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Abstract 
   The correlation of the quantization problems in both canonical approach 
and path-integral method in the pure Yang – Mills fields for strong interactions leads to 
the conclusion that Gribov copies and virtual gluons in QCD vacuum are one and the 
same thing. This conclusion leads to dynamical construction of glueballs that explains 
color confinement and mass gap problems in pure gluodynamics. 
 
 

PACS No. 12.38.Aw 
 
 
 

1. INTRODUCTION: 
  
   We analyze the canonical structure of pure Yang-Mills theory in the case 

when we satisfy Gauss’ law identically by construction. Here the boundary conditions 

play critical role in the emergence of a canonical structure. It is shown that the theory has 

multiple short-lived canonical structures for same physical situation in this case, provided 

one uses a generalized Coulomb gauge condition for infinitesimal time period and takes 

into account Gribov ambiguity. The same Gribov ambiguity is shown to yield to multiple 

representation of any physical gauge orbit in path-integral quantization also. Given the 

fact that both canonical and path-integral approaches must yield equivalent quantization 

results [1, 2] for QCD, it is but natural to expect some sort of correlation between the 

aforesaid quantization problems of these approaches and the same is derived in this 

paper.  



2. CANONICAL APPROACH   
 
   For the initial formulation of the classical Yang – Mills equations, I would 

refer to [3] in this and subsequent para. Classically, the gauge theory is illustrated by the 

theory of electromagnetism for which the aeblian group U(1) is the gauge group. If we 

locally view the U(1) gauge connection, as denoted by A, as one-form on space-time, 

then the two form F = dA is nothing but curvature or electro-magnetic field tensor in 

space-time. In this terminology, the Maxwell’s equations are represented by 0 = dF = 

d*F, where * is the Hodge duality operator [3].   

   Classically, by substituting the abelian group U(1) with a more general 

compact gauge group G = SU(3), the curvature of the space-time is changed to F = 

dA+A∧A, and Maxwell’s equations are transformed to the Yang-Mills equations, 0 = dAF 

= dA*F, where dA denotes the gauge-covariant extension of the exterior derivative. These 

Yang-Mills equations can be validated by deriving them from the pure Yang-Mills 

Lagrangian [3] 

   L’ = (1/4g2) ∫ Tr F∧*F __________________________ (1) 

where Tr denotes an invariant quadratic form on the Lie algebra of G.  

   In the relativistic Lagrangian of Equation (1), the time and space indices 

have been treated on equal footing. If the time index, as a parameter, is treated on 

unequal footing with space indices in the Lagrangian of Equation (1), we get new non-

relativistic Lagrangian L of space indices as 

                    t2 

  L’ = ∫dt L _________________ (2) where integration is from time instant t1 to t2. 
                       t1 

 



The very first step towards canonical quantization involves the conversion of the classical 

Lagrangian L of Equation (2) into a Hamiltonian one. The standard procedure [4] for this 

is to define canonical momenta πμ by the following mathematical relations. 

   πμ = ∂L/∂Áμ __________________________________ (3)    

 where μ = 0,1,2,3 indicates the Minkowski space-time indices and Áμ are the generalized 

velocities. 

   Now, the canonical momenta π0 corresponding to the time index μ = 0 in 

the above mathematical formula vanishes in [4] at the outset of the quantization process 

itself in the Dirac formulation for the constrained systems [5, 6]. This fundamental 

mathematical problem of the vanishing canonical momenta π0 originates from the mere 

fact that for the non-relativistic Lagrangian L of Equation (2), the time index μ = 0 acts as 

a parameter in the time interval (t1, t2) while the space indices (μ = 1, 2, 3) are acting as 

independent variables. With π0 = 0, the time-dependent gauge transformation of A0 can 

be fixed only in the dynamics of the remaining gauge field variables.  

   Let us see how this happens: Neglecting the problem of the vanishing 

canonical momenta π0, in the light of the time index being chosen as a parameter to begin 

with, if the corresponding pairs of spatial components of Yang – Mills gauge field Ak 

(where the space indices k = 1,2,3) and canonical momentas πk (where the space indices 

k = 1,2,3), corresponding to spatial co-ordinates, are chosen as canonically conjugate 

variables in the non-relativistic Lagrangian L of the Equation (2), it is possible to 

mathematically construct [4] a Hamiltonian H through the Legendre transformation given 

as 

   H = ∫πk. Ák d3x – L _________________________ (4)  



The above H, through the Hamiltonian equations of motion, reproduces [4] the dynamical 

part of the Yang – Mills equations but Gauss’s law is absent in such a system. No 

physical applications, like working out the physical particle spectrum of QCD from the 

Hamiltonian H, are possible before Gauss law is properly incorporated into the 

Hamiltonian formalism [4].  

   It is shown in [7] that the starting point, for the implementation of the 

Gauss law in Hamiltonian formalism, is the non-abelian Gauss law that is obtained as a 

Lagrange equation of motion for μ = 0 when Hamilton’s action principle is invoked for 

the relativistic Lagrangian of Equation (1), i.e.,  

∇k(A)∇k(A)A0 − ∇k(A) Ák = 0 _______________________ (5)   

In-fact, with time index μ = 0 acting as a parameter in the time interval (t1, t2) and with 

space indices (k = 1, 2, 3) acting as independent variables, it is mentioned in [7] that the 

aforementioned non-abelian Gauss law in Equation (5) is a system of linear, elliptic 

partial differential equations determining the (matrix valued) potential component A0 for 

given space components Ak & their time derivatives ∂0Ak and it can be solved by 

assuming the existence of unique solution A0 as a functional of Ak and their time 

derivatives ∂0 Ak, i.e.,   

   A0 = A0{ Ak, ∂0Ak} _____________________________ (6) 

At this stage, a natural question, as raised in [7], is then whether the pure Yang – Mills 

Lagrangian L’ of the Equation (1) can be used for deriving a canonical structure of the 

pure Yang – Mills when the potential component A0, as given by the Equation (6) above, 

is a solution of the aforementioned non-abelian Gauss law in Equation (5). For answering 

this question, it is mentioned in [7] that the first step is to use the Lagrangian L of the 



Equation (2) that has been derived from L’ to begin with and then substitute the aforesaid 

unique solution A0, as given by the Equation (6) above, into this L to get new Lagrangian 

L0 as given below, 

 L0 = (–1/2) ∫V d3x (∇k(Ak) A0{Ak, ∂0Ak} –  Ák, ∇k(Ak) A0{Ak, ∂0Ak} – Ák)  

            – (1/4) ∫V d3x(Gkl (Ak), Gkl(Ak)) ___________________________________(7) 

 where Gkl = ∂kAl(x) – ∂lAk(x) – ig[Ak(x), Al(x)] and k,l are denoting space indices ranging 

from 1 to 3. 

   This new Lagrangian L0 must reproduce the Lagrange equations of motion 

for k = 1,2,3 when Hamilton’s action principle is invoked. Towards this goal, it is quite 

obvious to verify the following result beforehand as is done in [7], 

δ ∫dt L0 = – ∫dt ∫Vd3x (δAk, ∇0(A) (∇k(A) A0{ Ak, ∂0Ak} – Ák) – ∇lGkl(A)) 

      – ∫dt ∫∂Vd2σk ((δA0{ Ak, ∂0Ak}, ∇k(A) A0{ Ak, ∂0Ak}– Ák) _____________ (8) 

   where time integration is from time instant t1 to t2. 

Now, it is mentioned in [7] that the boundary conditions applicable to the A0 are required 

to be considered at this stage. If the domain V is taken as all R3 and accordingly, the 

boundary of the domain V in above Equation (8) is taken at spatial infinity (R→∞), then 

the vanishing of the second surface term in above Equation (8) is taken to be equivalent 

to the following condition in [7], 

  Lim  ∫V dΏR2 (δA0{ A(r), ∂0A(r)}, ∇(r)(A) A0{ A(r), ∂0Ar}– Á(r)) = 0 ________ (9) 
 R→∞   ⎢x ⎢= R 
 
   where (r) denotes the radial component of the corresponding quantity. 
 
As such, subject to the above boundary condition in Equation (9) for all admissible 

variations of A(r) and ∂0A(r), we get the following Lagrange equations of motion for k = 

1,2,3 for L0 from Equation (8) in the light of the variational principle δ ∫dt L0= 0, i.e., 



  ∇0(A) (∇k(A) A0{ Ak, ∂0Ak} – Ák) – ∇lGkl(A)) = 0 ______________________ (10) 

 Further, it is mentioned in [7] that the vanishing of the surface term in the Equation (9) 

above depends upon the assumed asymptotic behavior of the independent variables Ak 

and their time derivatives ∂0Ak as well as the on the boundary conditions (at spatial 

infinity) of the dependent variable A0.  

   As such, given that the surface term in the Equation (9) above does vanish 

under these asymptotic and boundary conditions being fulfilled and accordingly, the L0 

does reproduce the Lagrange Equations (10) of motion for k = 1,2,3, then the substitution 

of L0 of the Equation (7) into the Equation (4) above leads to the generalized velocity-

dependence of the Hamiltonian H through the dependence of A0 on the time derivatives 

∂0Ak in L0. But we must eliminate somehow the aforesaid generalized velocity-

dependence of Hamiltonian H, or in other words the dependence of A0 on the time 

derivatives ∂0Ak, if we intend to have canonical structure of the pure Yang – Mills theory 

at all.   

   This elimination can be accomplished by imposing, in Equation (5), an 

attainable gauge fixing i.e., for every Yang – Mills field configuration, there must exist a 

gauge-transformed Yang – Mills field configuration that satisfies the following 

generalized coulomb gauge fixing condition [7], i.e., 

∇k(A) Ák = 0 ______________________________________ (11) 

However, it is mentioned in [7] that with the use of the above generalized coulomb gauge 

fixing condition of the Equation (11), the generalized velocities ∂0Ak are no longer 

independent quantities and as such, cannot be used for the construction of canonical 



momentas in the Equation (3). As such, an alternate line of reasoning that leads to a 

proper canonical formalism is given below. 

   If the aforesaid generalized coulomb gauge fixing is assumed to come into 

play only for an infinitesimal time period, then the generalized velocities ∂0Ak can be 

treated as independent quantities for all intent & purpose and can be used for the 

construction of canonical momentas in the Equation (3). Also, the implementation of the 

non-abelian Gauss law in Hamiltonian formalism is only for this infinitesimal time period 

during which the aforesaid elimination of the dependence of A0 on the time derivatives 

∂0Ak by the generalized coulomb gauge fixing condition persists. Accordingly, the 

Hamiltonian H of the Equation (4) exists in time-independent form only for this 

infinitesimal time period because A0, the one and only one temporal component contained 

in the Hamiltonian H, can be assumed to stay constant during this infinitesimal time 

period.  

  This implies that the physical applications, like working out the physical 

particle spectrum of QCD from this short-lived Hamiltonian H, can only yield short-lived 

massless gauge bosons. Further, although the dynamical time-dependent gauge freedom 

of the Hamiltonian H can be fixed only for infinitesimal time period during which A0, the 

temporal component of the Yang – Mills gauge field for the strong interactions, is 

assumed to stay constant, but there still remains during this infinitesimal time-period the 

freedom of performing time-independent gauge transformations in the Hamiltonian H 

that has been constructed, at first instance, from spatially dependent canonically 

conjugate variable pairs.  



   Apparently, these time-independent gauge transformations shatter the 

uniqueness of the Hamiltonian H as it is not possible to fix these time-independent gauge 

transformations in the light of Gribov ambiguity. Thus, it is obvious that when transition 

to quantum version of the Hamiltonian H by means of fixed time Schrödinger 

quantization rule is done, two or more short-lived massless gauge bosons exists in one to 

one correspondence with the Gribov copies for any physical application of H.  

3.  PATH INTEGRAL METHOD 
  
   Further, we would now take the case of path integral method for 

quantization of classical Yang – Mills theory for strong interactions. In this path-integral 

method, the vacuum-to-vacuum transition amplitude is given by, 

Z = ∫ [dA] exp. [i ∫d4x L(A)] where ∫d4x L(A) = L’ and i = (-1)1/2 _________________ (12) 

“The integral space of the gauge fields in the integral ∫dA in the equation (12) above can 

be visualized as a product of integral length of a full set of gauge-inequivalent (i.e., 

gauge-fixed) configurations in the integral ∫dAg.f. and integral length over the gauge group 

∫dg. In other words, the integral length in the integral dAg.f. corresponds to the set of all 

possible gauge orbits and the same in the integral ∫dg refers to the length of the gauge 

orbits. As such, we can conclude     

     ∫dA ≡ ∫dAg.f.  ∫dg 

To make integrals such as those in the Eq. (12) finite and also to study gauge-dependent 

quantities in a meaningful way, we need to eliminate this integral around the gauge orbit, 

∫dg. 

   The Faddeev-Popov gauge-fixing procedure eliminates this integral 

around the gauge orbit, ∫dg in the perturbative QCD and in that way, it leads to ghosts and 



the local BRST invariance of the gauge-fixed perturbative QCD action. Since, for small 

field fluctuations of the perturbative QCD in the asymptotic regime, the Gribov copies [8] 

cannot be conscious of each other, so they can be neglected. But this situation does not 

the same in the non-perturbative QCD. Accordingly, the definition of the non-

perturbative QCD should be such that the functional integral (12) contains each gauge 

orbit only once in order to eliminate the aforementioned integral around the gauge orbit, 

∫dg. In other words, the non-perturbative QCD is to be defined in such a way that it has no 

Gribov copies. An implicit assumption in lattice QCD studies is to define the non-

perturbative QCD in this way. 

   The generalized Faddeev-Popov technique is used for arriving at this 

definition of the nonpertubative QCD and in that way, just one gauge configuration on 

the gauge orbit is not chosen but rather what actually chosen is some Gaussian weighted 

average over the gauge fields on the gauge orbit. In the light of this choice, a non-local 

action ∫d4x L(A) and a non-local quantum field theory arises in this definition of the 

nonpertubative QCD. But the proof of the renormalizability of QCD, the proof of 

asymptotic freedom, local BRST symmetry, and the Schwinger-Dyson equations etc. are 

obtained on the basis of this action ∫d4x L(A). So, when this action ∫d4x L(A) becomes 

non-local, these features of QCD cannot be proved in the non-perturbative context due to 

the absence of reliable basis.  

   In other words, the basic features like locality and the BRST invariance of 

the QCD theory stand shattered in this definition of the nonpertubative QCD. But many 

authors [9 -12] in the literature have upheld an equally valid viewpoint that QCD must be 

defined with locality and BRST symmetry at the centre and these features should not be 



given up while defining QCD in the nonpertubative sector. The implications of this 

viewpoint are that the presence of Gribov copies is absolutely necessary, that the multiple 

representations of the Gribov orbits are a fact.”[13] 

   In-fact, the aforementioned indispensable presence of the Gribov copies in 

the definition of nonperturbative QCD forces one to search for the physical interpretation 

of these Gribov copies. As depicted in the Figure.1 of [13] above, the “gauge orbit” for 

some configuration A is defined to be set of all gauge-equivalent configurations, and by 

definition, the action ∫d4x L(A) is gauge invariant, so all the configurations A’ on the 

gauge orbit have got same action.  

   This implies that the Gribov copies, in each gauge orbit, correspond to one 

and same physical situation such that there is residual gauge freedom given by gauge 

transformation between these Gribov copies. For exhibiting this residual gauge freedom 

in the light of the aforementioned indispensable presence of the Gribov copies in the 

definition of nonperturbative QCD, the necessary and sufficient condition is that the 

representative gauge potential on each of the gauge orbit in the physical configuration 

space (the space of all gauge orbits) must be surrounded by all the Gribov copies of that 

gauge orbit in Minkowski space-time. In other words, any real gluon as a representative 

gauge potential on each of the gauge orbit in the physical configuration space must be 

surrounded by massless gauge bosons, each referring to one of the Gribov copies of that 

gauge orbit in Minkowski space-time. 

4.  CORRELATION   
 
   As pointed out earlier, the quantization results of the canonical approach 

and the path-integral method must be equivalent. In the light of the forgoing statement, 



we can correlate the quantization results of these two methods by asserting that the 

massless gauge bosons, surrounding the real gluon and each referring to one of the 

Gribov copies of a gauge orbit in Minkowski space-time are short-lived one. 

5. CONCLUSION 
 

    Due to vacuum polarization, a real gluon is surrounded by massless virtual 

gluons that are also short-lived one in the Minkowski space-time. This leads to 

contradiction that the ground state or the vacuum state of the classical Yang – Mills field 

seemingly consists of two sets of massless particles: one corresponding to the Gribov 

copies and the other massless virtual gluons. The one and only one way to resolve this 

contradiction is to conclude that the Gribov copies and massless virtual gluons in QCD 

vacuum are one and the same thing.  

6.  DISCUSSION: 

  The above conclusion implies that a real gluon, created as one of three jets emerging 

from electron-positron annihilation at high energy at L3 Collaboration, CERN [14] at any 

point of time, would be immediately surrounded by its Gribov copies in the QCD vacuum.   

  In other words, this real gluon and its Gribov copies in QCD vacuum are multiply 

representing a particular gauge orbit that exists in the space of gauge potentials. If we 

envisage the gauge field of this particular gauge orbit, that is multiply represented by the real 

gluon and its Gribov copies, being used to perturbatively dress the matter field of a 

perturbative static Lagrangian quark, we can easily construct gauge-invariant colored static 

quark in perturbation theory for the mere fact [13] that here standard gauge fixing is unique 

for a gauge orbit as Gribov copies cannot be aware of each other for small field fluctuations 

and can be easily neglected for large momenta. Indeed, classical QCD is scale-invariant as 

there are no natural scales in it.  



   But a confining scale automatically gets generated in non-perturbative QCD 

at such a spatial locality when the Gribov copies, representing the same gauge orbit, become 

aware of each other and start interchanging their representative role by exhibiting residual 

gauge transformation amongst them. At this spatial locality, we can cope with the 

insensitivity [15] of the dressing (of gauge orbit) towards matter field color (of static 

Lagrangian quark) at the place of occurrence of the Gribov copies on this particular gauge 

orbit by postulating different color charges to the Gribov copies so that the overall color 

charge of the matter field and dressing is preserved on the whole of this particular gauge 

orbit.  

   Since, there is no inherent preference for any specific color charge so far as 

the representation of that particular gauge orbit by real gluon and its Gribov copies in QCD 

vacuum is concerned, so, it is perfectly straightforward to consider the ensemble of the real 

gluon and its Gribov copies in QCD vacuum as color-singlet one. Further, this color-singlet 

ensemble of the real gluon and its Gribov copies is physically co-existent in QCD vacuum as 

multiple representatives of the same gauge orbit, so, the static matter field, that is being 

dressed with the gauge field of this gauge orbit, also needs to be color-singlet one. This 

explains why the matter field of colored quark is forbidden to be dressed with the gauge field 

of the gauge orbit in non-perturbative QCD and the color-singlet hadron is allowed as 

physical observables after combined matter field of its constituents is dressed as a whole with 

the gauge field of the gauge orbit in non-perturbative QCD. This is nothing but confinement 

mechanism of quarks in non-perturbative QCD. 

   Next, the question arises how mass gap is generated in the above scenario. In 

pure gluodynamics, the above explained color-singlet ensemble of the real gluon and its 

Gribov copies is physically co-existent in QCD vacuum as multiple representatives of the 



same gauge orbit. At perturbative level, the Gribov copies, as already stated, are not aware of 

each other and consequently, all the real gluons remain massless. However, this normal 

massless vacuum is unstable, since each and every real gluon and their corresponding Gribov 

copies become aware of each other and start interacting with each other to form color-singlet 

ensemble called Gribov glue ball at such a spatial locality when confining scale automatically 

gets generated at non-perturbative level.  

   Consequently, stable vacuum is realized after the condensation of these 

Gribov glue balls. The excitation spectrum has a dynamical mass gap generation because the 

constituent real gluon and its Gribov copies in any color-singlet Gribov glue ball 

continuously exhibit residual gauge transformation amongst themselves by interchanging 

their respective roles as multiple representatives of the common gauge orbit. The amount of 

dynamical mass gap generated in any Gribov glue ball depends upon the largeness of gauge 

field that is carried by its respective gauge orbit. 

   Lastly, the mechanism for phase transition from confinement to 

deconfinement with increasing temperature needs to be probed in above scenario of Gribov 

glue balls. In pure gluodynamics, the confined phase and deconfined phase are distinguished 

by an order parameter called the expectation value of the Polyakov loop [16] that is zero for 

the confined phase and non-zero for the deconfined one. Naturally, Gribov glue balls exist in 

confined phase. From symmetry point of view, the Polyakov loop characterizes the breaking 

of Gribov glue balls. At critical temperature, the real gluon and its Gribov copies starts losing 

contact with each other for small field fluctuations and this ultimately causes disassociation 

of Gribov glue balls above critical temperature when phase transition from confined phase 

(of Gribov glue balls) to deconfined phase (of gluon plasma) takes place.     
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