THE QUINTIC NLS AS THE MEAN FIELD LIMIT OF A BOSON
GAS WITH THREE-BODY INTERACTIONS

THOMAS CHEN AND NATASA PAVLOVIC

ABSTRACT. We investigate the dynamics of a boson gas with three-body inter-
actions in dimensions d = 1,2. We prove that in the limit where the particle
number N tends to infinity, the BBGKY hierarchy of k-particle marginals
converges to a limiting (Gross-Pitaevskii (GP)) hierarchy for which we prove
existence and uniqueness of solutions. The solutions of the GP hierarchy are
shown to be determined by solutions of a quintic nonlinear Schrodinger equa-
tion. Our proof is based on, and extends, methods of Erdds-Schlein-Yau,
Klainerman-Machedon, and Kirkpatrick-Schlein-Staffilani.

1. INTRODUCTION

In the work at hand, we study the dynamical mean field limit of a nonrelativistic
Bose gas with 3-particle interactions in space dimensions d = 1,2. We prove that the
BBGKY hierarchy of marginal density matrices converges to an infinite hierarchy
whose solutions are determined by solutions of a quintic nonlinear Schrédinger
equation (NLS), provided that the initial conditions have product form. Our proof is
based on adapting methods of Erdés-Schlein-Yau, [6], Klainerman-Machedon, [12],
and Kirkpatrick-Schlein-Staffilani, [13], to this problem, and parts of our exposition
follow quite closely [13] and [12]. In a companion paper, we discuss the Cauchy
problem for the GP hierarchy in more generality, [4].

We consider a system of N bosons whose dynamics is generated by the Hamil-
tonian
al 1
Hy = (-Ag) + ¥ > NBV(NO(w; — ay), N (s — a)), (1.1)
j=1 1<i<j<k<N

on the Hilbert space Hy = Lgym(RdN). The elements W(z1,...,zx) € Hy are
fully symmetric with respect to permutations of the arguments x;. We assume

that the translation-invariant three-body potential V' has the properties

V>0, Vigy =Viyz) , VeW?PRY (1.2)
for 2d < p < co. We note that, since evidently,
U(ry —x2,x0 —x3,21 —x3) = U(xr —x2, —(21 — 22) + (x1 — x3), 21 — x3)
= V(.’I?l — T2,T1 —.’)33), (13)

every translation invariant three-body interaction potential U can be written in the
above form.
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The solutions of the Schrodinger equation

iat\IJN’t = HN \I/NJ (14)
with initial condition ¥ € Hy determine the N-particle density matrix
W(Gzyizy) = Une(zy)Pne(zly) (1.5)
and its k-particle marginals
k
V(g 2) = /d@v_kw(t;zk,@v_k;&?mzjv_k) : (1.6)
for k=1,...,N, where 2, = (x1,...,2%), Zy_p = (Tk41,...,ZN), etc.

The BBGKY hierarchy is given by
k

. k k 1 k
0N, = D [0, + N2 ST Wl — g — 2). 90
Jj=1 1<i<j<t<k
N -k
+(Niz) S T [Viv(w — 25,25 — 20,78 ] (1.7)
1<i<j<k
k
N—-EkE(N-k-1
+( )(NQ ) Z Tryi1 Trgro[V (2 — Tht1, Tj — Tppa), »yj(\’;;’g)]
j=1
where
Vn(z,y) == NPV (NP, NOy). (1.8)

We note that in the limit N — oo, the sums weighted by combinatorial factors have

the following size. In the first interaction term on the rhs, we have 1]@—22 — 0 for

every fixed k and sufficiently small 3, and for the second term (Njgf ko~ k.

N
For the third interaction term on the rhs, we note that (ka)](vij\gfkfl) — 1 for every
fixed k. Accordingly, a rigorous argument outlined in Section 3 shows that in the

limit N — oo, one obtains the infinite hierarchy

k k
iat%gi?t = Z[_Amj?’ygg,)t] + bo ZBj;k+1,k+2'7((>]:>,—~t_2) (1.9)
j=1 j=1
where
b() = /dl’l dl’g V(!I?l,(EQ) (110)

is the coupling constant, and where we will sometimes refer to

2

k
Bj§k+1,k+27£o:; )(xla"ka;m/lw"ax?c) (111)

/ /
= /dxk+1dxk+1d$k+2d$k+2

[0(zj — 2py1)0(z; — @y 1)0(25 — Thy2)d(x5 — 25y o)

—0(ay — wry1)0(a — 251 1)0(2 — Tpya)d(a — ) 4) ]

(k+2) - ’
Yoot (xla sy Lp425 Ty axk+2>

as the “contraction operator”. The topology in which this convergence holds is
described in Section 3 below, and is here adopted from [6, 13].
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Written in integral form,

2O, = U m,fzboijjmmif“tfs>Jkﬂk+m&t” (112)

where
UP () AP, = RN VB (1.13)
and
AP = A, —A, (1.14)
+ L Ly .
with
k
Aig; = Dpy =Dy Ay, = d oA, (1.15)
j=1

Accordingly, it is easy to see that

Rk
10 = | ¢ ) i (1.16)
is a solution of (1.12) if ¢, satisfies the quintic NLS
i0ipr + Dadpy — bo |on]" ¢ = 0 (1.17)

with ¢o € L2(R%).

Theorem 1.1. Assume that d € {1,2}, and that V.€ WP for p > 2d, V(z,2') =
V(z',z), V>0, and 0 < 8 < le. Let {Un}n denote a family such that
i<\I/N,HN\I!N> < 00, and which exhibits asymptotic factorization; that is, there

exists ¢ € L*(R?) such that Tr‘ 'y(l) |0} {9 | — 0 as N — oo. Then, it follows for

the k-particle marginals ’yN)t associated to Wy = e "N W that

Te[ o) = (606 || = 0 (V= o0) (1.18)
where ¢y solves the defocusing quintic nonlinear Schrodinger equation

i0pp + Ay — bo|ge|*pr = 0 (1.19)
with initial condition ¢g = ¢, and with by = fRM dx dz' V(z, ).

The mathematical study of systems of interacting Bose gases is a central research
area in mathematical physics which is currently experiencing remarkable progress.
A problem of fundamental importance is to prove, in mathematically rigorous terms,
that Bose-Einstein condensation occurs for such systems. Fundamental progress in
the understanding of this problem and its solution in crucial cases, is achieved by
Lieb, Seiringer, Yngvason, et al., in a landmark body of work; see for instance
[2, 14, 15, 16] and the references therein.

A related, very active line of research addresses the derivation of the mean field
dynamics for a dilute Bose gas, in a scaling regime where the interparticle interac-
tions and the kinetic energy are comparable in magnitude. Some important early
results were obtained in [11, 19].

In a highly influential series of works, Erdds, Schlein and Yau have proved for a
Bose gas in R?, with a pair interaction potential that scales to a delta distribution
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for particle number N — oo, that the limiting dynamics is governed by a cubic NLS,
see [5, 6, 7, 18] and the references therein. In their proof, the BBGKY hierarchy
of k-particle marginal density matrices is proven to converge to an infinite limiting
hierarchy (the Gross-Pitaevskii (GP) hierarchy) in the limit N — oo, and the
existence and uniqueness of solutions is established for the infinite hierarchy. Their
uniqueness proof uses sophisticated Feynman diagram expansions which are closely
related to renormalization methods in quantum field theory, and represents the
most involved part of their analysis.

Recently, Klainerman and Machedon have developed an alternative method to
prove the uniqueness of solutions of the GP hierarchy, based on the recursive ver-
ification of certain spacetime bounds satisfied by the k-particle marginals, for the
model in R?, [12]. Their result assumes an a priori spacetime bound which is not
proven in [12]. Subsequently, Kirkpatrick, Schlein and Staffilani have proven a vari-
ant of this a priori bound for the model on R? and on the torus T2, and derived the
corresponding mean-field limits, [13]. In dimension 1, the cubic NLS is derived in
[1]. Control of the rate of convergence of the quantum evolution towards a mean-
field limit of Hartree type as N — oo has recently been obtained by Rodnianski
and Schlein, [17]. The derivation of mean-field limits based on operator-theoretic
methods is developed in work of Frohlich et al., [8, 9, 10].

All of the works cited above investigate properties of Bose gases with pair in-
teractions, which is natural in the absence of interactions with any external fields.
However, once the interaction of the Bose gas with a background field of matter
is included in the model (for instance with phonons, photons, or other kinds of
matter), averaging over the latter will typically lead to a linear combination of ef-
fective (renormalized, in the sense of quantum field theory) n-particle interactions,
n = 2,3,.... For systems exhibiting effective interactions of this general structure,
it remains a key problem to determine the mean field dynamics. For n-particle
interactions with n = 2, 3, where the microscopic Hamiltonian would have the form

N
1
Hy = Y (D) + 5 > NP -q) (1.20)
j=1 1<i<j<N
1
+m Z NQdBV;:,(Nﬁ(.Ti—JJ]‘),Nﬁ(‘TZ‘—.’L‘k))7
1<i<j<k<N

a combination of the analysis given in [13] with the one presented here will straight-
forwardly produce a mean field limit described by the defocusing NLS

10y + Ay — Aol PP — As|de| dr = 0 (1.21)

ind=1,2, where \y = [dzVa(z) > 0 and A3 = [ dada’V3(x,2") > 0 account for
the mean-field strength of the 2- and 3-body interactions.

Now we briefly describe the approach that we follow in this paper. We prove The-
orem 1.1 by modifying the strategy of Erdés-Schlein-Yau [6], Klainerman-Machedon
[12] and Kirkpatrick-Schlein-Staffilani [13]. More precisely, we prove the conver-
gence of the BBGKY hierarchy to the GP hierarchy by straightforwardly adapting
the arguments from the work [6] (the details are given in sections 2 and 3 where
we follow the exposition of these arguments as presented in [13]). In order to prove
the uniqueness of the limiting hierarchy, we expand the approach introduced in
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[12] and subsequently used in [13]. Roughly speaking this approach consists of two
ingredients:

(1)

Expressing the solution v*) to the infinite hierarchy (1.9) in terms of the
subsequent iterates y#12) .. ~(*+27) ysing Duhamel’s formula. However
since the second term on the rhs of (1.9) involves the sum, the iterated
Duhamel’s formula has k(k + 2)...(k + 2n — 2) terms. In [12], Klainerman
and Machedon introduced an elegant way to group these terms in much
fewer O(C™) sets of terms, by introducing a certain “board game” strategy,
by use of which they kept track of the relevant combinatorics. Inspired by
the board game of [12], in this paper we define a different board game to suit
the new operators Bj.rt1,k+2 that appear in our limiting hierarchy. This
new board game helps us organize the Duhamel’s expansions in a similar
manner as in [12].

Establishing two types of bounds:

(a) Space-time L?L2 bounds for the freely evolving limiting hierarchy
(please, see Theorem 5.1), which shall be used iteratively along the
nested Duhamel’s expansions.

(b) Spatial a-priori L2 bound for the full limiting hierarchy (please, see
Theorem 4.2).

When d = 2, we prove both types of bounds, in a similar way as the authors
of [13] do in the context of 2-body limiting hierarchy. On the other hand,
when d = 1, the argument used to produce L?L2 bound of the type (a)
for the freely evolving limiting hierarchy would produce a divergent bound,
so instead we establish another spatial bound (stated in Theorem 4.3) for
the full limiting hierarchy. We use this bound iteratively and at the end
combine it with the spatial bound of the type (b).

Organization of the paper. In section 2 we derive a-priori energy bounds for
solutions to the BBGKY hierarchy. In section 3 we summarize main steps in the
proof of compactness of the sequence of k-particle marginals and their convergence
to the infinite hierarchy. In Section 4 we present three types of spatial bounds on the
limiting hierarchy, while in section 5 we give spacetime bounds on the freely evolving
infinite hierarchy. The sections 6 - 8 are devoted to the proof of uniqueness of the
limiting hierarchy. In particular, in section 6 we state the theorem that guaranties
uniqueness of the infinite hierarchy, while section 7 concentrates on combinatorial
arguments that will be used (together with results of sections 4 and 5) in section
8, where the uniqueness result is proved.

2. A PRIORI ENERGY BOUNDS

To begin with, we derive a priori bounds of the form

Te(1—Agy) - (1= Ay vy < CF (2.1)

which are obtained from energy conservation, following [7, 6] and [13].
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Proposition 2.1. There exists a constant C, and for every k, there exists No(k)
such that for all N > No(k),

(¥, (Hy +N)Fp)y > CEN* (¢, (1= Agy) - (1= Ay ) ) (2.2)
for allp € L2(RN).

Proof. We adapt the proof in [13] to the current case, which is based on induction
in k. We first note that for £ = 0, the statement is trivial, and that for £ = 1, it
follows from Vi > 0. For the induction step, we assume that for all £ < n, the
statement is correct. We then prove its validity for n 4 2. Following [13], we write
S;=(1—A,,)"? and Hy + N = hy + hy with

N
o= > S

j=n+1
hy = Z 5]2- + Z N72Vn(z; — zj, 2 — 20) - (2.3)
Jj=1 1<i<j<t<N

Using the induction assumption, we infer that
(v, (Hy+N)""2 1)
C"N™{(, (Hy +N)S;-- S2(Hn+ N)v)
C'"N™(4, hiS7 -+ Sphitp) + C"N™((¢, i S7--- Sihatp) + c.c.)
C"N™(N —n)(N —n—1){t, ST+ S2.,0)
+C"N™(N —n)n{tp, hy St--- St 1)
(N —n)
NZ
Z (¢, 87+ S2 Vn(w — a2 —2) Y ) + cc.).

1<i<j<t<N

AV VALY,

+C"N"™

Making use of the permutation symmetry of 1 with respect to its arguments, there
exists No(n) such that for all N > Ny(n),

(v, (Hy +N)""24)
> Cn+2Nn+2<w’S%...Si+2¢> +Cn+1N"+1<¢aSil"'STQL+11/}>

+[C"N”‘2(N )N —n— 1)(N - 2)(N—n—3)

(v, 57 L VN (Tng2 — Tngs, Tngo — Tnga) V)
+C”N"-2(N—n)(1v—n—1)( —n—2)(n+1)
(, 57+ S2 1 VN(z1 — Tngo, @1 — Tngs)® )

+C"N"2(N —n)(N —n—1)n(n —1)

(, 87 82 V(T — 22,1 — Tpg2) ¥)
FOMNTN — )4 Dy~ 1), 82 24y Vil — 21— 7))
+c.c.|. (2.5)

Now we shall control the terms in [---] of (2.5). As in [13], we note that the
first term in [---] can be neglected because it is positive. More precisely, since all
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Sty Spy1 commute with Vy (xp10 — Tpas, Tnao — Tppa) we have:
(W, 87 S2 VN (Tng2 — Tngs, Tnyz — Tnga) V) (2.6)

_ / 2N VN (Tnt2 — Tnss Tnga — Tnga) |1 Snarth)(@y)? > 0

which follows from the positivity of Viy. Hence, in order to obtain a lower bound
on (2.5), the first term in [ - -] can be discarded.

For the second term in [---] in (2.5), we use that

(¢, 87 G2 VN (w1 — Tpg2, @1 — Tngs) V)

> - |<1/)7 Spy1 829151, VN (T1 — Tpyo, 1 — Tpy3)]S2 -+ Sn+11/1>|
> =¥, Spi1- 5251V, VN (@1 — Tpga, @1 — Tny3)[S2 -+ Sng1 0]
> —ul(v, ShpaSTY))

—p (Y Sngr - Sa| Vi, Viv (1 — Ty, 21 — Tgs)[2S2 - Snga ¢
> —pl(¢, Sh-STY)l

—Cp IVVN Lo gaay (¥ ST Sipa¥h), (2.7)

for p > d, where in order to obtain (2.7) we used the Schwarz inequality and Lemma
2.2. As a consequence of

14
IV Vi || Lo (gzay < CNPEATE75) UV | Lop g2ay , (2.8)
the expression (2.7) implies

<w, S% S72L+1 VN(.’El — Tn+2, 21 _xn+3)’(/}>
> _ ¢ NFA@2d+1) <¢7 5% 5§+2¢> (2.9)

for a constant C > 0.

For the third term in [---] in (2.5), we use

(W, 87+ S2 VN(T1 — T2, 1 — Tpy2) )

> - |<1/1, Spy1 - 939251[S1 82, VN (21 — 22,71 — Tny2)]S3 -+ Snpr ¥ >|
> —[(¥, Spt1- 5251 Vay Vi, V(@1 — 32,71 — Tng2)[S3 -+ - Spy1¥)|
> —v (¢, SppSTY)
—v T (Y, Spgr - 83| Vay Va, Vv (@1 — 22, 21 — 2p42) 2S5+ -+ Spg1 )|
> —v(Y, Sy ST
—Cv! ||VN||%/V2>2P(R2‘1)<¢7 512 e Sv2z+1 1/)>
> —vl(¥, SipSTY)l
—C v NP DV o oy (¥, ST Shia )
> _Cdeﬁ+2||VH%/V2,2p(R2d)<wv Sf T 572L+27f’>, (2-10)

where we used the Schwarz inequality, Lemma 2.2 with p > d, and optimized the
constant v.
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Finally, for the last term inside [---] in (2.5), we use
(v, St Sp V(e — za, w1 — m3) 1))

> —|(4, Sny1---535251[515253, Vv (@1 — w2, @1 — x3)]S4 -+ Sny1 1)

> — (¥, Sny1 51|V, Vi,V V(@1 — 22,21 — 23)[Sa -+ Sppr 9 )(2.11)

> =51 Sn1 ¥, Ve, Va, Va, V(@1 — 2,21 — 23)|Sa -+ Spg1 ¥0)]

> = || S1 - Sugr ]2 (2.12)
[1((Vay + Vay)Va, Vo, Vi) (=22, —23)[Sa - -+ Spgr |2

> =C| 81 Sns19 L2 VN llws.2pgeay | S2 - -+ Snt1 ¥ [| L2 (2.13)

> —CONPE |V s spman (¥, ST S20), (2.14)

where we have translated xo — x2 + 21 and 3 — x5+ x; to get (2.12). In order to
obtain (2.13) we used the Holder estimate combined with Sobolev embedding. To
pass from (2.13) to the last line, we applied || S+ Spi1 ¥ || < || S152+ - Sny1 ¢ |l
using that S > 1.

In conclusion, the sum of terms inside [---] in (2.5) is bounded below by
[-] 2 —Cn)N""PED (g, S7- §2 ), (2.15)

which is dominated by the first term on the rhs of (2.5), for 5 < ﬁ. Moreover,
the second term on the rhs of (2.5) is positive. This immediately establishes the

induction step n — n + 2. O

Lemma 2.2. For dimension d, the estimate

(W1, V(xy,x2) ) (2.16)
< CpalVllez, 1 {Var ) (Vas) Y1 Iz, 1{Var ) (Vas) 2 |22

x],T9 x],T9 ESRED)

holds for any p > d if d > 2, and for any p > 1 ifd = 1.

Proof. Clearly, using the Holder (for 1 = % + 2;, + 2%/) and Sobolev inequalities,

(s Vi@ z2) )| < CpallViig, o, 100l 2 N2l 20
< CoallVilgze , Mallay,  1ells ,,  (2.17)

provided that 2 < 2p’ < 2;%2 if d > 2 (interpreting (71, 2) as a point in R2?), and
2 < 2p' < oo if d = 1. This immediately implies that d < p < co for d > 2, and

1 < p < o for d =1. Moreover, it is clear that

Hw”%ﬂ{l = <{¢)7 (1 _Axl _AI2)/‘/)> S <"/}a (1 _Am)(]- _Amz)w>v (218)

T

from (v, Ay, Ay, ¥ ) = [V, Vau¥0|22 > 0. The claim follows immediately. O

In conclusion, we have found the following a priori estimate.
Corollary 2.3. Define

'[/;N — X(%HNWJN
 IX(FHN)YN]

where x is a bump function supported on [0,1], and k > 0 is a real parameter. Let

(2.19)

VN = e‘itHN{/;N, and let %(\]f)t be the corresponding k-particle marginal. Then,
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there exists a constant C independent of k and there exists an integer No(k) for
every k > 1, such that for all N > Ny(k),

Te(1—Ay) (1= Ay )78, < CF. (2.20)

3. COMPACTNESS AND CONVERGENCE TO THE INFINITE HIERARCHY

In this section, we summarize from [6, 13] the main steps of the proof of com-
pactness of the sequence of k-particle marginals and the convergence to the infinite
hierarchy as N — oo, see also [13]. In the present context, these arguments can
be adopted almost verbatim from these works. We outline them here for the con-
venience of the reader, closely following [13], and without claiming any originality
from our part.

The appropriate topology on the space of density matrices is defined as follows in
[6]. Letting k), = K(L2((R%)*)) denote the space of compact operators on L%(R%)
equipped with the operator norm topology, and L£i := LY(L?((R%)*)) the space
of trace class operators on L?((R?)*) equipped with the trace class norm, it is a

standard fact that £ = Kj. Kj is separable, so there is a dense subset {J;k)},
with ||J;k)|| < 1, of the unit ball of ;. On L}, the metric

W50 = 32
JjEN

Tri(k)(q/(k) —F5® ) ‘ (3.1)

is defined in [6]. A uniformly bounded sequence 'y](\];) € L}, converges to ) ¢ Lh

with respect to the weak* topology if and only if 7 (71(\];), 7*)) =0 as N — oo.
Moreover, C([0,T],L£}) shall denote the space of L}-valued functions of ¢t €
[0,T] that are continuous with respect to the metric ng. On C([0,T],L}), the
metric 7, (Y®) (-),7*) () = SUPe(0,7] e (y®) (t),75) (1)) is defined in [6]. Then,
the topology Tprod is introduced on @xenC([0,77],L}), given by the product of
topologies generated by the metrics 7 on C([0, 7], L4).
Proposition 3.1. The sequence of marginal densities I:N,t = {%(\I;)t N_| is compact
with respect to the product topology Tpreq generated by the metrics ny, from [6]. For
any limit point I'sg 1 = {fyé’z?t}kzl, each 'yg;)t is symmetric under permutations, s

positive, and ng’,f?t <1 for every k > 1.

Proof. The proof is completely analogous to the one given for a related result in
[6], and for Theorem 4.1 in [13]. We summarize the main steps.

Using a Cantor diagonal argument, it is sufficient to prove the compactness of
%(\]f)t for a fixed k. This is achieved by proving equicontinuity of I'n » = {%(\’,c)t N

with respect to the metric ;. It is sufficient to prove that for every observable J*)
from a dense subset of K;, and for every e > 0, there exists § = §(J*), ¢) such that

sup | T/ (7, -0, ) | < e
N>1 ’ "
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for all ¢,s € [0,T] with |t — s| < §. To this end, the norm
179 = sup / dp, H ) (17O @ p )l + 170 @p ) (32)
is considered in [6, 13], and it is observed that the set of all J®*) € I} for which

this norm is finite, is dense in Ky.

The claim of the proposition then follows from

sup | TrJ®) (78, 5 ) ] < CI®| |t - s| (3.3)
N>1
which is proved in the same manner as in [6, 13]. O

Theorem 3.2. Assume that s s = {’y (&) 52, € Dk>C([0,T], L}) is a limit point

of FNt = {'VNt}k 1 with respect to the product topology Tproa- Then, I'gt is a
solution of the infinite hierarchy

1B, = U™ (£)4E)y — b Z/ dsU™ (t = 8) Bjpp1, k4215657 (3.4)
with initial data 'ygf?t = ’¢><¢‘®k.

Proof. Here again, the proof can be adopted straightforwardly from [13]. We outline
the main steps.

Let us fix £ > 1. As in [13], by passing to a subsequence we can assume that for
every J*) € IC;, we have:

sup Tr J*) (fyj(\’f)t yffjl) 0, as N — oo. (3.5)
t€[0,T]

(k )

We shall prove (3.4) by testing the limit point ~,.’, against an observable belonging

to a dense set in Kj. In particular, choose an arbitrary J®*) e K such that
|J®) || < oo (where the definition of the norm || - || is given by (3.2)). Tt suffices to
prove that

TrJ Wy B = Tra® ) (g " (3.6)
and

Tr J®4E, = Te g®U® (1) 15

00,0

k t
— by Z/ ds Tr JPUE (¢ — 5) Bjpi1ps2 7L, (3.7)
1 0
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First, we note that (3.6) follows from (3.5). On the other hand in order to prove
(3.7) we rewrite the BBGKY hierarchy (1.8) in the integral form as follows:

Tr J0F) (3.8)
=Tr JBy® (¢ )~(k) (3.9)
)
- > / ds Tr JEUD (& — 8)[Viy (2 — 5,2 — 2), 730 (3.10)
1<i<j<t<k
N k)

t
/ ds Tr JOUB (¢ — 8) [V (s — 25, 1 — Tpt1), 71(\;?1)]

1<i<j<k 0

N2
(3.11)

_ N k)( Z/ dsTr JEUE (1 — 5) (3.12)

~(k+2
VN (zj — g1, 05 — Ik+2),’71(v,s .

Now we observe the following:

e As N — oo, the term (3.8) converges to the term on the lhs of (3.7), thanks
o (3.5).

e Also thanks to (3.5), the term (3.9) converges to the first term on the rhs
of (3.7).

e The terms (3.10) and (3.11) vanish as N — oo.

Hence it suffices to prove that (3.12) converges to the last term on the rhs of (3.7),

k(k 1) as well as

as N — oo. Also since the COHtI‘lbuthIlb in (3.12) proportional to
those proportional to N and to £L vanish as N — oo, we only need to prove that,
for fixed T, k and J*) we have.

sup |[TeJ®y® (¢ — s)
s<t<T

(VN( — Thy1,T5 — $k+2)7( —bod(z; — Tpp1)0 (x5 — g2V EL? ) | =0,

(3.13)

as N — oo, which can be proved in a similar way as the expression (6.6) in [13]. O

The cutoff parametrized by x > 0 that is introduced in (2.19) can be removed
by the same limiting procedure as in [6], see also [13]. We quote the main steps for
the convenience of the reader, from [6, 13].

For the limiting hierarchy r Nt — I'oot @8 N — o0, it is proven below that for

every Kk > 0, n(ﬁj(v)t, |p¢)(p¢|®*) — 0 as N — oo, for every fixed k. This also implies

the convergence

— |¢e) (02" (3.14)

in the weak* topology of L.
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It remains to be proven that also nyt |p¢)(¢¢|®*. To this end, one may
assume k > 0 to be sufficiently small such that

~(k ~ €
[ Te1® (48 =38 [ < 179 en vl < ox < 5. (31)
uniformly in N. This follows from ||¥y — v ~|| < Ck, uniformly in N, which can
be easily verified. On the other hand, for all N > Ny with Ny sufficiently large, we
have

| Tes® (53 = en{en] ) | < (3.16)

€
) 27’
due to the convergence of %(\]f)t described above. This implies that for arbitrary
€ >0,

| TeT® (3, = lou (@) | < e, (3.17)
for all N > Ny. Thus, for every ¢ € [0,7] and every fixed k, ’y — |de) (| ®F in

the weak* topology of Cl. Because the limiting density is an orthogonal projection,
this is equivalent to the convergence in trace norm topology. For details, we refer
to [6, 13], from which we have quoted the above results. Combined with the proof
of (3.14) given below, this establishes Theorem 1.1.

4. A PRIORI ENERGY BOUNDS ON THE LIMITING HIERARCHY

In this section we prove some spatial bounds for the limit points {Wé?t} k>1 that
shall be used in order to prove uniqueness of the hierarchy.

More precisely, first we state the a-priori bound which follows from the estimates
(2.20) for 3.

Proposition 4.1. If Ty {’yo]; Ves1 is a limit point of the sequence T, =
{'y }k 1 with respect to the product topology Tprod, then there exists C' > 0 such
that

Tr(1—Ap) - (1 Ay, < CF, (4.1)

for all k > 1.

Proof. The proof follows from the fact that the a-priori estimates (2.20) for fy(k)
hold uniformly in N. 0

As in [13], we prove uniqueness of the infinite hierarchy following the approach
introduced by Klainerman and Machedon [12]. In order to apply the approach of
[12] we establish another a-priori bound on the limiting density. Such a bound is
formulated in Theorem 4.2 below. In what follows S*:®) denotes

x>

st =TI = Ay (1-A,)%.

Jj=1
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Theorem 4.2. Suppose that d € {1,2}. If Ty = {yfj?t}kzl is a limit point of

the sequence fN,t = {'7](\];)75 fcvzl with respect to the product topology Tprod, then, for
every a < 1 if d=2, and every a <1 if d =1, there exists C' > 0 such that

||S(k’a)Bj;k+1,k+2%(>§;2) [l L2 (Rar xrany < Chans (4.2)

for allk > 1 and all t € [0,T].

Proof. We modify the proof of an analogous result presented in Theorem 5.2 of
[13]. We note that for the argument employed here, the fact is used that ’yi?t is
positive, and thus, especially, hermitean. We note that Theorem 5.1 below states a
similar result, but for a different quantity than 'y(g?,t which may be neither positive
nor hermitean. Thus, the proof of Theorem 5.1 is based on a different approach

that necessitates a lower bound on «, instead of an upper bound as required here.
By (4.1) it suffices to prove
1% By r el e ascrary < Tr(1 = Ar)(l = Appa)n3?. (43)

We will consider the case k = 1,7 = 1 (the argument for & > 2 can be carried
3) .

out in a similar way). We start by calculating the Fourier transform of By 375
NG

B2 (0 p)
= /dxl dac'lefixl'peixll‘p, /dxg drly, dzs drl

8z — x2)0(xy — 25)d(21 — 23)0(x1 — 25)Y P (21, 20, 33 2, hy, %)

/dq dk dr ds/dxl dz' dzy dxly drs daly

I VA _ . o . _ . o 3
e~ iT1°P i1 P ezq(zl xz)e ik(zy a:z)ezr(acl $3)e is(x1 ws)’Yéo?t(xtha $3;$,17£L'/2,{17l3)

/dq dk dr ds/dml dx'y dzo dvh drsg dry

e—imlA(p—q+n—r+s)e—izQ'qe—ir3~reim’1~p/eiz’2'fceirg<s,y(()i?t(xl7 To, T3] x/l’ x/27 xg)
= /dqdmdrds@t(p—q—&—/@—r—i—s,q,r;p’,/@,s). (4.4)
Hence
S Byp 572, (pi 1) (4.5)

o, pa )
= (p)"(¥') /dq dr dr ds$2,(p— g+ K —r+ 5,475 K, 5) |
which in turn implies
o 3
I )Bl;2,37<(>o?t(p;p/)||2L2(]Rd><Rd)
2a 2a
= /dp dp’ dq1 dgs dry dry dry dro dsy dsa(p)™ (p')
W’cg?t(P —q1+ K1 — 11+ 51,41, 715 0], K1, 81)

’Yéi?t(P*Q2+/‘62 *7"2+82,Q2,7’2§Z7127/‘02782)~ (4.6)
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Substituting

V2 (01, D2, P31 P Db DB) = D ANy (P, 2. p3) 5 (B}, P 1h) (4.7)
J
into (4.6) and keeping in mind that A; > 0 for all j and >, A; < 1 thanks to y(k+2)
being a non-negative trace-class operator with trace at most one, we obtain:
o 3
150 Bya 572, (01 9 )32 ey
Z )\i)\js/dp dp’ dq dgo drky dkg dri drs dsy d32<p>2a<p'>2a
4,J
Vi(p— 1+ k1 — 11+ s1,q1,71)85 (0, K1, 51)
Yi(p—qz2 + kK2 — 12 +82,Q27T2)¢j(27/a/€2782)- (4.8)
We observe that for [ = 1,2 we have
()" <CUp—atm—r+s)"+ (@) + )"+ (m)" + (s1)°]
which implies that
2
Py < Cllp—qr+rm—ri+s)" +(q)" +(r)" + (k)" + (s1)"] (4.9
X [(p— a2+ h2 =12+ 52)" + (02)" + (r2)" + (2)" + (52)°] -

Substituting (4.9) into (4.8), we obtain 16 terms. We will illustrate how to control
one of them, the remaining cases are similar. Using a weighted Schwarz inequality,
we find

/dp dp’ dq: dgo drq dro dry dro dsq dso
2a « a
<Pl> <P*(I1+ﬁ1*7"1+81> <P*Q2+ﬂ2*7’2+82>

Vi(p—qi + k1 — 11+ s1,q1,71)%;(p's K1,y 81)
Vi(p— g2+ K2 — 12 + S2,q2,72)Y; (P, K2, S2)

< I+11I,
where
I = /dp dp’ dq dqo drkq dkg dri dre dsy dsg
) (p—q k- +51) <ql>2<7’1> (ka)*(52)°
(p— o+ K2 =72 +52)2)° " (2)" (r2)”(kn)" (s1)”
|¢j(P— @1 t+r1—n +81,Q1,7"1)| Wj(P a/€2,82)|27
and

II = /dp dp/ dql dQQ dﬂl dlig d’f‘l d’l"g dS] dSQ

()" (p = g2+ K2 — a2 + 52)"(g2) " (ra)" (k1) (1)
<P —q1+K1 =11+ 51>272a<Q1>2<7’1>2<k2>2<82>2

2 2
| (p — g2 + Ko — T2 + S2,q2,72))| Wj(Plal‘é1781)| .
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Below we illustrate how to estimate I. The expression I can be estimated in a
similar manner. We will use the bound

|t <= (4.10)
v (P—y)” " (y) (P)

which is valid for d = 1 if & < 1, and for d = 2 if o < 1; it is easily obtained by
rescaling y — <P>y Ti estimate I, we integrate over ¢, using (4.10), followed by
integrating over ro, using (4.10) again, to obtain:

1< /dp dp’ dq, drq drks drq dsy dsso
W) (0 —q k=t 51) (@) (r1)" (k) (s2)”
(p+r2+s2)" " (k) (s1)”

2
[Vilp—q1 +r1—71 + 51,111,?"1)|2 [V;(p', k2, s2)|

The change of variable p = p — q1 + k1 — r1 + s1 gives

I < /dﬁ dp’ dq, dri1 drks dri dsi dss
() (1)’ (r)”(0')" (ka)* (s2)"
(P+aqr—r1+r1—s1+kKo+ 82>272a<k1>2<81>2
005 (B, @1, )| [ (0 ez, 90)”
< Cq /dﬁ dqy dry <]5>2<Q1>2<T1>2 0B, q1,71))
/dp’ dka dss <p’>2</£2>2<52>2 [v;(p', K2, 52)|2 ) (4.11)
To obtain (4.11) we have used that, as a consequence of (4.10),
dydz
Co = su / — < o0, 4.12
rert) (P—y— 27 2 () (=) (12

foralla<lifd=1,andalla < 1if d = 2.

The other 15 contributions to (4.8) can be obtained in a similar way. Therefore,
using the above analysis and (4.8), we conclude that

a 3
1S Bro g2 (039 32 gt ey

CZ Aidj /dﬁ dq dT1<15>2<Q1>2<7‘1>2 [v; (P, a,m)?
%,

IN

/dp’ driz dsa(p') (r2)" (s2)" 15 (', i, 52)
2]2

= o[ mO - A0 - A1 -840, ] (4.13)

—

[/dﬁ dq dT1<I3>2<Q1>2<7’1>2 ‘vg?t(ﬁ, q1,71)

IN

which gives (4.3) in the case k =1, j = 1. O
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In addition to the above results, we derive a third type of spatial bounds, which
is more restrictive in terms of the condition on « (it requires « > g) Note that
for d = 1 we can afford this range of a.. In particular, we shall use this new bound
iteratively in the proof of uniqueness of the limiting hierarchy when d = 1. The
proof of the bound is inspired by the proof of a space-time bound for the freely
evolving limiting hierarchy given in Theorem 1.3 of [12]. However, the bound that

we derive here is obtained for any ’yéf?t.

Theorem 4.3. Suppose that d > 1. If oy = {Wg?t}kzl 18 a limit point of the
sequence T Nt = {'71(\];,):&}sz1 with respect to the product topology Tprod, then, for every
o> % there exists a constant C' = C(a) such that the estimate

2)’

S®O Bk ke
H Bjiget +%°t L2(Rdk xRdk)

S C H S(k+2,a ,yoo""?) ‘

(4.14)

L2 Rd(k+2) XRd(k+2))

holds.

Proof. Let (u,uy), g :== (q1,¢2), and ¢’ := (q},q3) denote the Fourier conjugate
variables corresponding to (zy,,},), (Tr41, Th12), and (v}, 1,7} ), respectively.

Without any loss of generality, we may assume that j = 1 in Bji41 x+2. Then,
we have

2)‘

(k,o)
H S®® By, k1, k+2%° t |l L2 (rak xRak)

/dgk duj, 1:[ <uj>2a<u;>2a (4.15)

d d//\(k+2) / / A 2
Q quoot (t7u1+q1+q2_Q1_QQau2a"'7uk7g7@k7g) .

where now, the Fourier transform in only performed in the spatial coordinates.
Applying the Schwarz inequality, we find the upper bound

< /duk duy I (T, uk,uk)/dgdg'

(ur+ a1+ a2 — a5 — a5)* " (an) " (a2) ™ (a5) ()™ T (us)™ U ()™

Jj=2

2
h(k“)(t ur+ g1+ g2 — @ — Gy U2 Uk G2, ) ‘ (4.16)
where
15 (uy,, uj,) (4.17)
<u1>2a
= dqdq/ a « « o a '’
/ T g — = a5) () (@) ()N ()
Using

<u1>2a < C[<u1+Q1+Q2—QE_q/2>2a+<q1>2a+<q2>2a+<q'1>2a+<q'2>2a], (4.18)
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and shifting some of the momentum variables, one immediately obtains that
1

Il (uy,up) < C /dqdq’ 5 5 5 == (4.19)
i T () (@) ) ()™
which is finite for all
d
a 4.20
a > 5 ( )
This proves the claim. O

5. BOUNDS ON THE FREELY EVOLVING INFINITE HIERARCHY

In this section, we prove bounds on the infinite hierarchy for by = 0, i.e., in the
absence of particle interactions; see (1.9) for the definition of by. These will be used
for the recursive estimation of terms appearing in the Duhamel expansions studied
in Section 7. Our approach is similar to the one of Klainerman and Machedon
in [12]. In dimension d = 2, we prove spacetime bounds in complete analogy to
[12, 13] which are global in time .

From here on and for the rest of this paper, we will write
YOtz 2h) = A0t 2y ) (5.1)
which is notationally more convenient for the discussion of spacetime norms.

Theorem 5.1. Assume that d =2 and % < a < 1. Let y*+2) denote the solution
of
Z.Bt’Y(kH) (ta£k+2;§;c+2) + (Agkﬂ - A%H)v(k“)(t,gkﬂ;£§€+2) =0 (5.2)
with initial condition
k+2 o
FED(0, ) = AP e Ho (5.3)
Then, there exists a constant C = C(a) such that

(k+2) ‘

S(k7a)B .
H JiktLk+27 L? , (RxR2(k+2) xR2(k+2))
(R REAN

<C H S(k+2,a),_y(()k+2) ‘ (54)

L2 ;o (R2(k+2) xR2(k+2))
Lh42:Tg 2

holds.

Proof. We give a proof using the arguments of [12, 13]. We note that the arguments
presented in the proof of Theorem 4.2 cannot be straightforwardly employed here
because here, Bj;k+17k+27(k+2) are not hermitean so that (4.7) is not available.

Let (7,u,u), ¢ == (q1,4q2), and ¢’ := (q},q3) denote the Fourier conjugate

variables corresponding to (t,zy,2},), (Tr41, Trr2), and (T}, 7)), respectively.

n dimension d = 1, the argument used for d = 2 would produce a divergent bound; accord-
ingly, when d = 1 we shall use the a priori bounds obtained in Theorem 4.3.
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Without any loss of generality, we may assume that j = 1 in Bj.t41,k4+2. Then,
abbreviating

k
§(-++) = 0(T+ (wm+q +a2—qf —gp)*+ > _ul + g’ — [ur]* —1¢]*)  (5.5)
j=2
we find
2
(ko) 3. (k+2) ‘
H S Bijk+1, k427 2, ,(RxR2<k+2>xR2<k+2>)

/dT/dukd f[ (uy )2 () (5.6)

2
(/dgdg/é("')a(k+2)(7>1t1 +q@1 +q2_qll_q127u27"’7ukag;g;mgl)) .

Using the Schwarz estimate, this is bounded by

< /dT/d@de;c Ia(TaMkvgj’c)/dqdql&("')
- 194

k k
(ui+q+q—q — qg>2a<(h>2a<Q2>2a<q/1>2a<q/2>2a H (u;) 2a H
j=2

J'=
2

’a(k+2) (T7u1 + q1 + q2 — qll - ql2au27 s 7Ukaﬂ§ﬂ;gyﬂl) ‘ (57)
where
Lo (T, g, uy,) (5.8)

2a
Z/dqdq/ 5()<U1>

T (u e —dh - ab) (a)* (a2) (al) ()™
Similarly as in [12, 13], we observe that
()™ < C[(u+a+a—a—a)" + (@)™ + (@)™ + (a)*+ (@)™ ], (5.9)

so that
5
Lo(ruy,uy) <D e (5.10)
=1

where J; is obtained from bounding the numerator of (5.8) using (5.9), and from
canceling the ¢-th term on the rhs of (5.9) with the corresponding term in the
denominator of (5.8). Thus, for instance,

Ji < dqdq 2a 2a 2a 2a
/<Q1> (a2) " (dh)""(db)

(5.11)

and each of the terms Jy, with £ = 2,...,5 can be brought into a similar form by
appropriately translating one of the momenta ¢;, q;-.
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Further following [12, 13], we observe that the argument of the delta distribution
equals

k
THw g +a—d)+ Y ul+ g — ul* - () —2(m + @+ g2 — ) - ¢
j=2

and we integrate out the delta distribution using the component of ¢} parallel to
(u1 + g1 + g2 — ¢}). This leads to the bound

1
J < C'QC'/algdq'1

lur +q1 + q2 — q/1|<(J1>2a<(J2>2a<q/1>2a

(5.12)

where

— dc
C, = /R<g>2“' (5.13)

Clearly, C, is finite for any o > %

To bound J;, we pick a spherically symmetric function h > 0 with rapid decay
away from the unit ball in R?, such that hY(z) > 0 decays rapidly outside of the
unit ball in R?, and

1

()™

(for example, h(u) = 016’62“2, for suitable constants ¢, c2); since a < 1, the right
hand side is in L>°(R?). Then,

< (mﬁ)(q). (5.14)

A< Co{ (e ) ) 0 o) 0 )
- o fu(i) @ (0 mre)
_ CQC'/dﬂc%(hv(m))?’(m%)?). (5.15)

The integral on the last line is finite if the singularity at x = 0 is integrable. In
dimension d = 2, this is the case if

a > § (5.16)

6

Finiteness of the integral for the region |z| > 1 is obtained from the decay of hY.
We remark that if 0 < 1 — o < 1, the upper bound (5.14) may overestimate the
left hand side by as much as a factor ﬁ > 1 pointwise in ¢, for small |q|, due to
the singularity of IW%“’ at zero. But the integral in (5.15) is uniformly bounded
in the limit o ' 1, implying that the argument is robust. The terms Js, ..., J5 can
be bounded in a similar manner. For more details, we refer to [12, 13]. This proves
the statement of the theorem. (]
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6. UNIQUENESS OF SOLUTIONS OF THE INFINITE HIERARCHY

Collecting our results derived in the previous sections, we now prove the unique-
ness of solutions of the infinite hierarchy.

We recall the notation Agf) =0y, — Ay and Ax ;= Ay — Ay

Let us fix a positive integer . Using Duhamel’s formula we can express (") in
terms of the iterates y("+2) (44 4(m+27) a9 follows:

t

T it %) ,
’Y(T)(tm') :/ eitr—tri2)AY Br+2(7( +2)(t7-+2)) dtrio
0

Y RN (o —trpa) AL (r+4
e TR B e TR By (y T+ )(tT+4)) dtryo dtria
o Jo

[28 tri2n
_ / / Tty yon) dtps.dtysom, 6.1)
0 0

where

§r+2n = (tratr+27 "'7t7’+2n);

A(iH'Q(n_l)) (r+2n) (t

T+2n))'

i(tr—trso) AL (s o(n_1)—tri2n
I (tqon) =€ (br=tr2)82° B, 1 ...eltrratnmn ~trian) rr2n (Y

Our main result is the following theorem.

Theorem 6.1. Assume that d € {1,2} and t,. € [0,T]. The estimate

ty tryon
T
H/O /O J (£r+2n) dt7-+2...dtr+2n LQ(Rd"XRd")

holds for constants C, Cy independent of r and T'.

< O (CoT)"  (6.2)

Theorem 6.1 implies that for sufficiently small T,

H / Jr(tr+2n»/i) dtrio...dtrion
D

as n — o0o. Since n is arbitrary, we conclude that v(r)(tr, ) = 0, given the initial
condition v(")(0,-) = 0. This establishes the uniqueness of ¥(") (¢, -), and since 7 is
arbitrary, we conclude that the solution of the infinite hierarchy is unique.

~0 (6.3)
L2 (de XR‘“C)

The proof of Theorem 6.1 will occupy sections 7 and 8.
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7. COMBINATORICS OF CONTRACTIONS

In this section, we organize the Duhamel expansion with respect to the individual
terms in the operators B, o,. This is obtained from an extension of the method of
Klainerman-Machedon introduced in [12].

Recalling that Bpio = 2521 Bj.k41,k+2 we can rewrite J" (L, ,,) as

JT(£T+2n) = Z JT(L“—Q—QTL;/“L)) (71)

peM

where

r . i(tr—tryo) A i(trpo—trpa) AT
T (bypans ) =€ 288 By ggel i AL

i(trt2(n—1)—tri2n Alr+2(n=1) r+2n
6( +2(n-b) +2n) * u(r+2n71);7‘+2n71,r+2n(7( )(tT+2n))7

and p is a map from {r + 1,7 +2,....7r +2n — 1} to {r,r + 1,...,7 + 2n — 2} such
that ©(2) =1 and pu(j) < j for all j. Here M denotes the set of all such mappings
1.

We observe that such a mapping p can be represented by highlighting one nonzero
entry in each column of the (r + 2n — 2) x n matrix:

Birtir+2  Birisrgya o Birt2n—1r+2n
B2;r+3,r+4

B'r;r+1,r+2 Br;'r+3,r+4

0 Britirtsris o . (7.2)
0 BT+2;T+3,T+4

0
0 0 Br+2nf2;r+2n71,r+2n i

Since we can rewrite (6.1) as

tT tr+2n
Y (k) = / / ST Tty oo 1) Aty o, (7.3)
0 0 peM
the integrals of the following type are of interest to us:
Hwo)= [ Ty soms 1) sty o, (7.4)
tr2to(rg2) > -2t (rgan)

where o is a permutation of {r 4+ 2,7 +4, ..., + 2n}. We would like to associate to
such an integral a matrix, which will help us visualize B, (;42j_1);r42j—1,r42;8 a8
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well as o at the same time. More precisely, to I(u, o) we associate the matrix

tafl(r+2) tafl(r+4) tofl(rJan)
Birtir+2  Bipgsrra o Biri2n—1,r4+2n
B2;r+3,r+4

Br;r+1,r+2 Br;r+3,r+4

0 Br+1;r+3,r+4
0 BT+2;7'+3,T+4
0
0 0 Br+2n72;r+2n71,7‘+2n |

whose columns are labeled 1 through n and whose rows are labeled 0,1, ...r+2n—2.

As in [12] we introduce a board game on the set of such matrices. In particular,
the following move shall be called an “acceptable move”: If u(r + 25 + 1) < pu(r +
2j — 1), the player as allowed to do the following four changes at the same time:

exchange the highlightened entries in columns j and j + 1,

exchange the highlightened entries in rows r + 25 — 1 and r + 25 + 1,
exchange the highlightened entries in rows r + 25 and r 4+ 25 + 2,
exchange t,-1(,42j5) and to-1(,42542)-

As in [12], the importance of this game is visible from the following lemma:

Lemma 7.1. If (u,0) is transformed into (u',0') by an acceptable move, then
I(p, o) =I(y',0").

Proof. We modify the proof of Lemma 3.1 in [12] accordingly. Let us start by fixing
an integer j7 > 3. Then select two integers ¢ and [ such that i <1 < j < j+ 1.

Suppose I(u,0) and I(y/,c’) are as follows

I(:uv 0) = J" (tr+2n7 ,u) dt?"+2"'dt7"+2n

/tr>-~->ta(r+2j)>ta(r+2j+2)>--->ta(r+2n) >0

— / et(trr2j—2 oy )AL
tr> . Zto(ri2i) Zlo(rt2j42) 2 Zto(rt2n) >0

Ao YA
Bipy2j—1,r425€ (trraj—trrojr2) Ay 2410 +242
ei(t'r+2j+2—tr+21+4)A¥+2J+2)

(..) dtyia...dtyiom, (7.5)

and
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o /
I(/,L , 0 ) = / Jr(tr+2n,ll ) dtr+2...dtr+2n
tr2e 2t () 2ol (rp2jt2) 20 2ol (rg2n) 20

i(trt2j—2—trt2; )A(j:+2j =

/ e
br2 - 2tor (rg2) 2tol (rg2jt2) 2o Zho (rp2n) 20

. 23
i(tri2j—triajp2) AL

Birtoj—1,r425€ Lir+2j+1,r+2542

iltrijra—tryjra) AL T (...) dtpyo...dtyyon. (7.6)
Here ... in (7.5) and (7.6) coincide. On the other hand any B, y9j_15s+1 in (...) of
(7.5) becomes Byi9jy1;s,s+1 in (...)" of (7.6) and any B,y2j4+15,s+1 in (...) of (7.5)
becomes Byioj_1,5,s41 in (...)" of (7.6). Also any Bjigj.s 41 in (...) of (7.5) be-
comes Byiojt2:ss41 10 (...)" of (7.6) and any Byj2j42:5,s+1 in (...) of (7.5) becomes
Br+2j;s,s+1 in ()/ of (76)

We shall prove that

I(p,0) =1(4',0"). (7.7)

As in [12] we introduce the operators P and P. In our context they are introduced
as follows:

. 2
et (trt2; *tr+2j+2)A¥+ ?

P =DB,qi0j_1,r42; b 241,042 +25

i(tryoj—trpzir2) AL

P = Bi;r+2j+1,r+2j+267 lir+25—1,r427;

where

A(r+27) A (r+25)
Ai - Ai - Aiaxr+2j - Aivxr+2j—1 + Aiaﬂfr+2j+1 + Ai7$r+2j+2'

First, let us prove that

(r+2j-2) (r+27+2)
Ay Ay

et(trizj—2—tri2)) Peiltrizjra—trijta)

(r425—-2)
AY 7

. ~ . 42542
= eilbrtaj—2—tri2j+2) pel(tr+2j*tr+2j+4)A(i ’ ). (7.8)

In order to do that we observe that
A¥+2j) = Ai@i + (A¥+2j) - Aiyw’i)'

(r+24)

Hence the factor e!(tr+2i—tre2i+2)A% appearing in the definition of P can be
rewritten as
ei(tr+2j—tr+2j+2)A(£+2j)
. . r+2j
— tltrtoi—tri2j12) At a; el(tr+2j—tr+2j+z)(Al J)—Ai,mi)’ (7.9)

which in turn allows us to see (after two basic commutations) that P equals to:
i(trt2j—trt2j12) At o,
P =eiltrazi =2t B B o 1 040 By aj41,r42j42

ei(tr+2j_tr+2j+2)(A¥+2j)_Ai,zi). (7.10)
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Therefore using (7.10), the LHS of (7.8) can be rewritten as

(r+25+2)

AT Peiltrizjta—trizj+a) AL

ettri2j—2—tri2;)

(r+2j-2)
+

=  iltrtoj—2—tri)A ttri2j—tri2j+2) Ak a;

Bisr2j-1,r42i Bisrv2j41,r+2j+2
. 27 . r+2542
el(tr+2j*tr+2j+2)(A¥+ J)*Ai,zi)el(tr+2j+2*tr+2j+4)ﬁg+ I
. 25—2 .
_ el(t'r'+2j727t'r~+2j)A¥+ 7 )61(tr+2j —trt2j42) At o,
Biiry2j-1,r42j Bisr2j41,r+2j42

ettrroita—tri2j4a)(Ax o+ A% rrojt1+84 r2j+2)

ei(tr+2j7tr+2j+4)(Ai,x1 ot Ao, +--~+A:E,r+2j)7 (711)

where Ai,m denotes that the term Ay ,, is missing.
On the other hand, we can rewrite Ag: T2) ag

A (r+27) _ A (r+27)
A:i: = A:I: - Ai,ﬂiv-+2j - Ai’w7-+2j—1 + Ai,I7-+2j+1 + Ai,$7~+2j+2
_ A(r+2i-2)
- A:I: —+ Ai7wr+2j+1 + Ai’$7-+2j+2
_ (r+25-2)
= (A —Aio)+ (Bia, + Ai»17'+2j+1 + Ai,wr+2y‘+2)-

. < (r2j
Z(’fr+2j*15r+2j+2)A(£+ 9

Hence the factor e~ appearing in the definition of P can be

rewritten as:
e~ i(trt2; *tr+2j+2)5§:+2j)

) 2j-2 .
e—z(tr+2j—tr+2j+2)(A¥+ 7 )—Ai,xi)e—l(twrzj—tr+2j+2)(Ai,zi +Ai,wr+2j+1+Ai,mT+2‘i+2)’

which in turn implies that (after two basic commutations) P equals

P =e i(trt2; *tr+2j+2)(A$+2j =

A .
20 Byt a2 Blrszj— 1424

B*i(twrzj*tr+2j+2)(Ai,xi REASS +Ai,wr+2j+2). (712>

Thus using (7.12), the RHS of (7.8) can be written as
ei(tr+2j*27tr+2j+2)A$+2j72)Pei(tr+2j —trpojpa) AT

. 27—2 . 27—2
_ el(tr+2j—2—tr+2j+2)ﬂ(£+] )e—l(tr+21—tr+2j+2)(ﬁ(£+] )—Ai,zi)

Biirtoj1,r+2i42Bir+2j-1,r42;

i ] ) ; (r+2j+2)
6*2(t1v+2g —tryoire) (At e, A% 2, 050 +Ai,wr+2j+2)el(tr+2j —trgoipa)AY T
. 2j—2 .
— el(tr+2j—2—tr+21)A¥+ ! )el(tru;' —tri2j42) At oy

Birr2j41,r+2i+2B10425—1,r+2;
ei(tr+2j+2_tr+2j+4)(Ai,wi +AL 21+ AL 2 42)

ei(tr+2j —tri2j4a)(Dt zy +~~~+Ai,zi+~w+Ai,r+2j) ) (713)

We combine (7.11) and (7.13) to obtain (7.8).
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Now we are ready to prove (7.7). We observe that thanks to the symmetry the

value of I(u, o) does not change if in (7.5) we perform the following two exchanges
in the arguments of v("+2") only:

/ : /
e exchange (T,42j-1, %) 9;_1) With (T, 42511, %) 19;41)
!/ : /
e exchange (x7'+2j7x'r‘+2j) with (x7'+2j+2"rr+2j+2)'

After these two exchanges we use (7.8) and the definition of P to rewrite (7.5) as:

I(p,0)

~/tr2-~2to(r+2j)Zto(7-+2j+2)Z~--Zta(r+2n)20

. r42j—2 ) r2j42
el(““f”_t“r”m(i ! )Pe’(t”"‘f“_t””“m(i ’ )(...)/ dtpgo...dtyyop

‘/t7'>"'>trr(7‘+2j)>ta(r+2j+2)>~">ta(r+2n)>0

. e (r+2j-2) ~ L (r+2j+2)
eiltri2j—2—trioj12) AY Peiltri2j—tri2j+a)AY ()' dtpig...dtyion
-] [
tr> Dt (o)) Dt (rg2j42) 2 St (rp2n) 20 JRICE2NE2)
(bt o AT H29)
Oiir+2j4+1,r+2j+2€ itrrag—trezi42) A Olir 425 —1,r+2j
. o ) (r+2j+2)
el trt2i—tri2jta) Ay () dtyyo..dtypon, (7.14)
where ;141,142 denotes the kernel of the operator Bj,p41 k12 i.e.
/ /
Otk = O(x; — 2h41)0(x; — 2311)0(2j — Thy2)0(z; — Thy0) (7.15)
! / / / / /
_5(333' - 33k+1)5(33j - xk+1)6(xj - xk+2)5(33j — Thya) -

Now in (7.14) we perform the change of variables that exchanges

! !
(trt2j—1, Tr42j—1,Trpoj—1)  and  (fry2j41, Trioje1, Trgojrr)

as well as
/ !/
(tr+2j7 Lr+2j, $r+2j) and (tr+2j+27 Lr+42j42, $r+2j+2) .
Under the same change of variables A("+27) which is equal to

A(r+27) A (r129)
A( ) = A:i: - Ai,lr+2j - Aia$r+2j—l + Ai,1r+2j+1 + A:E,Ir+2j+2

_ A(r+2-2)
- A:i: + Aivmr+2j—l + Ai,Ir+2]‘
- A:l:,d?r+2]‘ - A:t,ibr+2_j_1 + A:l:,l’r+2j+1 + A:|:7177‘+2j+2

_ A(r+25-2)
- A:i: + Ai>mr+2j+1 + Aﬂ:,xr+2j+2
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becomes A¥+2j_2) + At g,y +Ats, ., that equals Agﬂj). Therefore, after
we perform this change of variables in (7.14), we obtain

I(p,0) = / . giltrizj-a—tria) ALTHTY
trZ"'Ztg/(r+2j+2)Ztg/(r+2j)2"‘2ta(r+2n)
. (r+24)
—i(trsajra—trpog)A
Birqoj—1,r425€ Wrrajra=treas) By lir 425 4+1,r4+2j42
. X _ . (r+2j+2)
eiltri2jra—trizjpa) A (- )’ dtrgg - dtyton
= Iy, o), (7.16)
where ¢/ = (r + 2j,7 + 2j + 2) o 0. Here (a,b) denotes the permutation which
reverses a and b. Hence (7.7) is proved. O

Let us consider the set N of those matrices in M which are in so-called “upper
echelon” form. Here, as in [12], we say that a matrix of the type (7.2) is in upper
echelon form if each highlighted entry in a row is to the left of each highlighted
entry in a lower row. For example, the following matrix is in upper echelon form
(with r =1 and n = 3):

Bi23s Bias DBigr

0 Bsus5  Bser
0 0 Bas.7
0 0 Bs6,7

In the same way as in Lemma 3.2 in [12] one can prove that in our context:

Lemma 7.2. For each matriz in M there is a finite number of acceptable moves
that transforms the matrixz into upper echelon form.

Let C,.,, denote the number of upper echelon matrices of the size (r+2n—2) x n.
The following lemma gives an upper bound on C,,,.

Lemma 7.3. The following holds:
C’rn < 2T+3n—2.

Proof. As in [12] the proof proceeds in two steps.

Step 1 First, we bring all highlighted entries to the first row. In such a way the first
row is partitioned into subsets that consist of elements that were originally
in the same row. Let us denote by P, the number of possible partitions of
the first row into these subsets. Then

P, <27,
ax explained in [12]. One can see this by first observing that
P,=1+P +---+P,_1, (7.17)

which in turn can be verified by counting the number of the elements in
the last subset. More precisely, if the last subset has 0 elements that gives
exactly one contribution toward P,. In general, if the last subset has k
elements, then the rest of n — k elements of the first row can be partitioned
into P,_j ways. Hence (7.17) follows.
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Step 2 Now we reassemble the matrix obtained in the previous step by lowering
the first subset into the first used row, the second subset into the second
used row etc. If a given partition of the first row has exactly i subsets, then
these subsets can be lowered in an order preserving way to the available
r 4 2n — 2 rows in (Hzi"*z) ways.

Now we combine Steps 1 and 2 to conclude

Cr < P, Z <7“ + 2@ - 2) < grdn=2,
1
=1

O

Let pes be a matrix in N. We write p ~ pes if p can be transformed into p.s in
finitely many acceptable moves. It can be seen that:

Theorem 7.4. Suppose pi.s € N. Then there exists a subset of [0,t,]", denoted by
D, such that

tr t7‘+2n
Z / / JT(LA_‘_Q”, /J) dtr+2...dtr+2n = / Jr(tr+2n, /L) dtr+2...dtr+2n.
0 0 D

K~ fes

Proof. Here we give an outline of the proof, which is analogous to the proof of a
similar result stated in Theorem 3.4 in [12].

We consider the integral

tr triyon
I(,LL7 Zd) = / / JT(ZT+27N /,1/) dtr+2...dtr+2n.
0 0

and perform finitely many acceptable moves on the corresponding matrix deter-
mined by (u, id) until we transform it to the special upper echelon matrix associated
with (ptes, ). Then Lemma 7.1 guarantees that

I(p,id) = I(pies, o).

As in [12], if (u1,4d) and (pe,id) with py # ps produce the same echelon form
les, then the corresponding permutations o; and oe must be distinct. Hence, to
determine D, we need to identify all permutations ¢ that occur in a connection
with a given class of equivalence pes. Then D can be chosen to be the union of all

{tr > ta(r+2) > to’(r+4) > .2 to(r+2n)}' U

8. PROOF OF THEOREM 6.1

In combination with Theorem 7.4, the following result immediately implies The-
orem 6.1.

Theorem 8.1. Assume that d € {1,2} and t, € [0,T]. The estimate

H / J7‘(£r+2nﬂ ,U) dtr+2---dtr+2n
D

holds for a constant Cy independent of r and T .

C" (CoT)™ 8.1
Lo i) (CoT) (8.1)
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Proof. We first address the case of dimension d = 1. We infer from Theorem 4.3
that in this case,

HS(’C’Q)Ba‘;kH,kHU(k”) (th1 — try2)7*H2) ’

L2(Rk xRF)

<cC HS(’““"”U"“*Z)(MH a7 D) ‘ (8.2)

L2(Rk+2 XRIC+2)
1
for any a > 3.

We find that, for ¢, € [0, T,

H / JT(£7’+27LMU’) dtT+2"'dtT‘+2n
D

< 1" sup H S(T’Q)Bu(r+1);r+1,r+2 (8.3)
Lry2,enstrya2n€[0,T]

L2(R" xR™)

UTTD (15 — by a)7 T ’

L2(R” xR")
< CcT™ sup S22 (¢ o — 1, )7 ‘ 8.4
try2,..try2n €[0,T] ( * + ) L2(Rr+2 er+2g )
< o sup UTHD (4, o — g S(’"“’O‘W(’“”)‘ (8.5)
tr+27-~~7t7‘+2n€[07T] * * ) LQ(RT+2XRT+2)
= C1" sup SUYZOB syt aria (8.6)
trg2,etrgon €[0,T]
UTTD (1, — 1, )7 ’
(trs2 +4)7 L2 (Rr+2 xRr+2)
= CT1" sup H S(T+2’Q)BH(T+3);7-+37T+4 (87)
trgd, tri2n€[0,T]
UTTD(t, oy — 1, 6)F ’
( +4 +6)’y L2(R7‘+2 XRT‘+2)
<
< Cnfl ™" H S(r+2n,a)B 2}t 22 (r+2n) 8.8
— t,urQSnuGI?O,T] U( +2 )v +2n,r+2 +1’7 L2(R7'+27L><R7~ 21L))
< oen", (8.9)

where in order to bound (8.3) we have employed the estimate (8.2), and subse-
quently used that any free evolution operator ¥} commutes with any S| since
both are Fourier multiplication operators. Then, to obtain (8.6) we use unitarity of
U2 and to get (8.7), we observe that the norm in (8.6) is independent of ¢, 5.
We then repeat these steps until all free evolution operators are eliminated, and we
arrive at (8.8). In the last step, we use the a priori energy estimate provided by
Theorem 4.2 for d = 1. Clearly, for T sufficiently small, we have that (CT)" — 0
as n — oo. This implies that () = 0 in [0, 7] for zero initial condition, provided
that % <a<l.

For d = 2, the proof proceeds precisely in the same way as in [12, 13], under
the condition that % < a < 1, by using nested Duhamel’s formulas of section 7,
recursive applications of the space-time bounds given in Theorem 5.1 and at the
end by using the a priori spatial bound provided by Theorem 4.2. (I
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