (1937), 375–481; more accessibly, see Math. Mag. 21
(1948), 167-184 and 237-254].

Uniform spaces in general topology (A. Weil, Sur les espaces à

structure uniforme et sur la topologie générale, Hermann, Paris, 1938).

(1940) Existence and uniqueness of Haar measure on an arbi-
trary locally compact group (A. Weil, L’intégration dans les groupes

topologiques et ses applications, Hermann, Paris, 1940); the book in-
cludes an exposition of abstract harmonic analysis, destined for Ch. II
of TS.
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Simultaneous proof of existence and uniqueness of Haar measure
without appeal to the Axiom of Choice (H. Cartan, C.R. Acad. Sci.
Paris 211 (1940), 759-762).

(1948-49) M.H. Stone, Notes on integration, I-IV [Proc. N.A.S.
USA., 34 (1948), 336–342, 447–455, 483–490; 35 (1949), 50–58].

(1952) INT, Chs. I-IV (2nd edn., 1965)

(1953) TVS, Chs. I, II (2nd edn., 1966)

(1955) TVS, Chs. III-V (1st edn.)

(1956) INT, Ch. V (2nd edn., 1967)

(1959) INT, Ch. VI.

(1963) INT, Chs. VII, VIII.

(1967) TS, Chs. I, II.

(1969) INT, Ch. IX.

(1981) Bound edition of EVT ( 7→ TVS in 1987).

(2004) Bound edition of INT (exists only in English).

The path to Bourbaki’s integral: a thumbnail sketch:

Ch. I : Early proof of very general Hölder and Minkowski inequal-
ities.

Ch. II : Vector lattices: some useful algebra.

Ch. III : Definition of measure as a linear form on a natural vector
space of functions, equipped with a surprising topology. Scores a point
for category theory.

Ch. IV : All of the L p-spaces (1 6 p < +∞) constructed in one
fell swoop.

The path to Bourbaki’s integral: connecting the dots:

Ch. I : Very general Hölder and Minkowski inequalities, applica-
ble to positive functions defined on a set, on which there is no topology
or ‘integral’ in sight (Ch. I, Props. 2,3).

{Prop. 1 uses the Hahn-Banach theorem (‘geometric form’) in Rn ;
there is no free lunch. The payoff: it expedites the (simultaneous) con-
struction of the function spaces L p (1 6 p < +∞) and the integral
on L 1 , even for vector-valued functions.
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One is given a set X and a functional f 7→ M(f) ∈ [0, +∞]
defined for real-valued functions f > 0 on X , i.e., M : F+(X;R) →
[0, +∞] , satisfying the conditions

1◦ M(0) = 0 , M(λf) = λM(f) (0 < λ < +∞) ,
2◦ f 6 g ⇒ M(f) 6 M(g) ,
3◦ M(f + g) 6 M(f) + M(g) .
Eventual application: X a locally compact space, and M(f) =

|µ|*(f) , where |µ|* is the ‘outer measure’ derived from a ‘measure’
µ on X (Ch. IV, §1, No. 3, Props. 10, 11, 12).}

Ch. II : Vector lattices: some useful algebra for application to
vector spaces occurring in the theory of integration.

The chapter facilitates the discussion (in Ch. III, §1, No. 6) of
the absolute value |µ| of a measure µ .

{A vector lattice is an ordered vector space over R in which every
pair of elements has a sup and an inf. This leads to |x| = sup(x,−x) ,
|x + y| 6 |x| + |y| , and x = x+ − x− , where x+ = sup(x, 0) , x− =
sup(−x, 0) .

A linear form L on a vector lattice is said to be relatively bounded

if, for every x > 0 , L is bounded on the set {y : |y| 6 x } . Useful
result:

L relatively bounded ⇔ L = L1 − L2 ,

where L1, L2 are positive linear forms (Ch. II, §2, No. 2, Th. 1).}

Ch. III : Definition of measure.
The setting: X is a locally compact topological space, C (X) is

the set of all continuous functions f : X → C , and K (X) is the set
of all f ∈ C (X) whose support

Supp f = {x ∈ X : f(x) 6= 0 }

is compact. For a compact set K ⊂ X one writes

K (X, K) = {f ∈ C (X) : Supp f ⊂ K } = {f ∈ C (X) : f = 0 on {{{ K };

thus K (X) is the union of its linear subspaces K (X, K) as K varies
over the set K of all compact subsets of X :

K (X) =
⋃

K∈K

K (X, K) .
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Each K (X, K) is a Banach space (a complete normed space) for the
norm

‖f‖ = sup
x∈X

|f(x)| = sup
x∈K

|f(x)|

(if ‖fn − f‖ → 0 , where the fn are 0 on {{{ K , then f = 0 on {{{K );
its topology is the topology of uniform convergence in K (equivalently,
in X ). The same formula defines a norm on K (X) , hence a norm
topology τu (the topology of uniform convergence in X , but not
necessarily limited to some K ); another topology on K (X) will be

required.

A measure on X is a linear form µ : K (X) → C that satisfies
one of the following equivalent conditions:

(a) µ = µ1−µ2 + iµ3 − iµ4 , where the µj are are positive linear
forms on K (X) ( f > 0 ⇒ µj(f) > 0 ) (§1, No. 5).

(b) For every compact set K ⊂ X , the restriction µ
∣

∣K (X, K) is
continuous for the sup-norm topology on K (X, K) , i.e., there exists
a constant MK such that

|µ(f)| 6 MK ‖f‖ for all f ∈ K (X, K) .

(c) In the first edition of Ch. III: the restriction µ
∣

∣K (X, K) is
continuous for every compact set K ⊂ X .

(c′) In the second edition of Ch. III: µ is continuous for a certain
locally convex topology τind on K (X) , called the inductive limit (or
direct limit) topology.

{The inductive limit topology (details later) is finer than the
topology of uniform convergence, that is, τind ⊃ τu ; in general, the
inclusion is proper. ‘Finer’ means ‘more open sets’, thus fj → f for
τind implies that fj → f uniformly; on the other hand, if a mapping
of K (X) into a topological space is continuous for τu then it is
continuous for τind .}

Ch. IV : Construction of the spaces L p(µ) (1 6 p < +∞) and
the integral on L 1(µ) .

The idea is to construct a functional M from µ so as to exploit
the Minkowski inequality proved in Ch. I. Write F (X) = F (X;C)
for the set of all functions f : X → C , and F+(X) for the set
of all functions f > 0 on X . One extends the functional |µ| on
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K+(X) to F+(X) as follows. Let I+(X) be the set of all functions
h : X → [0, +∞] that are ‘lower semi-continuous’, equivalently,

h(x) = sup
g∈K+(X), g6h

g(x) for all x ∈ X ,

(§1, No. 1, Lemma) and define

|µ|*(h) = sup
g∈K+(X), g6h

|µ|(g) ;

then, for every f > 0 on X , set

|µ|*(f) = inf
h∈I+(X), h>f

|µ|*(h) .

The functional M(f) = |µ|*(f) (f ∈ F+(X)) has the properties (§1,
No. 3, Props. 10, 11, 12) required in Ch. I.

Fix p , 1 6 p < ∞ . Define a functional Np on F(X) by the

formula Np(f) =
(

|µ|*(|f |p)
)1/p

; one knows from Ch. I that Np

has the properties of a seminorm, except that it may have infinite
values. Let F p(µ) (briefly F p ) be the set of all f ∈ F(X) such
that Np(f) < +∞ ; then F p(X) is a linear subspace of F(X) and
the restriction of Np to F p is a seminorm.

A function f : X → R is said to be negligible if N1(f) = 0 ;
a set A ⊂ X is said to be negligible if its characteristic function is
negligible. Something is said to happen almost everywhere (with
respect to µ ) in X if the set in which it fails to happen is negligible.

The crucial, and surprising, result: F p is complete (Ch. IV, §3,
No. 3, Props. 5, 6).

{That is, if (fn) is a sequence in F p such that Np(fm−fn) → 0 ,
then there exists an f ∈ F p such that Np(fn − f) → 0 . After

passing to a subsequence, one can suppose that
+∞
∑

n=1
Np(fn+1 − fn) <

+∞ ; ultimately, the proof depends on the following striking property
of a positive measure (§1, No. 3, Th. 3): If (gn) is an increasing
sequence of positive functions (infinite values allowed) on X , then
|µ|*(sup

n
gn) = sup

n
|µ|*(gn).}

If N is the set of f ∈ F (X) such that N1(f) = 0 , equivalently
(§2, No. 3, Th. 1), f = 0 µ-almost everywhere, then N is a linear
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subspace of every F p and it follows from the foregoing that the
quotient space F p/N is a Banach space.

Clearly K (X) ⊂ F p ; one defines L p(µ) , the space of p-th
power integrable functions, to be the closure of K (X) in F p for the
seminorm topology defined by Np .

In particular, the functions belonging to L 1(µ) are said to be
µ-integrable. The linear form f 7→ µ(f) (f ∈ K (X)) is known to
satisfy the inequality

|µ(f)| 6 |µ|(|f |)

(Ch. III, §1, No. 6, formula (13)), that is, |µ(f)| 6 N1(f) , there-
fore µ is continuous for the seminorm topology defined by N1 ; it
follows (uniform continuity of continuous linear mappings) that µ is
extendible to a unique linear form on L 1 , which is also denoted µ ,
and one also writes

µ(f) =

∫

f dµ

for f ∈ L 1 .

The relation between L 1 and the L p is understood through the
concept of measurable function. A mapping f : X → T of X into a
topological space T is said to be µ-measurable if, crudely speaking,
X has sufficiently many compact subsets on which f is continuous
(Ch. IV, §5, No. 1, Def. 1 and No. 10, Prop. 15). Then, for a function
f : X → C ,

f ∈ L
p(µ) ⇔ f is µ-measurable and Np(f) < +∞

(loc. cit., No. 6, Th. 5), in other words, f ∈ L p(µ) if and only if f
is µ-measurable and |f |p ∈ L 1(µ) (§3, No. 8, Cor. 2 of Th. 7).

Finally, the foregoing generalizes to functions f on X taking
values in a Banach space (§3, No. 3).

A useful lemma:

Recall that a topological vector space is said to be locally convex if
every neighborhood of 0 contains a convex neighborhood of 0 (TVS,
II, §4, No. 1, Def. 1); equivalently, its topology is generated by a set of
semi-norms (loc. cit., Cor. of Prop. 1). If F is a set of semi-norms p
on a vector space E , write τ(F) for the topology generated by the
p ∈ F . Not difficult: the continuous semi-norms on E are then the
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semi-norms p such that p 6 p1 + · · ·+ pn for some finite set of semi-
norms p1, . . . , pn in F . {Cf. TVS, II, §1, No. 2; elaborated in SKB,
Lectures in functional analysis and operator theory, §37, especially
p. 151, (37.15)–(37.17), Springer, 1974).} In particular, the p ∈ F are
continuous for τ(F) , and so the topology of a locally convex space is
generated by its continuous semi-norms (TVS, II, §4, No. 1, remark
following the Cor. of Prop. 1).

Lemma. Let E be a topological vector space, F a locally convex
topological vector space, and u : E → F a linear mapping. The
following conditions are equivalent:

(a) u is continuous;
(b) for every continuous semi-norm q on F , the semi-norm q ◦u

on E is continuous.

(a) ⇒ b): Obvious (composition of continuous mappings).
(b) ⇒ (a): It suffices to show that u is continuous at 0 ∈ E .

Let V be a neighborhood of 0 ∈ F ; we are to show that
−1
u (V) is a

neighborhood of 0 in E . One can suppose that

V = {y ∈ F : q(y) 6 1 }

for some continuous semi-norm q on F . Then

−1
u (V) = {x ∈ E : u(x) ∈ V} = {x ∈ E : q

(

u(x)
)

6 1}

= {x ∈ E : (q ◦ u)(x) 6 1} ,

which is a neighborhood of 0 ∈ E by the continuity of q ◦ u .

Caution: u need not be continuous if one only assumes that
α ◦u is continuous for every α ∈ F′ . {Suppose E is the vector space
F equipped with the weakened topology σ(F, F′) , and let u : E → F
be the identity mapping; then E and F have the same continuous
linear forms (TVS, II, §6, No. 2, Prop. 3), but u will be continuous
only when σ(F, F′) coincides with the original topology on F .}

The inductive limit topology on K (X) :

Let X be a locally compact space. For every compact subset K
of X , one has the ‘insertion mapping’

K (X, K)
iK- K (X) .
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Consider the semi-norms p on K (X) whose restriction to every
K (X, K) is continuous, that is,

p ◦ iK = p
∣

∣K (X, K) is continuous for every compact set K ⊂ X .

An example: p(f) = ‖f‖ = sup
x∈X

|f(x)| . Let F be the set of all such

semi-norms, and let τ = τ(F) be the locally convex topology they
generate. Then:

(1) F is the set of all semi-norms on K (X) that are continuous
for τ .

This follows from the fact that if p, q ∈ F then p + q ∈ F , and if
p is a semi-norm such that p 6 q ∈ F then p ∈ F (see the discussion
preceding the Lemma).

(2) Every iK is continuous for τ .
For, if p is a continuous semi-norm on K (X) for τ (that is,

p ∈ F ), then p ◦ iK = p
∣

∣K (X, K) is continuous by the definition
of F , therefore iK is continuous by the Lemma.

(3) Let F be a locally convex space and let u : K (X) → F be a
linear mapping. The following conditions are equivalent:

(a) u is continuous for τ ;
(b) u◦ iK = u

∣

∣K (X, K) is continuous for every compact K ⊂ X ;
(c) for every α ∈ F′ , α ◦u is continuous for τ (i.e., is a measure

on X ).

(a) ⇒ (b): Obvious ( u and iK are continuous).
(b) ⇒ (a): Let q be a continuous semi-norm on F . For every K ,

the mapping q ◦ u
∣

∣K (X, K) = (q ◦u) ◦ iK = q ◦ (u ◦ iK) is continuous
(because q and u◦iK are), therefore q◦u ∈ F by the definition of F ,
and so u is continuous by the Lemma.

(a) ⇔ (c): Ch. VI, §2, No. 1, Remark 3.
Such a mapping u is called a vectorial measure on X with values

in F (loc. cit., Def. 1).

(4) If τ ′ is a locally convex topology on K (X) that renders every
iK continuous, then τ ′ ⊂ τ ; thus, τ is the finest such topology. For,
in the diagram

K (X, K)
iK- K (X), τ u

- K (X), τ ′
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where u is the identity mapping, the mappings

u ◦ iK = iK : K (X, K) → K (X), τ ′

are continuous by assumption, therefore u is continuous by item (3),
thus τ ′ ⊂ τ .

(5) Suppose τ ′ is a locally convex topology on K (X) with the
property that, for a linear mapping u : K (X) → F ( F locally con-
vex) to be continuous, it is necessary and sufficient that u ◦ iK be
continuous for every K . Then τ ′ = τ .

Note first that τ ′ renders every iK continuous; for, in the dia-
gram

K (X, K)
iK- K (X), τ ′ u

- K (X), τ ′

( u the identity map) u is trivially continuous, therefore

u ◦ iK = ik : K (X, K) → K (X), τ ′

is continuous for all K by the assumption on τ ′ . Thus τ ′ ⊂ τ by (4).
On the other hand, consider the diagram

K (X, K)
iK- K (X), τ ′ u

- K (X), τ

( u = identity). For every K , the mapping

u ◦ iK = iK : K (X, K) → K (X), τ

is continuous by (2), therefore u is continuous by the assumption
on τ ′ , whence τ ⊂ τ ′ .

Vector-valued functions:

X a locally compact space, µ : K (X) → C a measure on X .
E a Banach space, with norm |a| (a ∈ E) ; E′ its dual (also a

Banach space), consisting of all continuous linear forms α : E → C ,
with norm ‖α‖ = sup

a∈E, |a|61

|α(a)| .

Write KE(X) for the vector space of all continuous functions
f : X → E with compact support. For compact K ⊂ E ,

KE(X, K) = {f ∈ KE(X) : Supp f ⊂ K } .
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For f ∈ KE(X) one writes |f | for the function X → R+ defined by
|f |(x) = |f(x)| . Then |f | ∈ K (X) and KE(X) is a Banach space for
the norm ‖f‖ = sup

x∈X
|f(x)| .

Reduction to the case of numerical functions: If f ∈ KE(X) then
α◦ f ∈ K (X) for every α ∈ E′ , with Supp(α◦ f) ⊂ Supp f , therefore
the integral

∫

(α ◦ f) dµ = µ(α ◦ f) is defined. For every f ∈ KE(X) ,
the function

(∗) α 7→

∫

(α ◦ f) dµ (α ∈ E′)

is a linear form on E′ ; since

∣

∣

∣

∫

(α ◦ f) dµ
∣

∣

∣
6

∫

|α ◦ f | d|µ|

(Ch. III, §1, No. 6, formula (13)), and

|α ◦ f |(x) = |α(f(x))| 6 ‖α‖ |f(x)| ,

one has
∣

∣

∣

∫

(α ◦ f) dµ
∣

∣

∣
6 ‖α‖

∫

|f | dµ ,

thus the linear form (∗) belongs to the bidual (E′)′ of E and has
norm 6

∫

|f | dµ .
Other elements of (E′)′ : for each a ∈ E , the correspondence

(∗∗) α 7→ α(a) (α ∈ E′)

is a continuous linear form on E′ , with norm sup
α∈E′, ‖α‖61

|α(a)| = ‖a‖ .

Fact: every (∗) is of the form (∗∗) (Ch. III, §3, No. 3, Prop. 7);
that is, given f ∈ KE(X) , there exists an element a ∈ E such that

∫

(α ◦ f) dµ = α(a) for all α ∈ E′ .

One also writes 〈a, α〉 = α(a) , a bilinear form that expresses the
duality between E and E′ ; and 〈f , α〉 abbreviates the function
x 7→ 〈f(x), α〉 = (α ◦ f)(x) .
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The integral of f with respect to µ is defined to be the vector a ,
which is also denoted

∫

f dµ ; thus

〈

∫

f dµ, α
〉

=

∫

〈f , α〉 dµ for all α ∈ E′ .

One has

∣

∣

∣

∫

f dµ
∣

∣

∣
6

∫

|f | d|µ| = N1(f) < +∞ for all f ∈ KE(X)

(Ch. IV, §4, No. 1, formula (1)), which shows that

KE(X) ⊂ F
1
E(X) = F

1(X; E)

and that the linear mapping u : KE(X) → E defined by u(f) =
∫

f dµ is continuous for the topology of convergence in mean defined
by the semi-norm N1 on F 1

E(X) . One defines L 1
E = L 1

E(X, µ)
to be the closure of KE(X) for this topology, and one extends the
linear mapping u to L 1

E by continuity (retaining the letter u for
the extension); for f ∈ L 1

E one defines
∫

f dµ = u(f) , thus

∫

f dµ = lim
n→∞

∫

fn dµ ,

where (fn) is any sequence in KE(X) such that N1(fn − f) → 0 . For
every f ∈ L 1

E one has

∣

∣

∣

∫

f dµ
∣

∣

∣
6

∫

|f | d|µ|

(loc. cit., No. 2, formula (5)).

Continuity of the integral on KE(X) for the inductive limit
topology:

(A more general assertion is established in the proof of Ch. III,
§3, No. 4, Prop. 8.) Consider the diagram

KE(X, K)
iK- KE(X) u

- E
q

- [0, +∞[ ,
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where u(f) =
∫

f dµ for f ∈ KE(X) , K is a compact subset of X ,
and q(a) = ‖a‖ is the norm on E, which defines the topology of E .

To show that u is continuous for the inductive limit topology τ
on KE(X) , it suffices by the definition of τ to show that the compos-
ite u ◦ iK : KE(X, K) → E is continuous for the sup-norm topology
on KE(X, K) (for each K) , and by the Lemma it will suffice to show
that the semi-norm p = q ◦ (u ◦ iK) is continuous on KE(X, K) .

Let h : X → [0, 1] be a continuous function with compact sup-
port, such that h(x) = 1 on K (Ch. III, §1, No. 2, Lemma 1). For
f ∈ KE(X, K) , one has

|f | = h|f | 6 ‖f‖h ,

therefore
∣

∣

∣

∫

f dµ
∣

∣

∣
6

∫

|f | d|µ| 6 ‖f‖ |µ|(h) < +∞ ,

which shows that u ◦ iK = u
∣

∣KE(X, K) is indeed continuous (note
that h depends on K but not on f ∈ KE(X, K) ). ♦

Let us write Ψµ for the continuous linear mapping KE(X) → E
defined by the formula

Ψµ(f) =

∫

f dµ for f ∈ KE(X) .

Not every continuous linear mapping KE(X) → E is of this form
(Example below); given a continuous linear mapping Ψ : KE(X) → E
and a measure µ on X , the cited Prop. 8 gives the following criterion
for Ψ to be represented by µ :

(∗) Ψ = Ψµ ⇔ Ψ(g · a) = µ(g) · a for all g ∈ K (X) and a ∈ E .

Example. Let X be a locally compact space, E a Banach space of
dimension > 2 , and a,b linearly independent vectors in E such that
there exists a continuous linear mapping u : E → E with u(a) = b .
If ν is any nonzero measure on X , then Ψ = u ◦ Ψν is a continuous
linear mapping KE(X) → E that is not equal to Ψµ for any measure
µ on X . For, if g ∈ K (X) is such that ν(g) 6= 0 , then

Ψ(g · a) = u
(

Ψν(g · a)
)

= u
(

ν(g) · a
)

= ν(g) · u(a) = ν(g) · b ,
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thus Ψ fails the criterion (∗). Specific (albeit degenerate) example:
X = {a} , ν = εa , E = C2 and u the (bicontinuous) linear mapping
that interchanges a = (1, 0) and b = (0, 1) . {Here K (X) may be
identified with C , and KE(X) with E = C2 .}

The following reformulation of the criterion (∗) liberates one from
having to test every measure µ :

Proposition. If Ψ : KE(X) → E is a linear mapping continuous
for the inductive limit topology on KE(X) ( X a locally compact
space, E a Banach space), the following conditions are equivalent:

(a) Ψ = Ψµ for some measure µ on X ;
(b) for every g ∈ K (X) and every a ∈ E , Ψ(g · a) is a scalar

multiple of a .

Proof. (a) ⇒ (b): Immediate from the criterion (∗).
(b) ⇒ (a): Note that for every a ∈ E , the linear mapping

K (X) → E defined by g 7→ g · a is continuous, since, for every
compact set K ⊂ X , the inequality

‖g · a‖ = sup
x∈K

‖g(x) · a‖ 6 ‖g‖ ‖a‖
(

g ∈ K (X, K)
)

shows that the restriction of the mapping to K (X, K) is continuous
(with norm 6 ‖a‖ ).

It follows from the linearity of Ψ that, for every nonzero vector
a ∈ E , there exists a linear form µa on K (X) such that

Ψ(g · a) = µa(g) · a for all g ∈ K (X) .

Moreover, the continuity of the mappings g 7→ g ·a , Ψ and c ·a 7→ c
(c ∈ C) shows that g 7→ µa(g) is continuous, that is, µa is a measure
on X .

If E is 1-dimensional, the implication is proved. Suppose
a,b are linearly independent vectors in E ; from Ψ

(

g · (a + b)
)

=
Ψ(g · a) + Ψ(g · b) we see that

µa+b(g) · (a + b) = µa(g) · a + µb(g) · b ,

whence µa(g) = µa+b(g) = µb(g) . Writing µ = µa , it is clear that
Ψ(g · c) = µ(g) · c for all g and for every c ∈ E (namely, for a , for
every multiple of a , and for every vector independent of a ). Thus
Ψ = Ψµ by the criterion (∗). ♦
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Bourbaki’s Integrations: let me count the ways ...

{Convention: italics for scalar-valued functions, boldface for
vector-valued functions.}

1) elementary integral for regulated functions:
∫ b

a
f = F (b) − F (a) ,

where F ′ = f c.e. (FRV)

2) scalar measure, scalar function:
∫

f dµ (a special case of 3)).

3) scalar measure, vectorial function:
∫

f dµ (Ch. IV).

4) vectorial measure, scalar function:
∫

f dm (Ch. VI, §2).

5) vectorial measure, vectorial function: IΦ,m(f) (loc. cit., No. 7).

6) for X any Hausdorff space: essentially a direct limit of a family of
measures on the compact subsets of X (Ch. IX, §1, No. 2, Def. 5).

{For further details on Chs. I–IV, see my Notes on Integration—
intnotes.pdf—posted at

www.ma.utexas.edu/mp arc

(the University of Texas archival site for mathematical publications).}

S.K. Berberian (9-19-2007)

Added 11-27-2008 : An updated version of intnotes.pdf (through
Ch. V, §5, No. 4) is posted at the above-mentioned site, as item 08-193
in the folder for 2008.
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