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Abstract

We define a deterministic “scattering” model for heat conduction which iscontin-
uousin space, and which has a Boltzmann type flavor, obtained by a closure based
on memory loss between collisions. We prove that this model has, for stochastic
driving forces at the boundary, close to Maxwellians, a unique non-equilibrium
steady state.

1 Introduction

In this paper, we consider the problem of heat conduction in amodel which is a
continuousapproximation of a discrete model of a chain of cells, each ofwhich
contains a (very simple) scatterer in its interior. Particles move between the cells,
interacting with the scatterers, but not among themselves,similar to the model put
forward in [3].

After a quite detailed description of this scatterer-model, we will finally arrive
in Eq. (3.5) at a formulation with a continuous space variable x varying in [0, 1].
This approximation will be obtained by taking formally the limit of N → ∞ cells,
but taking each cell of length1/N . (The reader who is interested only in the formu-
lation of thex-continuous equation can directly skip to Eq. (3.5).) We then proceed
to show our main result, namely the existence of solutions tothis Boltzmann-like
equation for initial conditions close to equilibrium. Therefore, this will show that,
although the model is deterministic (except for the boundary conditions), with no
internal dissipation, it has a (unique) non-equilibrium steady state when driven
weakly out of equilibrium. The only approximations of the model are the limit of
N → ∞, and a closure relation which models a loss of memory betweencollisions.

1.1 One cell

To define the model, we begin by describing the scattering process in one cell. We
begin with the description of one “cell”. The cell is 1-dimensional, of length2L,
and with particles entering on either side. These particleshave all massm, velocity
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v and momentump = mv. These particles do not interact among themselves.
Note thatv ∈ R and more precisely,v > 0 if the particle enters from the left,
while v < 0 if it enters on the right side of the cell. In the center of the cell, we
imagine a “scatterer” which is a point-like particle which can exchange energy and
momentum with the particles, but does not change its own position. (This scatterer
is to be thought of as a 1-dimensional variant of the rotatingdisks used in [3].) The
scatterer has massM and its “velocity” will be denoted byV . The collision rules
are those of an elastic collision, whereṽ andṼ denote quantities after the collision
while v, V are those before the collision. In equations,

ṽ = −̺v + (1 + ̺)V ,

Ṽ = (1 − ̺)v + ̺V ,

with

̺ =
M −m

M +m
, µ ≡ m

M
=

1 − ̺

1 + ̺
. (1.1)

Note that̺ ∈ (−1, 1), since we assumem andM to be finite and non-zero. If
ṽ > 0, we say that the particle leaves the cell to the right; ifṽ < 0, we say it leaves
to the left.

For simplicity, we will assume̺ > 0, that is,M > m. For the momenta, we
get the analogous rules

p̃ = −̺p+ (1 − ̺)P ,

P̃ = (1 + ̺)p+ ̺P .

Note that the matrix

S =

(

−̺ 1 − ̺
1 + ̺ ̺

)

(1.2)

has determinant equal to−1 and furthermoreS2 = 1.

We next formulate scattering in terms of probability densities (for momenta)
for just one cell. We denote byg(t, P ) the probability density that at timet the
scatterer has momentumP (= MV ) and we will establish the equation for the time
evolution of this function. To begin with, we assume that particles enter only from
the left of the cell, with momentum distribution (in a neighboring cell or a bath)
p 7→ f+

L (t, p), wherep = mv. Thus, there are, on average,pf+

L (t, p)dp/m particles
entering the cell (per unit of time) from the left with momentum in [p, p + dp].
Note thatf+

L has support onp ≥ 0 only, (indicated by the exponent “+”); it is
the distribution of particlesgoing to enter the cellfrom the left. Also note that the
distribution of the momenta after collision,i.e., beforeleavingthe cell, is in general
not the same asf+

L .
Denote byP(t) the stochastic process describing the momentum of the scat-

terer. We have for any interval (measurable set) of momentaA, for the probabilities
P:

P(P(t+ dt) ∈ A) = P(P(t) ∈ A ; no collision in [t, t+ dt])
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+P(P(t+ dt) ∈ A ; collisions occurred in [t, t+ dt]) .

We assume for simplicity that with probability one, only onecollision can occur in
an interval [t, t+ dt]. If there is a collision in [t, t+ dt] with a particle of velocity
v = p/m > 0, this particle must have left the boundary at timet − m

p L with
momentump. Therefore,

P(P(t) ∈ A ; a collision occurred in [t, t+ dt])

= dt
∫

A
dP̃

∫

R+

dp δ(P̃ − ̺P − (1 + ̺)p) g(t, P ) p
mf

+

L (t− m
p L, p) .

This equation neglects memory effects coming from the fact that a particle may
have hit the scatterer, bounce out of the cell and reenter to hit again the scatterer.
Similarly,

P(P(t) ∈ A ; no collision occurred in [t, t+ dt])

=

(

1 − dt
∫

R+

dp p
mf

+

L (t− m
p L, p)

)
∫

A
dP g(t, P ) .

We immediately deduce the evolution equation,

∂tg(t, P ) = − g(t, P )
∫

R+

dp p
mf

+

L (t− m
p L, p)

+
1

̺

∫

R+

dp g(t, P−(1+̺)p
̺ ) p

m f+

L (t− m
p L, p) .

(1.3)

Note that this equation preserves the integral ofg overP , i.e., it preserves proba-
bility.

This identity generalizes immediately to the inclusion of injection from the
right, with distributionf−R having support inp < 0. One gets

∂tg(t, P ) = −g(t, P )
∫

R

dp |p|
m

(

f+

L (t− m
p L, p) + f−R (t+ m

p L, p)
)

+
1

̺

∫

R

dp g(t, P−(1+̺)p
̺ ) |p|

m

(

f+

L (t− m
p L, p) + f−R (t+ m

p L, p)
)

.

(1.4)

In the stationary case, this leads to

g(P ) =
1

̺λ

∫

R

dp g(P−(1+̺)p
̺ ) |p|

m

(

f+

L (p) + f−R (p)
)

, (1.5)

where

λ =

∫

R

dp |p|
m

(

f+

L (p) + f−R (p)
)

(1.6)

is the particle flux (see Sect. 3.1 below).
It is important to note that the solutiong of Eq. (1.5) only depends on thesum:

f = f+

L + f−R , and thus, we can define a map

f 7→ gf ,
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wheregf is the (unique) solution of Eq. (1.5). It will be discussed indetail in
Sect. 5.

We can also compute the distribution of the momenta of the particles after
collision. We have

P(p̃ ∈ A ; a collision occurred in [t, t+ dt])

= dt
∫

A
dp̃

∫

R

dP δ(p̃+ ̺p− (1 − ̺)P ) g(t, P ) |p|
m f (t− m

|p|L, p) .

This particle reaches the left or right boundary of the cell (according to the sign of
p̃) after a timemL/|p̃| (assuming the scatterer is located in the center of the cell).
Therefore, we have for the ejection distributionsf−L (on the left) andf+

R (on the
right):

|p̃|
m f

−
L (t, p̃) =

θ(−p̃)
1 − ̺

∫

R

dp g(t− m
|p̃|L,

p̃+̺p
1−̺ ) |p|m f (t− m

|p̃|L− m
|p|L, p) ,

and

|p̃|
m f

+

R (t, p̃) =
θ(+p̃)
1 − ̺

∫

R

dp g(t− m
|p̃|L,

p̃+̺p
1−̺ ) |p|m f (t− m

|p̃|L− m
|p|L, p) ,

whereθ is the Heaviside function. In the stationary case we get

|p̃|
m f

−
L (p̃) =

θ(−p̃)
1 − ̺

∫

R

dp g( p̃+̺p
1−̺ ) |p|

m f (p) , (1.7)

and
|p̃|
m f

+

R (p̃) =
θ(+p̃)
1 − ̺

∫

R

dp g( p̃+̺p
1−̺ ) |p|

m f (p) . (1.8)

Sinceg = gf is determined by the incoming distributionfin = f+

L + f−R (and is
unique if we normalize the integral ofg to 1)

∫

R

dP g(t, P ) = 1 , (1.9)

we see that the outgoing distributionfout = f−L + f+

R is entirely determined by the
incoming distribution. Note also that the flux is preserved:

∫

dp |p|
m fin(p) =

∫

dp |p|
m fout(p) .

1.2 Stationary solutions for one cell

Here, we will look for stationary states of the evolution equation (1.3), which have
also the property that the ejected distributions are equal to the injected ones. It is
almost obvious that Maxwellian fixed points can be found, butfor completeness,
we write down the formulas. The reader should note that the distributionsfin and
fout have singularities atp = 0. This reflects the well-known fact that slow particles
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need very more time to leave the cell than fast ones. HoweverF (p) ≡ p
mf (p) is a

very nice function, and it is this function which appears in all the calculations of
the fluxes, and stationary profiles. In this section we do the calculations with the
quantityf . Starting from Sect. 3, we will useF .

We impose the two incoming distributions

f+

L (p) = σθ(+p) m
|p|e

−βp2/(2m) ,

and
f−R (p) = σθ(−p) m

|p|e
−βp2/(2m) ,

whereσ is an arbitrary positive constant (related toλ in (1.6)) andθ is the Heaviside
function. It is easy to verify, using Gaussian integration and the identityM =
M̺2 +m(1 + ̺)2, that the solution of equation (1.5) is given by

g(P ) =

√

β

2πM
e−βP 2/(2M ) =

√

β

2πM
e−βP 2(1−̺)/((1+̺)2m) .

Moreover, using the same identity several times one gets from Eqs.(1.7) and (1.8)
for the exiting distributions

f−L (p) = σθ(−p) m
|p|e

−βp2/(2m) ,

and
f+

R (p) = σθ(+p) m
|p|e

−βp2/(2m) .

Therefore, we see that the Maxwellian fixed points (divided by |p|) preserve both
the distributiong of the scatterer, as well as the distributions of the particles.

In fact, there are also non-Maxwellian fixed points of the form

f+

L (p) = σθ(+p) m
|p|e

−β(p−ma)2/(2m) ,

and
f−R (p) = σθ(−p) m

|p|e
−β(p−ma)2/(2m) .

It is easy to verify that the solution of equation (1.5) is nowgiven by

g(P ) =

√

β

2πM
e−β(P−Ma)2/(2M ) .

Moreover,
f−L (p) = σθ(−p) m

|p|e
−β(p−ma)2/(2m) ,

and
f+

R (p) = σθ(+p) m
|p|e

−β(p−ma)2/(2m) .

The verification that this is a solution for anya ∈ R is again by Gaussian integra-
tion. Note that ifa 6= 0 there is in fact a flux through the cell.
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2 N cells

The model generalizes immediately to the case ofN cells which are arranged in a
row, by requiring that the exit distributions of any given cell are equal to the entry
distributions of the neighboring cells: The cells are numbered from1 toN and we
have the collections of functionsf+

L,i, f
−
L,i, f

+

R,i, andf−R,i for the particle fluxes and
gi for the scatterers,i = 1, . . . , N . The equality of entrance and exit distributions is
given by the identitiesf+

L,i+1
= f+

R,i, andf−R,i = f−L,i+1
for 1 ≤ i < N . The system

is completely determined by the two functionsf+

L,1 andf−R,N . The equations (1.5)
generalize to

gi(P ) =
1

̺λ

∫

R

dp gi(
P−(1+̺)p

̺ ) |p|m

(

f+

L,i(p) + f−R,i(p)
)

, (2.1)

and similarly (1.7) and (1.8) lead to

|p̃|
m f

−
L,i(p̃) =

θ(−p̃)
1 − ̺

∫

R

dp gi(
p̃+̺p
1−̺ ) |p|

m fi(p) ,

|p̃|
m f

+

R,i(p̃) =
θ(+p̃)
1 − ̺

∫

R

dp gi(
p̃+̺p
1−̺ ) |p|

m fi(p) ,
(2.2)

wherefi = f+

L,i + f−R,i. Clearly, the Gaussians of the previous section are still
solutions to the full equations forN contiguous cells.

Here we have closed the model by assuming independence between the parti-
cles leaving and entering from the left (and from the right).In concrete systems
this is not true since a particle can leave a cell to the left and re-bounce back into
the original cell after just one collision with the scatterer in the neighboring cell,
and, in such a situation there is too much memory to allow for full independence. It
is possible to imagine several experimental arrangements for which independence
is a very good approximation, see also [3, 2] for discussionsof such issues. One of
them could be to imagine long channels between the scatterers where time decor-
relation would produce independence. Note that “chaotic” channels may be more
complicated since they can modify the distribution of left (right) traveling particles
between two cells.

3 Continuous space

We are now ready to formulate the model in its final form. The cells are now
replaced by a continuum, with a variablex ∈ [0, 1] and the relations we have de-
rived so far will be generalized to this continuum formulation. So we have moving
particles, of massm and described by a time-dependent densityf (t, p, x).

The scatterers have massM and their momentum distribution is calledg(t, P, x).
It is best to think that the continuous variablex ∈ [0, 1] replaces the discrete index
i ∈ {0, . . . , N}. There is then an implicit rescaling of the formx ≈ i/N . Recall
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that the scatterers arefixed in space (although they have momentum) but that the
particles will move in the domain [0, 1].

We first impose, for allx ∈ [0, 1], the normalization
∫

R

dP g(t, P, x) = 1 , (3.1)

which is the generalization of Eq.(1.9). The particles again do not interact with
each other, but only with the scatterers and, expressed in momenta, the matrix
maps (p, P ) to (p̃, P̃ ):

(

p̃

P̃

)

=

(

−̺ (1 − ̺)
(1 + ̺) ̺

)(

p
P

)

≡ S

(

p
P

)

, (3.2)

as in Eq.(1.2).
We now rewrite the problem in the form of a Boltzmann equation, which takes

into account this matrix, as well as the particle transport.One obtains, with (̃p, P̃ )
related to (p, P ) as above:

∂tf (t, p, x) +
p

m
∂xf (t, p, x)

=

∫

dP

( |p̃|
m
f (t, p̃, x) g(t, P̃ , x) − |p|

m
f (t, p, x) g(t, P, x)

)

,

∂tg(t, P, x) =

∫

dp

( |p̃|
m
f (t, p̃, x) g(t, P̃ , x) − |p|

m
f (t, p, x) g(t, P, x)

)

.

(3.3)

The time independent version of the equation will be derivedbelow from the model
with a chain of cells. It is useful to introduce the function

F (t, p, x) =
|p|
m
f (t, p, x) ,

and then Eq.(3.3) takes the form

m∂tF (t, p, x) + p∂xF (t, p, x)

= |p|
∫

dP
(

F (t, p̃, x) g(t, P̃ , x) − F (t, p, x) g(t, P, x)
)

,

∂tg(t, P, x) =

∫

dp
(

F (t, p̃, x) g(t, P̃ , x) − F (t, p, x) g(t, P, x)
)

.

(3.4)

Remark. One can also imitate a scattering cross section by introducing a factor
γ ∈ [0, 1] in Eq.(3.4) (in the integrals) but this can be scaled away bya change of
time and space scales. See also Sect. 8.3.

We come now to themain equations whose solutions will be discussed in
detail in the remainder of the paper. The equation (3.4) takes, for the stationary
solution, the form

sign(p)∂xF (p, x) =

∫

dP
(

F (p̃, x) g(P̃ , x) − F (p, x) g(P, x)
)

, (3.5a)
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0 =

∫

dp
(

F (p̃, x) g(P̃ , x) − F (p, x) g(P, x)
)

. (3.5b)

We will show that this equation has non-equilibrium solutions.
Remark. Note that the model we have obtained here isnotmomentum-translation
invariant, because of the term sign(p), except when the r.h.s. of the equation is 0.
Derivation of (3.5). The derivation of (3.5) from (2.1–2.2) is based on the follow-
ing formal limit: We replace the indexi by the continuous variablex = i/N and
setε = 1/(2N ). We consider thatf±L,i is at (i − 1

2
)/N = x − ε, while f±R,i is at

x+ ε. We have the correspondences, withθ±(p) ≡ θ(±p):

θ+(p)F (p, x− ε) = |p|
m f

+

L,i , θ−(p)F (p, x− ε)= |p|
m f

−
L,i ,

θ+(p)F (p, x+ ε) = |p|
m f

+

R,i , θ−(p)F (p, x+ ε)= |p|
m f

−
R,i ,

g(P, x) = gi(P ).

To simplify momentarily the notation, let

F−(p, x) θ+(p) ≡ θ+(p)F (p, x− ε) , F−(p, x) θ−(p)≡ θ−(p)F (p, x− ε) ,

F+(p, x) θ+(p) ≡ θ+(p)F (p, x+ ε) , F+(p, x) θ−(p)≡ θ−(p)F (p, x+ ε) .

With these conventions, (2.1) becomes (settingλ = 1):

g(P, x) =
1

̺

∫

R

dq g(P−(1+̺)q
̺ , x)(F−(q, x)θ+(q) + F+(q, x)θ−(q)) , (3.6)

which is equivalent to (3.5b). Similarly, Eq.(2.2) leads to

F−(p, x)θ−(p) =
θ(−p)
1 − ̺

∫

R

dq g(p+̺q
1−̺ , x) (F−(q, x)θ+(q) + F+(q, x)θ−(q)) ,

F+(p, x)θ+(p) =
θ(+p)
1 − ̺

∫

R

dq g(p+̺q
1−̺ , x) (F−(q, x)θ+(q) + F+(q, x)θ−(q)) .

(3.7)

Subtracting the first equation from the second in (3.7) leadsto

F+(p, x)θ+(p) − F−(p, x)θ−(p)

=
sign(p)
1 − ̺

∫

R

dq g(p+̺q
1−̺ , x) (F−(q, x)θ+(q) + F+(q, x)θ−(q)) .

(3.8)

On the other hand, since dp dP = dp̃ dP̃ we can, by (3.5b), impose the condition
∫

dP g(P, x) = 1 ,

for all x. Then we have the trivial identity

F−(p, x)θ+(p)−F+(p, x)θ−(p) =

∫

R

dP g(P, x)(F−(p, x)θ+(p)−F+(p, x)θ−(p)) .

(3.9)
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Subtracting (3.9) from (3.8), we get forp > 0,

F+(p, x) − F−(p, x) =
1

1 − ̺

∫

dq g(p+̺q
1−̺ , x)(F−(q, x)θ+(q) + F+(q, x)θ−(q))

−
∫

dq g(q, x)F−(p, x)
(3.10)

while for p < 0,

F+(p, x) − F−(p, x) = − 1

1 − ̺

∫

dq g(p+̺q
1−̺ , x)(F−(q, x)θ+(q) + F+(q, x)θ−(q))

+

∫

dq g(q, x)F+(p, x)
(3.11)

Note now that

F−(q, x)θ+(q)+F+(q, x)θ−(q)

= F (q, x− ε)θ+(q) + F (q, x+ ε)θ−(q)

= F (q, x) + θ+(q)(F (q, x− ε) − F (q, x))

+ θ−(q)(F (q, x+ ε) − F (q, x)) .

Therefore, replacing theF± in the r.h.s. in (3.10) and (3.11) byF (p, x) is a higher
order correction inε, and we finally get

F (p, x+ ε)−F (p, x− ε) =
sign(p)
1 − ̺

∫

R

dq

(

g(p+̺q
1−̺ , x)F (q, x)− g(q, x)F (p, x)

)

.

A further change of integration variables leads to (3.5a), while (3.6) leads to (3.5b).
(We have not taken into account the scaling byε = 1/(2N ) which is needed to get
the derivative; we will come back to this question in the discussion in Sect. 8.3.)
This ends the derivation of (3.5).

The derivative term in Eq.(3.5) reflects the gradients whichhave to appear when
the system is out of equilibrium. However, if the system is atequilibrium, the
equivalence between Eq.(3.5) and Eqs.(1.5)–(1.8) immediately tells us that sta-
tionary solutions in the form of Gaussians (forF , not forf ) exist:

F (p) = γ

√

β

2πm
e−βp2/(2m) , g(P ) =

√

β

2πM
e−βP 2/(2M ) . (3.12)

Furthermore, we have again translated versions of this fixedpoint,

F (p) = γ

√

β

2πm
e−β(p−ma)2/(2m) , g(P ) =

√

β

2πM
e−β(P−Ma)2/(2M ) ,

(3.13)
because in this case, the r.h.s. of Eq.(3.5) is zero.
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3.1 Flux

We can define various fluxes of the particles (recall thatF (p, x) = |p|f (p, x)/m):

ΦP = particle flux=

∫

dp sign(p)F (p, x) ,

ΦM = momentum activity=

∫

dp |p|F (p, x) ,

ΦE = energy flux=
∫

dp
sign(p)p2

2m
F (p, x) .

(3.14)

Note that for the stationary Maxwellians of (3.13) these fluxes are equal to

ΦP =

√

2mπ

β
erf(a

√

βm/2) ,

ΦM =
2m

β
e−βma2/2 + a

√

2m3π

β
erf(a

√

βm/2) ,

ΦE =
2am2

β
e−βma2/2 + (1 + βma2)

√

2m3π

β3
erf(a

√

βm/2) .

Also note that fora = 0 the quantityΦM does not vanish. This is because it
measures the total outgoing flux, not the directed outgoing flux (which is of course
0 whena = 0).

Lemma 3.1. For every stationary solution of (3.5) the 3 fluxes of (3.14) are inde-
pendent ofx ∈ [0, 1].

Proof. From (3.5a) we deduce that

∂x

∫

dp sign(p)F (p, x) =

∫

dp dP
(

F (p̃, x) g(P̃ , x) − F (p, x) g(P, x)
)

,

which vanishes since dp dP = dp̃ dP̃ . Similarly, multiplying (3.5a) byp and inte-
grating overp, we get

∂x

∫

dp |p|F (p, x) =

∫

dp dP p
(

F (p̃, x) g(P̃ , x) − F (p, x) g(P, x)
)

.

Multiplying (3.5b) byP and integrating overP , we get

0 =

∫

dp dP P
(

F (p̃, x) g(P̃ , x) − F (p, x) g(P, x)
)

.

Adding these two equations, we see that

∂x

∫

dp |p|F (p, x) =

∫

dp dP (p + P )
(

F (p̃, x) g(P̃ , x) − F (p, x) g(P, x)
)

.



4 FORMULATING THE HEAT-CONDUCTION PROBLEM 11

But this vanishes, sinceP + p = P̃ + p̃ by momentum conservation, and using
again dp dP = dp̃ dP̃ . In a similar way, we first have

∂x

∫

dp
|p|p
2m

F (p, x)

=

∫

dp dP
p2

2m

(

F (p̃, x) g(P̃ , x) − F (p, x) g(P, x)
)

Finally, multiplying this time (3.5b) byP 2/M , integrating overP , adding to the
above equation and using energy conservation, we get

∂x

∫

dp
|p|p
2m

F (p, x)

=

∫

dp dP

(

p2

2m
+
P 2

2M

)

(

F (p̃, x) g(P̃ , x) − F (p, x) g(P, x)
)

= 0 .

Thus, all three fluxes are independent ofx, as asserted.

4 Formulating the heat-conduction problem

Based on the stationarity equation (3.5), we now formulate the problem of heat
conduction in mathematical terms. We imagine that the inputof the problem is
given by prescribing theincomingfluxes on both sides of the system. The system,
in its stationary state, should then adapt all the other quantities, F andg, to this
given input, which describes really the forcing of the system. In particular, the
distribution of the outgoing fluxes will be entirely determined by the incoming
fluxes.

We now formulate this question in mathematical terms: The incoming fluxes
are described by two functionsF0(p) (defined forp ≥ 0) andF1(p) (defined for
p ≤ 0). These are the incoming distributions on the left end (index 0) and the right
end (index 1) of the system.

In terms of these 2 functions, the problem of existence of a stationary state can
be formulated as (recall that the rescaled system has lengthone):

Is there a solution(F, g) of the equations (3.5) with the boundary conditions

F (p, 0) = F0(p) , ∀p ≥ 0 and F (p, 1) = F1(p) , ∀p ≤ 0 . (4.1)

Assume for a moment that, instead of the boundary conditions(4.1) we were
given justF (p, 0), but nowfor all p ∈ R, not only forp > 0. Assume furthermore,
thatg(p, x) is determined by (3.5b). In that case, the relation (3.5) can be written
as a dynamical system in the variablex:

∂xF (·, x) = X (F (·, x)) . (4.2)
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Thus, if F (·, 0) is given, then, in principle,F (·, 1) is determined (uniquely) by
Eq.(4.2), provided such a solution exists. We denote this map byY0:

Y0 : F (·, 0) 7→ F (·, 1) .

What is of interest for our problem is the restriction of the image ofY to functions
of negativep only, since that corresponds to the incoming particles fromthe right
side, and so we define

(

Y (F (·, 0))

)

(p) ≡ θ−(p) ·
(

Y0(F (·, 0))

)

(p) = θ−(p) · F (p, 1) .

Using this mapY , we will show that whenF (·, 0) varies in a small neighbor-
hood the mapY is invertible on its image. By taking inverses the problem ofheat
conduction for our model will be solved for small temperature and flux difference.

Of course, this needs a careful study of the function space onwhich Y is
supposed to act. This will be done below.

To formulate the problem more precisely, we change notation, and let

F+
0

(p) = θ+(p)F (p, 0) ,

F−
0

(p) = θ−(p)F (p, 0) ,

F+
1

(p) = θ+(p)F (p, 1) ,

F−
1

(p) = θ−(p)F (p, 1) .

We assume now thatF+

0
is fixedonce and for all and omit it from the notation.

Then, we see thatY can be interpreted as a map which maps the functionF−
0

to
F−

1
, and we call this mapΦ.
We will show below that forF−

0
in a small neighborhoodD the mapΦ is 1-1

onto its imageΦ(D) and can therefore be inverted. For anyF̂ in Φ(D), we can take
F−

0
= Φ−1(F̂ ), and we will have solved the problem of existence of heat flux.

5 The g equation

We start here with the study of existence ofg for givenF . Since (3.5b) does not
couple differentx, we can fixx. The equation (3.5b) is then equivalent to

g = AF (g) ,

where the operatorAF acting on the functionh is defined by

AF (h)(P̃ , x) =

∫

dpF (p̃(p, P̃ ), x)h(P (p, P̃ ), x)
∫

dpF (p, x)
,

(provided the denominator does not vanish). Note that for fixed P̃ andp, we can
solve the collision system (3.2) to find the correspondingP andp̃, namely

P =
1

̺
P̃ − 1 + ̺

̺
p and p̃ =

1 − ̺

̺
P̃ − 1

̺
p .
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The action of the operatorAF can then be rewritten as

AF (h)(P̃ , x) =
̺−1

∫

dpF (p, x)h(P̃ /̺− (1 + ̺)p/̺, x)
∫

ds F (s, x)
. (5.1)

In order to study this operator notice that it does not dependexplicitly onx. It
is convenient to study instead a family of operators indexedby functionsϕ of the
momentum only. We define (assuming the integral ofϕ does not vanish)

(Lϕψ)(P̃ ) =

∫

dpϕ(p)ψ(P̃ /̺− (1 + ̺)p/̺)

̺
∫

dpϕ(p)
.

A final change of variables will be useful when we studyLϕ:

(Lϕψ)(p) =

∫

dq ϕ(p−̺q
1+̺ )ψ(q)

(1 + ̺)
∫

dq ϕ(q)
. (5.2)

6 The mathematical setup and the main result

Having formulated the problem of existence of the stationary solution in general,
we now fix the mathematical framework in which we can prove this existence.
This framework, while quite general, depends neverthelesson a certain number of
technical assumptions which we formulate now.

We fix once and for all the ratioµ = m/M of the masses, and assume, for
definiteness, thatµ ∈ (0, 1). It seems that this condition is not really necessary,
and probably the conditionm 6= M (and the masses non-zero) should work as
well, but we have not pursued this.

We next describe a condition on the incoming distribution, called F in the
earlier sections. The basic idea, inspired from the equilibrium calculations, is that
F (p, x) should be close to

Freference(p) = exp(−βp2/(2m)) ≡ exp(−αp2) ,

while the derived quantityg(p, x) should be close to

greference(p) = exp(−βp2/(2M )) ≡ exp(−µαp2) .

Upon rescalingp, we may assume henceforth thatα = 1.
The operators of the earlier sections will now be described in spaces with

weights
Wν(p) = exp(−νp2) ,

where we will chooseν = 1 for theF andν = µ for theg.
We recall that the operatorLF in “flat” space is

(LF g)(p) =

∫

dq F (p−̺q
1+̺ )g(q)

(1 + ̺)
∫

dqF (q)
.
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We then define the integral kernel in the space with weightsexp(−p2) for F and
exp(−µp2) for g, and write

F (p) = e−p2

v(p) , g(p) = e−µp2

u(p) .

Here,µ = m/M = (1−̺)/(1+̺), as before. Expressed withu andv the operator
LF takes the form

(Kvu)(p) =
1

(1 + ̺)
∫

dqe−q2v(q)
· (Lvu)(p) , (6.1)

where

(Lvu)(p) =

∫

dq v(p−̺q
1+̺ )K(p, q)u(q) ,

and
K(p, q) = W1(p−̺q

1+̺ ) · Wµ(q)/Wµ(p) .

A simple calculation shows that

K(p, q) = e−(̺p−q)2/(1+̺)2 . (6.2)

Our task will be to understand under which conditions the linear operatorLF has
an eigenvalue 1. This will be done by showing thatKv is quasi-compact. It is here
that we were not able to give reasonable bounds onK(p, q) in the case of different
exponentials forp > 0 andp < 0, which represents different temperatures for
ingoing and outgoing particles.

6.1 Function spaces

We now define spaces which are adapted to the simultaneous requirement of func-
tions being close to a Gaussian near|p| = ∞ andu andv having limits,andKv

being quasi-compact. We define a spaceG1 of functionsu with norm

‖u‖G1
=

∫

e−µp2 |u(p)|dp .

Similarly, F1 is the space of functionsv with norm

‖v‖F1
=

∫

e−p2 |v(p)|dp .

Thus, the only difference is the absence of the factorµ = (1 − ̺)/(1 + ̺) in the
exponent.

We also define a smaller spaceG2, contained inG1, with the norm

‖u‖G2
=

∫

|du(p)| +
∫

e−µp2 |u(p)|dp ,

and the analogous spaceF2 contained inF1 with the norm

‖v‖F2
=

∫

|dv(p)| +
∫

e−p2 |v(p)|dp ,
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Remark. To simplify notation we write
∫

|du(p)| instead of the variation norm.
However, the “integration by parts” formula would hold withthe “correct” defini-
tion of variation as well.

Lemma 6.1. One has the inclusionG2 ⊂ L∞, and more precisely

‖u‖L∞ ≤
∫

|du| + eµ
∫

e−µp2 |u(p)|dp ≤ eµ‖u‖G2
.

Furthermore, ifu ∈ G2, thenlimp→±∞ u(p) exists. The mapsu 7→ limp→±∞ u(p)
andu 7→

∫

dp exp(−µp2) · u(p) are continuous functions fromG2 to R. The unit
ball of G2 is compact inG1.

Analogous statements hold for the spacesF2 (defined without the factorµ).

Proof. The first statement is easy, but it will be convenient to have the explicit
estimates. We have

u(y) − u(x) =

∫

[x,y]
du ,

and therefore

|u(x)| ≤
∫

|du| +
∫

1/2

−1/2

|u(y)|dy ≤
∫

|du| + eµ
∫

e−µp2 |u(p)|dp .

The second statement follows at once since the functions inG2 are of bounded
variation.

For the last assertions, it follows from the inclusion in L∞ that the unit ball
of G2 is equi-integrable at infinity in L1(e−µp2

dp). Moreover, a set of uniformly
bounded functions of uniformly bounded variation is compact in any L1(K,dp) for
any compact subsetK of R (see [1], Helly’s selection principle).

6.2 A cone in F2

We will work in the spaceF2 but we will need a cone (of positive functions, with
adequate decay) in this space, in order to prove quasi-compactness ofKv.

We define a coneCF in F2 by the condition

CF =

{

v ∈ F2 , v ≥ 0 andZ · lim
p→±∞

v(p) < 1

}

, (6.3)

where

Z = Z(v) =

√
π

∫

dp e−p2v(p)
. (6.4)

Lemma 6.2. The coneCF has non empty interior (inF2) and is convex.

Proof. By Lemma 6.1 the mapsv 7→ limp→±∞ v(p) andv 7→
∫

exp(−p2)v(p)dp
are continuous inF2 and hence the assertion follows.

Remark. Note that a function in the interior of the cone is necessarily bounded
away from zero, since at infinity it must have a non-zero limitand in any compact
set, if it is never zero, it is bounded away from zero.
Remark. Note that the functionv ≡ 1 (the Gaussian) isnot in the coneCF . In
fact, we require thatlimp→±∞ F (p)ep

2 ·
∫

e−p′2dp′/
∫

F (p′)dp′ < 1.
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6.3 The main result

On the setCF , we consider now the spatial evolution equations (3.5) in the vari-
ablesv anduv (which is the solution ofKvu = u with Kv defined in (6.1)):

∂xv(p, x)

= sign(p)
∫

dP

(

(W1·v)(p̃, x) (Wµ·uv(·,x))(P̃ , x)

− (W1·v)(p, x) (Wµ·uv(·,x))(P, x)

)

= sign(p)
∫

dP (W1·v)( − ̺p+ (1 − ̺)P, x) (Wµ·uv(·,x))((1 + ̺)p+ ̺P, x)

− sign(p) v(p, x)
∫

dP e−µP 2

uv(·,x)(P, x) ,

(6.5)

with initial condition v(·, x = 0) ∈ CF . We will give a more explicit variant in
(7.9).

Any solution of this equation is a function ofp andx, and it is easy to verify
that it satisfies the equation (3.5a). Together with the definition of uv we have a
complete solution of the nonlinear system (3.5). Here we assume of course that the
r.h.s. of the above equation is well defined as a function, so that we can multiply
by sign(p).

Theorem 6.3. For anyv0 ∈ CF , there are a numberxv0
> 0 and a neighborhood

Vv0
of v0 in CF such that the solution of (6.5) exists for any initial condition v0 =

v(p, 0) ∈ Vv0
and for anyx in the interval [0, xv0

]. The functionv0 7→ xv0
is

continuous fromCF to R
+ compactified at infinity. We denote byΦx the semi-

flow integrating (6.5). For anyx ∈ [0, xv0
], the mapΦx : v 7→ Φx(v) is a local

diffeomorphism, i.e., a diffeomorphism onVv0
.

Note that this implies in particular that the probability densities forg(·, x) and
F (·, x) remain positive for allx ∈ [0, xv0

], which is of course crucial from the
physics point of view.

We will prove this in Sect. 7 (and in the appendix).

7 Bound on the operator Kv and proof of Theorem 6.3

These bounds are the crux of the matter. They actually show, that, under the con-
ditions onF2 and the setCF , the operatorKv is quasi-compact. In terms of the
physical problem, this means that the scatterer is not heating up if the incoming
fluxes are inF2.

The object of study is, forv ∈ CF , the operator

(Kvu)(p) =
1

(1 + ̺)
∫

e−q2v(q)dq

∫

v(p−̺q
1+̺ )K(p, q)u(q)dq .

and we are asking for a solutionu of the equationKv(u) = u.
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Lemma 7.1. If v ≥ 0,Kv is a positive (nonnegative) operator, and
∫

dp e−µp2

(Kvu)(p) =

∫

dp e−µp2

u(p)

and
‖Kv‖G1

= 1 .

Proof. Easy, compute and take absolute values. Alternately, consider that the prob-
ability is conserved in the original space.

Our main technical result is

Proposition 7.2. For v ∈ CF , there exist aζ, 0 ≤ ζ < 1 and anR > 0 (both
depend onv continuously) such that for anyu ∈ G2 one has the bound

∫

|dKv(u)| ≤ ζ

∫

|du| +R‖u‖G1
.

Proof. Sincev will be fixed throughout the study ofKv, it will be useful to intro-
duce the abbreviationQ = Qv for the normalizing factor

Q =
1

(1 + ̺)
∫

e−q2v(q)dq
. (7.1)

We will use a family of smooth cut-off functionsχL (L > 1) which are equal
to 1 on [−L+ 1

2
, L− 1

2
] and which vanish on|q| > L+ 1

2
. LetΘ be aC∞ function

satisfying0 ≤ Θ ≤ 1, with Θ(q) = 0 for q ≤ −1

2
andΘ(q) = 1 for q ≥ 1

2
. We

defineχL by

χL(q) =











Θ(q + L) if q ≤ −L+ 1

2
,

1 if − L+ 1

2
≤ q ≤ L− 1

2
,

Θ(L− q) if q ≥ L− 1

2
.

The functionsχL areC∞, satisfy0 ≤ χL ≤ 1 and‖χ′
L‖L∞ is independent of

L. Let L1 andL2 be two positive numbers to be chosen large enough later on
(depending onv). We will use the partition of unity

1 = χL + χ⊥
L .

Using this decomposition of unity withL = L1 andL = L2, we writeKv =
K (1)

v +K (2)
v +K (3)

v with

(K (1)
v u)(p) = Q

∫

dq v(p−̺q
1+̺ )K(p, q)u(q) · χL1

(q) ,

(K (2)
v u)(p) = Q

∫

dq v(p−̺q
1+̺ )K(p, q)u(q) · χ⊥

L1
(q)χL2

(p − ̺q) ,

(K (3)
v u)(p) = Q

∫

dq v(p−̺q
1+̺ )K(p, q)u(q) · χ⊥

L1
(q)χ⊥

L2
(p − ̺q) .



18 7 BOUND ON THE OPERATORKv AND PROOF OFTHEOREM 6.3

We will now estimate the variation of the three operators separately.
For the variation of the first term, we find

d(K (1)
v u)(p) = +Q

∫

dq dv(p−̺q
1+̺ ) 1

1+̺ ·K(p, q)u(q)χL1
(q)

+Qdp
∫

dq v(p−̺q
1+̺ )∂pK(p, q) · u(q)χL1

(q) .

Using the explicit form ofK(p, q) (see Eq.(6.2)), and some easy bounds which we
defer to the Appendix, we get the bound

∫

|d(K (1)
v u)(p)| ≤ O(1)Q

(

‖v‖L∞ +

∫

|dv|
) ∫ L1+

1

2

−L1−
1

2

|u(q)|dq

≤ O(1)Q

(

‖v‖L∞ +

∫

|dv|
)

eµ(L1+
1

2
)2

∫

e−µq2 |u(q)|dq

≤ const.‖u‖G1
· ‖v‖F2

.

(7.2)

The variation ofK (2)
v leads to three terms:

d(K (2)
v u)(p)

=Qdp
∫

dq v(p−̺q
1+̺ )K(p, q)u(q) · χ⊥

L1
(q)χ′

L2
(p − ̺q)

+Q

∫

dq dv(p−̺q
1+̺ ) 1

1+̺ ·K(p, q)u(q) · χ⊥
L1

(q)χL2
(p− ̺q)

+Qdp
∫

dq v(p−̺q
1+̺ ) ∂pK(p, q) · u(q) · χ⊥

L1
(q)χL2

(p − ̺q)

: = dJ21 + dJ22 + dJ23 .

In these terms, the variablesp andq are in the domain

D = {(p, q) ∈ R
2 : |p− ̺q| < L2 + 1

2
and|q| > L1 − 1

2
} ,

and forL1 = 3̺L2/(1 − ̺2) andL2 sufficiently large we have from Lemma A.3:

K(p, q) < exp
(

−C1(̺p− q)2 − C2L
2
2

)

. (7.3)

Therefore, we get for dJ21:
∫

|dJ21| ≤ const.e−C2L2
2‖u‖∞‖v‖∞

∫

(p,q)∈D
dp dqe−C1(̺p−q)2 . (7.4)

The integral exists and is uniformly bounded inL2 (since|̺p − q| → ∞ when
|q| → ∞).

The term dJ22 is handled in a similar way and leads to the bound
∫

|dJ22| ≤ const.e−C2L2
2‖u‖∞

∫

|dv| . (7.5)
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The following identity is useful:

∂pK(p, q) = −̺∂qK(p, q) . (7.6)

For the term dJ23 we observe that from (7.6) one gets, upon integrating by
parts, with the notation

dJ23 =̺Qdp
∫

dq v(p−̺q
1+̺ )K(p, q) · ∂q

(

χ⊥
L1

(q)χL2
(p− ̺q)

)

+ ̺Qdp
∫

dv(p−̺q
1+̺ ) −̺

1+̺K(p, q)u(q) · χ⊥
L1

(q)χL2
(p− ̺q)

+ ̺Qdp
∫

v(p−̺q
1+̺ )K(p, q)du(q) · χ⊥

L1
(q)χL2

(p− ̺q)

:= dJ231 + dJ232 + dJ233 .

All these terms are localized in the domainD. In dJ231 there appears a derivative

X =∂q

(

χ⊥
L1

(q)χL2
(p− ̺q)

)

= − χ′
L1

(q)χL2
(p − ̺q)

− ̺χ⊥
L1

(q)χ′
L2

(p − ̺q)

:=X1 +X2 .

The terms involvingX1 andX2 can be bounded as dJ21 and dJ22 by observing
that suppχ′

L1
⊂ {|q| < L1 + 1

2
}, and similarly forX2.

The terms dJ232 and dJ233 are bounded similarly.
Together, these lead to a bound

∫

|dK (2)
v (u)| ≤ const.e−C2L2

2‖v‖F2
‖u‖G2

. (7.7)

Remark. Note that in this term, the norm‖u‖G2
appears with asmallcoefficient,

while in (7.2) it was‖u‖G1
(with a large coefficient).

Finally, we estimate the total variation ofK (3)
v (u) and here, the nature of the set

CF will be important. We have

d(K (3)
v u)(p)

=Q

∫

dq dv(p−̺q
1+̺ ) 1

1+̺K(p, q)u(q) · χ⊥
L1

(q)χ⊥
L2

(p− ̺q)

−Qdp
∫

dq v(p−̺q
1+̺ )K(p, q)u(q) · χ⊥

L1
(q)χ′

L2
(p− ̺q)

+Qdp
∫

dq v(p−̺q
1+̺ )∂pK(p, q) · u(q) · χ⊥

L1
(q)χ⊥

L2
(p− ̺q)

:= dJ31 + dJ32 + dJ33 .

The critical term is dJ33, but we first deal with the two others which are treated
similar to earlier cases.
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For the first term we have by Lemma A.4 which tells us thatK is exponentially
bounded onD′:

∫

|dJ31| ≤ const.‖u‖L∞

∫

|s|>(L2−
1

2
)/(1+̺)

|dv(s)| .

whereD′ is the domain

D′ = {(p, q) : |q| > L1 and|p − ̺q| > L2} .

For the second term, we have, again by Lemma A.4 below,
∫

|dJ32| ≤ const.‖u‖L∞ ‖v‖L∞

The last term is more delicate, and uses the propertyZ · limp→±∞ v(p) < 1 of the
definition of the conevcone, Eq.(6.3). integrate by parts as before using (7.6) and
get

dJ33 =̺Qdp
∫

dv( p−̺q
1+̺ ) −̺

1+̺K(p, q)u(q) · χ⊥
L1

(q)χ⊥
L2

(p− ̺q)

̺Qdp
∫

dq v(p−̺q
1+̺ )K(p, q)u(q) · ∂q(χL1

(q)χ⊥
L2

(p− ̺q))

̺Qdp
∫

v(p−̺q
1+̺ )K(p, q)du(q) · χ⊥

L1
(q)χ⊥

L2
(p− ̺q)

:= dJ331 + dJ332 + dJ333 .

The term dJ331 is bounded like dJ31.
In a similar way dJ332 and dJ32 are bounded by the same methods.
The term dJ333 makes use of the limit condition inCF . Consider the integral

of |dJ333|. This leads to a bound and settingL′
2 = (L2 − 1

2
)/(1 + ̺):

∫

|dJ333(p)| ≤ ̺Q sup
|s|>L′

2

|v(s)| ·
∫

|du(q)|

·
∫

dpK(p, q) · χ⊥
L1

(q)χ⊥
L2

(p− ̺q)

≤ ̺Q



 sup
|q|>L1−

1

2

∫

dpK(p, q)



 · sup
|s|>L′

2

|v(s)|
∫

|du|

=

√
π

∫

dqe−q2v(q)
· sup
|s|>L′

2

|v(s)|
∫

|du|

=Z · sup
|s|>L′

2

|v(s)|
∫

|du| ,

(7.8)

whereZ was defined in Eq.(6.4). Collecting all the estimates, we get
∫

|dKv(u)| ≤ C

∫

e−µq2 |u(q)|dq + ζ(L2)

∫

|du|
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where

ζ(L2) = O(1)e−C2L2
2‖v‖F2

+ O(1)
∫

|s|>L′

2

|dv(s)| + Z · sup
|s|>L′

2

|v(s)| .

Sincev belongs toCF , it follows that

lim
L2→∞

ζ(L2) < 1 ,

and the Lemma follows by takingL2 large enough.

Proposition 7.3. For anyv ∈ CF , the equationKv(u) = u has a solution inG2.
This solution can be chosen positive, it is then unique if we impose‖u‖G1

= 1. We
call it uv. The mapv 7→ uv is differentiable.

Proof. We apply the theorem of Ionescu-Tulcea and Marinescu [4] to prove the
existence ofu. Since forv > 0, the operatorKv is positivity improving, it follows
by a well known argument, seee.g., [6] that the peripheral spectrum consists only
of the simple eigenvalue one and the eigenvector can be chosen positive. If normal-
ized, it is then unique. Since the operatorKv depends linearly and continuously on
v (in F2), the last result follows by analytic perturbation theory (see [5]).

We next consider the equation (6.5) forv:

∂xv(p) = sign(p)

(

1

̺

∫

e(1−̺2)(p−q/(1+̺))2/̺2

v((1 − ̺)q − p)/̺) uv(q) dq

−v(p)
∫

e−µq2

uv(q) dq

)

. (7.9)

Proposition 7.4. The r.h.s. of the equation forv is aC1 vector field onF2.

Proof. This follows easily from the fact that the mapv 7→ uv isC1.

Theorem 7.5. Letv0 ∈ CF , and assume thatv0 is bounded below away from zero
and has nonzero limits at±∞. Then there is a numbers = s(v) > 0 such that the
solution of equation (7.9) with initial conditionv0 exists inF2 and is nonnegative
(moreover, it belongs toCF ).

Proof. Follows at once from the previous proposition and the fact that v0 is in the
interior ofCF .

The proof of Theorem 6.3 is now completed by observing that the mapΦ :
v0 7→ Φ(v0) is indeed a local diffeomorphism, since it is given as the solution of
an evolution equation.
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8 Remarks and Discussion

8.1 The behavior of the solution at p = ∞
Consider the limitp → ∞ in the expression forKv. We need̺ p − q = O(1)
otherwise the Gaussian gives a negligible contribution. Inother words,q ∼ ̺p,
and we are going to assume from now on that̺ > 0 (the other case can be treated
analogously). This impliesp − ̺q ∼ (1 − ̺2)p which also tends to infinity (the
same infinity). Therefore,

Kvu(±∞) =

√
π v(±∞) u(±∞)
∫

e−p2v(p)dp
.

In particular, ifKvu = u and since we assumed

√
π v(±∞)

∫

e−p2v(p)dp
6= 1

we getu(±∞) = 0.
For thev equation, we have for largep, q ∼ p(1+̺) and (1−̺)q−p ∼ −̺2p.

Therefore (inverting limit and derivative) we get

∂xv(±∞) = sign(±∞)

[√
π

√

1 + ̺

1 − ̺
u(±∞) v(∓∞) − v(±∞)

∫

e−µq2

u(q)dq

]

.

Note that the first term vanishes sinceu(±∞) = 0. Since the integralC(x) =
∫

e−µq2

u(q, x) is positive, we conclude that formally,

∂xv(±∞) = ∓v(±∞)C(x) .

8.2 Essential spectrum

Conjecture. The essential spectrum ofKv is the interval[0, σ(v)] with

σ(v) = max

√
π v(±∞)

∫

e−p2v(p)dp
.

If σ(v) < 1 we are looking for an eigenvalue1 outside the essential spectrum,
which is the case we have treated. Ifσ(v) > 1 we would be looking for an eigen-
value1 inside the essential spectrum which would be a much more difficult task,
since it may well not exist.
Idea of proof: Similar to the above estimates, the operatorKv should be written as
something small plus something compact plus something whose essential spectrum
can be computed. This last part is likely to be the limit operator at infinity.
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8.3 Dependence on N

It should be noted that the equation for∂xF has, in fact a scaling of the form

N−1∂xF = O(1) + O(N−1) .

This means that in the main theorem (Theorem 6.3), the limitxv0
of x for which we

have a result is quite probably bounded by a quantity of the form 1/(N · ∆(v0)),
where∆(v0) measures the deviation of the initial conditionv0 from a Gaussian.
Thus, eitherxv0

is very small whenN is large, or one has to takev0 very close to
a Gaussian.

Another way to look at this scaling is to introduce a scattering probability
γ = b/N whereb > 0 is a constant independent ofN . In other words, a particle
entering the array of cells from the left has for largeN a probabilitye−b to traverse
all theN cells (and leave on the right) without having experienced any scattering.
This is analogous to a rarefied gas. It is easy to verify that equation (1.4) is mod-
ified by a factorb/N multiplying the right hand side, and hence equation (1.5) is
unchanged. The stationary equations (3.5) become

|p̃|
m f

−
L (t, p̃) = θ(−p̃)

(

1 − b

N

)

|p̃|
m f (t, p̃)

+
b

N

θ(−p̃)
1 − ̺

∫

R

dp g(t−mL/|p̃|, p̃+̺p
1−̺ ) |p|m f (t− m

|p̃|L− m
|p|L, p) ,

and
|p̃|
m f

+

R (t, p̃) = θ(+p̃)

(

1 − b

N

)

|p̃|
m f (t, p̃)

+
b

N

θ(+p̃)
1 − ̺

∫

R

dp g(t−mL/|p̃|, p̃+̺p
1−̺ ) |p|m f (t− m

|p̃|L− m
|p|L, p) .

Equation (3.5a) follows as explained in Section 3 after a rescaling of space by a
factorb.

8.4 Discussion

The model presented in this paper has the nice property that one can control the
existence of a solution out of equilibrium. In particular, this means that there is no
heating up of the scatterers in the “chain”, when the system is out of equilibrium.

The reader should note, however, that the initial conditionat the boundary, does
not allow for different temperatures in the strict sense, only for different distribu-
tions at the ends. For example, a function of the form

F (p, 0) =

{

exp(−αp2), if p > 0,

exp(−α′p2), if p < 0,

with α 6= α′ is not covered by Theorem 6.3. The reason for this failure is that we
could not find an adequate analog of Lemma A.4 for initial conditions of this type,
and therefore the bounds on the kernelK(p, q) are not good enough.
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A Appendix: Bounds on K(p, q)

We study here the kernelK of (6.2), which equals

K(p, q) = eE(p,q) ,

with
E(p, q) = µp2 − µq2 − (p−̺q

1+̺ )2 = −(̺p− q)2/(1 + ̺)2 . (A.1)

Lemma A.1. Assume|q| < L. There are constantsC = C(L, ̺) and D =
D(L, ̺) > 0 such that for allp,

K(p, q) < Ce−Dp2

, (A.2)

and
|∂pK(p, q)| < Ce−Dp2

, (A.3)

Proof. Obvious.

Lemma A.2. Assume|p − ̺q| < L. There are constantsC = C(L, ̺) andD =
D(L, ̺) > 0 such that for allq,

K(p, q) < Ce−Dq2

, (A.4)

and
|∂pK(p, q)| < Ce−Dq2

, (A.5)
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Proof. The proof is as in Lemma A.1, with the difference that now|p − ̺q| <
L.

Lemma A.3. Consider the domainD defined by

D = {(p, q) ∈ R
2 : |p− ̺q| < L2 + 1

2
and |q| > L1 − 1

2
} , (A.6)

with

L1 =
3̺

1 − ̺2
L2 . (A.7)

For fixed̺ ∈ (0, 1) and sufficiently largeL2 there are positive constantsC1

andC2 such that for(p, q) ∈ D one has the bound

K(p, q) < exp
(

−C1(̺p− q)2 − C2L
2
2

)

.

Proof. From the definition ofD and (1−̺2)q = (̺p− q)−̺(p−̺q), we find (for
sufficiently largeL2):

|̺p−q| ≥ (1−̺2)|q|−̺|p−̺q| ≥ (1−̺2)(L1− 1

2
)−̺(L2 + 1

2
) > ̺L2 . (A.8)

Using the form
(̺p− q)2 > 1

4
(̺p− q)2 + 1

4
̺2L2

2 , (A.9)

the assertion follows immediately.

We next study the region

D′ = {(p, q) : |q| > L1 and|p− ̺q| > L2} . (A.10)

In this region, we have the obvious bound

Lemma A.4. For (p, q) ∈ D′, one has the bound

E(p, q) = −(̺p−q
1+̺ )2 .


