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Lattre De Tassigny. 75775 Paris Cedex 16 FRANCE.

E-mail: sere@ceremade.dauphine.fr

Abstract

The Bogoliubov-Dirac-Fock (BDF) model is the mean-field approxi-
mation of no-photon Quantum Electrodynamics. The present paper is
devoted to the study of the minimization of the BDF energy functional
under a charge constraint. An associated minimizer, if it exists, will usu-
ally represent the ground state of a system of N electrons interacting with
the Dirac sea, in an external electrostatic field generated by one or several
fixed nuclei. We prove that such a minimizer exists when a binding (HVZ-
type) condition holds. We also derive, study and interpret the equation
satisfied by such a minimizer.

Finally, we provide two regimes in which the binding condition is ful-
filled, obtaining the existence of a minimizer in these cases. The first
is the weak coupling regime for which the coupling constant α is small
whereas αZ and the particle number N are fixed. The second is the
non-relativistic regime in which the speed of light tends to infinity (or
equivalently α tends to zero) and Z, N are fixed. We also prove that
the electronic solution converges in the non-relativistic limit towards a
Hartree-Fock ground state.

1 Introduction

The relativistic quantum theory of electrons and positrons is based on the free
Dirac operator [14], which is defined by

D0 = −i~c
3∑

k=1

αk∂k +mc2β := −i~cα · ∇ +mc2β (1)

where α = (α1, α2, α3) and β =

(
I2 0
0 −I2

)
, αk =

(
0 σk
σk 0

)
,
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σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

We follow here mainly the notation of Thaller’s book [59]. In (1), ~ is Planck’s
constant, c is the speed of light and m is the mass of a free electron. For the sake
of simplicity, we shall use in the following a system of units such that ~ = m = 1.
Unless otherwise specified, we shall also assume that c = 1, in which case an
additional parameter will appear in front of the interaction potentials, α = e2,
where −e is the bare charge of a free electron.

The operator D0 acts on 4-spinors, i.e. functions ψ ∈ L2(R3,C4). It is self-
adjoint on L2(R3,C4), with domain H1(R3,C4) and form-domain H1/2(R3,C4).
Moreover, it is defined to ensure (D0)2 = −∆ + 1. The spectrum of D0 is
σ(D0) = (−∞,−1] ∪ [1,∞). In what follows, the projector associated with the
negative (resp. positive) part of the spectrum of D0 will be denoted by P 0

−

(resp. P 0
+):

P 0
− := χ(−∞,0)(D

0), P 0
+ := χ(0,+∞)(D

0).

We then have D0P 0
− = P 0

−D
0 = −|D0|P 0

− and D0P 0
+ = P 0

+D
0 = |D0|P 0

+.
Compared with the non-relativistic (Schrödinger) models in which −∆/2

appears instead of D0, the main unusual feature of the relativistic theories is
that σ(D0) is not bounded from below. Indeed the free Dirac operator (1) was
proposed by Dirac in 1928 [14] to describe the energy of a free relativistic spin-
1/2 particle like an electron. In order to explain why negative energy electrons
are never observed, Dirac made the assumption [15, 16, 17] that the vacuum is
filled with infinitely many virtual electrons occupying all the negative energy
states so that, due to the Pauli principle, a physical free electron cannot have a
negative energy. This model is commonly called the Dirac sea. Mathematically,
the free vacuum is identified with the projector P 0

−.
With this interpretation, Dirac was able to conjecture the existence of the

positron (the anti-electron, which has a positive charge), which is seen as a hole
in the vacuum and was discovered in 1932 by Anderson [1]. He also predicted
interesting new physical features as a consequence of his theory [15, 16, 17],
which were experimentally confirmed later. First, the virtual electrons of the
Dirac sea can feel an external field and they will react to this field accordingly,
i.e. the vacuum will become polarized. From the experimental viewpoint, vac-
uum polarization plays a rather small role for the calculation of the Lamb shift
of hydrogen but it is important for high-Z atoms [44] and it is even a crucial
physical effect for muonic atoms [22, 24]. Second, in the presence of strong
external fields, the vacuum can acquire a nonzero charge, a phenomenon which
is related to the spontaneous creation of electron-positron pairs [45, 47, 48, 49].

On the other hand, many models which are commonly used to describe rela-
tivistic particles do not take the vacuum polarization effects into account. This
is for instance the case of the (mean-field) Dirac-Fock theory which is the rela-
tivistic counterpart of the well-known Hartree-Fock model and was proposed by
Swirles [58]. The Dirac-Fock model suffers from an important defect: the corre-
sponding energy is not bounded from below, contrary to the Hartree-Fock case,
and this leads to important computational difficulties (see [9] for a discussion
and detailed references). From the mathematical viewpoint, one can prove that
the Dirac-Fock functional has critical points which are solutions of the Dirac-
Fock equations [19, 46], but these critical points have an infinite Morse index,
and the rigorous definition of a ground state is delicate [20, 21].
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It was proposed by Chaix and Iracane [10] that these difficulties could be
overcome by incorporating the vacuum polarization effects in the theory, i.e.
by considering the coupled system ‘Dirac sea + real electrons’ instead of the
electrons alone. Starting from Quantum Electrodynamics (QED) and neglecting
photons, they derived a model called Bogoliubov-Dirac-Fock (BDF), in which
the real particles are coupled to the Dirac sea. The main advantage of this
theory is that the energy of the model is now bounded below, leading to a clear
definition of the ground state.

The Chaix-Iracane model was first mathematically studied in the free case
by Chaix, Iracane and Lions in [11] and then by Bach, Barbaroux, Helffer and
Siedentop in [4]. The external field case was rigorously defined and studied by
the authors of the present paper in [27, 28]. Chaix and Iracane derived their
functional under Dirac’s assumption that without external field the vacuum is
given by P 0

−. This choice is not physically correct: it corresponds to neglecting
the interaction between the virtual electrons. This deficiency was recently over-
come by Hainzl, Lewin and Solovej [29] who used a thermodynamic limit applied
to the QED Hamiltonian restricted to Hartree-Fock states (mean-field approxi-
mation), in order to define the free vacuum. Doing so, they obtained a slightly
different translation-invariant projector P0

−, solution of a certain self-consistent
equation. Then, they showed by the same thermodynamic limit procedure that
in the external field case the BDF model should better rely on this new free
vacuum instead of Dirac’s choice P 0

− used by Chaix and Iracane. Note that the
projector P0

− had been constructed earlier by Lieb and Siedentop [40], but the
existence proof and the physical interpretation were different.

The Bogoliubov-Dirac-Fock model is a very promising theory: it is well-
justified physically, it is better behaved than the usual Dirac-Fock model and
it leads to new mathematical problems which are interesting in themselves. In
particular, a state of the system always contains infinitely many particles (the
real and the virtual ones). This property which raises serious mathematical
difficulties is shared with other quantum models, to which a similar study could
be applied.

The purpose of the present paper is to continue the study which was started
in [27, 28, 29]. In the BDF model, the state of the system is represented by an
orthogonal projector of infinite rank

P =
∑

i≥1

|ϕi〉〈ϕi|,

where (ϕi)i≥1 is an orthonormal basis of Ran(P ). The projector P should
be seen as the one-body density matrix of the following formal wavefunction
depending on infinitely many variables

Ψ = ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕi ∧ · · · , (2)

which is a kind of infinite Hartree-Fock state. Here ∧ denotes the usual wedge
product of functions in L2(R3,C4). The projector P represents the whole system
consisting of both the real and the virtual particles of the Dirac sea, but there is
no distinction between them a priori. It is only for the solution of the problem
that the real particles will be identified and separated from the virtual ones. The
BDF energy Eν is a nonlinear functional of the variable P , which is bounded
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below on an appropriate set which will be defined later. The expression of Eν
depends on a fixed external charge density ν.

In [27, 28], we proved the existence of a global minimizer of the BDF energy,
interpreted as the polarized vacuum in the electrostatic field V = −αν ∗ | · |−1

created by the external density ν. Here α = e2 is the bare coupling constant
and −e is the bare charge of an electron. The density ν has no sign a priori but
when ν ≥ 0, one may think of it as the density of a system of nuclei. In this
paper we study the minimization of Eν under the constraint that the charge
of our state P is equal to −eN where N is some integer. Of course the total
charge of a state of the form (2) is formally infinite since Ψ represents infinitely
many negatively charged particles. But one can define the difference between
the charge of P and the (infinite) charge of the free vacuum. It is this difference
which is fixed to −eN . A precise definition will be given below.

This charge constrained minimization problem is much more delicate than
the global minimization of [27, 28]. When ν ≥ 0 and N > 0, a minimizer in the
−eN charge sector will usually represent the state of N electrons interacting
with the polarized vacuum and the external field V = −αν ∗ | · |−1. As usual for
Hartree-Fock type theories [41, 38, 43], one does not expect that this minimizer
will always exist. Indeed, if ν is not strong enough to bind the N electrons
together with the polarized vacuum, there should be no minimizer. On the
other hand, if ν is too strong, some electron-positron pairs could be created.

Let us denote by Eν(N) the infimum of the BDF energy Eν in the charge
sector −eN and in the presence of the external density ν (a precise definition will
be given in Section 2.3.1). Our main result (Theorem 1) will be the statement
that all the minimizing sequences for Eν(N) are precompact if and only if a
HVZ-type inequality holds:

∀K ∈ Z \ {0}, Eν(N) < Eν(N −K) + E0(K). (3)

Inequalities like (3) are very common in the study of linear [32, 62, 63, 26]
and nonlinear [42, 43] systems. Assume N > 0 for simplicity. Then Eν(N)
is the infimum of the energy of a system of N electrons coupled to the Dirac
sea. When 0 < K ≤ N , (3) means that it is not favorable to let K electrons
escape to infinity, while keeping N −K electrons near the nuclei. When K < 0,
it means that it is not favorable to let |K| positrons escape to infinity, while
keeping N+ |K| electrons near the nuclei. When K > N , it means that it is not
favorable to let K electrons escape to infinity, while keeping K − N positrons
near the nuclei. When α is small enough and N > 0, it will be shown that the
separation of electron-positron pairs is not energetically favorable, so that one
just needs to check (3) for K = 1, 2, ..., N .

From a mathematical point of view, proving the compactness of minimizing
sequences assuming (3) is a subtle task. Indeed, the fact that our main variable
P is a projector of infinite rank complicates a lot the study of minimizing se-
quences, for instance compared to the Hartree-Fock case [41, 43] in which only
finitely many particles are described. In particular, it is not obvious at all to
localize our state P in space in order to decouple the electrons staying close to
the nuclei from those which escape to infinity. These complications are conse-
quences of the vacuum effects. Similar issues are encountered in the study of
other models describing systems of infinitely many particles. It is our hope that
this work will provide a better understanding of these other models too.
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When (3) holds, there exists a minimizer in the charge sector −eN . This is
an orthogonal projector P satisfying some nonlinear equation of the form

P = χ(−∞,µ]

(
D0 − αν ∗ | · |−1 + VP

)
(4)

where VP is an operator depending on P itself and µ is a Lagrange multiplier
associated with the charge constraint, interpreted as a chemical potential. The
same equation was obtained in [27, 28, 29] for the vacuum case (global mini-
mization), but with µ = 0. When the external density ν is not too strong and
N > 0, then it will hold µ > 0 and the operator D0 −αν ∗ | · |−1 + VP will have
exactly N eigenvalues (counted with their multiplicity) in (0, µ]. In this case P
can be written

P = χ(−∞,0]

(
D0 − αν ∗ | · |−1 + VP

)
+ χ(0,µ]

(
D0 − αν ∗ | · |−1 + VP

)

:= Pvac +

N∑

n=1

|ϕn〉〈ϕn|. (5)

Formula (5) allows to distinguish the “real” electrons (represented by the or-
bitals (ϕn)Nn=1) from the self-consistent polarized vacuum Pvac. As explained
in Section 2.3.1, the orbitals (ϕ1, ..., ϕN ) are solutions of a Dirac-Fock type
system of equations [19], in which the mean-field operator is perturbed by the
self-consistent vacuum polarization potentials.

In the present work, we shall provide two regimes in which the condition
(3) holds, and therefore for which a BDF minimizer exists in the charge sector
−eN . The first is the weak coupling regime in which the coupling constant
α ≪ 1, but αν (hence αZ) and N are both fixed (Theorem 2). The second is
the nonrelativistic regime c≫ 1 with ν and N fixed (Theorem 3). In the latter
case, we also prove that the N orbitals (ϕ1, ..., ϕN ) of (5) converge to a ground
state of the nonrelativistic Hartree-Fock functional [41, 43] as c→ ∞. A similar
result was already obtained by Esteban and Séré in the Dirac-Fock case [20].

The paper in organized as follows. In the first section, we define properly
the model and state our main results. Section 3 is devoted to the proof of some
preliminary results which will be needed throughout the paper. The last three
sections are then devoted to the proofs of Theorems 1, 2 and 3.

Acknowledgement. The authors acknowledge support from the European
Union’s IHP network Analysis & Quantum HPRN-CT-2002-00277. M.L. and
E.S. acknowledge support from the project “ACCQUAREL” NT05-4 44652
funded by the French National Research Agency GIP-ANR.

2 Model and main results

2.1 The mean-field approximation in no-photon QED

We start by recalling briefly the physical meaning of the model, as explained in
[29]. As mentioned in the introduction, the state of our system is represented by
an infinite-rank orthogonal projector P , which is seen as the density matrix of an
infinite Hartree-Fock state (2). We recall that although P should be interpreted
as the state of the coupled system ‘real particles + vacuum’, there is no canonical
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distinction between the real and virtual particles a priori. For N electrons, this
would correspond to a decomposition of the form P = Pvac + γ where γ is an
orthogonal projector of rank N satisfying Pvacγ = γPvac = 0 (for N positrons,
this becomes P = Pvac − γ). There are infinitely many such decompositions for
a given P and a given N . But for the solution of our equation, a particular
decomposition may be chosen in a natural way.

The energy of the system in the Hartree-Fock state P can be deduced from
the QED Hamiltonian formalism in Coulomb gauge and neglecting photons, see
[29]. The energy functional is formally

P 7→ EνQED(P − 1/2) (6)

where

EνQED(Γ) := tr(D0Γ) +

∫

R3

V (x)ρΓ(x) dx

+
α

2

∫∫

R3×R3

ρΓ(x)ρΓ(y)

|x− y| dx dy − α

2

∫∫

R3×R3

|Γ(x, y)|2
|x− y| dx dy, (7)

V = −αν ∗|· |−1 being the external electrostatic potential created by the density
of charge ν. If ν ≥ 0 it can for instance represent a system of nuclei in a molecule,
but in most of the results of this paper the sign of ν needs not be fixed. Also
we shall not allow pointwise nuclei and ν will essentially be an L1

loc function.
It is a well known phenomenon in QED that pointwise nuclei create spurious
divergences (see e.g., [35]). But the regularity assumption on ν is not really a
restriction from the point of view of physics: point-like nuclei do not exist in
nature. In (7), ρΓ is the density defined formally as ρΓ(x) = trC4(Γ(x, x)), and
α is the bare coupling constant, α = e2.

In QED, a global minimizer of P 7→ EνQED(P − 1/2) represents the vacuum,
whereas other types of states (for N electrons for instance) are obtained by
minimizing this functional with a charge constraint. The charge is formally
defined as

−e
∫

R3

ρ[P−1/2](x) dx “ = ” (−e) tr(P − 1/2). (8)

The subtraction of half the identity in (6) and (8) is a kind of renormalization
which was introduced by Heisenberg [31] and has been widely used by Schwinger
(see [53, Eq. (1.14)], [54, Eq. (1.69)] and [55, Eq. (2.3)]) as a necessity for a
covariant formulation of QED.

Of course, the expression of the mean-field QED energy (7) is purely formal:
if P is an orthogonal projector in infinite dimension, P − 1/2 is never compact
and therefore EνQED(P − 1/2) is not well defined. Even the density of charge
ρ[P−1/2] is not a well defined object. For this reason, it was proposed in [29] to
use a thermodynamic limit in order to give a rigorous meaning to the minimiza-
tion of (7): the idea is to define the model in a bounded domain in space, and
a cut-off Λ in Fourier space. This was done in [29] in a box CL = [−L/2;L/2)3

with periodic boundary conditions, and cutting the Fourier expansion outside a
ball of radius Λ. Then, the minimization in CL makes perfectly sense (L2(R3,C4)
has been replaced by a finite-dimensional space), and one can study the limit
of the sequence of minimizers when L→ ∞.

In [29], this technique was used to define properly the free vacuum and
justify the validity of the BDF functional. Notice that the ultraviolet cut-off Λ

6



is fixed and will not be removed: it is well-known that QED contains problematic
ultraviolet divergences which are difficult to deal with. We therefore introduce
the following functional space

HΛ :=
{
f ∈ L2(R3,C4), supp(f̂) ⊂ B(0,Λ)

}
.

Notice that HΛ is contained in the domain H1(R3,C4) of D0, and that D0HΛ =
HΛ. In the following, we still denote by D0 its restriction to HΛ. Taking ν = 0 in
(7) (free case) and studying the thermodynamic limit L→ ∞, the free vacuum
was obtained in [29]. It is a translation-invariant projector P0

− satisfying the
Euler-Lagrange equation





P0
− = χ(−∞,0)

(
D0
)
,

D0 = D0 − α
(P0

− − 1/2)(x, y)

|x− y| .
(9)

The operator D0 which appears in (9) is a translation-invariant operator taking
the following special form [40, 29], in the Fourier space,

D0(p) = α · ωp g1(|p|) + g0(|p|)β, ωp = p/|p|. (10)

Here g1 and g0 are real and smooth functions satisfying

x ≤ g1(x) ≤ x g0(x). (11)

Note the self-consistent equation (9) was already solved by Lieb and Siedentop
[40], but their interpretation was not variational. They used a fixed point ap-
proach valid when α log Λ < C. In [29], the free vacuum P0

− solution of (9) is
constructed as a minimizer of the energy per unit volume for any value of the
ultraviolet cut-off Λ, and under the condition 0 ≤ α < 4/π. This last inequality
is related to Kato’s inequality |x|−1 ≤ π/2|∇|. Hence, in the whole paper we
shall assume that 0 ≤ α < 4/π. We use the following notation P0

+ = 1 − P0
−.

The mean-field approximation in no-photon QED is therefore very close
to the original Dirac’s picture of the free vacuum, the latter being described
as an infinite rank spectral projector associated with the negative spectrum
of a translation-invariant Dirac-type operator. However, it does not correspond
exactly to the original ideas of Dirac: when α 6= 0, P0

− is different from P 0
−. Even

the free vacuum P0
− is solution of a complicated nonlinear equation (9). This

is because the interaction between the virtual particles is taken into account,
similarly to the real ones. The Dirac picture is only recovered in the non-
interacting case α = 0.

It is important physically that the so-obtained free vacuum is invariant by
translations. This means that the density of charge ρ[P0

−
−1/2] is (formally)

constant. More precisely, the subtraction of half the identity allows to obtain a
vanishing density, ρ[P0

−
−1/2] ≡ 0. By (10), we have

P0
−(p) − 1/2 = −g1(|p|)α · ωp + g0(|p|)β

2
√
g1(|p|)2 + g0(|p|)2

,

from which we infer that trC4 [(P0
− − 1/2)(p)] = 0 for any p ∈ B(0,Λ), the

Pauli matrices being trace-less. Thus the (constant) density of charge of the
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free vacuum vanishes:

ρ[P0
−
−1/2] ≡ (2π)−3

∫

B(0,Λ)

trC4(P0
−(p) − 1/2) dp = 0.

This formally means that

“ tr
(
P0
− − 1/2

)
=

∫

R3

ρ[P0
−
−1/2](x) dx = 0 ” (12)

and therefore that the free vacuum is not charged.
As a consequence of (10), the spectrum of D0 is

σ(D0) =
{
±
√
g0(|p|)2 + g1(|p|)2, p ∈ B(0,Λ)

}
.

It has a gap which is greater than the one of D0, by (11):

1 ≤ m(α) := min σ(|D0|). (13)

In Lemma 19 below, we shall prove that when α ≪ 1, then m(α) = g0(0). We
conjecture that this is true for any 0 ≤ α < 4/π. Notice that the following
expansion is known [40, 29]: g0(0) = 1 + α

π arcsinh(Λ) + O(α2).

Once the free vacuum is defined, in the external field case ν 6= 0 one can
measure the energy of any state P with respect to the (infinite) energy of the
free vacuum P0

−. The Bogoliubov-Dirac-Fock energy is formally defined as

“ Eν(P − P0
−) = EνQED(P − 1/2)− E0

QED(P0
− − 1/2) (14)

= tr
(
D0Q

)
+

∫

R3

V (x)ρQ(x)dx +
α

2

∫∫

R3×R3

ρQ(x)ρQ(y)

|x− y| dx dy

−α
2

∫∫

R3×R3

|Q(x, y)|2
|x− y| dx dy ”,

where we have introduced Q = P −P0
− = (P − 1/2)− (P0

− − 1/2) and used the
definition of the self-consistent free Dirac operator D0, see (10). This functional
has been mathematically defined and studied in [27, 28], but with P 0

− as refer-
ence. In [29], it was proved that any sequence of global minimizers of the full
QED energy in a finite box of size L converges (up to a subsequence) to a global
minimizer of the BDF functional as L → ∞, justifying the formal derivation
(14). Notice that by (12), the total charge of our state is now formally given by

“ − e tr(P − 1/2) = −e tr(Q) = −e tr(P − P0
−)”.

In the next section, we define properly the BDF functional Eν and recall its
main properties proved in [27, 28, 29]. It was noticed in [27] that the minimizer
of the BDF energy cannot be searched in the trace-class. For this reason, it
was necessary to extend the definition of the trace in order to give a meaning
to tr(P − P0

−) and to the energy (14). In this paper, we use all this formalism.

2.2 The Bogoliubov-Dirac-Fock theory

We denote by Sp(H) the usual Schatten class of compact operators A acting
on a Hilbert space H and such that tr(|A|p) < ∞, see, e.g., [50], and by B(H)

8



the space of bounded operators on H. We recall [27] that a Hilbert-Schmidt
operator A ∈ S2(HΛ) is said to be P0

−–trace class if A++ = P0
+AP0

+ and
A−− = P0

−AP0
− both belong to the trace-class S1(HΛ) (but A+− = P0

+AP0
−

and A−+ = P0
−AP0

+ need only be Hilbert-Schmidt). We denote by S
P0

−

1 (HΛ)
this subspace of S2(HΛ). We define the P0

−–trace of A as

trP0
−
(A) = tr(A++) + tr(A−−).

We refer to [27, Section 2.1] for a general definition valid for any reference
projector and for the useful properties which will be needed in this paper. The
BDF energy reads [27, 28, 29]

Eν(Q) := trP0
−
(D0Q)−αD(ρQ, ν)+

α

2
D(ρQ, ρQ)− α

2

∫∫

R6

|Q(x, y)|2
|x− y| dx dy (15)

where ν is the smooth density of charge of a system of extended nuclei,

D(f, g) = 4π

∫
f̂(k)ĝ(k)

|k|2 dk

and P0
− is the free vacuum defined above. We define the BDF energy Eν on the

convex set

QΛ :=

{
Q ∈ S

P0
−

1 (HΛ) | Q∗ = Q, −P0
− ≤ Q ≤ P0

+

}
. (16)

Notice that QΛ is the closed convex hull of the set of operators of the form P −
P0
− ∈ S2(HΛ) where P is an orthogonal projector [27, Lemma 2]. Studying the

BDF energy on QΛ will be easier and minimizers will be shown to be extremal
points, i.e. of the form Q = P − P0

−. This is a very common technique for
Hartree-Fock theories [37].

Remark 1. Notice that compared to [10, 11, 9, 4, 27, 28], we have not only
replaced P 0

− by P0
−, but also D0 by D0 in the definition (15) of the BDF energy,

following the results of [29].

Any Q ∈ QΛ ⊂ S2(HΛ) has a well-defined integral kernel denoted byQ(x, y),

such that its Fourier transform Q̂(p, q) is supported in B(0,Λ)×B(0,Λ). There-
fore the function Q(x, y) appearing in (15) is smooth and the charge density
ρQ(x) := trC4 Q(x, x) is also a well-defined object [27]. In Fourier space,

ρ̂Q(k) = (2π)−3/2

∫
|p+k/2|≤Λ
|p−k/2|≤Λ

trC4

(
Q̂(p+ k/2, p− k/2)

)
dp, (17)

which shows that ρQ ∈ L2(R3). Introducing the so-called Coulomb space C =

{f | D(f, f) <∞}, the linear map Q ∈ S
P0

−

1 (HΛ) 7−→ ρQ ∈ C ∩ L2(R3,R) is

continuous when S
P0

−

1 (HΛ) is equipped with the Banach space norm

||Q||1;P0
−

:=
∣∣∣∣Q++

∣∣∣∣
S1(HΛ)

+
∣∣∣∣Q−−

∣∣∣∣
S1(HΛ)

+
∣∣∣∣Q+−

∣∣∣∣
S2(HΛ)

+
∣∣∣∣Q−+

∣∣∣∣
S2(HΛ)

,

as shown in the following useful result, proved in Appendix A.
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Lemma 1 (Continuity of the map Q 7→ ρQ). Assume that 0 ≤ α0 < 4/π and
Λ > 0. Then there exists a constant CΛ,α0

such that

∀0 ≤ α ≤ α0, ∀Q ∈ S
P0

−

1 (HΛ), ||ρQ||L2 +D(ρQ, ρQ)1/2 ≤ CΛ,α0
||Q||1;P0

−

.

(18)

It has been proved in [27] that Eν is well-defined and bounded-below on QΛ,
independently of Λ (see also [28, Theorem 1] and [29, Theorem 2.5]):

∀Q ∈ QΛ, Eν(Q) +
α

2
D(ν, ν) ≥ 0. (19)

The proof of (19) was itself essentially contained in [4]. If moreover ν = 0, then
E0 is non-negative on QΛ, i.e. we recover that 0 is its unique minimizer.

We shall need to endow QΛ with a weak topology for which the unit ball is
compact. We recall that S1(HΛ) is the dual of the space of compact operators
[50, Thm VI.26]. It can therefore be endowed with the associated weak-∗ topol-

ogy. This allows to define a weak topology on S
P0

−

1 (HΛ) for which Qn ⇀ Q
means Qn ⇀ Q in S2(HΛ),

lim
n→∞

tr(Q++
n K) = tr(Q++K) and lim

n→∞
tr(Q−−

n K) = tr(Q−−K)

for any compact operator K. It was proved2 in [28, p. 4492] that Eν is weakly
lower semi-continuous (wlsc) for this topology on the convex set QΛ, and it
therefore possesses a global minimizer Q̄ = P− − P0

− ∈ QΛ where P− is an
orthogonal projector satisfying the equation

P− = χ(−∞,0]

(
DQ̄
)

= χ(−∞,0]

(
D0 + α

(
ρQ̄ − ν

)
∗ 1

| · | − α
Q̄(x, y)

|x− y|

)
(20)

Additionally, if αD(ν, ν)1/2 is small enough [28, Eq. (11)], this minimizer Q̄ is
unique and the charge of the polarized vacuum vanishes: trP0

−
(Q̄) = 0.

2.3 Existence of atoms and molecules

2.3.1 Minimization of Eν in charge sectors

We consider the following variational problem

Eν(q) = inf
Q∈QΛ(q)

Eν(Q) (21)

where QΛ(q), the sector of charge −eq, is defined as

QΛ(q) := {Q ∈ QΛ, trP0
−
(Q) = q}

and q is any real number.
As recalled before, it is known that the polarized vacuum (i.e. the global

minimizer of Eν) is a solution of Eν(0) when αD(ν, ν)1/2 is small enough. But
in general, it is not obvious at all to prove the existence of a solution to (21).

2In [28], the BDF energy is studied on a set SΛ slightly different from QΛ but the arguments
used to prove [28, Thm 1] can be adapted by means of Lemma 1.
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This is because even if the energy functional is wlsc, the charge sectors QΛ(q)
are not closed for the weak topology of QΛ: a weakly converging sequence might
loose or gain some charge. We now describe the properties of a minimizer of
(21) if it exists. We recall that m(α) defined in (13) is the threshold of the free
mean-field operator D0.

Proposition 2 (Self-consistent equation solved by a minimizer). Let be 0 ≤
α < 4/π, ν ∈ C and q ∈ R. Any minimizer Q, solution of the variational
problem (21), takes the form Q = P − P0

− − δ|ϕ〉〈ϕ|, where

P = χ(−∞,µ](DQ) = χ(−∞,µ]

(
D0 + α(ρQ − ν) ∗ 1/| · | − α

Q(x, y)

|x− y|

)
(22)

for some µ ∈ [−m(α),m(α)] and where

1. if q is an integer, then δ = 0;

2. if q is not an integer, then δ = [q] + 1 − q and ϕ is a normalized function
of ker (DQ − µ).

The Fermi level µ is a Lagrange multiplier associated with the charge con-
straint and interpreted as a chemical potential. The proof of Proposition 2 is
left to the reader. It is an adaptation of proofs in [3, 6, 4, 27, 28] and of the
arguments that will be given below for the proof of our other results (see in
particular Proposition 7). Notice that when q = N is an integer, then (22)
means that the last level µ is necessarily totally filled. This is a general fact for
Hartree-Fock type theories [5].

Equation (22) is well known in physics. See [48, Eq. (4)] which is exactly
equivalent to (22) and [47, 18, 25, 12, 30] for related studies.

Let us assume for simplicity that q = N is an integer. For a minimizer of the
form (22) and when N,µ > 0, it is natural to consider the decomposition P =
Pvac +χ(0 , µ](DQ), where Pvac is the polarized Dirac sea: Pvac := χ(−∞ , 0](DQ).
For not too strong external potentials, the vacuum will be neutral, trP0

−
(Pvac −

P0
−) = 0 and therefore χ(0 , µ](DQ) will be a projector of rank N :

χ(0,µ](DQ) =

N∑

n=1

|ϕn〉〈ϕn| := γΦ.

Then DQϕn = ǫnϕn, where ǫ1 ≤ · · · ≤ ǫN are the N first positive eigenvalues of
DQ counted with their multiplicity. Notice that

DQ = D0 + α(ρΦ − ν) ∗ 1

| · | − α
γΦ(x, y)

|x− y|

+ αρ[Pvac−1/2] ∗
1

| · | − α
(Pvac − 1/2)(x, y)

|x− y| , (23)

where ρΦ(x) := trC4(γΦ(x, x)) =
∑N

n=1 |ϕn(x)|2. In the first line of (23), the
Dirac-Fock operator associated with (ϕ1, ..., ϕN ) appears, see [19]. This shows
that the electronic orbitals ϕi are solutions of a Dirac-Fock type equation in
which the mean-field operator DQ is perturbed by the (self-consistent) potential
of the Dirac sea Pvac − 1/2. Of course, the totally new feature is that these
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equations have been obtained by a minimization principle (as first proposed in
[10]) while in the Dirac-Fock theory the energy functional is not bounded from
below. The Dirac-Fock model is thus seen as a non-variational approximation
of the mean-field model of no-photon QED: the Euler-Lagrange equations are
similar but the variational structure is very different. In Theorem 3 below,
we shall prove that the orbitals (ϕ1, ..., ϕN ) converge to a Hartree-Fock ground
state [41, 43] in the non-relativistic limit.

If N,µ < 0 a similar decomposition can be applied,

P = Pvac − χ(µ , 0)(DQ).

When the polarized vacuum is neutral, trP0
−
(Pvac − P0

−) = 0, we obtain

P = Pvac −
N∑

n=1

|ϕn〉〈ϕn|

where the minus sign reflects that the orbitals (ϕn)Nn=1 describe positrons (up
to charge conjugation). It holds DQϕn = ǫ−nϕn where ǫ−1 ≥ · · · ≥ ǫ−N are
the N highest negative eigenvalues of DQ counted with their multiplicity. The
multiplier µ is chosen to ensure ǫ−N > µ ≥ ǫ−N−1.

Remark 2. To any electronic solution with density ν, one can associate a
positronic solution with density −ν by charge conjugation [27, Remark 8].

2.3.2 A dissociation criterion

The main result of this paper is the following

Theorem 1 (Binding Conditions & Existence of a Ground State). Let be 0 ≤
α < 4/π, Λ > 0, ν ∈ C and q ∈ R. Then the following assertions are equivalent

(H1) for any k ∈ R \ {0}, Eν(q) < Eν(q − k) + E0(k);

(H2) each minimizing sequence (Qn)n≥1 for Eν(q) is precompact in QΛ and
converges, up to a subsequence, to a minimizer Q of Eν(q).

If moreover q = N ∈ Z is an integer, then (H1) can be replaced by

(H ′
1) for any K ∈ Z \ {0}, Eν(N) < Eν(N −K) + E0(K).

When (H2) holds true, the operator Q is a solution of the self-consistent equation
(22) for some Lagrange multiplier µ ∈ [−m(α),m(α)].

Remark 3. Notice that the inequality Eν(q) ≤ Eν(q − k) + E0(k) is true for
any q ∈ R and any k ∈ R, as proved later in Proposition 8.

Remark 4. It will be proved in Lemma 3 below that lim|q|→∞Eν(q) = ∞.
This implies that for any fixed q, there exists a constant M such that |k| ≥
M =⇒ Eν(q) < Eν(q − k) + E0(k). When q = N > 0 is a positive integer and
α is small enough (see Corollary 4 below for a precise estimate) then it holds
Eν(N) < Eν(N −K) + E0(K) for all K > N and K < 0. In this case, (H ′

1)
can be replaced by the more usual condition

(H ′′
1 ) Eν(N) < min{Eν(N −K) + E0(K), K = 1, ..., N}.
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Conditions like (H1) appear classically when analyzing the compactness
properties of minimizing sequences, for instance by using the concentration-
compactness principle of P.-L. Lions [42, 43]. They are also very classical for
N -body Hamiltonians in which the bottom of the essential spectrum has the
form of the minimum in the r.h.s. of (H1), as expressed by the HVZ Theo-
rem [32, 62, 63]. In nonrelativistic Quantum Electrodynamics, such binding
conditions have also been proved by Griesemer, Lieb and Loss [26, 39]. Notice
however that, unlike usual HVZ-type results in which a condition similar to (H1)
appears only for 0 < k ≤ N , here one has to verify that these strict inequalities
hold for any k 6= 0. The reason is that electron-positron pairs can appear.

For the sake of simplicity, we assume in the following that q = N is an
integer. In the next two sections, we provide two regimes in which (H ′

1) is true.

2.3.3 Existence of a minimizer in the weak coupling regime

We consider first the weak coupling regime α ≪ 1 and ν̄ := αν is fixed (the
number N of electrons is also fixed). Our result is the following:

Theorem 2 (Binding Conditions in the weak coupling regime). Assume that the
ultraviolet cut-off Λ is fixed, and that ν̄ ∈ C is such that ker(D0−ν̄∗|·|−1) = {0}.
Then for any integer N ∈ Z, one has

lim
α→0

Eν̄/α(N) = inf
Q∈S

P0
−

1 (HΛ), −P 0
−
≤Q≤P 0

+,
tr
P0
−

Q=N

trP 0
−

{
(D0 − ν̄ ∗ | · |−1)Q

}
. (24)

If we moreover assume that N ≥ 0 and that ν̄ ∈ C is such that

(a) σ(D0 − ν̄ ∗ | · |−1) contains at least N positive eigenvalues below 1,

(b) ker(D0 − tν̄ ∗ | · |−1) = {0} for any t ∈ [0; 1],

then (H ′
1) holds in Theorem 1 for α small enough, and therefore there exists a

minimizer Qα of Eν̄/α(N). It takes the form

Qα = χ(−∞,0] (DQα) − P0
− + χ(0,µα] (DQα) := Qvac

α +
N∑

i=1

|ϕαi 〉〈ϕαi |, (25)

DQαϕαi = ǫαi ϕ
α
i (26)

where ǫα1 ≤ · · · ≤ ǫαN are the N first positive eigenvalues of DQα . Finally, for
any sequence αn → 0, (ϕαn1 , ..., ϕαnN ) converges (up to a subsequence) in HΛ to
(ϕ1, ..., ϕN ) which are N first eigenfunctions of D0− ν̄∗|·|−1 and Qvac

αn converges
to χ(−∞;0)

(
D0 − ν̄ ∗ | · |−1

)
− P 0

− in S2(HΛ).

Notice that (b) means that no eigenvalue crosses 0 when t is increased from 0
to 1. It is easy to give conditions for which (a) and (b) are satisfied. For instance,
one can assume that ν̄ ∈ C∩L1(R3), ν̄ ≥ 0, ν̄ 6= 0 and that

∫
R3 ν̄ ≤ 2/(π/2+2/π).

This last constant is related to an inequality of Tix [60, 61].

Remark 5. If N is a negative integer, we are able to prove a similar result
if it is assumed instead of (a) that the spectrum σ(D0 − ν̄ ∗ | · |−1) contains at
least |N | negative eigenvalues above −1.
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2.3.4 Existence of a minimizer in the non-relativistic regime

Next we consider the non-relativistic regime c ≫ 1. For the sake of clarity, we
reintroduce the speed of light c in the model and we take α = 1. The free Dirac
operator D0 is then

D0(p) = cα · p+ c2β.

The expression of the energy and the definition of the free vacuum P0
− and

of the free mean-field operator D0 (which of course then depend on c and the
ultraviolet cut-off Λ) are straightforward. To avoid any confusion, we denote by
Eνc (N) the minimum energy of the BDF functional.

In the limit c→ ∞, we shall obtain the well-known non-relativistic Hartree-
Fock theory [41, 43], similarly to the non-relativistic limit of the Dirac-Fock
equations studied by Esteban and Séré in [20]. For a set of orthonormalized
orbitals ψ = (ψ1, ..., ψN ) ∈ (H1(R3,C2))N ,

∫
(ψi, ψj)C2 = δij , it reads

EνHF(γψ) := tr((−∆/2− ν ∗ | · |−1)γψ) +
1

2
D(ργψ , ργψ)− 1

2

∫∫

R6

|γψ(x, y)|2
|x− y| dx dy

(27)

where γψ =
∑N

i=1 |ψi〉〈ψi|. Notice that this model is not posed in HΛ but
rather in the whole space H1(R3,C2) since we shall also be able to remove the
ultraviolet cut-off by taking Λ = cΛ0 for some fixed Λ0 > 0. We define the
Hartree-Fock ground state energy as

EνHF(N) := min
ψ∈H1(R3,C2)N

Gram
L2 ψ=Id

EνHF(γψ).

Theorem 3 (Existence of a minimizer in non-relativistic regime). Assume that
the ultraviolet cut-off is Λ = cΛ0 for some fixed Λ0. Let be ν ∈ C ∩ L1(R3,R+)
with

∫
R3 ν = Z, and N a positive integer which is such that Z > N−1. Then, for

c large enough, (H ′
1) holds in Theorem 1 and therefore there exists a minimizer

Qc for Eνc (N). It takes the following form:

Qc = χ(−∞,0](DQc) − P0
− + χ(0,µc](DQc) = Qvac

c +

N∑

i=1

|ϕci 〉〈ϕci | (28)

and
lim
c→∞

{Eνc (N) −N g0(0)} = EνHF(N). (29)

Moreover, for any sequence cn → ∞, (ϕcn1 , ..., ϕcnN ) converges (up to a subse-

quence) in H1(R3,C4)N towards ϕ =
(
ψ
0

)
, ψ ∈ H1(R3,C2)N , and where γψ is

a global minimizer of the Hartree-Fock energy (27).

It is proved in Lemma 19 that g0(0) = min σ(|D0|) is the threshold of the
self-consistent free Dirac operator D0 for c large enough.

The rest of the paper is devoted to the proof of Theorems 1, 2 and 3.

3 Preliminaries

3.1 Behavior of Eν(q) for |q| ≫ 1

We give conditions which prevent the appearance of electron-positron pairs in
minimizing sequences.
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Lemma 3. Assume that 0 ≤ α < 4/π, Λ > 0 and ν ∈ C. Then one has

(1 − απ/4)m(α)|q| − α

2
D(ν, ν) ≤ Eν(q) ≤ g0(0)|q| (30)

where g0(0) ≥ 1 is defined in (10) and m(α) is defined in (13). Hence it holds
lim|q|→∞Eν(q) = ∞. For any fixed q ∈ R, there exists an M depending on q,
α, ν such that |k| ≥M =⇒ Eν(q) < Eν(q − k) + E0(k).

Proof. For the right hand side of (30), let us fix some orthonormal system
(ψ1, ..., ψ[q]+1) of smooth C2-valued functions with compact support in the
Fourier domain. We introduce the following

Wλ = Span
{
P0

+ϕ
λ
i , i = 1, ..., [q] + 1

}
, ϕλi =

(
ψλi
0

)
=

(
λ3/2ψi(λ·)

0

)
.

Note that for λ small enough Wλ is a subspace of H0
+ of dimension [q] + 1 since

〈
P0

+ϕ
λ
i ,P0

+ϕ
λ
j

〉
=

〈
g0(|p|) +

√
g0(|p|)2 + g1(|p|)2

2
√
g0(|p|)2 + g1(|p|)2

ψλi , ψ
λ
j

〉
= δij +O(λ).

Let us choose an orthonormal basis (ϕ̃λ1 , ..., ϕ̃
λ
[q]+1) of Wλ. The r.h.s. of (30) is

then obtained by taking a trial state of the form

Qλ = ǫ




[q]∑

i=1

|ϕ̃λi 〉〈ϕ̃λi | + (q − [q])|ϕ̃λ[q]+1〉〈ϕ̃λ[q]+1|




where ǫ = 1 if q > 0, and ǫ = −1 otherwise, and by taking the limit λ→ 0. To
prove the lower bound in (30), one uses that [4] for any Q ∈ QΛ(q),

EνBDF(Q) ≥ (1 − απ/4) trP0
−
(D0Q) − α

2
D(ν, ν),

trP0
−
(D0Q) = tr(|D0|(Q++ −Q−−)) ≥ m(α) tr(Q++ −Q−−) ≥ m(α)|q|.

Corollary 4. Let be 0 ≤ α < 4/π, ν ∈ C and Λ > 0. Assume that N is a
non-negative integer and that

(g0(0) −m(α))N + α

(
m(α)(N + 2)

π

4
+
D(ν, ν)

2

)
< 2m(α). (31)

Then Eν(N) < Eν(N − K) + E0(K) for any integer K satisfying K > N or
K < 0. Therefore, in this case the HVZ-type condition (H ′

1) in Theorem 1 can
be replaced by the more usual one

(H ′′
1 ) Eν(N) < min{Eν(N −K) + E0(K), K = 1, ..., N}.

The proof of Corollary 4 is left to the reader. When m(α) = g0(0) (which is
true when α≪ 1, see Lemma 19), (31) can be replaced by the stronger condition
α ((N + 2)π/2 +D(ν, ν)) < 4.
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3.2 Approximation by finite-rank operators in S
P0
−

1

Proposition 5 (Approximation by finite-rank operators). The set consisting
of the operators Q which satisfy

1. Q ∈ QΛ(q);

2. Q = P −P0
− + γ where P is an orthogonal projector and γ is a finite rank

operator such that 0 ≤ γ < 1, Pγ = γP = 0;

3. Q has a finite rank;

is a dense subset of QΛ(q) for the strong topology of S
P0

−

1 .

Proof. The proof relies on a useful parametrization of the variational set QΛ,
presented and proved in Appendix B, Theorem 6. This result itself is a general-
ization of a reduction in the case where Q ∈ QΛ is a difference of two orthogonal
projectors, see Theorem 5. By Theorem 6, any Q ∈ QΛ(N) can be written
Q = UD(P0

− + γ)U−D − P0
− where γ ∈ S1(HΛ), [γ,P0

−] = 0, D ∈ S2(HΛ)
and UD = exp(D − D∗). Moreover γ = γ+ − γ− where 0 ≤ γ+ ≤ P0

+ and
0 ≤ γ− ≤ P0

−. Clearly we can find sequences {Dn}, {γ±n } of finite rank oper-
ators such that Dn → D in S2(HΛ), γ±n → γ± in S1(P0

±HΛ) as n → ∞, and
additionally tr(γ+

n −γ−n ) = tr(γ) for any n. Then UDnP0
−U−Dn−UDP0

−U−D → 0
in S2(HΛ). We know from [27, Lemma 2] that

trP0
−
(UDnP0

−U−Dn − P0
−) = tr(UDnP0

−U−Dn − P0
−)3

is an integer. Thus trP0
−
(UDnP0

−U−Dn −P0
−) is constant for n large enough and

Qn = UDn(P0
− + γ+

n − γ−n )U−Dn − P0
−

is a sequence of finite rank operators which converges to Q in QΛ(q). Assume
now that

γ+
n =

m+
n∑

i=1

λ+
i |ϕ+

i 〉〈ϕ+
i | and γ−n =

m−

n∑

i=1

λ−i |ϕ−
i 〉〈ϕ−

i |

with 0 < λ±i ≤ 1 and ϕ±
i ∈ P0

±HΛ. We then introduce

P ′
n := P0

− −
m−

n∑

i=1

|ϕ−
i 〉〈ϕ−

i |+
∑

i | λ+

i
=1

|ϕ+
i 〉〈ϕ+

i | and γ′n := P0
− + γ+

n − γ−n −P ′
n.

Then Qn = UDn(P ′
n + γ′n)U−Dn −P0

− = P̃n + γ̃n−P0
− satisfies the assumptions

of the Proposition.

Corollary 6. There exists a minimizing sequence (Qn)n≥1 of Eν(q), satisfying
the three conditions of Proposition 5.

As usual in Hartree-Fock type theories [37, 3, 6], we now prove that mini-
mizing Eν in the convex set of states in QΛ having charge −eq is equivalent to
minimizing on extremal points only.
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Proposition 7 (Lieb’s variational principle). Let be 0 ≤ α < 4/π, Λ > 0, ν ∈ C
and q ∈ R. One has

Eν(q) = inf
{
Eν(Q) | Q = P − P0

− + (q − [q])|ψ〉〈ψ| ∈ QΛ,

P 2 = P = P ∗, trP0
−
(P − P0

−) = [q], ψ ∈ HΛ, Pψ = 0
}
. (32)

Proof. We use a well-known method for the study of Hartree-Fock type theories
[37, 3, 6]. The inequality ≤ in (32) being trivial, it suffices to prove the converse.
To this end, we consider by Proposition 5 a state Q = P −P0

− +γ ∈ QΛ(q) such
that P 2 = P = P ∗, γ is a finite-rank operator with 0 ≤ γ < 1, Pγ = γP = 0,
trP0

−
Q = q, and Eν(Q) ≤ Eν(q) + ǫ. If γ has rank greater than 1, then one can

find two orthogonal eigenfunctions χ1 and χ2 of γ corresponding to eigenvalues
γ1 and γ2 in (0; 1). Next one can compute the energy ofQ+t(|χ2〉〈χ2|−|χ1〉〈χ1|)
which belongs to QΛ(q) as soon as γ2+t ∈ [0; 1] and γ1−t ∈ [0; 1]. One sees that,
depending on the sign of 〈DQχ2, χ2〉 − 〈DQχ1, χ1〉, we can decrease the energy
by increasing or decreasing t until γ2 + t ∈ {0; 1} or γ1− t ∈ {0; 1}. Doing so, we
obtain a new state Q̄ = P̄ − P0

− + γ̄ where P̄ is an orthogonal projector and γ̄
is such that 0 ≤ γ̄ < 1, P̄ γ̄ = γ̄P̄ = 0 and rank(γ̄) ≤ rank(γ)− 1. Iterating this
process, we can eliminate in finitely many steps all the eigenvalues in (0; 1) of
the finite-rank operator γ, except possibly one, and decrease the energy at each
step. We end up with a state Q′ = P ′ −P0

− +λ|ψ〉〈ψ| where λ ∈ [0; 1), P ′ψ = 0
and Eν(Q′) ≤ Eν(q) + ǫ. It then suffices to use [27, Lemma 2] which tells us
that trP0

−
(P ′ − P0

−) is always an integer, to conclude that λ = q − [q].

3.3 HVZ-type inequalities

We use the density of finite-rank operators to prove HVZ-type inequalities.

Proposition 8 (HVZ-type inequalities). Let be 0 ≤ α < 4/π, Λ > 0, ν ∈ C
and q ∈ R. Then one has

Eν(q) ≤ min
{
Eν(q − k) + E0(k), k ∈ R

}
. (33)

If moreover Eν(q) = Eν(q − k) + E0(k) for some k 6= 0, then there exists a
minimizing sequence (Qn)n≥1 of Eν(q) which satisfies Qn ⇀ Q in QΛ with
trP0

−
(Q) = q − k, and which is therefore not precompact in QΛ(q).

Proof. Notice that E0(0) = 0 by [27, Theorem 1], so there is nothing to prove
when k = 0. Let us fix some k 6= 0 and consider two states Q, Q′ ∈ QΛ such
that E0(Q) ≤ E0(k) + ǫ and Eν(Q′) ≤ Eν(q − k) + ǫ, ǫ > 0. Using Proposition
5, Proposition 7 and Theorem 5, we can choose Q of the following form:

Q = λ|ψ〉〈ψ| +
N1∑

n=1

|fn〉〈fn| −
N2∑

m=1

|gm〉〈gm| +
K∑

i=1

λ2
i

1 + λ2
i

(
|vi〉〈vi| − |ui〉〈ui|

)

+

K∑

i=1

λi
1 + λ2

i

(
|ui〉〈vi| + |vi〉〈ui|

)
. (34)

where λ = k − [k] ∈ [0; 1), , N1 − N2 = [k]. In (34) (fi)
N1

i=1 ∪ (vi)
K
i=1 forms an

orthonormal set of P0
+HΛ and (gi)

N2

i=1 ∪ (ui)
K
i=1 is an orthonormal set of P0

−HΛ.
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We may choose the operator Q′ of a similar form (with functions ψ′, f ′
n, g

′
m, u′i,

v′i and real numbers λ′, λ′i).
The free minimization problem E0(k) being translation-invariant, we have

E0(τtQ
′τ∗t ) = E0(Q′) for any t ∈ R, where τt is the unitary operator τtf(x) =

f(x− te), e being a fixed unitary vector in R3. Notice τtQ
′τ∗t ∈ QΛ, since both

P0
− and P0

+ are translation-invariant. Since limt→∞ 〈τtf, g〉 = 0 for any f, g ∈
HΛ, we can find for t ≫ 1 by the Gram-Schmidt orthonormalization procedure
two orthonormal systems (f tn)

N1

n=1 ∪ (vti)
K
i=1 in the orthogonal of span{f ′

n, v
′
i}

inside P0
+HΛ, and (gti)

N2

i=1 ∪ (uti)
K
i=1 in the orthogonal of span{g′m, v′i} inside

P0
−HΛ which are such that limt→∞ ||f tn − τtfn||HΛ

= 0 and a similar properties
for all the other functions. Substituting in (34), this defines us an operator
Qt ∈ QΛ such that limt→∞ ||Qt − τtQτ

∗
t ||S1(HΛ) = 0. Moreover, we have by

construction Qt +Q′ ∈ QΛ and trP0
−
(Qt +Q′) = q. It can be seen that

Eν(q) ≤ Eν(Qt +Q′) = Eν(Q′) + E0(Q) + ot→∞(1)

≤ Eν(q − k) + E0(k) + 2ǫ+ ot→∞(1), (35)

which, passing to the limit as t → ∞ and ǫ → 0+, ends the proof of this first
part. If Eq(ϕ) = Eq−k(ϕ) + Ek(0) for some k 6= 0, then one constructs a
non-compact minimizing sequence by the same argument.

Corollary 9. Let be 0 ≤ α < 4/π, ν ∈ C and Λ > 0. Then the map q 7→ Eν(q)
is uniformly Lipschitz on R:

|Eν(q) − Eν(q′)| ≤ g0(0) |q − q′|.

Proof. This is an obvious consequence of (33) and (30).

4 Proof of Theorem 1

We prove that (H1) implies (H2), as the converse was shown in Proposition 8.

Step 1 : Reduction to the HVZ condition for integers when q = N ∈ Z.

Lemma 10. Let be 0 ≤ α < 4/π, ν ∈ C and N ∈ Z. Then for any K ∈ Z, the
function k 7→ Eν(N − k) + E0(k) is concave on [K,K + 1]. Therefore, if (H ′

1)
holds, then so does (H1).

Proof. We prove that the function k 7→ Eν(k) is concave on [K,K+1], the rest
being obvious. This means that we prove for any k1, k2, µ ∈ [0, 1]

Eν(K + µk1 + (1 − µ)k2) ≥ µEν(K + k1) + (1 − µ)Eν(K + k2). (36)

To this end, let us consider like in the proof of Proposition 8, one state Q
which satisfies Eν(Q) ≤ Eν(K + µk1 + (1 − µ)k2) + ǫ for some fixed ǫ > 0. By
Proposition 7, we may take Q = (µk1 + (1 − µ)k2)|ψ〉〈ψ| + P − P0

− where P is
an orthogonal projector satisfying Pψ = 0 and trP0

−
(P − P0

−) = K. We have

Eν(Q) = (µk1 + (1 − µ)k2)
〈
D[P−P0

−
]ψ, ψ

〉
+ Eν(P − P0

−)

= µEν(P − P0
− + k1|ψ〉〈ψ|) + (1 − µ)Eν(P − P0

− + k2|ψ〉〈ψ|)
≥ µEν(K + k1) + (1 − µ)Eν(K + k2)
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where we have used that an electron never sees its own field. This ends the
proof, taking ǫ→ 0.

Step 2: A necessary and sufficient condition for compactness. We now assume
that q ∈ R and prove that conservation of the charge implies the compactness
of minimizing sequences.

Lemma 11. Let be 0 ≤ α < 4/π, Λ > 0, ν ∈ C and q ∈ R. Assume that
(Qn)n≥1 is a minimizing sequence of Eν(q) such that Qn ⇀ Q for the weak
topology of QΛ. Then Qn → Q for the strong topology of QΛ if and only if
trP0

−
(Q) = q.

Proof. By assumption, we have limn→∞ Eν(Qn) = Eν(q). If trP0
−
(Q) = q, then

Q is a minimizer for Eν(q) since Eν is weakly lower semi-continuous. Also we
have [28] limn→∞ ||ρQn − ρQ||C = 0 and limn→∞ F (Qn) = F (Q) where

F (Q) := trP0
−
(D0Q) − α

2

∫∫

R6

|Q(x, y)|2
|x− y| dx dy.

Let us first prove that Qn → Q in S2(HΛ), or equivalently tr(Q2
n) → tr(Q2).

To this end, we argue like in the proof of [28, Theorem 1] and consider two
smooth functions χ, ξ ∈ C∞([0;∞), [0; 1]) such that χ2 + ξ2 = 1 and

χ(x) =





= 1 when x ∈ [0; 1]
∈ [0; 1] when x ∈ [1; 2]
= 0 when x ≥ 2.

We then define χR(x) := χ(|x|/R) and ξR(x) := ξ(|x|/R) for x ∈ R3. As shown
in [28, page 4494], one has

F (Qn) = F (Q) + tr(|D0|ξR(Q++
n −Q−−

n )ξR)

− α

2

∫∫

R6

ξR(x)2|Qn(x, y)|2
|x− y| dx dy + ǫRn (37)

where ǫRn satisfies limR→∞ lim supn→∞ |ǫRn | = 0 (see the details in [28]). Local-
izing the inequality Q2

n ≤ Q++
n −Q−−

n and applying Kato’s inequality |x|−1 ≤
π/2|∇| like in [28] together with |∇| ≤ |D0| ≤ |D0| as shown in [29], we get

tr(|D0|ξR(Q++
n −Q−−

n )ξR) − α

2

∫∫

R6

ξR(x)2|Qn(x, y)|2
|x− y| dx dy

≥ (1 − απ/4) tr(|D0|ξRQ2
nξR) ≥ (1 − απ/4) tr(ξRQ

2
nξR). (38)

By (37), (4) and F (Qn) → F (Q), this proves that

lim
R→∞

lim sup
n→∞

tr(ξRQ
2
nξR) = 0,

when 0 ≤ α < 4/π. On the other hand

tr(Q2
n) = tr(χRQ

2
nχR) + tr(ξRQ

2
nξR)

and
lim
n→∞

tr(χRQ
2
nχR) = tr(χRQ

2χR)
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for any fixed R, by the local compactness of Qn. This implies

lim
n→∞

tr(Q2
n) = tr(Q2)

or equivalently Qn → Q in S2(HΛ).
It remains to prove that Q++

n and Q−−
n converge strongly in the trace-class.

We use the continuity of the exchange term for the Hilbert-Schmidt norm

∫∫

R6

|R(x, y)|2
|x− y| dx dy ≤ π

2
tr(|∇|R2) ≤ Λπ

2
||R||2

S2(HΛ) ,

due to Kato’s inequality and the cut-off in Fourier space, to infer

lim
n→∞

∫∫

R6

|Qn(x, y)|2
|x− y| dx dy =

∫∫

R6

|Q(x, y)|2
|x− y| dx dy.

This proves

lim
n→∞

tr(|D0|(Q++
n −Q−−

n ) = tr(|D0|(Q++ −Q−−)

and therefore Q++
n → Q++ and Q−−

n → Q−− in S1(HΛ).

We finish the proof of Theorem 1 by a contradiction argument: we assume
that (H1) holds and that there exists a minimizing sequence (Qn)n≥1 of Eν(q)

which is not precompact for the strong topology of S
P0

−

1 (HΛ). Since Eν(Qn)
converges to Eν(q), (Qn) is a bounded sequence in S

P0
−

1 (HΛ) and we may there-
fore assume, up to a subsequence, that Qn ⇀ Q for the weak topology of

S
P0

−

1 (HΛ), and that Qn 9 Q. By Lemma 11, this is equivalent to assuming
that trP0

−
(Q) 6= q. We now write trP0

−
(Q) = q − k with k ∈ R \ {0} and prove

that this would imply Eν(q) ≥ Eν(q − k) + E0(k), which contradicts (H1).
As usual in HVZ or concentration-compactness type arguments, the rest of

the proof now proceeds by decomposing the sequence (Qn) into a compact part
converging strongly to Q and a non-compact part escaping to infinity with the
charge k. The localization of Q is complicated by the constraint appearing in
the definition of the variational space QΛ(q), and the fact that our states are
not bounded in the trace-class.

Step 3: The localization operators. We introduce

XR := P0
−χRP0

− + P0
+χRP0

+

and YR which is the unique non-negative operator satisfying X2
R + Y 2

R = 1HΛ
.

Recall that the function χR has been defined in the previous step. A crucial
fact will be that both XR and YR commute with P0

−. The next three lemmas
summarize useful properties of XR and YR.

Lemma 12 (Continuity of the localization maps). There exists a constant C

independent on R and Λ such that, for any Q ∈ S
P0

−

1 (HΛ),

||XRQXR||1;P0
−

+ ||YRQYR||1;P0
−

≤ C ||Q||1;P0
−

. (39)

If moreover Q ∈ QΛ, then XRQXR and YRQYR also belong to QΛ.
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Proof. We notice that (XR) and (YR) are uniformly bounded in S∞(HΛ). In-
deed, using 0 ≤ χR ≤ 1, one sees that ||XR|| ≤ 1 and ||YR|| ≤ 1. Therefore

||XRQXR||S2(HΛ) ≤ ||XR||2 ||Q||
S2(HΛ) ≤ ||Q||

S2(HΛ) ,

and, using that XR commutes with P0
−,

∣∣∣∣(XRQXR)−−
∣∣∣∣

S1(HΛ)
=
∣∣∣∣XRQ

−−XR

∣∣∣∣
S1(HΛ)

≤
∣∣∣∣Q−−

∣∣∣∣
S1(HΛ)

by the same argument as above. Using the same idea for YRQYR, one obtains
(39). Let us now prove that if Q satisfies the constraint −P0

− ≤ Q ≤ P0
+,

then so does XRQXR, the argument being the same for YRQYR. We have
XRQXR ≤ XRP0

+XR = (P0
+χRP0

+)2 ≤ P0
+χ

2
RP0

+ ≤ P0
+. A similar argument for

XRQXR ≥ −P0
− allows to end the proof of Lemma 12.

Lemma 13 (Limits as R → ∞). One has

lim
R→∞

||XR − χR|| = 0, lim
R→∞

||YR − ξR|| = 0. (40)

Moreover, if Q ∈ S
P0

−

1 (HΛ), then

lim
R→∞

||XRQXR −Q||1;P0
−

= lim
R→∞

||YRQYR||1;P0
−

= 0. (41)

Proof. To prove (40) for XR, we compute XR−χR = [P0
−, χR]P0

− +[P0
+, χR]P0

+

which tends to 0 as R → ∞ by [28, Lemma 1] and the proof of Theorem 3 in
[29]. This clearly implies that limR→∞

∣∣∣∣X2
R − χ2

R

∣∣∣∣ = 0, since ||XR|| ≤ 1 and
||χR|| ≤ 1. We now use the fact that the square root is operator monotone to
deduce [7, Thm X.1.1]

||YR − ξR|| ≤
∣∣∣∣Y 2

R − ξ2R
∣∣∣∣1/2 =

∣∣∣∣X2
R − χ2

R

∣∣∣∣1/2

which proves (40) for YR. By the uniform boundedness of (XR)R in S∞(HΛ), we

can prove (41) forQ in a dense subset of S
P0

−

1 (HΛ), like finite-rank operators. By
linearity, it suffices to prove (41) for a state of the form Q = |ψ〉〈ψ|. Using now
(40), it remains to prove that χR|ψ〉〈ψ|χR − |ψ〉〈ψ| converges to 0 in S1(HΛ),
which is a triviality since χRψ → ψ as R → ∞ in HΛ, by Lebesgue’s dominated
convergence theorem. We argue similarly for YRQYR.

Lemma 14 (Compactness for a fixed R). For any fixed R, XR and 1−YR belong
to S1(HΛ) and are therefore compact. The map Q 7→ XRQXR is also compact:

if Qn ⇀ Q for the weak topology of S
P0

−

1 (HΛ), then XRQnXR → XRQXR

strongly in S
P0

−

1 (HΛ). The same holds if XR is replaced by 1 − YR.

Proof. We use the Kato-Seiler-Simon inequality (see [56] and [57, Theorem 4.1])

||f(−i∇)g(x)||
S2

≤ C ||f ||L2 ||g||L2

to obtain

||XR||S1(HΛ) ≤
∣∣∣∣P0

−

√
χR
∣∣∣∣2

S2(HΛ)
+
∣∣∣∣P0

+

√
χR
∣∣∣∣2

S2(HΛ)
≤ 2C |B(0,Λ)|R

∫

R3

χ
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which is finite for each fixed R. Notice that 0 ≤ 1−YR ≤ 1−Y 2
R = X2

R ≤ XR and
therefore 1−YR is also in S1(HΛ). Let us now prove that when Qn ⇀ Q for the

weak topology of S
P0

−

1 (HΛ), then XRQnXR → XRQXR strongly in S
P0

−

1 (HΛ).
Since XR is in S1(HΛ) and by density of finite-rank operators in the trace-class,
it suffices to prove that |ϕ〉〈ϕ| Qn |ψ〉〈ψ| → |ϕ〉〈ϕ|Q |ψ〉〈ψ|, for some ϕ and
ψ in HΛ. This is a consequence of |ϕ〉〈ϕ| Qn |ψ〉〈ψ| = tr(Qn|ψ〉〈ϕ|)|ϕ〉〈ψ| and
limn→∞ tr(Qn|ψ〉〈ϕ|) = tr(Q|ψ〉〈ϕ|) by the weak convergence of Qn in S2(HΛ).
The proof is the same for 1 − YR.

Step 4: Conclusion. Let us recall that we argue by contradiction: we as-
sume that (H1) holds and that (Qn) ⊂ QΛ is a minimizing sequence for Eν(q)
satisfying Qn ⇀ Q with trP0

−
(Q) = q − k, k 6= 0. We fix some R and compute

trP0
−
(D0Qn) = trP0

−
(D0(XRQnXR)) + trP0

−
(D0(YRQnYR))

+ tr([XR, |D0|](Q++
n −Q−−

n )XR) + tr([YR, |D0|](Q++
n −Q−−

n )YR),

where we have used that XR and YR commute with P0
−. Using now

| tr([XR, |D0|](Q++
n −Q−−

n )XR)| ≤ C
∣∣∣∣[XR, |D0|]

∣∣∣∣
B(HΛ)

due to the fact that (XR) is uniformly bounded in B(HΛ) and (Q++
n −Q−−

n ) is
uniformly bounded in S1(HΛ), we obtain for some uniform constant C

trP0
−
(D0Qn) ≥ trP0

−
(D0Q) + trP0

−
(D0(YRQnYR))

+ trP0
−
(D0(XR(Qn −Q)XR)) + trP0

−
(D0(XRQXR −Q))

− C
( ∣∣∣∣[XR, |D0|]

∣∣∣∣+
∣∣∣∣[YR, |D0|]

∣∣∣∣ ). (42)

To treat the direct and exchange terms, we shall need the following

Lemma 15. Assume that (Rn) is a sequence in S
P0

−

1 (HΛ) with Rn ⇀ 0 as

n→ ∞, for the weak topology of S
P0

−

1 (HΛ). Then, for any fixed R,

lim
n→∞

||ρRn − ρYRRnYR ||C = 0, (43)

lim
n→∞

∫∫

R6

|(Rn − YRRnYR)(x, y)|2
|x− y| dx dy = 0. (44)

Proof. Recall that the exchange term is continuous for the S
P0

−

1 (HΛ) topology.
We write

Rn − YRRnYR = −(1 − YR)Rn(1 − YR) +Rn(1 − YR) + (1 − YR)Rn.

By Lemma 14, (1 − YR)Rn(1 − YR) converges strongly to 0 in the S
P0

−

1 (HΛ)
norm. It therefore suffices to prove (43) and (44) with Rn − YRRnYR replaced
by Rn(1 − YR) and (1 − YR)Rn. The operator (1 − YR) being trace-class by
Lemma 14, we can prove (43) and (44) with Rn − YRRnYR replaced by Sn :=
Rn |ϕ〉〈ϕ| ∈ S1(HΛ) for some ϕ ∈ HΛ ∩ L1(R3) ⊂ L2(R3,C4). We have

ρSn(x) =

∫

R3

trC4 (Rn(x, y)ϕ(y)ϕ(x)∗) dy
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and therefore

||ρSn ||L1 ≤
∫∫

R6

|Rn(x, y)| |ϕ(x)| |ϕ(y)|dx dy.

Thanks to the cut-off in Fourier space, we can assume, up to a subsequence,
that Rn(x, y) converges uniformly to 0 on compact subsets of R6. Since we have
assumed that ϕ ∈ L1(R3), we conclude by Lebesgue’s dominated convergence
theorem that limn→∞ ||ρSn ||L1 = 0, which itself implies limn→∞ ||ρ̂Sn ||L∞ = 0
and limn→∞ ||ρSn ||C = 0 thanks to the cut-off in Fourier space.

We use the same argument for the exchange term:

∫∫

R6

|Sn(x, y)|2
|x− y| dx dy ≤

∫∫

R6

|Rn(x, z)|2|ϕ(z)|2
(
|ϕ|2 ∗ 1

| · |

)
(x)dx dz

which converges to 0 as n → ∞ by the local compactness of (Rn). This ends
the proof of Lemma 15

We are now able to finish the proof of Theorem 1. We write

D(ρQn , ρQn) = D(ρQ, ρQ) +D(ρYR(Qn−Q)YR , ρYR(Qn−Q)YR) + ǫR1 (n)

≥ D(ρQ, ρQ) +D(ρYRQnYR , ρYRQnYR) + ǫR1 (n) − C1 ||ρYRQYR ||2C , (45)

∫∫

R6

|Qn(x, y)|2
|x− y| dx dy

=

∫∫

R6

|Q(x, y)|2
|x− y| dx dy +

∫∫

R6

|(YR(Qn −Q)YR)(x, y)|2
|x− y| dx dy + ǫR3 (n)

≤
∫∫

R6

|Q(x, y)|2
|x− y| dx dy +

∫∫

R6

|(YRQnYR)(x, y)|2
|x− y| dx dy

+ ǫR2 (n) + C2

∫∫

R6

|YRQYR(x, y)|2
|x− y| dx dy, (46)

and

D(ρQn , ν) = D(ρQ, ν) + ǫ3(n). (47)

In (45), (47) and (46), C1 and C2 are uniform constants (we have used that

(Qn) is bounded in S
P0

−

1 (HΛ)), and ǫ3(n) := D(ρQn−Q, ν),

ǫR1 (n) := ||ρQn−Q||2C −
∣∣∣∣ρYR(Qn−Q)YR

∣∣∣∣2
C

+ 2D(ρQn−Q, ρQ),

ǫR2 (n) :=

∫∫

R6

|(Qn −Q)(x, y)|2
|x− y| dx dy −

∫∫

R6

|YR(Qn −Q)YR(x, y)|2
|x− y| dx dy

+ 2ℜ
∫∫

R6

trC4 [(Qn −Q)(x, y)Q(x, y)]

|x− y| dx dy (48)
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satisfy, for each fixed R, limn→∞ ǫR1 (n) = limn→∞ ǫR2 (n) = limn→∞ ǫ3(n) = 0,
by Lemma 15 applied to Rn = Qn−Q. By (42), (45), (47) and (46), we obtain

Eν(Qn) ≥ Eν(Q) + E0(YRQnYR) + ǫR1 (n) + ǫ2(n) − ǫR3 (n)

+ trP0
−
(D0(XR(Qn −Q)XR)) + trP0

−
(D0(XRQXR −Q))

− C
∣∣∣∣[YR, |D0|]

∣∣∣∣− C
∣∣∣∣[XR, |D0|]

∣∣∣∣− C1 ||ρYRQYR ||2C

− C2

∫∫

R6

|YRQYR(x, y)|2
|x− y| dx dy. (49)

Let us remark that q = trP0
−
(Qn) = trP0

−
(XRQnXR) + trP0

−
(YRQnYR) where

we have used [XR,P0
−] = 0. In (49), we can estimate

Eν(Q) + E0(YRQnYR) ≥ Eν(q − k) + E0(trP0
−
(YRQnYR))

= Eν(q − k) + E0(q − trP0
−
(XRQnXR)).

Passing to the limit n→ ∞ in (49) with R fixed and using Lemma 14 together
with the continuity of q 7→ Eν(q) as stated in Corollary 9, we get

Eν(q) ≥ Eν(q − k) + E0(q − trP0
−
(XRQXR)) + trP0

−
(D0(XRQXR −Q))

− C
∣∣∣∣[XR, |D0|]

∣∣∣∣− C
∣∣∣∣[YR, |D0|]

∣∣∣∣

− C1 ||ρYRQYR ||2C − C2

∫∫

R6

|YRQYR(x, y)|2
|x− y| dx dy. (50)

Note that

lim
R→∞

∣∣∣∣[XR, |D0|]
∣∣∣∣ = lim

R→∞

∣∣∣∣[χR, |D0|]
∣∣∣∣ = lim

R→∞

∣∣∣∣[YR, |D0|]
∣∣∣∣

= lim
R→∞

∣∣∣∣[ξR, |D0|]
∣∣∣∣ = 0

by Lemma 13 together with [28, Lemma 1], [29, Proof of Thm 3] and the bound-
edness of D0 on HΛ. Passing to the limit as R → ∞ we eventually obtain from
Lemma 13

Eν(q) ≥ Eν(q − k) + E0(q − trP0
−
(Q)) = Eν(q − k) + E0(k).

This contradicts (H1) and ends the proof of Theorem 1.

5 Proof of Theorem 2

Note that when ν̄ ∈ C, the essential spectrum of D0 − ν̄ ∗ | · |−1 is the same as
the one of D0. Assuming that ker(D0 − ν̄ ∗ | · |−1) = {0}, we denote by (λ+

i )i≥1

the non-decreasing sequence of eigenvalues of D0 − ν̄ ∗ | · |−1 in (0, 1), counted
with their multiplicity. In case there is a finite number i0 of eigenvalues or no
eigenvalue at all (i0 = 0) in (0, 1), we then let λ+

i0+1 = 1 and λ+
i = 1 for i ≥ i0+1.

We use the same type of notation (λ−i )i≥1 for the non-increasing sequence of
eigenvalues in (−1, 0), with λ−i′0+1 = −1 in case there is a finite number of

(possibly no) eigenvalues in (−1, 0). We notice that ker(D0 − ν̄ ∗ | · |−1) = {0}
implies that there exists some constant κ > 0 such that

|D0 − ν̄ ∗ | · |−1| ≥ κ. (51)
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Step 1: Study of the linear model. We start by computing the value of the
infimum in the right hand side of (24), in terms of the eigenvalues (λ±i ) of
D0 − ν̄ ∗ | · |−1, and the charge of the vacuum. We define

I ν̄(N) := inf
Q∈S

P0
−

1 (HΛ), −P 0
−
≤Q≤P 0

+,
tr
P0
−

Q=N

trP 0
−

{
(D0 − ν̄ ∗ | · |−1)Q

}
. (52)

Lemma 16. Assume that ν̄ ∈ C is such that ker(D0−ν̄∗|·|−1) = {0}, and denote
the charge of the non-interacting (Furry) Dirac sea by q0 := trP 0

−

(
P̄ − P 0

−

)

where P̄ := χ(−∞;0)(D
0 − ν̄ ∗ | · |−1). Then one has for any N ∈ Z

I ν̄(N) = trP 0
−

{(
D0 − ν̄ ∗ | · |−1

)
(P̄ − P 0

−)
}

+

|N−q0|∑

i=1

|λǫi | (53)

where ǫ = sgn(N − q0).

Proof. After a change of variable Q→ Q− (P̄ − P 0
−), and by [27, Lemma 1],

I ν̄(N) − trP 0
−

{(
D0 − ν̄ ∗ | · |−1

)
(P̄ − P 0

−)
}

= inf
Q∈S

P̄
1 (HΛ), −P̄≤Q≤P̄ ,
trP̄ Q=N−q0

trP̄
{
(D0 − ν̄ ∗ | · |−1)Q

}
. (54)

By a simplified version of Proposition 7, one sees that the infimum of the r.h.s.
of (54) can be restricted to states Q which are a difference of two projectors:
Q = P − P̄ (recall q0 ∈ Z by [27, Lemma 2]). By Theorem 5 proved in Appendix
B with Π = P̄ , there exists two orthonormal basis (gi)

N2

i=1∪(ui)i≥1 and (fi)
N1

i=1∪
(vi)i≥1 respectively of P̄HΛ and (1 − P̄ )HΛ, and (li) ∈ ℓ2(R) such that:

Q =

N1∑

n=1

|fn〉〈fn| −
N2∑

m=1

|gm〉〈gm| +
∑

i≥1

l2i
1 + l2i

(
|vi〉〈vi| − |ui〉〈ui|

)

+
∑

i≥1

li
1 + l2i

(
|ui〉〈vi| + |vi〉〈ui|

)
, (55)

with N − q0 = N1 −N2. The following inequality gives the lower bound in (53):

trP̄
{
(D0 − ν̄ ∗ | · |−1)Q

}
≥

N1∑

i=1

λ+
i −

N2∑

i=1

λ−i

The proof of the upper bound is left to the reader.

Step 2: Upper bound. To obtain an upper bound for (24), we first fix some
η ≥ 0 and a state P̄ − P 0

− + γ̄, γ̄ being a finite-rank projector commuting with
D0 − ν̄ ∗ | · |−1, which satisfies

tr(γ̄) = N − q0 (56)

and
γ̄ ≥ 0 and γ̄P̄ = P̄ γ̄ = 0 if N − q0 > 0,
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γ̄ ≤ 0 and γ̄P̄ = P̄ γ̄ = γ̄ if N − q0 < 0. (57)

We additionally assume that

trP 0
−

{
(D0 − ν̄ ∗ | · |−1)(P̄ − P 0

− + γ̄)
}

≤ I ν̄(N) + η.

If for the considered charge N , then only eigenvalues appear in formula (53),
one can of course choose η = 0 and γ to be the projector on the space spanned
by any chosen eigenvectors associated with the (λǫi). However, if λǫi = ±1 for
some i, then a minimizer does not necessarily exist and we can only take an
approximate one as expressed above. Then, we recall that [40, 29]

∣∣∣∣D0 −D0
∣∣∣∣
B(HΛ)

= O(α),
∣∣∣∣P0

− − P 0
−

∣∣∣∣
B(HΛ)

= O(α). (58)

This in particular implies that the spectrum of D0 − ν̄ ∗ | · |−1 converges to the
one of D0 − ν̄ ∗ | · |−1 as α→ 0. Therefore, ker(D0 − ν̄ ∗ | · |−1) = {0} and

|D0 − ν̄ ∗ | · |−1| ≥ κ/2 (59)

for α small enough. We shall consider a trial state of the form χ(−∞;0)(D0 −
ν̄ ∗ | · |−1) − P0

− + γα, where γα is a projector converging to and having the
same rank as γ̄. We assume moreover that it satisfies the same properties (56),
(5) and (57) as γ̄, with P̄ replaced by P̃α := χ(−∞;0)(D0 − ν̄ ∗ | · |−1). This is

possible, since P̃α − P̄ → 0 in B(HΛ) as α→ 0. We then introduce

Q̃α := P̃α − P0
− = χ(−∞;0)(D0 − ν̄ ∗ | · |−1) − P0

− (60)

(recall that D0 and P0
− implicitly depend on α) and prove the following

Lemma 17. The operator Q̃α defined in (60) satisfies:

lim
α→0

∣∣∣
∣∣∣Q̃α − (P̄ − P 0

−)
∣∣∣
∣∣∣
S2(HΛ)

= 0. (61)

Moreover, one has for α small enough

trP0
−
(Q̃α) = trP 0

−
(P̄ − P 0

−) = q0. (62)

Proof. Consider first the simplified case where ϕ̄ := −ν̄ ∗ | · |−1 ∈ L2(R3). Write

Q̃α − (P̄ − P 0
−) =

1

2π

∫ +∞

−∞

dη
1

D0 + iη
ϕ̄

1

D0 − ν̄ ∗ | · |−1 + iη

− 1

2π

∫ +∞

−∞

dη
1

D0 + iη
ϕ̄

1

D0 − ν̄ ∗ | · |−1 + iη

=
1

2π

∫ +∞

−∞

dη
1

D0 + iη
ϕ̄

1

D0 − ν̄ ∗ | · |−1 + iη
(D0 −D0)

1

D0 − ν̄ ∗ | · |−1 + iη

+
1

2π

∫ +∞

−∞

dη
1

D0 + iη
(D0 −D0)

1

D0 + iη
ϕ̄

1

D0 − ν̄ ∗ | · |−1 + iη
. (63)

Then, we use
∥∥∥∥
∫ +∞

−∞

dη
1

D0 + iη
(D0 −D0)

1

D0 + iη
ϕ̄

1

D0 − ν̄ ∗ | · |−1 + iη

∥∥∥∥
S2(HΛ)

≤
∣∣∣∣
∣∣∣∣

1

D0 + iη
ϕ̄

∣∣∣∣
∣∣∣∣
S2(HΛ)

∣∣∣∣D0 −D0
∣∣∣∣
B(HΛ)

(∫

R

dη√
(1 + η2)(κ2/4 + η2)

)
, (64)
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∣∣∣∣
∣∣∣∣

1

D0 + iη
ϕ̄

∣∣∣∣
∣∣∣∣
S2(HΛ)

≤ C
∣∣∣
∣∣∣(1 + p2)−1/2

∣∣∣
∣∣∣
L2(B(0,Λ))

||ϕ̄||L2(R3)

by the Kato-Seiler-Simon inequality [56, 57] and a similar estimate for the second
term of (63) to obtain

∣∣∣
∣∣∣Q̃α − (P̄ − P 0

−)
∣∣∣
∣∣∣
S2(HΛ)

≤ C
∣∣∣∣D0 −D0

∣∣∣∣
B(HΛ)

= O(α).

To treat the general case, it then suffices to approximate ν̄ appearing in Q̃α
and P̄ − P 0

− by a function ν̄ǫ such that ν̄ǫ ∗ | · |−1 ∈ L2, uniformly with respect
to α. This can be done by using the method of [36, 27]: it can be shown that
there exists positive constants C1 and C2 independent of α (but which depend
on ν̄) such that, for any ν satisfying ||ν − ν̄||C ≤ C1,

∣∣∣
∣∣∣Q̃α −

(
χ(−∞;0)

(
D0 − ν ∗ | · |−1

)
− P0

−

)∣∣∣
∣∣∣
S2(HΛ)

≤ C2 ||ν̄ − ν||C ,

∣∣∣∣(P̄ − P 0
−) −

(
χ(−∞;0)

(
D0 − ν ∗ | · |−1

)
− P 0

−

)∣∣∣∣
S2(HΛ)

≤ C2 ||ν̄ − ν||C .

Taking for instance ̂̄νǫ(k) = ̂̄ν(k)1|k|≥ǫ this allows to end the proof of (61).

To end the proof of Lemma 17, one notices that since Q̃α is a difference of
two projectors,

Q̃2
α = P0

+Q̃αP0
+ − P0

−Q̃αP0
− (65)

and similarly (P̄ − P 0
−)2 = P 0

+(P̄ − P 0
−)P 0

+ − P 0
−(P̄ − P 0

−)P 0
−. Therefore, (61)

implies that

lim
α→0

∣∣∣
∣∣∣P0

+Q̃αP0
+ + P0

−Q̃αP0
−

∣∣∣
∣∣∣
S1(HΛ)

=
∣∣∣∣P 0

+(P̄ − P 0
−)P 0

+ + P 0
−(P̄ − P 0

−)P 0
−

∣∣∣∣
S1(HΛ)

from which we infer limα→0 trP0
−
(Q̃α) = trP 0

−
(P̄ − P 0

−). Then (62) is proved

since both are integers by [27, Lemma 2].

For α small enough, we deduce from (62) that trP0
−
(Q̃α + γα) = N and that

Q̃α+ γα is an admissible trial state. Note that γα is bounded in S1(HΛ), hence

limα→0 E ν̄/αBDF(γα) = tr{(D0 − ν̄ ∗ | · |−1)γ̄}, as the direct and exchange terms
vanish in the limit (they are multiplied by α).

Since (Q̃α) satisfies (65), it is bounded in QΛ. This implies that (ρQ̃α) is
uniformly bounded in C by (18), hence

E ν̄/αBDF(Q̃α + γα) = trP0
−
(D0Q̃α) −D(ν̄, ρQ̃α) + E ν̄/αBDF(γα) +O(α).

Using one more time the fact that Q̃α is the difference of two projectors, one
deduces that trP0

−
(D0Q̃α) = tr(|D0|Q̃2

α) which converges to tr(|D0|(P̄−P 0
−)2) =

trP 0
−
(D0(P̄ − P 0

−)) by Lemma 17 and (58). Now, using (61) and the fact that

(ρQ̃α) is uniformly bounded in C, we obtain limα→0D(ν̄, ρQ̃α) = D(ν̄, ρP̄−P 0
−
).

By [27, Lemma 5] which ensures

trP 0
−
(D0(P̄ − P 0

−)) −D(ν̄, ρP̄−P 0
−

) = trP 0
−

{(
D0 − ν̄ ∗ | · |−1

)
(P̄ − P 0

−)
}
,
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we have proved that

lim
α→0

E ν̄/αBDF(Q̃α + γα) = trP 0
−

{(
D0 − ν̄ ∗ | · |−1

)
(P̄ − P 0

− + γ̄)
}
,

which means lim supα→0E
ν̄/α
BDF(N) ≤ I ν̄(N) + η for any η ≥ 0.

Step 3: Lower bound. To prove the lower bound, we consider for any fixed α
a state (Qα) satisfying

E ν̄/αBDF(Qα) ≤ Eν̄/α(N) + α, trP0
−
(Qα) = N. (66)

By Proposition 7, we may moreover assume that Qα = Pα − P0
− where Pα is

an orthogonal projector. Let us show that the sequence (Qα) is bounded in
S2(HΛ). To this end, we first notice that Eν̄/α(N) is bounded from above by
the previous step and therefore, by (66) and Kato’s inequality for the exchange
term, we obtain the bound

(1 − απ/4) tr(|D0|Q2
α) ≤ C +

1

2α
D(ν̄, ν̄),

which proves that (
√
αQα) is bounded in S2(HΛ). By Kato’s inequality, this

means that the exchange term satisfies

α

2

∫∫

R6

|Qα(x, y)|2
|x− y| dx dy ≤ απ

4
tr(|D0|Q2

α) ≤ π(αC +D(ν̄, ν̄)/2)

4(1 − απ/4)

and it is thus uniformly bounded in α. Therefore, one has

trP0
−
(D0Qα) −D(ν̄, ρQα) +

α

2
D(ρQα , ρQα) ≤ C (67)

for some other constant C independent of α. By [27, Lemma 5] we have

trP0
−
(D0Qα) −D(ν̄, ρQα) = trP0

−
{(D0 − ν̄ ∗ | · |−1)Qα} (68)

= trP̃α{(D
0 − ν̄ ∗ | · |−1)(Qα − Q̃α)}

+ trP0
−
{(D0 − ν̄ ∗ | · |−1)Q̃α} (69)

≥ tr{|D0 − ν̄ ∗ | · |−1|(Qα − Q̃α)2} − C. (70)

In (69), we have inserted Q̃α = χ(−∞;0)(D0 − ν̄ ∗ | · |−1) − P0
− = P̃α − P0

− used
in Step 1, and we have applied [27, Lemma 1] allowing to change the reference
projector in the trace. In (70), we have used the fact that Qα − Q̃α satisfies
−P̃α ≤ Qα − Q̃α ≤ 1 − P̃α. We have also used that trP0

−
{(D0 − ν̄ ∗ | · |−1)Q̃α}

is uniformly bounded since it converges to trP 0
−
{(D0 − ν̄ ∗ | · |−1)(P̄ − P 0

−)}, as

proved in the first step. By (67) and (70), we infer that

tr{|D0 − ν̄ ∗ | · |−1|(Qα − Q̃α)2} +
α

2
D(ρQα , ρQα) ≤ C

for some uniform constant C. Using (59) and Lemma 17, we eventually deduce
that (Qα) is bounded in S2(HΛ). Now, we can write

E ν̄/αBDF(Qα) ≥ trP0
−
{(D0 − ν̄ ∗ | · |−1)Qα} +O(α) (71)

≥ inf
Q∈QΛ

tr
P0
−

(Q)=N

trP0
−
{(D0 − ν̄ ∗ | · |−1)Q} +O(α) (72)
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since the exchange term is O(α) and the direct term is ≥ 0. Next we have

lim
α→0

inf
Q∈QΛ

tr
P0
−

(Q)=N

trP0
−
{(D0 − ν̄ ∗ | · |−1)Q} = I ν̄(N)

defined in (52). It suffices to compute the above infimum by a formula similar
to (53) and to use the convergence of the spectrum of D0 − ν̄ ∗ | · |−1 to the one

of D0 − ν̄ ∗ | · |−1. This shows that lim infα→0E
ν̄/α
BDF(N) ≥ I ν̄(N) which ends

the proof of (24).

Step 4: Existence of a minimizer for α small enough. We now assume that
ν̄ satisfies the assumptions (a) and (b) of Theorem 2. Since D0 − tν̄ ∗ | · |−1

has no eigenvalue which crosses 0 when t ∈ [0; 1], one classically deduces that

q0 = trP 0
−
(P̄ − P 0

−) = 0. Hence, I ν̄(N) =
∑N

i=1 λ
+
i when N ≥ 0. On the other

hand, I0(N) = |N | for all N ∈ Z. This shows that (H ′
1) is satisfied for the

noninteracting linear model obtained in the limit α → 0. To prove that (H ′
1)

holds for α small enough is not difficult. We just have to prove that only
finitely many strict inequalities have to be checked in (H ′

1), and then to apply
(24). Unfortunately, we cannot use Lemma 3 since the lower bound of (30)
diverges when ν = ν̄/α. Instead, we prove the following

Lemma 18. We assume that ν̄ ∈ C is such that ker(D0 − ν̄ ∗ | · |−1) = {0}.
Then there exists 0 < α0 < 4/π and positive constants κ1, κ2 such that, for any
α ∈ [0;α0], E

ν̄/α(N) ≥ κ1|N |−κ2. Therefore, there exists a positive constant K0

independent of α such that Eν̄/α(N) < Eν̄/α(N−K)+E0(K) for all |K| ≥ K0.

Proof. We argue like in Step 3. Let Q ∈ QΛ be a state such that E ν̄/αBDF(Q) ≤
Eν̄/α(N) + η and trP0

−
(Q) = N for some fixed η > 0. Then by (30),

(1 − απ/4) tr(|D0|Q2) ≤ g0(0)|N | + 1

2α
D(ν̄, ν̄) + η

and therefore

α

2

∫∫

R6

|Q(x, y)|2
|x− y| dx dy ≤ π

4(1 − απ/4)
(g0(0)α|N | +D(ν̄, ν̄)/2 + ηα).

We obtain

E ν̄/αBDF(Q) ≥ trP0
−
(D0Q) −D(ν̄, ρQ)

− π

4(1 − απ/4)
(g0(0)α|N | +D(ν̄, ν̄)/2 + ηα).

For α small enough, we have

trP0
−
(D0Q) −D(ν̄, ρQ)

= trP0
−
((D0 − ν ∗ | · |−1)Q)

= trP̃α((D0 − ν ∗ | · |−1)(Q+ Q̃α)) − trP0
−
((D0 − ν ∗ | · |−1)Q̃α)

≥ (κ/2)| trP0
−
(Q+ Q̃α)| − trP0

−
((D0 − ν ∗ | · |−1)Q̃α)

≥ κ|N |/2 − κ| trP0
−
(Q̃α)|/2 − trP0

−
((D0 − ν ∗ | · |−1)Q̃α)
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(recall that Q̃α is defined in (60)). We deduce that

Eν̄/α(N) ≥ |N |
(
κ/2 − α

πg0(0)

4(1 − απ/4)

)
− κ2

for some uniform constant κ2. Recall that g0(0) implicitly depends on α, and
that it converges to 1 as α→ 0, see [40, 29].

Once we know that there exists a minimizer Qα of Eν̄/α(N), it is an easy
adaptation of the previous arguments to prove that Qα takes the form (25) and
behaves as stated. This ends the proof of Theorem 2.

6 Proof of Theorem 3

Step 1: Scaling properties and the spectrum of D0 when c ≫ 1. To avoid
any confusion, we shall use the following notation in the proof: we denote by
Eνα,c,Λ(N) the infimum of the BDF energy in QΛ(N), depending on the coupling
constant α, the speed of light c and the ultraviolet cut-off Λ. We are then
interested in the limit of Eν1,c,Λ0c

as c→ ∞. Since most of our previous results
are expressed in terms of the coupling constant α = 1/c, we shall often use in
this proof the following obvious scaling property

Eν1,c,Λ0c(N) = c2Eνc1/c,1,Λ0
(N), (73)

with νc(x) = c−3ν(x/c). More precisely, we introduce the following operator

Uc := HcΛ0
7−→ HΛ0

ψ −→ (Ucψ)(x) = c−3/2ψ(x/c).
(74)

Then for any state Q ∈ QcΛ0
(N), Q̃c := UcQU

∗
c belongs to QΛ0

(N), and
Eν1,c,cΛ0

(Q) = c2Eνc1/c,1,Λ0
(UcQU

∗
c ). To avoid both any confusion and any com-

plicated notation, we shall always denote by D0 and P0
− the free mean-field

operator and the free projector when α = 1, Λ = cΛ0 and the speed of light is
c. For the other equivalent units where α = 1/c, we use the following notation:

P̃0
− := UcP0

−U
∗
c and D̃0 =

UcD0U∗
c

c2
.

It will be implicit below that D0, D̃0, P0
− and P̃0

− indeed all depend on c and
Λ0. We similarly write

D0(p) = g1(|p|)α · ωp + g0(|p|)β, D̃0(p) = g̃1(|p|)α · ωp + g̃0(|p|)β

and notice that g̃0 and g̃1 are uniformly bounded with respect to α = 1/c and
satisfy g0(x) = c2g̃0(x/c) and g1(x) = c2g̃1(x/c). For c large enough, we are
able to identify the essential spectrum threshold of D0 as stated in the following

Lemma 19. Assume that c is large enough, then there exist κ, κ′ > 0 depending
only on Λ0 such that

√
g0(0)2 + κc2|p|2 ≤ |D0(p)| ≤ g0(0) + (1 + κ′/c)

|p|2
2

(75)

for any p ∈ B(0, cΛ0). In particular, minσ(|D0|) = g0(0).
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Proof. It is known that p 7→ D0(p) is smooth [29], hence p 7→ g0(|p|) and
p 7→ g1(|p|)/|p| are also smooth. By [41, 29], there exist two continuous functions
h0 and h1, uniformly bounded on B(0,Λ0) with respect to c, such that

g̃0(|p|) = g̃0(0) +
|p|2
c
h0(|p|), g̃1(|p|) = |p|(g̃′1(0) +

|p|2
c
h1(|p|)), (76)

where g̃0(0) = 1 +O(1/c) and g̃′1(0) = 1 +O(1/c). We infer from (76) that

g0(|p|) = c2g̃0(0) +
|p|2
c
h0(|p|/c), g1(|p|) = c|p|(g̃′1(0) +

|p|2
c3

h1(|p|/c)). (77)

Therefore there exist two positive constants κ0 and κ1 such that g0(|p|)2 ≥
c2g̃0(0)2 − κ0c|p|2 and g1(|p|)2 ≥ κ1c

2|p|2, hence

g0(|p|)2 + g1(|p|)2 ≥ c2g̃0(0)2 + c2|p|2(κ1 − κ0/c) ≥ g0(0)2 + κc2|p|2

for c large enough. Similarly, we notice that, by [29, Theorem 2.2]

√
g0(|p|)2 + g1(|p|)2 − g0(0) ≤ g0(|p|)

√
1 + |p|2/c2 − g0(0)

≤ g0(0)
|p|2
2c2

+
|p|2
c

||h0||L∞

√
1 + Λ2

0,

which ends the proof of (75) since g0(0)/c2 = g̃0(0) = 1 +O(1/c).

Step 2: Upper bound. Let us start by proving the upper bound

lim sup
c→∞

{Eν1,c,cΛ0
(N) −N g0(0)} ≤ EνHF(N). (78)

Let cn → ∞ be a sequence which realizes the lim sup in (78). Let ψ =
(ψ1, ..., ψN ) be a minimizer of the Hartree-Fock energy [41, 43], belonging to
H2(R3,C2)N . We introduce the following subspace of H0

+

Wn := Span
{
P0

+ϕi, i = 1, ..., N
}
, ϕi =

(
ψi
0

)
.

By (77),
〈
P0

+ϕi,P0
+ϕj

〉
= δij+O(1/cn) and we can thus choose an orthonormal

basis (ϕn1 , ..., ϕ
n
N ) of Wn which satisfies ||ϕni − ϕi||H1 → 0 as cn → ∞. We then

take γn =
∑N
i=1 |ϕni 〉〈ϕni | as a trial state. Using (75), we infer

trP0
−
(D0γn) −N g0(0) =

N∑

i=1

〈(√
g0(|p|)2 + g1(|p|)2 − g0(0)

)
ϕni , ϕ

n
i

〉

≤ 1 + κ′/c

2

N∑

i=1

〈
|p|2ϕni , ϕni

〉
.

This allows to prove the upper bound (78).

Step 3: Lower bound: construction of an approximate solution. The main part
of the proof will now consist in showing the lower bound

lim inf
c→∞

{Eν1,c,cΛ0
(N) −N g0(0)} ≥ EνHF(N), (79)
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which will end the proof of (29). To this end, we consider a sequence cn → ∞
which realizes the lim inf in (79). For any cn, we shall need a state Qn which is
not only an approximate minimizer of Eν1,cn,cnΛ0

(N), but also an approximate
solution of the self-consistent equation. Such a state will be obtained by a
general perturbation result due to Borwein and Preis [8] (see also [23]), and
which we state in the simplified Hilbert case as follows:

Theorem 4 (A smooth variational perturbation principle [8, 23]). Let M be a
closed subset of a Hilbert space H, and F : M 7→ (−∞; +∞] be a lower semi-
continuous function that is bounded from below and not identical to +∞. For
all ǫ > 0 and all u ∈ M such that F (u) < infM F + ǫ2, there exist v ∈ M and
w ∈ Conv(M) such that

1. F (v) < infM F + ǫ2

2. ||u− v||H <
√
ǫ, ||v − w||H <

√
ǫ

3. F (v) + ǫ ||v − w||2H = min
{
F (z) + ǫ ||z − w||2H , z ∈ M

}
.

We apply this result by taking F = Eν1,cn,cnΛ0
, H = S2(HcnΛ0

), ǫ = c−2
n and

M :=
{
P − P0

− ∈ S2(HcnΛ0
) | P = P 2 = P ∗, trP0

−
(P − P0

−) = N
}

⊂ QcnΛ0
(N).

We recall that the BDF functional Eν1,cn,cnΛ0
is continuous on QcnΛ0

(N) for

the S
P0

−

1 (HcnΛ0
) topology, hence on M for the S2(HcnΛ0

) topology. One has
Eν1,cn,cnΛ0

(N) = infM Eν1,cn,cnΛ0
by Lieb’s variational principle, Proposition 7.

Notice also that ConvM = QcnΛ0
(N). Applying Theorem 4, we therefore obtain

an orthogonal projector Pn on HcnΛ0
and a state Rn ∈ QcnΛ0

(N) such that
Qn := Pn−P0

− ∈ M ⊂ QcnΛ0
(N) minimizes the following perturbed functional

Q ∈ M 7→ Eν1,cn,cnΛ0
(Q) + 1

c2n
tr{(Q−Rn)2} on M and satisfies

Eν1,cn,cnΛ0
(Qn) ≤ Eν1,cn,cnΛ0

(N) + c−4
n , ||Qn −Rn||

S2(HcnΛ0
) ≤ c−1

n .

Noticing that

tr{(Qn − Rn)2} = 2 trP0
−

{
Qn(1/2 − P0

− −Rn)
}

+ tr((Rn)2),

since tr((Qn)2) = tr((Qn)++ − (Qn)−−) = 2 trP0
−
{Qn(1/2 − P0

−)}, it is then

an easy adaptation of Proposition 2 to prove that Qn satisfies the following
equation, for some µn ∈ R,

Qn + P0
− = Pn = χ(−∞;µn]

(
DQn +

2

c2n
(1/2 − P0

− −Rn)

)
. (80)

We then introduce the approximate vacuum solution

Qnvac := χ(−∞;0)

(
DQn +

2

c2n
(1/2 − P0

− −Rn)

)
− P0

−

and the approximate electronic solution γn := Qn −Qnvac.
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Step 3: Estimates on the approximate vacuum solution Qnvac. To apply previous
results, we now introduce Q̃n := UcnQ

nU∗
cn , Q̃

n
vac := UcnQ

n
vacU

∗
cn where Ucn is

the scaling operator defined above in (74). One has

Q̃nvac = χ(−∞;0)

(
D̃0 + c−1

n (ρQ̃n − νcn) ∗ | · |−1 − c−1
n

Q̃n(x, y)

|x− y|

− 2

c4n
R̃n +

2

c4n
(1/2 − P̃0

−)

)
− P̃0

−. (81)

Notice the obvious property P̃0
− = χ(−∞;0)

(
D̃0 + 2

c4n
(1/2 − P̃0

−)
)

for n large

enough, and that D(νcn , νcn) = c−1
n D(ν, ν). Since Q̃n satisfies

E1/cn,1,Λ0
(N) ≤ E1/cn,1,Λ0

(Q̃n) ≤ E1/cn,1,Λ0
(N) + c−6

n ,

(Q̃n)n≥1 is bounded uniformly in S
P0

−

1 (HΛ0
), for n large enough by Lemma 1.

In particular, ρQ̃n is uniformly bounded in C for n large enough. We deduce

from the equation (81) satisfied by Q̃nvac and the results of [27, 28] that

tr
(
(1 + |∇|)(Q̃nvac)2

)1/2

+
∣∣∣
∣∣∣ρQ̃nvac

∣∣∣
∣∣∣
C

= O(1/cn).

Using now

tr((Qnvac)
2) = tr((Q̃nvac)

2) and D(ρQnvac , ρQnvac) = cnD(ρQ̃nvac
, ρQ̃nvac

),

we eventually obtain

||Qnvac||S2(HcnΛ0
) = O(1/cn) and tr

(
|∇|(Qnvac)2

)1/2
+
∣∣∣∣ρQnvac

∣∣∣∣
C

= O(c−1/2
n ). (82)

Step 4: Non-relativistic limit of the approximate electronic solution γn and
proof of the lower bound (79). By (82), we have

∣∣∣∣Pn − P0
−

∣∣∣∣
B(HcnΛ0

)
< 1 for n

large enough, and therefore that the vacuum has a vanishing charge [27, Lemma
2]: trP0

−
(Qnvac) = 0. Since by construction the full state Qn has a total charge

N > 0, this means that necessarily µn in (80) is a positive real constant, and
that the perturbed mean-field operator DQn +2(1/2−P0

−−Rn)/c2n has at least
N positive eigenvalues. The operator γn is then the projector on the N first
positive eigenstates: we can write γn =

∑N
i=1 |ϕni 〉〈ϕni |, where each ϕni is a

solution of the following equation

(
DQn +

2

c2n
(1/2 − P0

− −Rn)

)
ϕni = µni ϕ

n
i , (83)

(µni )Ni=1 being the N first positive eigenvalues of DQn + 2
c2n

(1/2−P0
− −Rn). In

order to prove the lower bound (79), we shall now show that Φn = (ϕn1 , ..., ϕ
n
N )

converges to a solution of the Hartree-Fock equations. To this end, we use ideas
from Esteban and Séré [20]: we prove that (Φn) is bounded in H1(R3,C4)N and
that each µni stays away from the essential spectrum of DQn+ 2

c2n
(1/2−P0

−−Rn)
as n grows. We then apply a result of Lions [43].
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Lemma 20. There exists a constant ǫ > 0 depending only on N , ν and Λ0,
such that

∀i = 1, ..., N, lim sup
n→∞

(µni − g0(0)) ≤ −ǫ < 0. (84)

Proof. First, we notice that for any i = 1, ..., N , µni is at most the Nth eigenvalue
of the following operator, with the self-interaction removed:

Dn
i := D0 + ρni ∗ | · |−1 − γni (x, y)

|x− y| + Kn

with ρni =
∑
j 6=i |ϕnj |2 − ν, γni (x, y) =

∑
j 6=i ϕ

n
j (x)ϕnj (y)∗,

Kn = ρQnvac ∗ | · |
−1 − Qnvac(x, y)

|x− y| +
2

cn
(1/2 − P0

− −Rn).

We estimate µnN by means of the min-max characterization of the eigenvalues
in the gap which was proposed by Dolbeault, Esteban and Séré in [13]. By
the continuation principle of [13], one can prove that the assumptions of [13,
Theorem 1] are satisfied for cn large enough, and therefore the firstN eigenvalues
of Dn

i are given by the formula

µk(Dn
i ) = inf

V⊂H
0
+

dimV=k

sup
ϕ∈V⊕H

0
−

||ϕ||
L2=1

〈Dn
i ϕ,ϕ〉, k = 1, ..., N. (85)

We then argue like in [19, Lemma 4.5] to estimate µN (Dn
i ) ≥ µni . We choose

an N -dimensional vector subspace W of H1(R3,R), of smooth radial functions
with compact support in the Fourier domain, and introduce

VR :=




x 7→ R−3/2




f(x/R)
0
0
0


 , f ∈ W




.

It is clear that P0
+VR is an N -dimensional vector space for cn large enough,

uniformly in R ≥ 1. We then use H0
− ⊕ P0

+VR = H0
− + VR to estimate µN (Dn

i )
by Formula (85). Let be ϕ ∈ H0

− +VR such that ϕ = ϕ− +χ with ϕ− ∈ H0
− and

χ ∈ VR. We compute

〈Dn
i ϕ,ϕ〉 = 〈Dn

i ϕ−, ϕ−〉 + 〈Dn
i χ, χ〉 + 2ℜ(〈Dn

i ϕ−, χ〉).

First, we use Kato’s inequality to obtain
∣∣∣∣
∫∫

ρni (x)|ϕ−(y)|2
|x− y| dx dy

∣∣∣∣ ≤
π

2
||ρni ||L1 〈|∇|ϕ−, ϕ−〉

≤ π(Z +N − 1)

2cn

〈
|D0|ϕ−, ϕ−

〉
.

The same argument with Hardy’s inequality leads to
∣∣∣∣
∫∫

ρni (x)ϕ−(y)χ(x)

|x− y| dx dy

∣∣∣∣ ≤ 2(Z +N − 1) ||ϕ−||L2 ||∇χ||L2

≤ ||ϕ−||2L2 +
κ1

R2
||χ||2L2
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for some constant κ1 > 0 independent of cn. Similarly, we write

|
〈
D0ϕ−, χ

〉
| ≤

∣∣∣
∣∣∣|D0|1/2ϕ−

∣∣∣
∣∣∣
L2

∣∣∣
∣∣∣P0

−|D0|1/2χ
∣∣∣
∣∣∣
L2
.

Then, we notice that

∣∣∣
∣∣∣P0

−|D0|1/2χ
∣∣∣
∣∣∣
2

L2
=
〈
|D0|P0

−χ, χ
〉

=
〈{√

g0(|p|)2 + g1(|p|)2 − g0(|p|)
}
χ, χ

〉
/2.

By Lemma 19 √
g0(|p|)2 + g1(|p|)2 − g0(|p|) ≤ 2κ2|p|2 (86)

for some constant κ2 > 0 depending only on Λ0 and for cn large enough, which
proves that

|
〈
D0ϕ−, χ

〉
| ≤ κ2

〈
|D0|ϕ−, ϕ−

〉1/2 ||∇χ||L2 ≤
〈
|D0|ϕ−, ϕ−

〉

4
+
κ3

R2
||χ||2L2 .

We now estimate the term 〈Diχ, χ〉. First we use (77) to obtain

〈
D0χ, χ

〉
= 〈g0(|p|)χ, χ〉 ≤ g0(0) ||χ||2L2 +

κ4

cnR2
||χ||2L2 .

Then, we write

∫∫

R6

ρni (x)χ(y)2

|x− y| dx dy ≤ (N − 1)

∫

R3

χ(y)2

|y| dy

where we have used that χ is a radial function. On the other hand, ν being
fixed in L1, one has

∫∫

R6

ν(x)χ(y)2

|x− y| dx dy ≥ Z

∫

R3

χ(y)2

|y| dy − o(R−1 ||χ||2L2).

Eventually, we estimate the term involving Kn. We use

∣∣∣∣1/2− P0
− +Rn

∣∣∣∣
B(HcnΛ0

)
= Ocn→∞(1),

∣∣∣∣ρQnvac ∗ | · |ϕ
∣∣∣∣
L2 ≤

∣∣∣∣ρQnvac ∗ | · |
∣∣∣∣
L6 ||ϕ||L3 ≤ κ5D(ρQnvac , ρQnvac)

1/2 ||ϕ||H1(R3)

and a similar inequality for Qnvac(x, y)/|x − y| to prove that for some constant

κ6 > 0, |Kn|2 ≤ (κ6)
2(1 − ∆)/cn, and therefore |Kn| ≤ κ6c

−1/2
n

√
1 − ∆. Using

the same method as above to estimate the term 〈Knϕ,ϕ〉 and the fact that
γni (x, y)/|x− y| defines a nonnegative operator, we therefore obtain the bound

〈Dn
i ϕ,ϕ〉 ≤

(
−1/2 +O(c−1/2

n )
) 〈

|D0|ϕ−, ϕ−

〉
+ 2 ||ϕ−||2L2

+

(
g0(0) +O(c−1/2

n ) +
κ7(N − 1 − Z)

R
+ o(R−1)

)
||χ||2L2 .

Finally, by means of |〈ϕ−, χ〉| ≤ ||ϕ−||L2

∣∣∣∣P0
−χ
∣∣∣∣
L2 ≤ κ8 ||ϕ−||L2 ||χ||L2 /(cnR), we

conclude that there exists a constant ǫ > 0 depending only on Λ0, ν, N and
the chosen space W , such that for R large enough, 〈Dn

i ϕ,ϕ〉 ≤ (g0(0) − ǫ +

O(c
−1/2
n )) ||ϕ||2L2 . This ends the proof of Lemma 20.
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Lemma 21. Each Φn = (ϕni , ..., ϕ
n
N ) is bounded in H1(R3,C4)N as n→ ∞.

Proof. We adapt arguments from [20]. Using the self-consistent equation (83)
and estimates similar to those of the proof of Lemma 20, one can prove that
there exists a constant ℓ > 0 (independent of cn, but depending on N , ν and
Λ0) such that

tr(|D0|2γn) ≤ N g0(0)2 + ℓ tr((−∆)γn) + ℓc2n tr((−∆)γn)1/2.

Using now (75), we infer that

tr(|D0|2γn) ≥ N g0(0)2 + κc2n tr((−∆)γn),

which shows that
∑N
i=1 ||∇ϕni ||

2
L2 = tr((−∆)γn) is bounded.

The sequences (ϕni ) being bounded in H1(R3,C4) for all i = 1, ..., N , we can
now rewrite the self-consistent equation (83) as

(
cg̃′1(0)α · p+ g̃0(0)c2β + (ργn − ν) ∗ 1

| · | −
γn(x, y)

|x− y|

)
ϕni = µni ϕ

n
i + ǫni (87)

where limn→∞ ||ǫni ||H−1(R3,C4) = 0 and by (77). We now apply the method of

[20] to conclude that (ϕn1 , ..., ϕ
n
N ) converges towards (ϕ1, ..., ϕN ) with ϕ =

(
ψ
0

)
,

ψ ∈ H1(R3,C2)N which is a solution of the Hartree-Fock equations, and that

lim
n→∞

{Eν1,cn,cnΛ0
(γn) −N g0(0)} = EνHF(γψ). (88)

By the estimates of the proof of Lemma 20 and (82), we deduce that

lim
n→∞

(
2D(ργn , ρQnvac) − 2ℜ

∫∫

R6

γn(x, y) ·Qnvac(x, y)
|x− y| dx dy −D(ν, ρQnvac)

)
= 0,

i.e. that the interaction between the vacuum and the rest of the system vanishes.
Since E0

1,cn,cnΛ0
(Qnvac) ≥ 0 by the stability of the free vacuum, we finally obtain

the lower bound (79). This ends the proof of (29).

Step 5: Conclusion. For c large enough |D0| ≥ g0(0) hence by Lemma 3

(1 − 4/(cπ))g0(0)|q| − 1

2
D(ν, ν) ≤ Eν(N) ≤ g0(0)|q|

This implies that, for c large enough, Eν(N) > Eν(N − K) + E0(K) for any
K < 0 or K > N . On the other hand, it is well-known [41, 43] that

EνHF(N) < min{EνHF(N −K) + E0
HF(K), K = 1, ..., N}.

This proves that (H ′
1) holds for c large enough, by (29). Thus there exists a

minimizer Qc for Eν(N). It then suffices to apply again the analysis of Steps
3-4 to show that Qc satisfies (28), and obtain the stated convergence of the
electronic orbitals towards a minimizer of the Hartree-Fock energy. This ends
the proof of Theorem 3.
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A Proof of Lemma 1

We write as usual Q = Q++ + Q−− + Q+− + Q−+, where by assumption
Q++, Q−− ∈ S1(HΛ) and Q+−, Q−+ ∈ S2(HΛ). First, using (17) we see that
||ρQ||L2 ≤ κΛ ||Q||

S2(HΛ) for some constant κΛ = O(Λ3/2). Therefore, we now

only estimate D(ρQ, ρQ) in terms of ||Q||1;P0
−

. The diagonal terms are treated

as follows

∫

B(0,Λ)

|ρ̂Q++(k)|2
|k|2 dk ≤

∣∣∣∣ρ̂Q++

∣∣∣∣2
L∞

∫

B(0,Λ)

|k|−2dk

≤ (2π)3(4πΛ)
∣∣∣∣ρQ++

∣∣∣∣2
L1(R3)

≤ (2π)3(4πΛ)
∣∣∣∣Q++

∣∣∣∣2
S1(HΛ)

.

For the off-diagonal terms, we use ideas from [27, p. 540–547]. Let ζ be a
function in C′ ∩ HΛ. We compute

|
〈
ρQ+− , ζ

〉
| = | tr(Q+−ζ)| = | tr(Q+−P0

−ζP0
+)|

≤
∣∣∣∣Q+−

∣∣∣∣
S2(HΛ)

∣∣∣∣P0
−ζP0

+

∣∣∣∣
S2(HΛ)

.

Let us now fix some α0 < 4/π. Similarly to [27, Lemma 12], it can be proved
that there exists a positive constant κ independent of α (but depending on Λ
and α0) such that trC4(P0

−(p)P0
+(q)) ≤ κ|p− q|2. Therefore

∣∣∣∣P0
−ζP0

+

∣∣∣∣
S2(HΛ)

≤ κ′ ||∇ζ||2L2 = 4πκ′ ||ζ||2C′ and
∣∣∣∣ρQ+−

∣∣∣∣
C
≤ κ′′

∣∣∣∣Q+−
∣∣∣∣

S2(HΛ)

for some constant κ′′ depending only on Λ and α0.

B On the Structure of the Variational Set

In this section, we consider an infinite-dimensional Hilbert space H and a refer-
ence orthogonal projector Π on H such that Π and 1−Π are both of infinite rank.
We introduce H+ := (1−Π)H and H− := ΠH. First we prove a useful reduction
for projectors belonging to Π + SΠ

1 (H) (i.e. to Π + S2(H) by [27, Lemma 2]).
This decomposition is valid in a more general setting (for any Fredholm pair of
projections (P,Π) [2]) but for the sake of simplicity, we restrict ourselves to the
Hilbert-Schmidt case needed in the article. Then, we deduce a general structure
result for the variational set

Q :=
{
Q ∈ SΠ

1 (H) | Q∗ = Q, −Π ≤ Q ≤ 1 − Π
}
. (89)

Theorem 5 (Projections and BDF-states in the Fock space). Let P be an
orthogonal projector on H such that P − Π ∈ S2(H). Denote by (f1, ..., fN) ∈
(H+)N an orthonormal basis of E1 = ker(P − Π − 1) = ker(Π) ∩ ker(1 − P )
and by (g1, ..., gM ) ∈ (H−)M an orthonormal basis of E−1 = ker(P − Π + 1) =
ker(1 − Π) ∩ ker(P ). Then there exist an orthonormal basis (vi)i≥1 ⊂ H+ of
(E1)

⊥ in H+, an orthonormal basis (ui)i≥1 ⊂ H− of (E−1)
⊥ in H−, and a

sequence (λi)i≥1 ∈ ℓ2(R
+) such that

P =
N∑

n=1

|fn〉〈fn| +
∞∑

i=1

|ui + λivi〉〈ui + λivi|
1 + λ2

i

, (90)
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1 − P =

M∑

m=1

|gm〉〈gm| +
∞∑

i=1

|vi − λiui〉〈vi − λiui|
1 + λ2

i

. (91)

The Bogoliubov-Dirac-Fock state [27] associated with P in the Fock space F built
on the electron-positron decomposition H = H+ ⊕ H− is then given by

ΩP = k

N∏

n=1

a∗0(fn)

M∏

m=1

b∗0(gm) exp(Aa∗b∗) Ω0 (92)

= k

N∏

n=1

a∗0(fn)

M∏

m=1

b∗0(gm)
∏

i≥1

(
1 + λia

∗
0(vi)b

∗
0(ui)

)
Ω0 (93)

where A :=
∑

i≥1 λi|vi〉〈ui| and k =
∏
i≥1(1 + λ2

i )
−1/2.

Formula (92) is classical and can be found in different forms in [59, 36, 51, 52]
(see also [6, Theorem 2.2]). Since

Π =

M∑

m=1

|gm〉〈gm| +
∑

i≥1

|ui〉〈ui|,

we obtain

P − Π =

N∑

n=1

|fn〉〈fn| −
M∑

m=1

|gm〉〈gm| +
∑

i≥1

λ2
i

1 + λ2
i

(
|vi〉〈vi| − |ui〉〈ui|

)
(94)

+
∑

i≥1

λi
1 + λ2

i

(
|ui〉〈vi| + |vi〉〈ui|

)
. (95)

The terms in (94) form the diagonal part of P − Π, which is trace-class [27,
Lemma 2]. The last term (95) is the off-diagonal term which is only Hilbert-
Schmidt a priori. Note we obtain from this formula that trΠ(P − Π) = N −M
is an integer [27, Lemma 2]. The formula of P − Π can also be written as

P = Π +

N∑

n=1

|fn〉〈fn| −
M∑

m=1

|gm〉〈gm| +Q(A)

where A :=
∑

i≥1 λi|vi〉〈ui| and

Q(A) =
A∗A

1 +A∗A
− AA∗

1 +AA∗
+A

1

1 +A∗A
+

1

1 +A∗A
A∗.

Therefore

{
P | P = P ∗ = P 2, P − Π ∈ S2(H), ‖P − Π‖ < 1

}

= {Π +Q(A), A ∈ S2(H+,H−)} . (96)

Proof of Theorem 5. We only sketch the proof which is an easy adaptation of
ideas in [2, 36, 59, 33, 34, 51]. Let U be a unitary transformation such that
P = UΠU−1. We introduce U++ = (1 − Π)U(1 − Π), U+− = (1 − Π)UΠ,
U−+ = ΠU(1 − Π) and U−− = ΠUΠ. It can be verified that U+− and U−+
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are Hilbert-Schmidt operators, and that E1 = kerU∗
++ and E−1 = kerU∗

−−.
The operator U−− : ker(U−−)⊥ → Ran(U−−) = ker(U∗

−−)⊥ = E⊥
−1 possesses an

inverse U−1
−− well-defined and bounded on E⊥

−1. Following [59, Equation (10.84)],

we introduce the Hilbert-Schmidt operator A := U+−U
−1
−− : E⊥

−1 → E⊥
1 . It can

be proved that Ran(P ) = E1 ⊕⊥ (1 + A)(E⊥
−1) which means that (E1)

⊥ is the
graph of A. Writing A =

∑
i≥1 λi|vi〉〈ui| where (λi)i≥1 ∈ ℓ2(R

+), one obtains

that (E1)
⊥ = (1 +A)(E⊥

−1) = span{ui + λivi, i ≥ 1}, and therefore

P =

N∑

n=1

|fn〉〈fn| +
∞∑

i=1

|ui + λivi〉〈ui + λivi|
1 + λ2

i

.

The same argument applies to (91). The proof that, in the Fock space based on
the decomposition H = H+ ⊕ H−, the dressed vacuum ΩP is given by formula
(92) is let to the reader. Recall that ΩP is characterized by the normalization
constraint ||ΩP ||F = 1 and the relations aP (f)ΩP = bP (f)ΩP = 0 for all f ∈ H,
where aP (f) = a0((1−P )f)+b∗0((1−P )f) and bP (f) = a∗0(Pf)+b0(Pf).

We can now clarify the structure of the variational set Q defined in (89).

Theorem 6 (Structure of the Variational Set). The set Q coincides with the
set containing all the operators of the form

Q = UD(Π + γ)U−D − Π (97)

where

1. D ∈ S2(H) is such that kerD ⊇ kerΠ and kerD∗ ⊇ ker(1 − Π);

2. UD = exp(D −D∗);

3. γ ∈ S1(H) is a self-adjoint and trace-class operator such that [γ,Π] = 0
and, denoting γ−− = ΠγΠ and γ++ = (1−Π)γ(1−Π), then −Π ≤ γ−− ≤
0 and 0 ≤ γ++ ≤ 1 − Π.

Proof. Notice first that any Q of the form (97) belongs to Q. Indeed UDγU−D ∈
S1(H) and UDΠU−D − Π is a difference of two orthogonal projectors which is
in S2(H) since D ∈ S2(H) and therefore belongs to SΠ

1 (H) by [27, Lemma 2].
The constraint −Π ≤ Q ≤ 1 − Π is obviously satisfied. We now prove that any
Q ∈ Q can be written as in (97).

Lemma 22. For any Q ∈ Q, there exists an orthogonal projector P and a
trace-class operator γ′ such that [P, γ′] = 0 and

Q = P − Π + γ′. (98)

Moreover, P and γ′ can be chosen such that trΠ(P − Π) = 0.

Proof of Lemma 22. Let be Q ∈ Q. Since Q is compact, the essential spectrum
of Q+Π is {0, 1}. We write Q+Π = χ(1/2;1](Q+Π)+γ′ and show that tr |γ′| <
∞, which will prove (98). We can find an orthonormal basis (ϕn)n≥1 ∪ (ψn)n≥1

of H such that

Q+ Π =
∑

n≥1

rn|ϕn〉〈ϕn| +
∑

n≥1

(1 − sn)|ψn〉〈ψn|
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where rn ∈ [0; 1/2], sn ∈ [0; 1/2) and limn→∞ rn = limn→∞ sn = 0. Computing

tr(Q++ −Q−−) =
∑

n≥1

rn ||(1 − Π)ϕn||2 +
∑

n≥1

(1 − rn) ||Πϕn||2

+
∑

n≥1

(1 − sn) ||(1 − Π)ψn||2 +
∑

n≥1

sn ||Πψn||2

which is finite for Q ∈ SΠ
1 (H), we get

∑

n≥1

||Πϕn||2 <∞,
∑

n≥1

||(1 − Π)ψn||2 <∞ and
∑

n≥1

(rn + sn) <∞.

Then γ′ =
∑
n≥1 rn|ϕn〉〈ϕn| −

∑
n≥1 sn|ψn〉〈ψn| belongs to the trace class

S1(H). The above decomposition can be easily modified in order to ensure
that trΠ(P − Π) = 0. It suffices to add eigenstates of Q + Π in [0, 1/2] to
χ(1/2;1](Q+ Π) if trΠ(P −Π) < 0, or to remove eigenstates of Q+ Π in (1/2, 1]
to χ(1/2;1](Q+ Π) if trΠ(P − Π) > 0.

Let us now write Q = P − Π + γ′ with γ′ ∈ S1(H), [γ′, P ] = 0 and trΠ(P −
Π) = 0. We apply Theorem 5 to P and find an operator A =

∑
i≥1 λi|vi〉〈ui| ∈

S2(H) and two orthonormal systems (f1, ..., fN) ∈ (H+)N and (g1, ..., gN) ∈
(H−)N such that (90) and (91) hold. Let us then introduce e−k = gk and
ek = fk for k = 1, ..., N , e−N−j = uj and eN+j = vj for j ≥ 1. We also define
the Bogoliubov angles [11] as θk = π/2 for k = 1, ..., N and θN+j = arccos(1 +
λ2
j )

−1/2 for j ≥ 1. Then P = UDΠU−D with D =
∑

k≥1 θk|e−k〉〈ek|. Thus,
introducing γ = U−Dγ

′UD, we obtain the resultQ = UD(Π+γ)U−D−Π.
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