
ON THE BOUNDARY CONTROL APPROACH TO INVESE
SPECTRAL AND SCATTERING THEORY FOR SCHRODINGER

OPERATORS

ALEXEI RYBKIN

Abstract. We link boundary control theory and inverse spectral theory for
the Schrödinger operatorH = �@2x+q (x) on L2 (0;1) with Dirichlet boundary
condition at x = 0: This provides a shortcut to some results on inverse spectral
theory due to Simon, Gesztesy-Simon and Remling. The approach also has a
clear physical interpritation in terms of boundary control theory for the wave
equation.

1. Introduction

This methodological paper links together a several developments of the late 1990s
and earlier 2000s related to classical but still important issues of the inverse prob-
lems for the one dimensional wave and Schrodinger equations.
In 1986 Belishev put forward a very powerful approach to boundary value inverse

problems (see his 2007 review [7] and the extensive literature therein). His approach
is based upon deep connections between inverse problems and boundary control
theory and is now referred to as the BC method. It is however much less known in
the Schrodinger operator community (including inverse problems). Likewise, the
boundary control community does not appear to have tested the BC method in the
direct/inverse spectral/scattering theory. In [3] we showed that the BC method
can be applied to the study of the Titchmarsh-Weyl m-function. In this short note
we demonstrate yet another application of the BC method to inverse problems for
the one-dimensional Schrodinger equation. In terms relevant to our situation, the
main idea of the BC method is to study the (dynamic) Dirichlet-to-Neumann map
u (0; t)! @xu (0; t) for the wave equation

@2t u� @2xu+ q (x)u = 0; x > 0; t > 0
with zero initial conditions. The map u (0; t) ! @xu (0; t) turns out to be the
so-called response operator - a natural object available in physical experiments.
The kernel of this operator, the response function r (t), reconstructs the potential
q (x) on (0; l) by r (t) on (0; l) through an elegant procedure; every step of which
being physically motivated. Beside its transparency, this method is also essentially
local, i.e. instead of studying the problem on (0;1) at a time (as Gelfand-Levitan
type methods require) one can solve it on (0; l). The �nal integral equation (2:16),
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solving the inverse problem, is actually equivalent to (2:17) derived by Remling a
few year ago in [15] and [16]. His concern was not inverse problems for the wave
equation but inverse spectral theory for the half line Schrodinger equation

�@2xu+ q (x)u = zu; x > 0;

with Neumann or Dirichlet boundary conditions. The main idea of [15] and [16] is
to employ the theory of de Brange spaces to develop a local (in the very same sense
as in the BC method) approach to inverse spectral problems. The treatment,.as the
author notices, "is neither short nor elementary" and physical motivations behind
his arguments are not obvious. Yet, Remling was able to identify many important
objects (including the �nal integral equation (2:17)) which in the BC method, in
fact, have names. It is worth mentioning that Remling�s work was in turn inspired
by a new fundamental formalism of inverse spectral theory due to Simon [17] and
Gesztesy-Simon [10] . Their approach is also local but leads to a non-linear integro-
di¤erential equation (3:11) (which could be reduced [16] to the non-linear integral
equation (3:12)).
We believe that there is a point in o¤ering a totally di¤erent physically transpar-

ent approach to the circle of questions treated in [17], [10], [15] and [16]. With some
easily recoverable technical details omitted, it takes just a few pages to explain how
the BC method works in inverse spectral theory. Applications of the BC method
are not limited to the papers cited above but also to many other known inverse
(not necessarily spectral) problems considered in [2], [1], [9], [12], [14] (to name
just �ve). Some of these connections are worth considering but to keep our paper
concise we have to leave them aside at this time. We plan to continue exploring
this avenue in [4].
Through the paper we state seven seemingly assorted problems from boundary

value and BC theories for the wave equation (direct and inverse), spectral theory
for Schrodinger operators (direct and inverse) and inverse scattering theory. We
show how the language of the BC theory links these problems together. The paper
is organized as follows. In Section 2 we introduce the BC method in the situation
pertinent to our setting. In Section 3, after a brief introduction to Titchmarsh-Weyl
theory, we show how the BC method naturally appears in inverse spectral theory.
In short Section 4 we consider an inverse problem which can be solved by the BC
method.

2. Boundary Control Approach to an Inverse Problem for the Wave
Equation

The material of this section is well-know in the BC community but much less
known in the Schrodinger operator community. We follow Belishev [7] and Avdonin
et al [5],[6] here but adjust notation to our setting. Associate with the second order
di¤erential operation

H = �d2=dx2 + q (x) (2.1)

on R+ := [0;1) with a real-valued locally integrable potential q, i.e.

q = q 2 L1loc (R+) ;

the following problem.
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Problem 1 (Mixed Problem for the Wave Equation). Find the solution, which we
call physical, to 8>><>>:

Hu = �@2t u
u (x; t) = 0; t < x (causality condition)
u (x; 0) = @tu (x; 0) = 0
u (0; t) = f (t) ;

(2.2)

where f is a know L2loc (R+) function referred in BC theory to as a boundary control.

It is well-know that in the distributional sense the solution to Problem 1 admits
the representation

u(x; t) =

�
f(t� x) +

R t
x
w(x; s)f(t� s) ds; x � t;

0; x > t:
(2.3)

where w(x; s) solves

Problem 2 (Goursat problem). Find the solution, usually referred to as Goursat,
to 8<:

Hu = �@2t u
u (0; t) = 0
u (x; x) = � 1

2

R x
0
q

(2.4)

It is a standard fact (see e.g. [9]) that Problem 2 is unequally solvable for any
(even complex) locally integrable q and its solution

w 2 AC1loc (2.5)

(the partial derivatives are absolutely continuous). Observe that (2:3) relates Prob-
lems 1 and 2 and is nothing but the Duhamel principle. The advantage of the repre-
sentation (2:3) is that it de�nes a linear transformation between boundary control
functions f in Problem 1 and corresponding solutions. This suggests the following

De�nition 1 (Control Operator). The operator Wt on L2 (0; t) de�ned by

(Wtf) (x) = f(t� x) +
Z t

x

w(x; �)f(t� �) d� ; (2.6)

where w(x; s) solves Problem 3, is called the control operator.

Note that t in (2:6) is a parameter andWt represents a family of linear operators
which, due to (2:5), are bounded on L2 (0; t). MoreoverWt�I is Volterra and hence
Wt is invertible on L2 (0; t). Due to (2:3), (Wtf) (x) is a weak solution to Problem
1 and hence Wt establishes a one-to-one correspondence between boundary control
functions f on [0; t] and the solutions u (x; t) ; x 2 [0; t], to Problem 1 for every
t > 0. This fact justi�es its name - control operator.
The operator Wt may also be interpreted as a wave operator. Indeed, Wt trans-

forms the boundary values u (0; �) ; � 2 [0; t] ; of the solution u to Problem 1 into
the solution u (x; t) ; x 2 [0; t].
It is natural to pose

Problem 3 (BC Problem). Given �xed time t > 0 and a function g 2 L2 (0; t),
�nd a boundary control f 2 L2 (0; t) such that

(Wtf) (x) = g (x) for all x 2 [0; t] : (2.7)
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It is a fundamental but easy fact that Problem 3 is unequally solvable. Indeed,
even for complex q 2 L1loc (R+), as we have seen, Wt is boundedly invertible and
Problem 3 is unequally solvable for any g 2 L2 (0; t).The next important concept
of BC theory is

De�nition 2 (Response Operator). Let q 2 L1 (0; l) ; l <1; and u be the solution
to Problem 2. The operator R on L2 (0; l) de�ned by

(Rf) (t) = @xu (0; t) ; t 2 [0; l] ;
is called the response operator.

It immediately follows from (2:3) that

(Rf) (t) = �f 0(t) +
Z t

0

r(t� �)f(�) d� ; (2.8)

where
r (�) := @xw (0; �)

is called the response function.
Note that R transforms u (0; t) ! @xu (0; t) ; t 2 [0; l], and by this reason can

be called the (dynamic) Dirichlet-to-Newmann map. The representation (2:8) says
that the operator R is convolution minus di¤erentiation and hence unbounded on
L2 (0; l). The operator R does not play an important role in our consideration but
the kernel r of its convolution part does. Due to (2:5), r 2 L1loc (R+).
De�ne now the last but crucially important operator.

De�nition 3 (Connecting Operator). The operator on L2 (0; t) de�ned by

Ct =W �
t Wt

is called the connecting operator.

Observe that since Wt is boundedly invertible and therefore

Ct > 0 on L2 (0; t)

(note that the interval here is (0; t) not (0; l) as in De�nition 2). The main bene�t
from introducing the connecting operator is that Ct admits the following convenient
representation:

Ct = I +Kt; (2.9)

where Kt is the integral operator

(Ktf) (x) =
Z t

0

Kt (x; y) f (y) dy

with the kernel

Kt (x; y) : =
1

2
[� (2t� x� y)� � (x� y)] ; (2.10)

� (x) : =

Z jxj

0

r:

The representation (2:9) is well-known in the boundary control community but
typically assumes smoothness of the potential. A limiting argument however allows
one to expand (2:9) to any q 2 L1loc (R+) in a straightforward way as the kernel
Kt (x; y) given by (2:10) remains absolutely continuous for any locally integrable
potential.
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Turn now to inverse problems - the main concern of this paper.

Problem 4 (Inverse BC Problem). Given response function r on (0; l), associated
with Problem 1, �nd the potential q on (0; l).

A marvelous solution to this problem was put forward by Belishev in the 80s
which is outlined below.
Let y solves the Sturm-Liouville problem�

Hy = 0
y (0) = 0; y0 (0) = 1:

(2.11)

Consider the boundary control problem (Problem 3): �nd the control function f
such that

(Wtf) (x) =

�
y (x) ; x � t
0; x > t:

(2.12)

In (2:12) both f and y are unknown. The following trick eliminates y. One �rst
establishes the equation

(Ctf) (x) = t� x; x 2 [0; t] : (2.13)

The proof comes from considering for an arbitrary g 2 C10 (0; t) (in�nitely smooth
functions vanishing at the endpoints)Z t

0

Ctfg =

Z t

0

WtfWtg =

Z t

0

yWtg;

using Z t

0

(t� �) g00 (�) d� = g (t)

and the fact that Wtg solves Problem 1.
One now solves (2:13), which is apparently unequally solvable, and �nds the

boundary control function f = ft (x) for x 2 [0; t]. Setting in (2:12) x = t�0 yields
y (t) = (Wtft) (t� 0) : (2.14)

Since y solves (2:11) and H is de�ned by (2:1) one has

q (t) = y00 (t) =y (t) .

By (2:6), the right hand side of (2:14) is ft (+0) and hence we �nally have

q (t) =
d2

dt2
ft (+0) =ft (+0) (2.15)

Since the kernel is locally absolutely continuous, the function ft (+0) is di¤erentiable
and its derivative is locally absolutely continuous which allows us to understand
(2:15) almost everywhere on (0; l).
For the reader�s convenience we rewrite equation (2:13) in the form

ft (x) +
1

2

Z t

0

[� (2t� x� y)� � (x� y)] ft (y) dy = t� x; (2.16)

x 2 (0; t) ; � (x) =

Z jxj

0

r:

As it was established above, (2:16) is unequally solvable as long as the response
function r comes from Problem 1 with a potential q 2 L1 (0; l).
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Let us now make an important observation. It is straightforward to verify that

Kt (t� x; t� y) =
1

2
[� (x+ y)� � (x� y)]

and the substitution gt (x) = ft (t� x) immediately transforms (2:16) into the
following equivalent form

gt (x) +
1

2

Z t

0

[� (x+ y)� � (x� y)] gt (y) dy = x; x 2 (0; t) : (2.17)

The potential q can then be recovered by q (t) = d2

dt2 gt (t� 0) =gt (t� 0) a.e. on
(0; l) :
Note that in the above cited papers equation (2:16) is derived for smooth po-

tentials. We do not assume this condition. Equation (2:17) looks more symmetric
than (2:16). It was derived by Remling in [15] and [16] for a di¤erent from Problem
4 setting and by completely di¤erent methods. We discuss this in greater detail in
the next section once some additional background information is introduced.

3. Inverse Spectral Problems for the Schrodinger equation

We start with reviewing Titchmarsh-Weyl theory. This material is standard and
we follow a modern exposition given in [11]. Consider

Problem 5 (Weyl Problem). Find the solution to8<: Hu = zu; x � 0
u (�; z) 2 L2 (R+) for any z 2 C+
u (0; z) = 1

(3.1)

with a real-valued locally integrable potential q:

Note that Problem 5 is not local as it speci�es the solution at +1. It is the
central point of Titchmarsh-Weyl theory that Problem 5 has a unique solution
	(x; z), called the Weyl solution, for a very broad class of potentials q. The case
when 	 is unique is referred to as the limit point case at +1 as opposed to the
limit circle case at +1 when every solution to Hu = zu; u (0; z) = 1, is in L2 (R+)
for any z 2 C+. We assume that q is in the limit point case at +1.
The (principal or Dirichlet) Titchmarsh-Weyl m-function, m(z); is de�ned for

z 2 C+ as

m (z) :=
	0 (0; z)

	 (0; z)
: (3.2)

Function m(z) is analytic in C+ and satis�es the Herglotz property:
m : C+ ! C+; (3.3)

so m satis�es a Herglotz representation theorem,

m (z) = c+

Z
R

�
1

�� z �
�

1 + �2

�
d� (�) ; (3.4)

where c = Rem (i) and � is a positive measure subject toZ
R

d� (�)

1 + �2
<1; (3.5)

d� (�) = w � lim
"!+0

1

�
Imm (�+ i") d�: (3.6)
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It is a fundamental fact of the spectral theory of ordinary di¤erential oper-
ators that the measure � is the spectral measure of the Schrodinger operator
�d2=dx2 + q (x) on L2 (R+) with a Dirichlet boundary condition at x = 0: An-
other fundamental fact is the Borg-Marchenko uniqueness theorem stating

m1 = m2 =) q1 = q2: (3.7)

In other words, the potential is recovered by the Titchmarsh-Weyl m-function
uniquely. One can now pose natural

Problem 6 (Inverse Spectral Problem). Given Titchmarsh-Weylm-functionm (z) ; z 2
C+, �nd the potential q (x) ; x 2 R+:

It should be emphasized that the only conditions imposed on q are: q is real,
locally integrable and in the limit point case at 1 which covers extremely general
Sturm-Liouville problems.
Problem 6 was �rst solved by Gelfand-Levitan in the 1950s by means of a linear

integral equation called now the Gelfand-Levitan equation. (see e.g. [12] or [9]). In
our paper we concentrate on recent approaches to Problem 6.
To address Problem 6 Simon [17] and later Gesztesy-Simon [10] showed �rst that

there is a real L1loc (R+) function A (t) such that for any �nite positive a

m (z) = i
p
z �

Z a

0

A (t) e2i
p
ztdt+ eO �e�2� Imp

z
�
; (3.8)

as jzj ! 1 in the sector " < arg z < � � ". Here eO is de�ned as follows f = eO (g)
if g ! 0 and for any � > 0; (f=g) jgj� ! 0 as jzj ! 1.
The function A in (3:8) is referred in [17] as to the A-amplitude where it was

also proved that a can be taken 1 (and hence there is no the error term in (3:8) if
q 2 L1 (R+) or q 2 L1 (R+) : This was extended in [3] to all potentials q such that
sup
x�0

R x+1
x

jqj <1:

Representation (3:8) implies (see e.g [8] for a short proof) the local analog of
(3:7) which can loosely be stated

A1 = A2 on (0; a) =) q1 = q2 on (0; a) : (3.9)

In [3] we found that A and the response function r are related by the simple
formula

A (t) = �2r (2t) : (3.10)

Note that the A-amplitude and response functions are objects of di¤erent nature:
the former comes from spectral theory of the half-line Schrodinger operator and the
latter comes from BC theory for the half-line wave equation. While the counter-
play between the wave and Schrodinger equations is well-known and can be traced
back to original work due to Levitan (see e.g. [13]), the relation (3:10) appears
to be noteworthy. For instance, the local Borg-Marchenko uniqueness result (3:9)
immediately follows from (3:10) and the considerations of the previous section.
In [17] and [10] there was introduced a family of functionsA (�; x) (A (�; 0) = A (�))

corresponding to the m�functions m (z; x) associated with [x;1) which satisfy the
following non-linear integro-di¤erential equation

@A (t; x)

@x
=
@A (t; x)

@t
+

Z t

0

A (� ; x)A (t� � ; x) d� : (3.11)
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Since A shares the sanguinities with the potential q, equation (3:11) should in
general be understood in the distributional sense. Remling [16] regularized equation
(3:11) to read

B (t; x) =

Z x

0

dy

Z t�y

0

d� [B (y + � ; y) +A (y + �)] [B (t� � ; y) +A (t� �)] ;
(3.12)

where
B (t; x) = A (t� x; x)�A (t) ; x 2 [0; t]

is continuous. Equation (3:12) holds pointwise.
Note that the potential q is not present in (3:12) and hence given initial A-

amplitude A (t; 0) = A (t) constructed from the m� function by (3:8) one then
solves equation (3:12) for B (t; x) x 2 [0; t]. The potential can then be recovered by

q (x) = A (x) +B (x; x)

producing a new inverse spectral problem formalism.
In [10] equation (3:11) is called a non-linear Gelfand-Levitan equation and it was

established there that
A (�) = �2@yL (2�;+0) ; (3.13)

where L (x; y) is the Gelfand-Levitan kernel appearing in the Gelfand-Levitan equa-
tion.
A drawback of the outlined procedure is that equation (3:12) is non-linear. Rem-

ling followed [17], [10] up with [15], [16] where he puts forward yet another procedure
to solve Problem 6 which is equivalent to that of Gesztesy-Simon but linear now. He
essentially derives equation (2:17) basing upon a powerful machinery of de Branges
spaces and his techniques are quite sophisticated. He also proves that equation
(3:11) is uniquely solvable if and only if

I +KA > 0; (3.14)

where KA is the integral operator with the kernel

' (x� y)� ' (x+ y) ; ' (x) =
1

2

Z jxj=2

0

A; (3.15)

which solves an open problem from [10] on �nding necessary and su¢ cient condi-
tions for solubility of (3:11) in terms of the A-amplitude. Due to (3:10) one can
easily see that condition (3:14) and our condition Ct > 0 are equivalent.
Since (3:12) is actually derived from the Riccati equation on m (z; x), which can

be linearized, it is reasonable to believe that (3:12) could also be linearized. We
can claim that the procedure leading to (2:16) (or equivalently (2:17)) does the job.
Remark that besides being linear equation (2:17) has another advantage over

(3:12): it does not involve repeated integration.
An important part of solving Problem 6 is obtaining the A-amplitude by a given

m-function. Formula (3:8) is not particularly convenient for this purpose. An
alternative to (3:8) formula is put forward in [10]:

A (t) = �2 lim
"!0

Z
R
e�"�

sin
�
2t
p
�
�

p
�

d� (�) (3.16)

where � is found by (3:6) : Formula (3:16) holds for any Lebesgue point of A,
i.e. almost everywhere. Note that the Abelian regularization in (3:16) cannot be
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removed. Moreover the integral in (3:16) need not be even conditionally convergent
(see [10] for a counterexample). Another warning regarding (3:16): Consider ' (x)
de�ned by (3:15). Assume that the spectrum is non-negative. If we now plug (3:16)
into (3:15) then a totally formal computation immediately yields

' (x) = �
Z 1

0

sin2
�x
2

p
�
�

�
d� (�) (3.17)

which implies that ' (x) < 0 that looks counterintuitive. Moreover the integral in
(3:17) does not actually converge under the assumption (3:5) only.
Note

r (t) =
@

@y
L (y;+0) = lim

"!0

Z
R
e�"�

sin
�
t
p
�
�

p
�

d� (�) : (3.18)

We were unable to locate formulas (3:18) in the literature on BC. Note that (3:18)
looks slightly prettier than (3:16) and consequently � is nicer than ' suggesting
that the response function may be slightly easier to deal with.
We owe the following comment to Remling. Taking Fourier transforms of (2:3)

and then formally changing the order of integration in the double integral, we obtain

bu (x:k) = bf (k)�eikx + Z 1

x

eiksw (x; s) ds

�
which looks exactly like the Gelfand-Levitan-Marchenko type representation of the
L2 solution, and, indeed, the corresponding kernel can be obtained as the solution
to Problem 2 (see e.g. [12] or [14]). Thus it appears that since Problem 1 natu-
rally leads to Problem 2, the BC method essentially starts out by introducing the
Gelfand-Levitan-Marchenko kernel. This argument is totally formal but explains
in part that di¤erent approaches to inverse spectral theory use essentially the same
objects.
It should be noticed that since the data in Problem 6 is not readily available from

an experiment and one needs to come up with some observable data which allows
us to �nd the Titchamarsh-Weyl m-function. It is discussed in the last section.

4. An Inverse Scattering Method

Titchmarsh-Weyl m-function does not have an explicit physical meaning but
does appear explicitly in certain scattering quantities. In this section we consider
an inverse scattering problem of practical interest. To state the problem we need
one concept.
Consider the full line Schrodinger equation

Hu = �u00 + q (x)u = k2u; x 2 R; k 2 R; (4.1)

with a potential supported on R+. Since there is enough free space on the line for
plane waves eikx to propagate it is intuitively clear that scattering theory should
be in order even without any decay assumption on q (x) as x ! 1. Following
Faddeev1, one �nds the scattering solution  (x; k) to the equation (4:1) subject to

 (x; k) = C (k)	
�
x; k2

�
; x > 0; (4.2)

 (x; k) = eikx +R(k)e�ikx; x � 0;

1We were unable to locate a paper where Faddeev introduce this �rst
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where 	 is the Weyl solution. The requirement of continuity of 	(x; k) and 	0 (x; k)
at x = 0 implies

R(k) =
ik �m

�
k2
�

ik +m (k2)
: (4.3)

If q is short range then 	 can be chosen as the Jost solution and hence  de�ned
by (4:2) coincides with the standard re�ection coe¢ cient. R(k) can therefore in
general be interpreted as the re�ection coe¢ cient from the left incident and it exists
for all arbitrary potentials q which are at the limit point case at +1.

Problem 7 (Inverse Scattering Problem). Let q be supported on (0;1), real and
in the limit point case at +1. Given scattering data S = fR(k); k � 0g �nd the
potential q on (0;1).

Observe that due to the Borg-Marchenko uniqueness theorem (3:7) and (4:3)

R1 = R2 =) q1 = q2: (4.4)

and hence the inverse problem
S =) q (4.5)

is well-posed and can be easily solved. From (4:3) one �nds

m(k2) = ik
1�R (k)
1 +R (k)

; k � 0;

which transforms Problem 7 into Problem 6.
Note that if the spectrum is positive and purely absolutely continuous then the

response function r can be computed by

r (t) =
2

�
lim
"!0

Z 1

0

e�"k
2 1� jR (k)j2

j1 +R (k)j2
k sin (kt) dk:

There are some well known inverse scattering procedures for (4:5) (see, e.g.
Aktosun-Klaus [1] ) but our particular derivation (using (2:17) in place of the
Gelfand-Levitan or Marchenko equations) appears to be new. In addition, some
extra assumptions on the potential are usually imposed. Among such assumptions
are: absence of bound states, or either q (x) ! 0 or q (x) ! c su¢ ciently fast as
x!1:
Note in the conclusion that, due to (4:3) ; R (k) is analytic in the domain k2 2 C+

and therefore the knowledge of R(k) on a certain subset of R is only required to
recover the potential q uniquely.
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