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Abstract. We consider the dynamical Gross-Pitaevskii (GP) hierarchy on

Rd, d ≥ 1, for cubic, quintic, focusing and defocusing interactions. For both
the focusing and defocusing case, and any d ≥ 1, we prove local wellposedness

of the Cauchy problem in weighted Sobolev spacesHαξ of sequences of marginal

density matrices, for

α

8><>:
> 1

2
if d = 1

> d
2
− 1

2(p−1)
if d ≥ 2 and (d, p) 6= (3, 2)

≥ 1 if (d, p) = (3, 2) ,

where p = 2 for the cubic, and p = 4 for the quintic GP hierarchy; the pa-

rameter ξ > 0 is arbitrary and determines the energy scale of the problem.
This result includes the proof of an a priori spacetime bound conjectured by

Klainerman and Machedon for the cubic GP hierarchy in d = 3. In the defo-
cusing case, we prove global wellposedness in H1

ξ of the cubic GP hierarchy for

1 ≤ d ≤ 3, and of the quintic GP hierarchy for 1 ≤ d ≤ 2. For the focusing GP
hierarchies, we prove lower bounds on the blowup rate, and pseudoconformal

invariance in the cases corresponding to L2 criticality. All of these results hold

without the assumption of factorized initial conditions.

1. Introduction

The derivation of the nonlinear Schrödinger equation as the dynamical mean field
limit of the manybody quantum dynamics of interacting Bose gases is a research
area that is recently experiencing remarkable progress, see [7, 8, 9, 15, 14, 21] and
the references therein, and also [1, 6, 10, 11, 12, 13, 23]. A main motivation to
investigate this problem is to understand the dynamical behavior of Bose-Einstein
condensates. For recent developments in the mathematical analysis of Bose gases
and their condensation, we refer to the fundamental work of Lieb, Seiringer, Yng-
vason, et al.; see [2, 16, 17, 18] and the references therein.

The procedure developed in the landmark works of Erdös, Schlein, and Yau, [7,
8, 9], to obtain the dynamical mean field limit of an interacting Bose gas, comprises
the following main ingredients. One determines the BBGKY hierarchy of marginal
density matrices for particle number N , and derives the Gross-Pitaevskii (GP)
hierarchy in the limit N →∞, for a scaling where the particle interaction potential
tends to a delta distribution; see also [15, 22]. For factorized initial data, the
solutions of the GP hierarchy are governed by a cubic NLS for systems with 2-body
interactions, [7, 8, 9, 15], and quintic NLS for systems with 3-body interactions, [5].
The proof of the uniqueness of solutions of the GP hierarchy is the most difficult
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part of this analysis, and is obtained in [7, 8, 9] by use of highly sophisticated
Feynman graph expansion methods inspired by quantum field theory.

Recently, an alternative method to prove the uniqueness of solutions in the d = 3
case has been developed by Klainerman and Machedon in [14], using spacetime
bounds on the density matrices in the GP hierarchy; this result makes the assump-
tion of a particular a priori spacetime bound on the density matrices which has so
far remained conjectural. In the work [15] of Kirkpatrick, Schlein, and Staffilani,
the corresponding problem in d = 2 is solved, and the assumption made in [14] is
replaced by a spatial a priori bound which is proven in [15]. Alternative methods
to obtain dynamical mean field limits of interacting Bose gases using operator-
theoretic methods are developed by Fröhlich et al in [10, 11, 12].

All of the above mentioned works discuss Bose gases with repulsive interactions;
it is currently not known how to obtain a GP hierarchy from the N → ∞ limit
of a BBGKY hierarchy with attractive interactions. In the work at hand, we have
nothing to add to this issue. Instead, we start here directly from the level of the
GP hierarchy, and are thus free to also consider attractive interactions within this
context. Accordingly, we will refer to the corresponding GP hierarchies as cubic,
quintic, focusing, or defocusing GP hierarchies, depending on the type of the NLS
governing the solutions one would obtain if one chooses factorized initial conditions.

In the present work, we investigate the Cauchy problem for the cubic and quintic
GP hierarchy with focusing and defocusing interactions. Our results do not assume
any factorization of the initial data. The main results proven in this paper are:

(1) We prove local wellposedness of the Cauchy problem for the cubic and quin-
tic GP hierarchy with focusing or defocusing interactions, in a generalized
weighted Sobolev space Hαξ of sequences of marginal density matrices, in di-
mensions d ≥ 1. The parameter α determines the regularity of the solution,
and our results hold for α ∈ A(d, p) where

A(d, p) :=


( 1

2 ,∞) if d = 1
(d2 −

1
2(p−1) ,∞) if d ≥ 2 and (d, p) 6= (3, 2)[
1,∞) if (d, p) = (3, 2) ,

(1.1)

in dimensions d ≥ 1, and where p = 2 for the cubic, and p = 4 for the
quintic GP hierarchy. The parameter ξ > 0 determines the energy scale of
the problem.

(2) As part of the local wellposedness result, we prove the a priori spacetime
bound conjectured by Klainerman and Machedon in [14].

(3) For the defocusing case, we prove global wellposedness in H1
ξ of the cubic

GP hierarchy for 1 ≤ d ≤ 3, and of the quintic GP hierarchy for 1 ≤ d ≤ 2.

(4) We indroduce generalized pseudoconformal transformations, and prove the
invariance of the cubic GP hierarchy in d = 2, and of the quintic GP hi-
erarchy in d = 1, under their application. Because the NLS obtained from
factorized initial data in these cases are L2-critical, we will, for brevity,
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refer to these GP hierarchies as being L2-critical.

(5) For the focusing cubic or quintic GP hierarchy, we prove lower bounds on
the blowup rate in Hαξ and Lrξ, where both spaces are defined in Section 2
below.

The introduction of the Banach spaces Hαξ = {Γ ∈ G | ‖Γ ‖Hαξ < ∞} is an
important aspect of our arguments. Here,

G = {Γ = ( γ(k)(x1, . . . , xk;x′1, . . . , x
′
k) )k∈N |Trγ(k) < ∞} (1.2)

is the space of sequences of k-particle density matrices, and

‖Γ ‖Hαξ :=
∑
k∈N

ξk ‖ γ(k) ‖Hα(Rdk×Rdk) . (1.3)

The parameter ξ > 0 is determined by the initial condition, and it sets the energy
scale of a given Cauchy problem. If Γ ∈ Hαξ , then ξ−1 is the typical Hα-energy
per particle. We reformulate the spacetime bound conjectured by Klainerman and
Machedon in [14] in the language of the sequence of density matrices Γ. In this
context, it corresponds to the statement that Γ satisfies a Strichartz type estimate
on the level of the GP hierarchy, with respect to L2

t∈[0,T ]H
1
ξ , for some T > 0 and

ξ > 0. We prove this estimate in Section 3 using a Picard-type fixed point argument
on the space L2

t∈IH1
ξ , as a key part of our proof of local wellposedness; it corresponds

to the inequality (2.15). See also Remark 2.4 below.

An important ingredient of our proof of local wellposedness is the use of the
spacetime bounds established in [14] for the cubic GP hierarchy in d = 3 (which
were generalized to cubic in d = 2 in [15], and to the quintic GP hierarchy in [5]),
and the “boardgame estimates” developed in [14] (and generalized to the quintic
case in [5]), which were motivated by the Feynman graph expansion techniques of
[7, 8]. For our discussion of blowup solutions of the focusing (cubic or quintic) GP
hierarchy, we make extensive use of a quantity that controls the average Hα-energy
per particle, and, in a different form, the average Lr-norm per particle. It is in-
troduced in Definition 2.6 below, and turns out to be the key observable for our
discussion of blowup solutions.

Organization of the paper. In Section 2, we introduce the cubic and quintic
GP hierarchy, and state our main theorems. In Section 3, we prove the local well-
posedness of the Cauchy problem for the cubic and quintic GP hierarchy, for both
focusing and defocusing interactions. In Section 4, the local wellposedness is en-
hanced to global wellposedness for the cubic and quintic defocusing GP hierarchies,
using energy conservation. In Section 5, we prove lower bounds on the blowup
rate of blowup solutions in the spaces Hαξ and Lrξ (see below for their definitions).
In Section 6, we prove the pseudoconformal invariance of the L2-critical cubic (in
d = 2) and quintic (in d = 1) GP hierarchies. In the Appendix, we reformulate the
Klainerman-Machedon spacetime bounds in a form convenient for our work.
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2. Definition of the model and statement of the main results

We introduce the space

G :=
∞⊕
k=1

L2(Rdk × Rdk) (2.1)

of sequences of density matrices

Γ := ( γ(k) )k∈N (2.2)

where γ(k) ≥ 0, Trγ(k) = 1, and where every γ(k)(xk, x
′
k) is symmetric in all

components of xk, and in all components of x′k, respectively.

We call Γ = (γ(k))k∈N admissible if

γ(k)(xk;x′k) (2.3)

=
∫
dxk+1 · · · dxk+ p

2
γ(k+ p

2 )(xk, xk+1, . . . , xk+ p
2
;x′k, xk+1, . . . , xk+ p

2
)

for all k ∈ N.

Let 0 < ξ < 1 and r > 1. We define

Lrξ :=
{

Γ ∈ G
∣∣∣ ‖Γ‖Lrξ < ∞} (2.4)

where

‖Γ‖Lrξ :=
∞∑
k=1

ξk‖ γ(k) ‖Lr(Rdk×Rdk) . (2.5)

Furthermore, we define

Hαξ :=
{

Γ ∈ G
∣∣∣ ‖Γ‖Hαξ < ∞} (2.6)

where

‖Γ‖Hαξ =
∞∑
k=1

ξk‖ γ(k) ‖Hα(Rdk×Rdk) , (2.7)

with

‖ γ(k) ‖Hα(Rdk×Rdk) = ‖S(k,α) γ(k) ‖L2(Rdk×Rdk) , (2.8)

and S(k,α) :=
∏k
j=1〈∇xj 〉α〈∇x′j 〉

α.

Clearly, Lrξ, Hαξ are Banach spaces.

We note that Banach spaces of integral kernels of a similar type as those intro-
duced above are, for instance, used for operator-theoretic renormalization group
methods in the spectral analysis of quantum electrodynamics, [3].

Let p ∈ {2, 4}. We consider the p-GP (Gross-Pitaevskii) hierarchy given by

i∂tγ
(k) =

k∑
j=1

[−∆xj , γ
(k)] + µBk+ p

2
γ(k+ p

2 ) (2.9)
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in d dimensions, for k ∈ N. Here,(
Bk+ p

2
γ(k+ p

2 )
)

(t, x1, . . . , xk;x′1, . . . , x
′
k) (2.10)

:=
k∑
j=1

(
Bj;k+1,...,k+ p

2
γ(k+ p

2 )
)

(t, x1, . . . , xk;x′1, . . . , x
′
k)

:=
k∑
j=1

∫
dxk+1 · · · dxk+ p

2
dx′k+1 · · · dx′k+ p

2

[ k+ p
2∏

`=k+1

δ(xj − x`) · · · δ(xj − x′`)−
k+ p

2∏
`=k+1

δ(x′j − x`)δ(x′j − x′`)
]

γ(k+ p
2 )(t, x1, . . . , xk+ p

2
;x′1, . . . , x

′
k+ p

2
)

accounts for p
2 + 1-body interactions between the Bose particles.

For a factorized initial condition

γ(k)(0) = |φ0 〉〈φ0 |⊗k (2.11)

with φ0 ∈ Hα, one obtains that

γ(k)(t) = |φ(t) 〉〈φ(t) |⊗k (2.12)

is a solution of (2.9) if φt satisfies the NLS

i∂tφt + ∆xφt − µ |φt|p φt = 0 (2.13)

with initial condition φ(0) = φ0, where µ ∈ {1,−1}. For p = 2, this is the cubic
NLS, and for p = 4, this is the quintic NLS. The NLS is defocusing for µ = 1, and
focusing for µ = −1.

Accordingly, we refer to (2.9) as the cubic GP hierarchy if p = 2, and as the
quintic GP hierarchy if p = 4. Moreover, for µ = 1 or µ = −1 we refer to the GP
hierarchies as being defocusing or focusing, respectively.

We recall the definition of the set A(d, p), for p = 2, 4 and d ≥ 1,

A(d, p) =


( 1

2 ,∞) if d = 1
(d2 −

1
2(p−1) ,∞) if d ≥ 2 and (d, p) 6= (3, 2)[
1,∞) if (d, p) = (3, 2)

(2.14)

Our main result in this paper is the following theorem.

Theorem 2.1. Let 0 < ξ2 = ηξ1 � ξ1 < 1. Then, the following hold.

• Assume that α ∈ A(d, p) where d ≥ 1 and p ∈ {2, 4}. The Cauchy prob-
lem for the defocusing or focusing p-GP hierarchy, with initial condition
Γ(0) = Γ0 ∈ Hαξ1 ⊂ H

α
ξ2

, is locally wellposed in Hαξ2 .

• Let I = [0, T ]. Then, in particular, when p = 2 the spacetime bound

‖B̂Γ‖L2
t∈IHξ2 ≤ (cTξ−4

1 )
1
2

1− (cTξ−2
2 )

1
2
‖Γ0‖Hαξ1 (2.15)
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holds for sufficiently small T > 0.

• The Cauchy problem for the defocusing p-GP hierarchy in H1
ξ2

, with initial
condition Γ(0) = Γ0 ∈ H1

ξ1
, is globally wellposed for p = 2 (cubic) in di-

mensions 1 ≤ d ≤ 3, and for p = 4 (quintic) in dimensions 1 ≤ d ≤ 2.

Remark 2.2. The role of the parameters ξ1, ξ2 is as follows: Given initial data
Γ0 = (γ(k))k∈N with ‖γ(k)‖Hα(Rdk×Rdk) < ∞ for all k, we determine ξ1 > 0 suffi-
ciently small such that Γ0 ∈ Hαξ1 . This means that the energy per particle in Γ0

is bounded by ξ−1
1 . In cases of physical interest, ξ1 > 0; the notion of an energy

per particle will be quantified below. Then, we find a suitable ξ2 = ηξ1 � ξ1 such
that the Cauchy problem for the the GP hierarchy can be solved in a big enough
space Hαξ2 . The requirement ξ2 � ξ1 is used to ensure that a solution Γ(t) does
not drift out of Hαξ2 for t ∈ I = [0, T ] with T = T (ξ2) > 0; we thereby impose the
assumption that the energy per particle does not exceed ξ−1

2 while t ∈ I, but once
this assumption is violated, one can easily pick a smaller ξ′2 < ξ2 to continue the
solution to T (ξ′2) > T (ξ2).

Remark 2.3. In particular, there is no implication of the size of ξ2 on the regularity
accounted for by α. For factorized initial data, the statement that the solution of
the NLS remains in Hα for t ∈ I is equivalent to the statement that the solution of
the GP hierarchy remains in Hαξ for an arbitrary nonzero ξ > 0.

Remark 2.4. We note that the estimate (2.15), for the cubic GP hierarchy with
d = 3 and α = 1, proves the a priori spacetime conjectured in [14]. For factorized
initial data Γ = (|φ0〉〈φ0|⊗k)k∈N in the cubic case, so that Γ = (|φ(t)〉〈φ(t)|⊗k)k∈N
where i∂tφ+ ∆φ− µ|φ|2φ = 0, it corresponds to the inequality

‖ |φ|2φ ‖
1
3
L2
t∈IH

α ≤ C(T ) ‖φ0 ‖Hα (2.16)

which is of Strichartz type (similar to the case determined by the Strichartz admis-
sible pair (2, 6) in d = 3). The example of factorized solutions with φ(t) ∈ H1,
t ∈ I, is discussed in detail in [14].

Definition 2.5. We say that a solution Γ(t) of the GP hierarchy blows up in finite
time with respect to Hα if there exists T ∗ < ∞ such that for every ξ > 0 there
exists T ∗ξ,Γ < T ∗ such that ‖Γ(t)‖Hαξ →∞ as t↗ T ∗ξ,Γ, and T ∗ξ,Γ ↗ T ∗ as ξ → 0.

For the study of blowup solutions, it is convenient to introduce the following
quantity.

Definition 2.6. We refer to

AvHα(Γ) :=
[

sup
{
ξ > 0

∣∣ ‖Γ ‖Hαξ <∞
} ]−1

, (2.17)

AvLr (Γ) :=
[

sup
{
ξ > 0

∣∣ ‖Γ ‖Lrξ <∞
} ]−1

, (2.18)

respectively, as the typical (or average) Hα-energy and the typical Lr-norm per
particle.
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We note that

Γ = ( |φ 〉〈φ |⊗k )k∈N ⇒ AvHα(Γ) = ‖φ‖2Hα and AvLr (Γ) = ‖φ‖2Lr (2.19)

in the factorized case.

The fact that Γ ∈ Hαξ means that the typical energy per particle is bounded by
AvHα(Γ) < ξ−1. Therefore, the parameter ξ determines the Hα-energy scale in
the problem. While solutions with a bounded Hα-energy remain in the same Hαξ ,
blowup solutions make transitions Hαξ1 → H

α
ξ2
→ Hαξ3 → · · · where the sequence

ξ1 > ξ2 > · · · converges to zero as t→ T ∗.

It is easy to see that blowup in finite time of Γ(t) with respect to Hα is equivalent
to the statement that AvHα(Γ(t))→∞ as t↗ T ∗.

Clearly, (AvN (Γ))−1 is the convergence radius of ‖Γ‖Nξ as a power series in ξ,
for the norms N = Hα, Lr and Nξ = Hαξ ,Lrξ, respectively.

Theorem 2.7. Assume that Γ(t) is a solution of the (cubic p = 2 or p = 4 quintic)
p-GP hierarchy with initial condition Γ(t0) = Γ0 ∈ Hαξ , for some ξ > 0, which
blows up in finite time. Then, the following lower bounds on the blowup rate hold:

(a) Assume that 4
d ≤ p <

4
d−2α . Then,

( AvHα(Γ(t)) )
1
2 >

C

|T ∗ − t|(2α−d+ 4
p )/4

. (2.20)

Thus specifically, for the cubic GP hierarchy in d = 2, and for the quintic
GP hierarchy in d = 1,

( AvH1(Γ(t)) )
1
2 ≥ C

|t− T ∗| 12
, (2.21)

with respect to the Sobolev spaces Hα, Hαξ .
(b)

( AvLr (Γ(t)) )
1
2 ≥ C

|t− T ∗|
1
p−

d
2r
, for

pd

2
< r. (2.22)

Remark 2.8. We note that in the factorized case, the above lower bounds on the
blow-up rate coincide with the known lower bounds on the blow-up rate for solutions
to the NLS (see, for example, [4]).

The cubic GP hierarchy in d = 2, and the quintic GP hierarchy in d = 1
are distinguished by being invariant under a class of generalized pseudoconformal
transformations, as present below. Let us first recall pseudoconformal invariance
on the level of the NLS (2.13). If the NLS (2.13) is L2-critical, that is, p = 4

d , it is
invariant under the pseudoconformal transformations

Pφt(x) :=
1

(1 + bt)1/2
e−i

bx2
1+btφ 1

1+bt

( x

1 + bt

)
, (2.23)

for b ∈ R \ {0}. That is,

i∂tPφt + ∆Pφt − µ |Pφt|p Pφt = 0 ; (2.24)
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see for instance [4]. There are two cases of L2-critical NLS with p ∈ N: The cubic
(p = 2) NLS in d = 2, and the quintic (p = 4) NLS in d = 1.

For the GP hierarchy, one can likewise introduce pseudoconformal transforma-
tions, and as we prove in this paper, the GP hierarchy is pseudoconformally invari-
ant when p = 2 and d = 2 (cubic), or p = 4 and d = 1 (quintic). This property is
independent of whether the GP hierarchy is defocusing, µ = 1, or focusing, µ = −1.

Theorem 2.9. For d = 2 and p = 2 (cubic), or d = 1 and p = 4 (quintic), the
focusing or defocusing (µ ∈ {1,−1}) GP hierarchy (2.9) is invariant under the
pseudoconformal transformations

Pγ(k)(t, xk;x′k)

:=
1

(1 + bt)dk
e−i

b(|xk|
2−|x′k|

2)
1+bt γ(k)

( 1
1 + bt

,
xk

1 + bt
;

x′k
1 + bt

)
, (2.25)

for b ∈ R \ {0}.

That is,

i∂tPγ(k) + ∆(k)
± Pγ(k) − µBk+ p

2
Pγ(k+2) = 0 , (2.26)

for all k ≥ 1.

The proof is given in Section 6. For a survey of related matters for the NLS, see
for instance [4, 20, 24].

Of course, the following is immediately clear.

Theorem 2.10. Assume that α ∈ A(d, p) where d ≥ 1 and p ∈ {2, 4}. Moreover,
assume that Γ(t) ∈ Hαξ2 solves the (cubic or quintic) focusing (µ = −1) GP hier-
archy with factorized initial condition Γ0 = (|φ0〉〈φ0|⊗k)k∈N ∈ Hαξ for some ξ > 0,
where φ0 ∈ Hα.

Then, if there exists T ∗ < ∞ such that ‖φ(t)‖Hα → ∞ as t ↗ T ∗, it follows
that also AvHα(Γ(t))→∞ as t↗ T ∗.

Proof. This follows from AvHα(Γ(t)) = ‖φ(t)‖2Hα for product states. �

For various scenarios in which blowup occurs for solutions of the cubic or quintic
NLS, we refer to the literature; see for instance [4, 20] for surveys.
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3. Local wellposedness for the focusing and defocusing GP
hierarchy

In this section, we prove local wellposedness for the cubic and quintic GP hier-
archy for both focusing and defocusing interactions.

Theorem 3.1. Assume that Γ0 ∈ Hαξ1 is admissible, and that α ∈ A(d, p) where
d ≥ 1 and p ∈ {2, 4}.

Then, both the focusing and defocusing (i.e., µ ∈ {1,−1}) GP hierarchy have a
unique solution Γ ∈ L∞[0,T ]H

α
ξ2

with initial condition Γ(0) = Γ0 ∈ Hαξ1 , provided that
T > 0 is sufficiently small, and ξ2 = ηξ1 � ξ1.

Proof. We formulate everything for the cubic hierarchy (p = 2). For the quin-
tic hierarchy (p = 4), the generalizations are straightforward. We introduce the
notation

∆(k)
± = ∆xk

−∆x′k
(3.1)

with

∆xk
=

k∑
j=1

∆xj (3.2)

and

∆±,xj = ∆xj −∆x′j
. (3.3)

Moreover, we write

∆̂±Γ := ( ∆(k)
± γ(k) )k∈N (3.4)

and

B̂Γ := (Bk+1γ
(k+1) )k∈N . (3.5)

Hence the p-GP hierarchy (2.9) can be written as

i∂tΓ + ∆̂±Γ = µB̂Γ , (3.6)

which, in turn, in integral formulation looks as:

Γ(t) = eit
b∆±Γ0 − iµ

∫ t

0

ds ei(t−s)
b∆±B̂Γ(s) . (3.7)

In order to prove local wellposedness for the solution Γ(t) of the cubic GP hierarchy
in Hαξ2 , we proceed with a similar strategy as in the case of NLS: We first prove a
result corresponding to a Strichartz inequality, and then formulate the Picard fixed
point principle for Γ(t).

As stated in Remark 2.4, the estimate

‖ B̂Γ ‖L2
t∈[0,T ]H

α
ξ2
< C(T ) ‖Γ0 ‖Hαξ (3.8)

is of Strichartz type. A condition equivalent to this bound is assumed to hold in
[14], but has not been proven.
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In order to prove (3.8), we first consider the sequence B̂Γ(t) which satisfies, in
integral form,

B̂Γ(t) = B̂eit
b∆±Γ0 − iµ

∫ t

0

ds B̂ei(t−s)
b∆±B̂Γ(s) . (3.9)

We observe that this is a fixed point equation for B̂Γ.

We want to prove that (3.9) has a unique solution in L2
t∈[0,T ]H

α
ξ . We define, for

an admissible sequence of density matrices Γ̃ = (γ̃(k))k∈N,

Duhj(Γ̃)(k+1)(t)

:= (−iµ)j
∫ t

0

dt1 · · ·
∫ tj−1

0

dtje
i(t−t1)∆

(k+1)
± Bk+2e

−i(t1−t2)∆
(k+2)
±

Bk+3 · · · · · ·Bk+j+1e
i(tj−1−tj)∆(k+j+1)

± γ̃(k+j+1)(tj) .(3.10)

Then, any solution of (3.9) satisfies the fixed point equation (obtained from iterating
the Duhamel formula k times for the k-th component of B̂Γ)

(B̂Γ)(k)(t) =
k−1∑
j=1

Bk+1Duhj(Γ0)(k+1)(t) + Bk+1Duhk(B̂Γ)(k+1)(t) . (3.11)

To formulate a Picard-type fixed point argument, we define

Φ(B̂Γ) = (Φ(B̂Γ)(k))k∈N (3.12)

where the k-th component is given by

Φ(Γ)(k)(t) =
k−1∑
j=1

Bk+1Duhj(Γ0)(k+1)(t) + Bk+1Duhk(B̂Γ)(k+1)(t) . (3.13)

We prove local wellposedness of (B̂Γ)(t) for α ∈ A(d, p) for d ≥ 1. The constraints
on α are clarified in the Appendix.

Similarly as in [5], we use different approaches when d ≥ 2 and when d = 1. In
dimension d = 1, and for both the cubic and quintic GP hierarchy, we use a spatial
a priori bound as in [5] where we refer for details.

In dimensions d ≥ 2, we apply the Klainerman-Machedon spacetime bounds
similarly to [14] and [15]. This is explained in detail in the Appendix.

The case d ≥ 2.

We prove the Strichartz type estimate (3.8) on the level of the GP hierarchy. To
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this end, we use the fact that

‖
k−1∑
j=1

Bk+1Duhj(Γ0)(k+1)(t) ‖L2
t∈IH

α

< kCk
k−1∑
j=1

(cT )
j
2 ‖γ(k+j+1)

0 ‖Hα (3.14)

< k(Cξ−1
1 )k+1

k−1∑
j=1

(cTξ−2
1 )

j
2 ξk+j+1

1 ‖γ(k+j+1)
0 ‖Hα (3.15)

< (cTξ−2
1 )

1
2 k(Cξ−1

1 )k+1
k−1∑
j=1

ξk+j+1
1 ‖γ(k+j+1)

0 ‖Hα (3.16)

using Propositions A.1 and A.2 in the Appendix. They generalize the L2(R×Rdk×
Rdk) spacetime bounds, and the “board game” arguments, developed in [14].

Therefore,

∞∑
k=1

ξk2‖
k−1∑
j=1

Bk+1Duhj(Γ0)(k+1)(t) ‖L2
t∈IH

α

< (cTξ−4
1 )

1
2

∞∑
k=1

k
(
C
ξ2
ξ1

)k k−1∑
j=1

ξk+j+1
1 ‖γ(k+j+1)

0 ‖Hα (3.17)

< (cTξ−4
1 )

1
2

∞∑
k=1

k
(
C
ξ2
ξ1

)k 2k∑
`=1

ξ`1‖γ
(`)
0 ‖Hα (3.18)

< (cTξ−4
1 )

1
2

∞∑
k=1

k
(
Cη
)k‖Γ0‖Hαξ1 (3.19)

< (cTξ−4
1 )

1
2 ‖Γ0‖Hαξ1 (3.20)

for ξ2 = ηξ1 � ξ1.

This implies that, for I = [0, T ], and any T > 0,

( k−1∑
j=1

BkDuhj(Γ0)(k+1)(t)
)
k∈N
∈ L2

t∈IHαξ2 (3.21)

if Γ0 ∈ Hαξ1 with ξ1 > ξ2.

Our next step is to prove that Φ is a contraction on L2
t∈IHαξ2 . To this end, we

use the bound

‖Φ(B̂Γ1)(k) − Φ(B̂Γ2)(k)‖L2
t∈IH

α ≤ k (CT )
k
2 ‖B̂Γ(2k)

1 − B̂Γ(2k)
2 ‖L2

t∈IH
α (3.22)

obtained in the same manner as above, using Propositions A.1 and A.2 in the
Appendix.
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We obtain

‖Φ(B̂Γ1)− Φ(B̂Γ2)‖L2
t∈IHαξ2

=
∞∑
k=1

ξk2‖Φ(B̂Γ1)(k) − Φ(B̂Γ2)(k)‖L2
t∈IH

α

≤
∞∑
k=1

k (CTξ−2
2 )

k
2 ξ2k

2 ‖B̂Γ(2k)
1 − B̂Γ(2k)

2 ‖L2
t∈IH

α

≤ sup
k
{ k (CTξ−2

2 )
k
2 }

∞∑
k=1

ξ2k
2 ‖B̂Γ(2k)

1 − B̂Γ(2k)
2 ‖L2

t∈IH
α

≤ (CTξ−2
2 )

1
2 ‖B̂Γ1 − B̂Γ2‖L2

t∈IHαξ2
, (3.23)

for T > 0 sufficiently small. This allows us to conclude that Φ is a contraction on
L2
t∈IHαξ2 if T is sufficiently small.

Consequently, there exists a unique solution B̂Γ of (3.9) in L2
tIH

α
ξ2

, for a given
initial condition Γ0 ∈ Hαξ1 with ξ2 = ηξ1 � ξ1. For this solution, we find

‖B̂Γ‖L2
t∈IHαξ2

≤ (cTξ−4
1 )

1
2 ‖Γ0‖Hαξ1 + (CTξ−2

2 )
1
2 ‖B̂Γ‖L2

t∈IHαξ2
(3.24)

using the same arguments as above, so that sufficiently small T > 0,

‖B̂Γ‖L2
t∈IHξ2 ≤ (cTξ−4

1 )
1
2

1− (cTξ−2
2 )

1
2
‖Γ0‖Hαξ1 . (3.25)

We note that if Γ0 = (0)k∈N, it follows that B̂Γ(t) = (0)k∈N for t < T , which is
equivalent to the uniqueness of the solution. In particular, (3.25) proves (2.15).

Solutions to the original GP hierarchy satisfy

Γ(t) = eit
b∆±Γ0 − iµ

∫ t

0

ds ei(t−s)
b∆±B̂Γ(s) ,

and thus,

‖Γ(t)‖Hαξ2 ≤ ‖Γ0‖Hαξ2 + (CT )
1
2 ‖B̂Γ‖L2

t∈IHαξ2

≤ ‖Γ0‖Hαξ1 + (cT )
1
2

(cTξ−4
1 )

1
2

1− (cTξ−2
2 )

1
2
‖Γ0‖Hαξ1

=
(

1 +
cTξ−2

1

1− (cTξ−2
2 )

1
2

)
‖Γ0‖Hαξ1 . (3.26)

This implies the existence of a solution locally in time, for cT < ξ2
2 .

Uniqueness follows immediately from the fact that Γ0 = (0)k∈N implies that
Γ(t) = 0, for all t < T .
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For the quintic GP hierarchy, all steps of the above proof can be adopted with
minor modifications. A key difference is the fact that (3.26) is replaced by

‖Γ(t)‖Hαξ2 ≤ ‖Γ0‖Hαξ2 + (CT )
1
2 ‖B̂Γ‖L2

t∈IHαξ2

≤
(

1 +
cTξ−4

1

1− (cTξ−4
2 )

1
2

)
‖Γ0‖Hαξ1 . (3.27)

This implies the existence of a unique solution locally in time, for cT < ξ4
2 .

The case d = 1.

In this case, we can straightforwardly adapt the proof given in [5] of the unique-
ness of solutions of the quintic GP hierarchy in d = 1. The spacetime bounds of
Proposition A.1 is not available in d = 1 since it would produce divergent bounds.
However, the spatial bounds in d = 1 proven in [5] apply for both the cubic and
the quintic GP hierarchy, under the assumption that α > 1

2 .

The result is that we get a factor t instead of t
1
2 , in all of the bounds found above

for the cubic GP hierarchy that produced a factor t
1
2 . Accordingly, we find

‖Γ(t)‖Hαξ2 ≤
(

1 +
cT 2ξ−2

1

1− cTξ−1
2

)
‖Γ0‖Hαξ1 (3.28)

for the cubic GP hierarchy instead of (3.26), and

‖Γ(t)‖Hαξ2 ≤
(

1 +
cT 2ξ−4

1

1− cTξ−2
2

)
‖Γ0‖Hαξ1 (3.29)

for the quintic GP hierarchy instead of (3.27), respectively. Again, we obtain local
wellposedness for sufficiently small T > 0. �

4. Global wellposedness for the defocusing GP hierarchy

In this section, we establish global wellposedness in H1
ξ for the defocusing cubic

GP hierarchy in dimensions 1 ≤ d ≤ 3, and for the defocusing quintic GP hierarchy
in dimensions 1 ≤ d ≤ 2.

Theorem 4.1. Assume that 1 ≤ d ≤ 3 for p = 2, and in 1 ≤ d ≤ 2 for p = 4 such
that {1} ∈ A(d, p). Moreover, assume that Γ0 ∈ Hαξ1 , with α ≥ 1, is admissible.
Then, the defocusing (µ = +1) GP hierarchy has a unique solution Γ(t) ∈ H1

ξ2
with

initial condition Γ(0) = Γ0, for all t ∈ R, provided that ξ2 = ηξ1 � ξ1.

Proof. It is proved for the d = 2, 3 cubic case in [7, 8, 15], and for the d = 1, 2 quintic
case in [5], that whenever Γ(t) = (γ(k)(t))k∈N is a solution of the GP hierarchy with
initial condition satisfying

Tr
(
S(k,1) γ

(k)
0

)
< Ck (4.1)
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for some constant C, then

Tr
(
S(k,1) γ(k)(t)

)
< Ck0 (4.2)

with C0 independent of t ≥ 0.

This follows from energy conservation in the N -particle system of which the
GP hierarchy is the N → ∞ limit. The proofs given in [7, 8, 15] and [5] can be
straightforwardly generalized to any dimension d ≥ 1.

We consider a fixed k. Let γ(k) be non-negative, normalized trace class, Tr(γ(k)) =
1, and hermitean. Then, we have that

γ(k)(xk;x′k) =
∑
j

λj |ψj(x′k)〉〈ψj(xk)| (4.3)

for an orthogonal basis ψj of L2(Rdk) with λj ≥ 0 and
∑
λj = 1. Then,

‖ γ(k) ‖H1 =
∑
j,j′

λj λj′
∣∣〈 〈∇xk〉ψj ∣∣ 〈∇xk〉ψj′ 〉 ∣∣2 (4.4)

≤
(∑

j

λj
∥∥ 〈∇xk〉ψj ∥∥2

)2

(4.5)

=
(

Tr
(
S(k,1) γ(k)

) )2

. (4.6)

Thus, for a solution γ(k)(t) of the (cubic or quintic) GP hierarchy with initial
condition satisfying (4.1), we have that

‖ γ(k)(t) ‖H1 < Ck0 (4.7)

with C0 independent of t.

Thus, for ξ sufficiently small,

‖Γ(t)‖H1
ξ
≤
( ∞∑
k=1

(C0ξ)2k
) 1

2
< ∞ . (4.8)

This establishes the claim. �

5. Lower bound on the blowup rates

In this section, we establish Theorem 2.7. We adapt a standard proof given for
L2-critical focusing NLS to the GP hierarchy; see for instance [20]. Let p ∈ {2, 4}.
Similarly as in (6.1), one finds that the p-GP hierarchy is invariant under the
rescaling

Rλ,tγ(k)(τ, xk;x′k)

:=
1

(λ(t))4k/p
γ(k)

(
t+ (λ(t))−2τ , (λ(t))−1xk ; (λ(t))−1x′k

)
(5.1)



WELLPOSEDNESS FOR THE GP HIERARCHY 15

If Γ(t) = (γ(k)(t))k∈N solves the p-GP hierarchy, then Rλ,tΓ = (Rλ,tγ(k))k∈N is also
a solution of the p-GP hierarchy. The proof can be straightforwardly adapted from
the one given in Section 6.

Proof of statement (a).

Blowup in finite time means that there exists T ∗ <∞ such that AvHα(Γ(t))→∞
as t → T ∗. To prove a lower bound on the blowup rate, we may assume that
1 < AvHα(Γ(t)) <∞ at a fixed time t, and choose

λ(t) = (AvHα(Γ(t)))
1

2α−d+ 4
p > 1 . (5.2)

We note that 4
d < p < 4

d−2α implies that 2α− d+ 4
p > 0. Let

S
(k,α)
λ(t) :=

k∏
j=1

〈 (λ(t))−1∇xj 〉α 〈 (λ(t))−1∇x′j 〉
α (5.3)

where 〈b∇x〉 =
√

1− b2∆x for any b ∈ R. Clearly,∥∥∥S(k,α)Rλ,tγ(k)(τ)
∥∥∥
L2
xk,x

′
k

= (λ(t))k(d− 4
p ) ‖ (S(k,α)

λ(t) γ(k) )(t+ (λ(t))−2τ) ‖L2
xk,x

′
k

, (5.4)

and

(λ(t))−2αkS(k,α) ≤ S
(k,α)
λ(t) ≤ S(k,α) (5.5)

since we are assuming that λ(t) > 1.

We define

ξ<(ξ, t, λ) := ξ (λ(t))−
4
p+d−2α = ξ (AvHα(Γ(t)))−1 (5.6)

and

ξ>(ξ, t, λ) := ξ(λ(t))−
4
p+d = ξ(AvHα(Γ(t)))

d− 4
p

2α−d+ 4
p . (5.7)

Clearly, (5.4) and (5.5) imply that

‖Γ(t+ (λ(t))−2τ) ‖Hα
ξ<(ξ,t,λ)

≤ ‖Rλ,tΓ(τ) ‖Hαξ (5.8)

≤ ‖Γ(t+ (λ(t))−2τ) ‖Hα
ξ>(ξ,t,λ)

.

As a consequence of the definition of AvHα(Γ(t)), it follows that for τ = 0,

0 < ‖Γ(t) ‖Hα
ξ<(ξ,t,λ)

< c (5.9)

for any 0 < ξ < 1.

To ensure that ‖Γ(t + (λ(t))−2τ)‖Hα
ξ>(ξ,t,λ)

< c, we use the fact that according
to (5.7), ξ>(ξ, t, λ) can be made arbitrarily small by choosing ξ small.

We note that our assumption 4
d < p < 4

d−2α implies that 2α − d + 4
p > 0 and

d − 4
p > 0, so that the exponent on the rhs of (5.7) is positive. If blowup occurs,

such that AvHα(Γ(t)) → ∞ as t ↗ T ∗, the above considerations necessitate the
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choice of values of ξ (whose reciprocal determines the energy scale) tending to zero
as t↗ T ∗.

Thus, for ξ1 > 0 sufficiently small,

‖Rλ,tΓ(0) ‖Hαξ1 ≤ ‖Γ(t) ‖Hα
ξ>(ξ1,t,λ)

(5.10)

Due to Theorem 3.1, we may pick 0 < ξ2 = ηξ1 � ξ1 < 1, such that there exists a
solution Rλ,tγ(k)(τ) ∈ Hαξ2 if τ ∈ [0, τmax], for τmax > 0 sufficiently small.

But this implies that

‖Γ(t+ (λ(t))−2τ) ‖Hα
ξ<(ξ2,t,λ)

≤ ‖Rλ,tΓ(τ) ‖Hαξ2 < ∞ (5.11)

for τ ∈ [0, τmax] so that there is no blowup if τ lies in that interval. Therefore, the
blowup time T ∗ is bounded from below by

T ∗ > t+ (λ(t))−2τmax , (5.12)

and hence,

( AvHα(Γ(t)) )
1
2 = λ(t)(α− d2 + 2

p ) >
C

|T ∗ − t|(2α−d+ 4
p )/4

. (5.13)

This proves (a).

Proof of statement (b).

It is easy to see that∥∥∥Rλ,tγ(k)(τ)
∥∥∥
Lr
xk,x

′
k

= (λ(t))−2k( 2
p−

d
r ) ‖ γ(k)(t+ (λ(t))−2τ) ‖Lr

xk,x
′
k

, (5.14)

which, in turn, implies that

‖Rλ,tγ(k)(0) ‖Lrξ =
∑
k≥1

ξk
∥∥∥Rλ,tγ(k)(0)

∥∥∥
Lr
xk,x

′
k

=
∑
k≥1

ξk (λ(t))−2k( 2
p−

d
r ) ‖ γ(k)(t) ‖Lr

xk,x
′
k

=
∑
k≥1

(
ξ

(λ(t))( 4
p−

2d
r )

)k
‖ γ(k)(t) ‖Lr

xk,x
′
k

. (5.15)

However (5.15) is bounded for every ξ < 1, if we choose

λ(t) = ( AvLr (Γ(t)) )
1

4
p
− 2d
r . (5.16)

Now we argue as in the proof of the part (a) by using the local well-posedness
Theorem 3.1 to conclude that the Hα blowup time T ∗ is bounded from below by

T ∗ > t+ (λ(t))−2τmax . (5.17)

Therefore

( AvLr (Γ(t)) )
1
2 = λ(t)( 2

p−
d
r ) >

C

|T ∗ − t|
1
p−

d
2r
. (5.18)

Hence (b) is proved. �
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6. Proof of pseudoconformal invariance

In this section, we prove Theorem 2.9. We recall the pseudoconformal transfor-
mations

Pγ(k)(t, xk;x′k)

:=
1

(1 + bt)dk
e−i

b(|xk|
2−|x′k|

2)
1+bt γ(k)

( 1
1 + bt

,
xk

1 + bt
;

x′k
1 + bt

)
, (6.1)

for any b ∈ R \ {0}. Similarly as in the case of NLS, one can verify that

(i∂t + ∆xk
−∆x′k

)Pγ(k)(t, xk;x′k) (6.2)

=
1

(1 + bt)2

1
(1 + bt)dk

e−i
b(|xk|

2−|x′k|
2)

1+bt

((i∂t + ∆xk
−∆x′k

)γ(k))
( 1

1 + bt
,

xk
1 + bt

;
x′k

1 + bt

)
.

Now we shall prove the pseudoconformal invariance of the quintic GP hieararchy
when d = 1. In particular, we find that

B1
j;k+1,k+2Pγ(k+2)(t, xk;x′k)

=
1

(1 + bt)d(k+2)
e−i

b(|xk|
2−|x′k|

2)
1+bt

∫
dxk+1dxk+2dx

′
k+1dx

′
k+2

δ(xj − xk+1)δ(xj − x′k+1)δ(xj − xk+2)δ(xj − x′k+2)

γ(k)
( 1

1 + bt
,

(xk, xk+1, xk+2)
1 + bt

;
(x′k, x

′
k+1, x

′
k+2)

1 + bt

)
(6.3)

=
1

(1 + bt)2d

1
(1 + bt)dk

e−i
b(|xk|

2−|x′k|
2)

1+bt

γ(k)
( 1

1 + bt
,

(xk, xj , xj)
1 + bt

;
(x′k, xj , xj)

1 + bt

)
, (6.4)

=
1

(1 + bt)2d

1
(1 + bt)dk

e−i
b(|xk|

2−|x′k|
2)

1+bt

B1
j;k+1,k+2γ

(k+2)
( 1

1 + bt
,

xk
1 + bt

;
x′k

1 + bt

)
(6.5)

withBj;k+1,k+2 = B1
j;k+1,k+2−B2

j;k+1,k+2; inB2
j;k+1,k+2, the variable xj inB1

j;k+1,k+2

is replaced by x′j . Notably, we have used that

e−i
b((x2k+1+x2k+2)−(x′2k+1+x′2k+2))

1+bt

∣∣∣
xk+1=xk+2=x′k+1=x′k+2=xj

= 1 . (6.6)
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Thus, when d = 1, we obtain(
(i∂t + ∆xk

−∆x′k
)Pγ(k) − µ

k∑
j=1

Bj;k+1,k+2Pγ(k+2)
)

(t, xk;x′k)

=
1

(1 + bt)2

1
(1 + bt)dk

e−i
b(|xk|

2−|x′k|
2)

1+bt

(
(i∂t + ∆xk

−∆x′k
)γ(k) − µ

k∑
j=1

Bj;k+1,k+2γ
(k+2)

)( 1
1 + bt

,
xk

1 + bt
;

x′k
1 + bt

)
= 0 (6.7)

if d = 1. This proves pseudoconformal invariance of the quintic GP hierarchy in
dimension d = 1.

For the cubic GP hierarchy, the operators Bj;k+1,k+2 are replaced by operators
Bj;k+1 which contract xj , x′j only with xk+1 and x′k+1,

(i∂t + ∆xk
−∆x′k

)γ(k) − µ
k∑
j=1

Bj;k+1γ
(k+1) = 0 . (6.8)

The same considerations as above then produce(
(i∂t + ∆xk

−∆x′k
)Pγ(k) − µ

k∑
j=1

Bj;k+1Pγ(k+1)
)

(t, xk;x′k)

=
1

(1 + bt)2

1
(1 + bt)dk

e−i
b(|xk|

2−|x′k|
2)

1+bt

(
(i∂t + ∆xk

−∆x′k
)γ(k) − µ

k∑
j=1

Bj;k+1γ
(k+1)

)( 1
1 + bt

,
xk

1 + bt
;

x′k
1 + bt

)
= 0 (6.9)

if d = 2. This proves Theorem 2.9. �
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Appendix A. The Klainerman-Machedon spacetime bounds

We present the Klainerman-Machedon spacetime bounds in dimensions d ≥ 2
in the form required for this paper, with α ∈ A(d, p); see (2.14). In the regime
α > d

2 −
1

2(p−1) , we present a simple argument to prove the result. In the endpoint
case (d, p) = (3, 2) and α = 1, we invoke a result of [14].

Proposition A.1. Let p = 2, 4 account for the cubic and quintic GP hierarchy,
respectively, and assume that α ∈ A(d, p). Let γ(k+ p

2 ) be the solution of

i∂tγ
(k+ p

2 )(t, xk+ p
2
;x′k+ p

2
) + (∆xk+ p2

−∆x′
k+ p2

)γ(k+ p
2 )(t, xk+ p

2
;x′k+ p

2
) = 0 (A.1)

with initial condition

γ(k+ p
2 )(0, · ) = γ

(k+ p
2 )

0 ∈ Hα . (A.2)

Then, there exists a constant C such that∥∥∥S(k,α)Bj;k+1,...,k+ p
2
γ(k+ p

2 )
∥∥∥
L2(R×R2(k+ p2 )×R2(k+ p2 ))

≤ C
∥∥∥S(k+ p

2 ,α)γ
(k+ p

2 )
0

∥∥∥
L2(R2(k+ p2 )×R2(k+ p2 ))

(A.3)

holds.

Proof. For notational convenience, we discuss the proof for the quintic GP hierarchy
where p = 4.

Let (τ, uk, u
′
k), q := (q1, q2), and q′ := (q′1, q

′
2) denote the Fourier conjugate

variables corresponding to (t, xk, x
′
k), (xk+1, xk+2), and (x′k+1, x

′
k+2), respectively.

Without any loss of generality, we may assume that j = 1 in Bj;k+1,k+2. Then,
abbreviating

δ(· · · ) := δ( τ + (u1 + q1 + q2 − q′1 − q′2)2 +
k∑
j=2

u2
j + |q|2 − |u′k|2 − |q′|2 ) (A.4)

we find∥∥∥S(k,α)B1;k+1,k+2γ
(k+2)

∥∥∥2

L2(R×Rd(k+2)×Rd(k+2))

=
∫

R
dτ

∫
dukdu

′
k

k∏
j=1

〈
uj
〉2α〈

u′j
〉2α (A.5)

( ∫
dqdq′ δ(· · · )γ̂(k+2)(τ, u1 + q1 + q2 − q′1 − q′2, u2, . . . , uk, q;u′k, q

′)
)2

.

Using the Schwarz estimate, this is bounded by

≤
∫

R
dτ

∫
dukdu

′
k Iα(τ, uk, u

′
k)
∫
dqdq′ δ(· · · )

〈
u1 + q1 + q2 − q′1 − q′2

〉2α〈
q1

〉2α〈
q2

〉2α〈
q′1
〉2α〈

q′2
〉2α k∏

j=2

〈
uj
〉2α k∏

j′=1

〈
u′j′
〉2α

∣∣∣ γ̂(k+2)(τ, u1 + q1 + q2 − q′1 − q′2, u2, . . . , uk, q;u′k, q
′)
∣∣∣2 (A.6)
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where

Iα(τ, uk, u
′
k) (A.7)

:=
∫
dq dq′

δ(· · · )
〈
u1

〉2α〈
u1 + q1 + q2 − q′1 − q′2

〉2α〈
q1

〉2α〈
q2

〉2α〈
q′1
〉2α〈

q′2
〉2α .

Similarly as in [14, 15], we observe that〈
u1

〉2α ≤ C
[ 〈
u1 +q1 +q2−q′1−q′2

〉2α+
〈
q1

〉2α+
〈
q2

〉2α+
〈
q′1
〉2α+

〈
q′2
〉2α ]

, (A.8)

so that

Iα(τ, uk, u
′
k) ≤

5∑
`=1

J` (A.9)

where J` is obtained from bounding the numerator of (A.7) using (A.8), and from
canceling the `-th term on the rhs of (A.8) with the corresponding term in the
denominator of (A.7). Thus, for instance,

J1 <

∫
dq dq′

δ(· · · )〈
q1

〉2α〈
q2

〉2α〈
q′1
〉2α〈

q′2
〉2α , (A.10)

and each of the terms J` with ` = 2, . . . , 5 can be brought into a similar form by
appropriately translating one of the momenta qi, q′j .

Further following [14, 15], we observe that the argument of the delta distribution
equals

τ + (u1 + q1 + q2 − q′1)2 +
k∑
j=2

u2
j + |q|2 − |u′k|2 − (q′1)2 − 2(u1 + q1 + q2 − q′1) · q′2 ,

and we integrate out the delta distribution using the component of q′2 parallel to
(u1 + q1 + q2 − q′1). This leads to the bound

J1 < CαC

∫
dqdq′1

1

|u1 + q1 + q2 − q′1|
〈
q1

〉2α〈
q2

〉2α〈
q′1
〉2α (A.11)

where

Cα :=
∫

R

dζ〈
ζ
〉2α . (A.12)

Clearly, Cα is finite for any α > 1
2 . Moreover, it is clear that J1 is monotonically

decreasing in α.

For the cubic GP hierarchy, the above arguments lead to the condition that
instead of (A.11), the integral∫

dq1
1

|u1 + q1|
〈
q1

〉2α (A.13)

must be bounded.

Proof for α > d
2 −

1
2(p−1) .

We first consider the case p = 4 corresponding to the quintic GP hierarchy, and
argue as follows. To bound (A.11), we pick a spherically symmetric function h ≥ 0
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with rapid decay away from the unit ball in Rd, such that h∨(x) ≥ 0 decays rapidly
outside of the unit ball in Rd, and

1〈
q
〉2α < h ∗

(
χB1 +

χcB1

| · |2α
)

(q) . (A.14)

(for example, h(u) = c1e
−c2u2

, for suitable constants c1, c2), where χB1 + χcB1
= 1

is a smooth partition of unity with χB1 supported on the unit ball, with χB1(u) = 1

for |u| ≤ 1
2 , and χB1(u) = 0 for |u| > 1

2 . Clearly, h ∗ χB1 and h ∗ χcB1
| · |2α are both in

L∞, for any α > 0.

Then, assuming that α < d
2 , inserting this into (A.11), the most singular part is

given by

CαC
〈( 1
| · |
∗ (h ∗

χcB1

| · |2α
)
)
∗ (h ∗

χcB1

| · |2α
) , (h ∗

χcB1

| · |2α
)
〉
L2(Rd)

= CαC

∫
dx
( χcB1

| · |

)∨
(x)
(

(h ∗
χcB1

| · |2α
)∨(x)

)3

= CαC
′
∫
dx

1
|x |d−1

(h∨(x))3
((

(χcB1
)∨ ∗ 1

| · |d−2α

)
(x)
)3

< CαC
′
∫
dx

1
|x |d−1

(h∨(x))3
( 1
|x |d−2α

)3

. (A.15)

For sufficiently large C ′, this is an upper bound on all of the remaining terms that
are obtained from substituting the bound (A.14) into (A.11). We have here used
that (χcB1

)∨ = 1∨−χ∨B1
= δ−χ∨B1

, so that |((χcB1
)∨ ∗ 1

| · |d−2α )(x)| ≤ C 1
|x|d−2α holds

for α < d
2 .

We conclude that (A.15) is finite provided that the singularity at x = 0 is
integrable, since h∨(x) falls off rapidly as |x| → ∞. In dimension d, this is the case
if the exponents in the denominator satisfy

d− 1 + 3d − 6α < d , (A.16)

such that

α >
d

2
− 1

6
. (A.17)

This proves the claim for the quintic GP hierarchy, i.e., for p = 4. In order to prove
the lower bound (A.17) on α, we have assumed that α < d

2 , which is consistent
with it. Now, since J1 is monotonically decreasing in α, we arrive at the asserted
result.

For the cubic GP hierarchy, the same considerations lead to the condition that
(A.11) < ∞ if α > d

2 −
1
2 . For a general p-GP hierarchy, one obtains the condition

α > d
2 −

1
2(p−1) .

The case α = 1 for the cubic GP hierarchy in d = 3.

In the situation d = 3 and p = 2 of the cubic GP hierarchy in 3 dimensions,
we have the endpoint case d

2 −
1

2(p−1) = 1. Klainerman and Machedon have proven
in [14] that (A.7) is bounded in this case. �
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Next, we prove the iterated spacetime estimates for the cubic GP hierarchy used
in Section 3, which involve the ”boardgame estimates” of [14], which are motivated
by the Feynman graph techniques in [7, 8, 9]. The corresponding results for the
quintic GP hierarchy are obtained in an analogous manner, and we refer to [5] for
details.

Proposition A.2. Assume α as in Proposition A.1, for the cubic GP hierarchy
(p = 2). Then, for k ≥ 1 and j ≤ k, and t ∈ I = [0, T ],

‖BkDuhj(Γ0)(k+1)(t) ‖L2
t∈IH

α < kCk(cT )
j
2 ‖γ(k+j+1)

0 ‖Hα . (A.18)

Moreover,

‖Bk+1Duhk(B̂Γ)(k+1) ‖L2
t∈IH

α < kCk(cT )
k
2 ‖ (B̂γ)(2k) ‖Hα . (A.19)

Proof. Let I = [0, T ]. Using an argument presented as a “board game”, it is proven
in [14] that the following holds.

Let Ej,k+1 denote the space of sequences µ
s

= (µs(1), . . . , µs(j)) where µ(i) ∈
{1, . . . , k+ i}, where for every i ∈ {1, . . . , j}, one has µ(i) ≥ µ(i′) for all i′ > i. The
elements of Ej,k+1 parametrize (k+j)×j matrices in so-called “special upper echelon
form” (see [14] for definitions). The cardinality of this set satisfies |Ej,k+1| ≤ Cj+k.

For every µ
s
∈ Ej,k+1, one associates the term

( Duhj(Γ0)(k+1)(t) )µ
s

:=
∫
Ij
dt1 · · · dtjei(t−t1)∆

(k+1)
± Bµ(1),k+2e

i(t1−t2)∆
(k+2)
±

· · ·Bµs(j−1),k+je
i(tj−1−tj)∆(k+j)

± Bµs(j),k+j+1γ
(k+j+1)
0 . (A.20)

Notably, the integration domain Ij for the variables ti is not a simplex, in contrast
to what is found in Duhj(Γ0)(k+1)(t). Then, it is proven in [14] that

‖Bk+1Duhj(Γ0)(k+1)(t) ‖L2
t∈IH

α

≤
∑

µ
s
∈Ej,k+1

‖Bk+1( Duhj(Γ0)(k+1)(t) )µ
s
‖L2

t∈IH
α . (A.21)

For the proof of (A.21) in the case of the cubic GP hierarchy, we refer to [14]. For
the case of the quintic GP hierarchy, we refer to [5].
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Using Proposition A.1, we have, under the given assumptions on α,

‖Bk+1( Duhj(Γ0)(k+1)(t) )µ
s
‖L2

t∈IH
α

≤
k∑
`=1

∥∥∥B`,k+1e
it∆

(k+1)
±

∫
Ij
dt1 · · · dtje−it1∆

(k+1)
± Bµs(1),k+2e

i(t1−t2)∆
(k+2)
±

· · ·Bµs(j−1),k+je
i(tj−1−tj)∆(k+j)

± Bµs(j),k+j+1γ
(k+j+1)
0

∥∥∥
L2
t∈IH

α

≤ k

∫
Ij
dt1 · · · dtj

∥∥∥Bµs(1),k+2e
i(t1−t2)∆

(k+2)
±

· · ·Bµs(j−1),k+je
i(tj−1−tj)∆(k+j)

± Bµs(j),k+j+1γ
(k+j+1)
0

∥∥∥
Hα

(A.22)

≤ k (cT )
1
2

∫
Ij−1

dt2 · · · dtj
∥∥∥Bµs(1),k+2e

i(t1−t2)∆
(k+2)
± · · ·

· · ·Bµs(j−1),k+je
i(tj−1−tj)∆(k+j)

± Bµs(j),k+j+1γ
(k+j+1)
0

∥∥∥
L2
t1∈I

Hα
(A.23)

≤ · · ·

≤ k(cT )
j−1
2

∫
I

dtj

∥∥∥Bµs(j−1),k+je
i(tj−1−tj)∆(k+j)

± Bµs(j),k+j+1γ
(k+j+1)
0

∥∥∥
L2
tj−1∈I

Hα
(A.24)

≤ k(cT )
j−1
2

∫
I

dtj

∥∥∥Bµs(j),k+j+1e
itj∆

(k+j+1)
± e−itj∆

(k+j+1)
± γ

(k+j+1)
0

∥∥∥
Hα

≤ k(cT )
j
2

∥∥∥γ(k+j+1)
0

∥∥∥
Hα

(A.25)

where to obtain (A.22), we used Proposition A.1, and to obtain (A.23), we used the
Hölder estimate. Then, we iterated the above steps to obtain (A.24), and finally
obtained (A.25) by using Hölder, Proposition A.1, and the unitarity of e−itj∆

(k+j+1)
± .

Then, estimating by Cj+k the number of terms in the sum over µ
s
∈ Ej,k+1,

‖Bk+1Duhj(Γ0)(k+1)(t) ‖L2
t∈IH

α ≤ kCk(cT )
j
2 ‖γ(k+j+1)

0 ‖Hα , (A.26)

as claimed.

In the same manner, we prove (A.19) where we refer to [5] for details. �
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[12] J. Fröhlich, A. Knowles, S. Schwarz On the Mean-Field Limit of Bosons with Coulomb Two-
Body Interaction, Preprint arXiv:0805.4299.

[13] K. Hepp, The classical limit for quantum mechanical correlation functions, Comm. Math.

Phys. 35, 265–277 (1974).
[14] S. Klainerman, M. Machedon, On the uniqueness of solutions to the Gross-Pitaevskii hier-

archy, Commun. Math. Phys. 279, no. 1, 169–185 (2008).

[15] K. Kirkpatrick, B. Schlein, G. Staffilani, Derivation of the two dimensional nonlinear
Schrödinger equation from many body quantum dynamics, Preprint arXiv:0808.0505.

[16] E.H. Lieb, R. Seiringer, Proof of Bose-Einstein condensation for dilute trapped gases, Phys.

Rev. Lett. 88, 170409 (2002).
[17] E.H. Lieb, R. Seiringer, J.P. Solovej, J. Yngvason, The mathematics of the Bose gas and its

condensation, Birkhäuser (2005).
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