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Abstract. We study a second order elliptic partial differential equation
for which a maximum principle is not available and whose nonlinearity
is not C

1.
We discuss the role of a pointwise gradient bound, of which we study

the optimal constant.
As a consequence, we derive a monotonicity estimate near flat points

of the free boundary of a minimizer.

1. Introduction

Given p ∈ (−1, 1] and an open set Ω ⊆ R
n, not necessarily bounded,

we consider a solution u ∈ C(Ω) ∩ C2(Ω ∩ {u > 0}) of the elliptic partial
differential equation

(1.1) ∆u(x) = (u(x))p for every x ∈ Ω ∩ {u > 0}.
The study of the PDE in (1.1) is a classical topic in both the pure and the
applied mathematics settings, since it arises in reaction-diffusion processes
and it is related to the variational analysis of some free boundary problems
(see [Phi83b, Phi83a, FP84, AP86]). In particular, it is of interest the dead
core of the solution, i.e. the set Ω ∩ {u = 0} and its free boundary Ω ∩
(∂{u > 0}). We remark that if p were bigger or equal than 1, then the
maximum principle would apply to (1.1) and then the dead core would be
empty (see, e.g., [BSS84, Váz84]). On the contrary, the absence of the
maximum principle when p ∈ (−1, 1) may lead to plateaus, as shown by the
onedimensional solution

(1.2) uo(x1, . . . , xn) =
(

√

1

2(p+ 1)
(1 − p)x+

n

)2/(1−p)
,

where, as usual,

x+
n :=

{

0 if xn 6 0,
xn if xn > 0.
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In this paper, a central role will be played by the following pointwise
gradient estimate:

(1.3)
|∇u(x)|2

2
6 M

(u(x))p+1

p+ 1
,

for some M > 0.
It is worth to note that (1.3) may be seen as a partition of energy, in the

sense that the kinetic part of the energy functional associated to (1.1), i.e.
the left hand side of (1.3), is bounded by M times the potential part of the
energy, i.e. the right hand side of (1.3).

So, our first result is that (1.3) holds away from {u = 0} ∪ ∂Ω:

Theorem 1.1. Let p ∈ (−1, 1]. Let u ∈ C(Ω) ∩ C2(Ω ∩ {u > 0}) be a
solution of (1.1), with 0 ∈ Ω ∩ {u > 0}.

Let d0 := dist(0, {u = 0} ∪ ∂Ω).
Then there exists M > 0 such that (1.3) holds for all x ∈ Bd0/2.
Here, M depends only on n, p, d0 and ‖u‖L∞(Bd0/2).

The proof of Theorem 1.1, which is contained in Section 2, uses some tech-
niques of [DM05], where a parabolic equation without maximum principle
was considered. Indeed, though (1.3) seems reminiscent of the classical a-
priori estimate in [Mod85], the setting here is different and the assumptions
and the techniques of [Mod85] seems to be not applicable.

Indeed, it is required in [Mod85] that the PDE holds in the whole of Rn.
Such an assumption has been weakened in [FV] in order to deal with

Dirichlet problems in possibly unbounded domains with nonnegative mean
curvature (see also Lemma 3.2 in [AP86], and references therein, for the
case of bounded domains) and, in general, the mean curvature assumption
cannot be removed, see Remark 2(i) in [FV]. Nevertheless, we take here
no assumption on the domain Ω and no boundary condition along ∂Ω is
involved in our framework.

We also recall that the maximum principle, which is not available in our
setting, is an essential ingredient for the proofs in [Mod85, FV].

Also, Theorem 1.1 here improves Theorem 1 of [MW08] in the range p ∈
(−1, 0).

In general, it would be desirable to extend the validity of (1.3) at points
of Ω ∩ ∂{u > 0} too, i.e. in the vicinity of the free boundary. As far as
we know, there do exist solutions of (1.1) that satisfy (1.3) near the free
boundary as well: for instance, the onedimensional solution in (1.2) and the
minimum solutions of [Phi83a] (see page 1420 there). We believe it would
be very interesting to construct solutions (if any) that do not satisfy (1.3)
near the free boundary.

Also, the constant M in (1.3) is quite important for the applications: for
instance, it plays a crucial role in the regularity of the free boundary (see,
e.g., Remark 1.4 in [Phi83a]). Next result shows that if (1.3) holds near the
free boundary, then a precise estimate on M becomes available:
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Theorem 1.2. Let p ∈ (0, 1). Let u ∈ C2(Ω)∩C(Ω) be a solution of (1.1).
Suppose that 0 ∈ Ω ∩ ∂{u > 0}.

Let R > 0 be such that BR ⊆ Ω and suppose that (1.3) holds for all x ∈
BR.

Then,

for every η > 0 there exists ε(η) ∈ (0, R) such that

|∇u(x)|2 6

(

2

p+ 1
+ η

)

(u(x))p+1 for every x ∈ Bε(η).
(1.4)

We remark that the constant 2/(p + 1) in (1.4) is optimal, since it is
attained by the onedimensional example in (1.2).

The proof of Theorem 1.2 is contained in Section 3 and it makes use of
many ideas developed by [Phi83a] in the context of minimizers.

With estimate (1.4) in hand, we are also able to obtain the following
monotonicity formula near the free boundary points. For this, we define the
local rescaled energy functional as

E (u, r) :=
1

rn−1

∫

Br

|∇u|2 +
2up+1

p+ 1
.

We also define the following cone, for every r > 0:

Cr :=
{

x ∈ Br \ {0} s.t. xn >
|x|
2

}

=
{

ty, t ∈ (0, r), y ∈ D
}

,

where

D :=
{

y ∈ ∂B1 s.t. yn > 1/2
}

.

Theorem 1.3. Let p ∈ (0, 1). Let u be a solution of (1.1) in Ω.
Suppose that 0 ∈ Ω ∩ ∂{u > 0} and that (1.4) is satisfied.
Then, for every η > 0 there exists ε(η) > 0 such that, for every r ∈

(0, ε(η)), we have that

(1.5)
∂E

∂r
(u, r) >

2

rn−1

∫

∂Br

(

∂u

∂ν

)2

− η

rn

∫

Br

up+1.

Moreover, if there exist C > 0 and ε̃ > 0 such that, for every r ∈ (0, ε̃)

(1.6)

∫

Br

up+1 6 C

∫

∂Br

(

∂u

∂ν

)2

,

then there exists ε′ > 0 such that for every r ∈ (0, ε′)

(1.7)
∂E

∂r
(u, r) > 0.
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In particular, (1.6) (and so (1.7)) holds true if

there exist ε′′ > 0 and g ∈ C1(Cε′′) such that g(0) = 0,

lim
s→0+

|∇g(sy) · y| = 0 for every y ∈ D , and

u(x) =
(

√

1

2(p+ 1)
(1 − p)x+

n + g(x)
)2/(1−p)

for every x ∈ Bε′′ .

(1.8)

As customary, in (1.5) and (1.6), ν denotes the exterior normal of ∂Br.
We notice that the function in (1.8) reduces to the one in (1.2) when g = 0.

As we will see more precisely in the forthcoming Theorem 1.4, the expres-
sion of u in (1.8) is reminiscent of the asymptotic expression of the minimzers
(see, e.g., Lemma 4.5 in [AP86]).

We observe that no boundary conditions are assumed in Theorem 1.3, but
only that (1.4) holds. The proof of Theorem 1.3 is contained in Section 4
and it follows the technique of [Mod89]: the role played in [Mod89] by the
monotonicity formula of [Mod85], which is not available, is played here by
the estimate given in (1.4).

As a concrete application of Theorem 1.3, we deal with the associated
variational free boundary problem. For this, we recall some classical termi-
nology (see, e.g., [AP86]). Given a bounded domain U ⊂ Rn, we define

FU (v) :=

∫

U

|∇v|2
2

+
|v|p+1

p+ 1
.

We define u to be a minimum for FU if FU (u) 6 FU (u+ ζ) for every ζ ∈
C∞

0 (U). That is, roughly speaking, u minimizes the functional FU with
respect to its own boundary Dirichlet data on ∂U .

In this framework, the results of [AP86] make possible to apply Theo-
rem 1.3 to minimizers, near the points around which the free boundary is
flat, as next result states:

Theorem 1.4. Let p ∈ (0, 1) and R > 0. Let u > 0 be a minimizer of FBR
,

with 0 ∈ ∂{u > 0}.
Then, there exist ` > 0, ao, co ∈ (0, 1) such that the following statement

holds.
Suppose that, for some a ∈ [0, ao] and ρ ∈ (0, coa

`), we have that

(1.9) u(x) = 0 for every x = (x′, xn) ∈ Bρ with xn 6 −aρ.
Then, then there exists ρo ∈ (0, ρ) such that for every r ∈ (0, ρo)

(1.10)
∂E

∂r
(u, r) > 0.

We think it would be an interesting problem to investigate whether sim-
ilar results hold in further generality; for instance, it would be desirable to
know if and how the monotonicity formulas changes for nonminimal solu-
tions and near wild subsets of the free boundary, and to classify the points for
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which (1.10) holds true. The proof of Theorem 1.4 is contained in Section 5
Next are the proofs of the results stated above.

2. Proof of Theorem 1.1

Theorem 1.1 will follow from a more general estimate:

Lemma 2.1. Let Z ∈ C2((0,+∞)) and f ∈ C1((0,+∞)). Let L > 0.
Suppose that there exists C > 0, possibly depending on n, p and L, such that

Z ′(r)Z(r)1/2 + Z(r)f ′(r) + Z ′(r)f(r) + Z(r)

6 C(1
2Z

′(r)2 − Z ′′(r)Z(r)),
(2.11)

for all r ∈ [0, L].
Let u ∈ C2(Ω?) ∩ C(Ω?) be a solution of

(2.12) ∆u = f(u)

in Ω?, with 0 6 u 6 L in Ω?.
Assume that

(2.13) inf
x∈Ω?

Z(u(x)) > 0.

Suppose also that there exists a continuous, compactly supported function

ψ ∈ C2(Ω?, (0,+∞)) with ψ = 0 on ∂Ω?,

such that
|∇ψ|2
ψ

is bounded in Ω?.
(2.14)

Then, there exists P > 0 such that

ψ(x)|∇u(x)|2 6 PZ(u(x)) for every x ∈ Ω?.(2.15)

Here, P depends only on Ω?, n, p, ψ and L.

Proof. First of all, we observe that u ∈ C3(Ω?), by elliptic estimates. Now,
we follow some computations developed in [DM05] for parabolic problems.
Let

(2.16) w :=
|∇u|2
Z(u)

, v := wψ.

Assume by contradiction the estimate is false, i.e.

(2.17) sup
Ω?

v > P,

where P > 0 will be conveniently chosen later.
Notice that v is continuous in Ω?, thanks to (2.13), so it attains a maxi-

mum point x0 ∈ Ω?. Hence, by (2.17)

(2.18) v(x0) > P.

Then x0 ∈ Ω?, because v = 0 on ∂Ω?. Hence

(2.19) ∇v(x0) = 0
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and

(2.20) ∆v(x0) 6 0.

Now, we compute ∆v and evaluate it at x0. This will lead to the absurd
∆v(x0) > 0 if one fixes P sufficiently large. We have, using the repeated
indexes convention:

∆v = ψ∆w + w∆ψ + 2∇w∇ψ.(2.21)

Also,

∂iw =
2∂ju ∂ijuZ(u) − |∇u|2Z ′(u)∂iu

Z(u)2
(2.22)

and

∆w = ∂iiw

=
2(∂iju)

2Z(u) + 2∂ju ∂j(∆u)Z(u) − |∇u|4Z ′′(u) − |∇u|2Z ′(u)∆u

Z(u)2

− 2
Z ′(u)

Z(u)
∂iu∂iw.

Using equation (2.12), we get

∂ju∂j(∆u) = (∂ju)
2f ′(u),

which, plugged into (2.22), gives

∆w =
2(∂iju)

2Z(u) + 2|∇u|2Z(u)f ′(u) − |∇u|4Z ′′(u) − |∇u|2Z ′(u)f(u)

Z(u)2

− 2
Z ′(u)

Z(u)
∂iu∂iw.

(2.23)

Henceforth all functions are evaluated at the point x0. Relation (2.19) yields

ψ∇w + w∇ψ = 0

and so

∇w∇ψ = −w |∇ψ|2
ψ

.

Inserting in (2.21),

(2.24) ∆v = ψ∆w +w
(

∆ψ − 2
|∇ψ|2
ψ

)

.

Replacing (2.23) in (2.24),

∆v = ψ
[2(∂iju)

2Z(u) + 2|∇u|2f ′(u)Z(u) − |∇u|4Z ′′(u) − |∇u|2Z ′(u)f(u)

Z(u)2

− 2
Z ′(u)

Z(u)
∂iu∂iw

]

+ w
(

∆ψ − 2
|∇ψ|2
ψ

)
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which is equivalent to

∆v =
1

Z(u)

[

2ψ(∂iju)
2 + 2ψZ(u)f ′(u)w − ψZ(u)Z ′′(u)w2 − ψwf(u)Z ′(u)

− 2ψZ ′(u)∂iu∂iw
]

+ w
(

∆ψ − 2
|∇ψ|2
ψ

)

.

(2.25)

We remark that

(2.26) ∇u(x0) 6= 0,

otherwise v(x0) = 0, against (2.18).
Now, we assume, without loss of generality, that ∇u(x0) is parallel to the

first coordinate axis. Then, since, by (2.19), we have that

(2.27) ∂1v(x0) = 0,

we obtain from (2.22) and (2.26) that

∂11u =
1

2
w

(

Z ′(u) − ∂1ψ

ψ∂1u
Z(u)

)

.

This, combined with (2.25), this furnishes

∆v >
1

Z(u)

[1

2
ψw2

(

Z ′(u)2 +
(∂1ψ)2

ψ2(∂1u)2
Z(u)2 − 2Z(u)Z ′(u)

∂ψ

ψ∂1u

)

+ 2ψZ(u)f ′(u)w

− ψZ(u)Z ′′(u)w2 − ψwf(u)Z ′(u) − 2ψZ ′(u)∂1u∂1w
]

+ w
(

∆ψ − 2
|∇ψ|2
ψ

)

.

(2.28)

Now we estimate some terms involving ψ and ∇ψ. From (2.27) and (2.16)
we obtain

ψ∂1w = −w∂1ψ,

therefore

2ψZ ′(u)∂1u∂1w = −2Z ′(u)∂1uw∂1ψ

6 2Z ′(u)Z(u)1/2ψ1/2w3/2 sup
Ω?

|∇ψ|
ψ1/2

.(2.29)

On the other hand

1

2
w2 (∂1ψ)2

ψ(∂1u)2
Z(u)2 =

1

2

(∂1ψ)2

ψ
Z(u)w

> −1

2

(

sup
Ω?

|∇ψ|2
ψ

)

Z(u)w.(2.30)

We also know that

−w2Z(u)Z ′(u)
∂1ψ

∂1u
> −

(

sup
Ω?

|∇ψ|
ψ1/2

)

Z ′(u)Z(u)1/2ψ1/2w3/2.(2.31)
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The last term to estimate is

w
(

∆ψ − 2
|∇ψ|2
ψ

)

> −w sup
Ω?

(

∆ψ − 2
|∇ψ|2
ψ

)

.(2.32)

Bringing (2.29)–(2.32) into (2.28) we obtain the following expression evalu-
ated at the point x0:

∆v >
1

Z(u)

[

ψw2
(1

2
Z ′(u)2 − Z(u)Z ′′(u)

)

+ w
(

2ψZ(u)f ′(u) − ψf(u)Z ′(u) −KZ(u)
)

−KZ ′(u)Z(u)1/2ψ1/2w3/2
]

,

(2.33)

where

K := sup
Ω?

|∇ψ|
ψ1/2

+ sup
Ω?

∆ψ − 2
|∇ψ|2
ψ

.

We will show that if v(x0) > P is sufficiently large then the right hand side
of (2.33) is positive, which would contradict (2.20). For reaching such a
contradiction, we make use of (2.11), noticing that, from (2.33),

∆v >

1
2Z

′(u)2 − Z ′′(u)Z(u)

Z(u)

(

ψw2 − C(w + ψ1/2w3/2)
)

=
1
2Z

′(u)2 − Z ′′(u)Z(u)

Z(u)ψ

(

v2 − C(v + v3/2)
)

.

Thus if (2.18) holds for some large enough P we obtain a contradiction with
(2.20). �

Now, we complete the proof of Theorem 1.1. For this, we check that (2.11)
are satisfied when Z(u) := up+1/(p + 1) and f := Z ′, for every u ∈ [0, L]
and every fixed L > 0, and then we apply Lemma 2.1.

Indeed: we note that

1

2
Z ′(u)2 − Z ′′(u)Z(u) =

( 1 − p

2(p+ 1)

)

u2p,

Z ′(u)Z(u)1/2 =
u

3p+1

2

(p+ 1)1/2

Z ′′(u)Z(u) =
p

p+ 1
u2p

and Z ′(u)Z ′(u) = u2p.

Since p ∈ (−1, 1], the above equalities easily imply (2.11). As a consequence,
Theorem 1.1 follows from Lemma 2.1, by choosing Ω? := Bd0/2 and ψ = d2,

where d ∈ C2(Bd0/2, (0,+∞)) is a function agreeing with dist(x, ∂Bd0/2) in
a (d0/4)-neighborhood of ∂Bd0/2.
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3. Proof of Theorem 1.2

3.1. Growth from the free boundary. It is interesting to point out that
when (1.3) holds near the free boundary, one obtains, as a consequence,
an optimal bound on the growth from the free boundary itself, as pointed
out by the following observation (see also page 67 of [AP86] and page 1060
of [MW08] for related results):

Lemma 3.1. Let q > −1 and R, C > 0. Let v ∈ C(BR, [0,+∞)) ∩
C1(BR ∩ {u > 0}). Suppose that

(3.34) v(0) = 0

and

|∇v(x)|2 6 C(v(x))q+1 for every x ∈ BR ∩ {v > 0}.
Then, for every x ∈ BR/2,

(3.35) |v(x)| 6 Co|x|2/(1−q),

for a suitable Co > 0 only depending on C and q.

Proof. Fix xo ∈ BR/2: we prove (3.35) for such xo. If v(xo) = 0 we are done,
so we suppose v(xo) > 0. Notice that

(3.36) Bρ(xo) ⊆ BR for every ρ ∈ [0, R/2].

By (3.34) and (3.36) there exists d ∈ (0, |xo|] such that Bd(xo) ⊆ BR ∩ {v >
0} and there exists p ∈ BR ∩ ∂Bd such that v(p) = 0. For every x ∈ BR,

let w(x) := (v(x))(1−q)/2. Then, if x ∈ Bd(xo),

|∇w(x)| =
1 − q

2
|v(x)|−(q+1)/2|∇v(x)| 6

(1 − q)
√
C

2
.

Then

(v(xo))
2/(1−q) = w(xo) = w(xo) − w(p) 6

(1 − q)
√
C

2
|xo − p|

6
(1 − q)

√
C

2
d 6

(1 − q)
√
C

2
|xo|,

which implies the desired result. �

3.2. Algebraic computations.

Lemma 3.2. Let q > −1, ` > 0. Let U ⊆ Rn be open, v ∈ C3(U, [0,+∞))
and

P (x) := |∇v(x)|2 − `(v(x))q+1.

Then
(3.37)

∆P = 2

n
∑

i,j=1

(∂2
ijv)

2 + 2(∇(∆v)) · ∇v − `(q + 1)vq∆v − `(q + 1)qvq−1|∇v|2.
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Moreover, if we assume that

(3.38) ∆v = vq in U ,

that

(3.39) xo ∈ U is a critical point of P

and that

(3.40) v(xo) > 0 and P (xo) = 0,

then

(3.41) ∆P (xo) >

[

`(q + 1)

2
− 1

]

` (q + 1) (v(xo))
2q.

Proof. By a direct computation, or making use of the Bochner-Weitzenböck
formula (see, for instance, [BGM71]), we have

∆|∇v|2 = 2

n
∑

i,j=1

(∂2
ijv)

2 + 2(∇(∆v)) · ∇v.

This easily implies (3.37).
Now, we assume (3.38), (3.39) and (3.40), and we prove (3.41). For this,

we can choose a coordinate frame in which

(3.42) D2v(xo) is diagonal,

so we plug (3.38) into (3.37) and we use (3.39) to obtain

(3.43) ∆P (xo) = 2
n

∑

i=1

(∂2
iiv(xo))

2 − `(q + 1)(v(xo))
2q.

Also, we deduce from (3.39) and (3.42) that, for every 1 6 i 6 n,

(3.44) 0 = ∂iP (xo) =
(

2∂2
iiv(xo) − `(q + 1)(v(xo))

q
)

∂iv(xo).

Since, from (3.40), we have that

(3.45) |∇v(xo)| > 0,

it follows that there exists i? ∈ {1, . . . , n} for which

(3.46) ∂i?v(xo) 6= 0

and so (3.44) says that

(3.47) ∂2
i?i?v(xo) =

`(q + 1)

2
(v(xo))

q.

By plugging this into (3.43), we easily obtain (3.41). �
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3.3. Some remarks on spherical averages. We collect here some general
results on spherical averages. The arguments are mostly taken from [Phi83a],
but we give the details for the reader’s convenience.

Lemma 3.3. Let q ∈ [0, 1], and v ∈ C(B2, [0,+∞)) ∩C2(B2 ∩ {u > 0}) be
such that ∆v = vq in B2 ∩ {v > 0}. Then, there exist C > 1 > c > 0, only
depending on n, such that if

(3.48)

∫

∂B1

v > C

then

(3.49) v(0) > c

∫

∂B1

v.

Moreover, there exists C? > C such that if (3.48) holds with C? instead
of C, then, for every x ∈ B1/4 and every σ ∈ (0, 1/4)

(3.50) c?

∫

∂Bσ

v 6 v(x) 6

∫

∂Bσ

v

for a suitable c? ∈ (0, 1).

Proof. Given a ball Br(P ) ⊂ B2, we define hBr(P ) to be the harmonic func-
tion in Br(P ) such that hBr(P )(x) = v(x) for every x ∈ ∂Br(P ). We observe
that, since v is subharmonic, hBr(P )(y) > v(y) > 0 for every y ∈ Br(P ).

Also, for every x ∈ Br/2(P ) we have that Br/4(P ) ⊆ Br(x). As a conse-
quence,

if B2r(x) ⊆ B2 and |x− P | 6 r/2, then

v(P ) 6

∫

Br/4(P )
v(y) dy 6

|Br/2|
|Br/4|

∫

Br(x)
hBr(x)

=
|B1/2|
|B1/4|

hBr(x)(x) = c1

∫

∂Br(x)
hBr(x) = c1

∫

∂Br(x)
v,

(3.51)

for a suitable c1 > 0, only depending on n.
Moreover, we observe that

(3.52)

∫

Bρ(q)
vq 6

[

∫

Bρ(q)
v

]q

,

as long as Bρ(q) ⊂ B2. Indeed, if q = 0 this is obvious, while, if q ∈ (0, 1),

Jensen’s inequality and the convexity of the function Φ(r) := |r|1/q gives
that

∫

Bρ(q)
vq =

[

Φ
(

∫

Bρ(q)
vq

)

]q

6

[

∫

Bρ(q)
Φ(vq)

]q

=

[

∫

Bρ(q)
v

]q

,

as desired.
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Now, for every x ∈ Rn \ {0}, we consider the fundamental solution

G(x) :=

{

− log |x| if n = 2,
|x|2−n − 1 if n > 3,

and we observe that G > 0 in B1, G = 0 on ∂B1, ∆G = −c2δ0, for some c2 >
0, and ∇G(x) · x < 0 for every x ∈ ∂B1.

Accordingly, Green’s identity gives, for some c3 > 0,

(3.53) −
∫

B1

∆vG = c2v(0) +

∫

∂B1

∂G

∂ν
v = c2v(0) − c3

∫

∂B1

v.

On the other hand, since |x|n−1G(x) is bounded in B1, we obtain, by ex-
ploiting polar coordinates,

∫

B1

∆vG =

∫

B1

vqG =

∫ 1

0

∫

∂Bρ

vqG 6 c4

∫ 1

0

(

∫

∂Bρ

vq
)

ρn−1G

6 c5

∫

∂Bρ

vq
6 c5

∫

∂B1

vq,

for suitable c4, c5 > 0. By inserting this estimate into (3.53), and recall-
ing (3.52), we conclude that

c2v(0) > c3

∫

∂B1

v − c5

∫

∂B1

vq > c3

∫

∂B1

v − c5

[
∫

∂B1

v

]q

.

Since q < 1, we obtain that (3.49) holds under assumption (3.48).
Now, we prove (3.50). Given x ∈ B1/4, we use (3.51) with r := 1/2 to see

that

(3.54) sup
B1/2(x)

v(P ) 6 c1

∫

∂B1/2(x)
v.

Thus, we exploit (3.48) with C? instead of C, (3.49) and (3.54) to estimate

cC? 6 c

∫

∂B1

v 6 v(0) 6 c1

∫

∂B1/2(x)
v.

That is, the function ṽ(y) := 41/(1−q)v(x + (y/2)) satisfies ∆ṽ = ṽq in B2

and
∫

∂B1

ṽ > C,

as long as C? is suitably large. As a consequence, (3.49) applied to ṽ yields
that

(3.55) v(x) > c6

∫

∂B1/2(x)
v,

for a suitable c6 > 0.
Now, if σ ∈ (0, 1/4), the fact that B1/4 implies that Bσ ⊆ B1/2(x) and

so (3.54) gives that
∫

∂Bσ

v 6 c1

∫

∂B1/2(x)
v,
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which, combined with (3.55) furnishes

v(x) >
c6
c1

∫

∂Bσ

v.

This and the fact that v is subharmonic imply (3.50). �

3.4. Improved gradient estimates.

Lemma 3.4. Let q > −1, M > 0, u ∈ C(BR, [0,+∞))∩C2(BR ∩{u > 0})
be such that ∆u = uq in BR ∩ {u > 0}. Assume that 0 ∈ ∂{u > 0} and that

(3.56) |∇u(x)|2 6 M(u(x))q+1 for every x ∈ BR ∩ {u > 0}.
Then, for every η > 0 there exists ε(η) ∈ (0, R) such that

(3.57) |∇u(x)|2 6

(

2

q + 1
+ η

)

(u(x))q+1 for every x ∈ Bε(η).

Proof. We will make use of a technique developed in [Phi83a] (see, in par-
ticular, pages 1420–1423 there). For all x ∈ BR, we let

R(x) :=
|∇u(x)|2
(u(x))q+1

and, for every ε ∈ (0, R), we consider

Ψ(ε) := sup
x∈Bε∩{u>0}

R(x).

Clearly, Ψ is monotone, and bounded by M thanks to (3.56), so we can
define

` := lim
N3m→+∞

Ψ(1/m).

Let xm ∈ B1/m ∩ {u > 0} be such that

Ψ(1/m) 6 R(xm) +
1

m
.

We fix K > 1, to be conveniently chosen in what follows, and we define

ρm :=

(

u(xm)

K

)(1−q)/2

.

Notice that, if K is large enough,

ρm 6
1

10m
,

thanks to Lemma 3.1. Consequently,

(3.58) for all y ∈ B2, we have xm + ρmy ∈ B2/m,

and we may define

vm(y) :=
u(xm + ρmy)

ρ
2/(1−q)
m

.

We observe that vm > 0, that

(3.59) vm(0) = K,
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that

(3.60) ∆vm = vq
m > 0 in B2 ∩ {vm > 0}

and that

(3.61)
|∇vm(y)|2
(vm(y))q+1

=
|∇u(xm + ρmy)|2
(u(xm + ρmy))q+1

= R(xm + ρmy).

This and (3.58) give that

(3.62) sup
y∈B2∩{vm>0}

|∇vm(y)|2
(vm(y))q+1

6 Ψ(2/m).

Consequently, if ζm := (vm)(q+1)/2, we have that |∇ζm| 6 (q+1)
√
M/2 and

so |ζm(y)| 6 |ζm(0)| + (q + 1)
√
M for all y ∈ B2. Therefore, by (3.59),

(3.63) sup
y∈B2

v(y) 6 C̃,

for a suitable C̃ depending on M and K. Moreover, by (3.59) and the
subharmonicity of vm,

(3.64)

∫

∂B1

vm > vm(0) = K

and so, if K is chosen suitably large, we can apply Lemma 3.3 to vm: thus,
recalling also (3.63), we obtain that there exists c̃ ∈ (0, 1) such that

c̃ < vm(y) <
1

c̃

for all y ∈ B1/2. We remark that c̃ depends on K, but K will be fixed now,
once and for all.

Since the standard elliptic Calderón–Zygmund and Schauder estimates
apply to (3.60), up to subsequence, vm converges to some v in C1(B1/2),
with

c̃ < v(y) <
1

c̃
for all x ∈ B1/2.

As a result, if y ∈ B1/2,

|∇v(y)|2
(v(y))q+1

= lim
m→+∞

|∇vm(y)|2
(vm(y))q+1

6 lim
m→+∞

Ψ(2/m) = `,

thanks to (3.62), while

|∇v(0)|2
(v(0))q+1

= lim
m→+∞

|∇vm(0)|2
(vm(0))q+1

= lim
m→+∞

R(xm) = `,

thanks to (3.61).
That is, the function P : B1/2 → R defined by

P (y) := |∇v(y)|2 − `(v(y))q+1
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has a maximum at y = 0. Therefore, noticing that v(0) = K, due to (3.64),
we are in the position of applying Lemma 3.2: we obtain

0 > ∆P (0) >

[

`(q + 1)

2
− 1

]

` (q + 1) (v(0))2q .

This gives that ` 6 2/(q + 1), from which the desired result plainly follows.
�

The proof of Theorem 1.2 now follows easily from Lemma 3.4.

4. Proof of Theorem 1.3

We start with the following Pohozaev-type identity:

Lemma 4.1. Let R > 0 and f ∈ C(R). Let F be a primitive of f . Let v ∈
C2(BR) be a solution of ∆v = f(v) in BR. Then, for every r ∈ (0, R),

∫

Br

(

(n− 2)|∇v|2 + 2nF (v)
)

= r

∫

∂Br

[

|∇v|2 + 2F (v) − 2

(

∂v

∂ν

)2
]

.

Proof. The argument in the proof of Lemma 2.2 of page 846 of [Mod89] may
be repeated verbatim. �

We remark that we can use Lemma 4.1 in the proof of Theorem 1.3, since
in this case p ∈ (0, 1), and so f(u) := up ∈ C(R).

Now, we perform some elementary geometric observations on the level
sets of a function that can be written in the form requested in (1.8):

Lemma 4.2. Let ε′′ > 0, g : Cε′′ → R, with

(4.65) lim
Cε′′3x→0

g(x)

|x| .

Let

(4.66) v(x) :=
(

√

1

2(p+ 1)
(1−p)x+

n + g(x)
)2/(1−p)

for every x ∈ Bε′′.

Then, there exists ε? ∈ (0, ε′′) such that

Cε? ⊆ {v > 0}.
Proof. We take x ∈ Cε? and we compute:

√

1

2(p+ 1)
(1 − p)x+

n + g(x) > |x|
[√

1

2(p+ 1)

1 − p

2
− |g(x)|

|x|

]

>

√

1

2(p+ 1)

1 − p

4
,
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where we have used (4.65) in the last step, assuming ε? small enough. Then,
the desired claim follows from (4.66). �

Now, we can proof (1.5), by using the argument on page 847 of [Mod89],
by replacing the estimate of [Mod85], which is not available here, with (1.4).
In fact, this will cause a remainder that we will take into account when we
prove (1.7) below.

Indeed, using Lemma 4.1, we see that

∂E

∂r
(u, r) = (1 − n)r−n

∫

Br

(

|∇u|2 +
2up+1

p+ 1

)

+r1−n

∫

∂Br

(

|∇u|2 +
2up+1

p+ 1

)

= r−n

∫

Br

(

2up+1

p+ 1
− |∇u|2

)

+ 2r1−n

∫

∂Br

(

∂u

∂ν

)2

.

This and (1.4) easily give (1.5).
Also, (1.7) easily follows from (1.5) and (1.6) by choosing η suitably small

with respect to C, and then setting ε′ := min{ε(η), ε̃}.
Now, we show that (1.8) implies (1.6). For this, we recall Lemma 4.2 and

we compute

∇u(x) =
2

1 − p

(

√

1

2(p+ 1)
(1 − p)xn + g(x)

)(p+1)/(1−p)

·
(

√

1

2(p+ 1)
(1 − p)en + ∇g(x)

)

for every x ∈ Cε′′ with xn > 0.

As a consequence, we have that if y ∈ ∂B1 and yn > 1/2 and r > 0 is
sufficiently small

∇u(ry) · y

=
2

1 − p
r(p+1)/(1−p)

(

√

1

(p+ 1)
(1 − p)yn +

g(ry)

r

)(p+1)/(1−p)

·
(

√

1

2(p+ 1)
(1 − p)yn + ∇g(ry) · y

)

> c1r
(p+1)/(1−p),

for a suitable c1 > 0, thanks to the behavior of g near 0 given in (1.8).
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Consequently,
∫

∂Br

(

∂u

∂ν

)2

=

∫

y∈∂B1

(∇u(ry) · y)2

>

∫

y∈∂B1∩{yn>1/2}
(∇u(ry) · y)2 > c1r

2(p+1)/(1−p),

(4.67)

for a suitable c1 > 0. On the other hand,

∫

Br

up+1 =

∫

y∈B1

(u(ry))p+1

= r2(p+1)/(1−p)

∫

y∈B1

(

√

1

2(p+ 1)
(1 − p)y+

n +
g(ry)

r

)2(p+1)/(1−p)

6 c2r
2(p+1)/(1−p),

(4.68)

for a suitable c2 > 0. Then, (1.6) is a consequence of (4.67) and (4.68). This
ends the proof of Theorem 1.3.

5. Proof of Theorem 1.4

First of all, we note that (1.4) holds true under the assumptions of The-
orem 1.4, thanks to Lemma 1.2 on pages 1420–1421 of [Phi83a].

Furthermore, we show that (1.8) is satisfied. This will imply the result of
Theorem 1.4, thanks to Theorem 1.3.

For this scope, we recall the notion of flat free boundary points, as de-
scribed in Definition 5.1 on page 82 of [AP86] (in fact, with respect to the
notation of [AP86], we reverse the direction of xn). Given ρ > 0, a, b ∈ [0, 1]
and τ ∈ [0,+∞], we say that u belongs to the class F (a, b; τ) in Bρ if u is a
solution of (1.1) in Bρ, with 0 ∈ ∂{u > 0}, such that

• u(x) = 0 for every x = (x′, xn) ∈ Bρ with xn 6 −aρ,
•

√

2(p+ 1)
1

1 − p
(u(x))(1−p)/2

> xn + bρ for every x = (x′, xn) ∈ Bρ

with xn > bρ,

• |∇(x)|2 6
2(1 + τ)

p+ 1
(u(x))p+1 for every x ∈ Bρ.

With this notation, we observe that (1.9) implies that

(5.69) u belongs to the class F (a, 1;+∞) in Bρ,

Accordingly, (5.69) and Theorem 6.1 on page 101 of [AP86] imply that

(5.70) Bρ/8 ∩ ∂{u > 0} is a C1 graph

and

(5.71) u(1−p)/2 ∈ C1({u > 0} ∩Bρ/8).

Indeed, the quantities `, ao and co in the statement of Theorem 1.4 are
determined here by the use of Theorem 6.1 of [AP86].
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Then, (5.70) makes possible to use Lemma 4.5 of [AP86] from which we
conclude that there exists ρ′ ∈ (0, ρ/8) and g : Bρ′ → R such that, for
every x ∈ Bρ′ ,

(5.72) u(x) =
(

√

1

2(p+ 1)
(1 − p)x+

n + g(x)
)2/(1−p)

,

with

(5.73) lim
x→0

g(x)

|x| = 0.

Also,

(5.74) x+
n belongs to C1({xn > 0} ∩Bρ′),

and Lemma 4.2 implies that

(5.75) Cr ⊆ {xn > 0} ∩ {u > 0},

if r > 0 is sufficiently small. From (5.71), (5.72), (5.74) and (5.75), we
obtain that the function

g(x) = (u(x))(1−p)/2 −
√

1

2(p+ 1)
(1 − p)x+

n belongs toC1(Cr).

Accordingly, for every y ∈ D , we may define

`(y) := lim
s→0+

∇g(sy) · y.

Then, from (5.73), we have that g(0) = 0 and that, for every y ∈ D

0 = lim
s→0+

g(sy) − g(0)

s
= lim

s→0+

∫ 1

0
∇g(θsy) · y dθ

=

∫ 1

0
`(y) dt = `(y).

This says that (1.8) is satisfied, and so Theorem 1.4 is a consequence of
Theorem 1.3.
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