A NOTE ON EXISTENCE THEOREM OF PEANO

OLEG ZUBELEVICH
DEPT. OF THEORETICAL MECHANICS, MECHANICS AND MATHEMATICS FACULTY, M. V. LOMONOSOV MOSCOW STATE UNIVERSITY RUSSIA, 119899, MOSCOW, VOROB'EVY GORY, MGU E-MAIL: OZUBEL@YANDEX.RU

Abstract. An ODE with non-Lipschitz right hand side is considered. The set of solutions with L^{p}-dependence of the initial data is obtained.

1. MAIN Theorem

Equip the space $\mathbb{R}^{m}=\left\{x=\left(x^{1}, \ldots, x^{m}\right)\right\}$ with a norm

$$
\|x\|=\max _{k=1, \ldots, m}\left|x^{k}\right|
$$

Let B_{R} stands for the open ball of \mathbb{R}^{m} with radius R and the center at the origin. By I_{T} denote an interval $I_{T}=(-T, T)$.

Introduce a vector-function $f(t, x)=\left(f^{1}, \ldots, f^{m}\right)(t, x) \in C\left(\mathbb{R}_{t} \times \mathbb{R}_{x}^{m}, \mathbb{R}^{m}\right)$. Suppose that

$$
\sup _{(t, x) \in \mathbb{R} \times \mathbb{R}^{m}}\|f(t, x)\|=M<\infty
$$

Moreover we assume that for each $t \in \bar{I}_{T}$ and for all $x=\left(x^{1}, \ldots, x^{m}\right) \in \mathbb{R}^{m}$ and $y=\left(y^{1}, \ldots, y^{m}\right) \in \mathbb{R}^{m}$ such that

$$
x^{j} \leq y^{j}, \quad j=1, \ldots, m
$$

one has

$$
\begin{equation*}
f^{j}(t, x) \leq f^{j}(t, y), \quad j=1, \ldots, m \tag{1.1}
\end{equation*}
$$

Our aim is to study the set of the solutions to the following initial value problem:

$$
\dot{y}=f(t, y), \quad y(0)=x
$$

From Peano's existence theorem [3] we know that for all x this IVP has a solution, $y(t) \in C^{1}(\mathbb{R})$. It is also well known that for the same initial condition there may be several solutions.

[^0]The condition (1.1) does not prevent the effect of non-uniqueness. To see this it is sufficient to consider the IVP with $f(t, y)=\sqrt{y}$ provided $y \geq 0$ and $f(t, y)=0$ otherwise and $y(0)=0$.

We study a possibility whether any initial condition x can be put in correspondence with a solution $u(t, x)$ such that the function $u(t, x)$ possesses reasonable properties.

So we look for solutions to the following IVP.

$$
\begin{equation*}
u_{t}(t, x)=f(t, u(t, x)), \quad u(0, x)=x \tag{1.2}
\end{equation*}
$$

Theorem 1. For any positive constants T, R and $p \in[1, \infty)$ problem (1.2) has a solution $w(t, x) \in C\left(\bar{I}_{T}, L^{p}\left(B_{R}\right)\right) \bigcap C^{1}\left(I_{T}, L^{p}\left(B_{R}\right)\right)$.

Let μ stands for the standard Lebesgue measure in B_{R}.
Theorem 2. For any $\varepsilon>0$ there is a closed set $M_{\varepsilon} \subset B_{R}$ such that $\mu\left(B_{R} \backslash M_{\varepsilon}\right)<\varepsilon$ and $w(t, x) \in C\left(M_{\varepsilon}, C\left(\bar{I}_{T}\right)\right)$.

Proof of Theorem 2. Arrange a countable set $Z=\bar{I}_{T} \bigcap \mathbb{Q}$ as follows: $Z=\left\{t_{i}\right\}_{i \in \mathbb{N}}$.

Then by Luzin's theorem [4] we choose closed sets

$$
M_{i} \subseteq B_{R}, \quad \mu\left(B_{R} \backslash M_{i}\right)<\frac{\varepsilon}{2^{i}}
$$

such that $w\left(t_{i}, x\right) \in C\left(M_{i}\right)$.
Let us put $M_{\varepsilon}=\bigcap_{i} M_{i}$ then

$$
\mu\left(B_{R} \backslash M_{\varepsilon}\right)=\mu\left(\bigcup_{i} B_{R} \backslash M_{i}\right) \leq \sum_{i} \mu\left(B_{R} \backslash M_{i}\right)<\varepsilon
$$

Take a sequence $x_{k} \rightarrow x, \quad\left\{x_{k}\right\} \subseteq M_{\varepsilon}$. For all $t_{i} \in Z$ we have

$$
\left\|w\left(t_{i}, x_{k}\right)-w\left(t_{i}, x\right)\right\| \rightarrow 0
$$

Observe that the sequence $\left\{w\left(t, x_{k}\right)\right\}$ is uniformly continuous in \bar{I}_{T} :

$$
\left\|w\left(t^{\prime}, x_{k}\right)-w\left(t^{\prime \prime}, x_{k}\right)\right\|=\left\|\int_{t^{\prime \prime}}^{t^{\prime}} f\left(s, w\left(s, x_{k}\right)\right) d s\right\| \leq M\left|t^{\prime}-t^{\prime \prime}\right|, \quad t^{\prime}, t^{\prime \prime} \in \bar{I}_{T} .
$$

Thus the sequence $\left\{w\left(t, x_{k}\right)\right\}$ converges uniformly in Z [4]. And so as the set Z is dense in \bar{I}_{T} this sequence converges uniformly in \bar{I}_{T}.

The Theorem is proved.

2. Proof of Theorem 1

For convenience of the reader we recall several propositions which are used in the sequel.

The following proposition is a corollary from the Vitali convergence theorem [2].

Proposition 1. Let (X, \mathfrak{S}, μ) be a measure space, $\mu(X)<\infty$. And a sequence of measurable functions $\left\{f_{n}\right\}$ is such that for all $n \in \mathbb{N}$ and for almost all $x \in X$ we have $\left|f_{n}(x)\right| \leq$ const. Assume that $\left\{f_{n}\right\}$ is a Cauchy sequence in measure. Then it converges in measure to a measurable function f and $\int_{X}\left(f_{n}-f\right) d \mu \rightarrow 0$.

Formulate another fact.
Proposition 2 ([2]). Let $D \subset \mathbb{R}^{m}$ be a measurable set with respect to the standard Lebesgue measure. Consider a function $\psi \in C\left(\bar{B}_{R}, \mathbb{R}^{k}\right)$. If $f_{n} \rightarrow$ f in measure in D and $\left\|f_{n}(x)\right\| \leq R$ almost everywhere in D then then $\psi \circ f_{n} \rightarrow \psi \circ f$ in measure.

As usual we formulate our IVP in terms of the integral equation

$$
\begin{equation*}
u(t, x)=F(u)(t, x), \quad F(u)(t, x)=x+\int_{0}^{t} f(s, u(s, x)) d s \tag{2.1}
\end{equation*}
$$

Definition 1. We shall say that the function $u(t, x)$ belongs to a set X if
(1) $u(t, x) \in C\left(\bar{I}_{T}, L^{p}\left(B_{R}\right)\right)$,
(2) for every $t \in \bar{I}_{T}$ the inequality $\|u(t, x)\| \leq R+T M$ holds almost everywhere in B_{R};
(3) for every $t^{\prime}, t^{\prime \prime} \in \bar{I}_{T}$ the estimate

$$
\left\|u\left(t^{\prime}, x\right)-u\left(t^{\prime \prime}, x\right)\right\| \leq M\left|t^{\prime}-t^{\prime \prime}\right|
$$

holds almost everywhere in B_{R}.
Lemma 1. The mapping F takes the set X to itself.
Proof. The proof of this Lemma is straightforward. It is only not trivial to show that $t \mapsto f(t, u(t, x))$ is a strongly measurable mapping of I_{T} to $L^{p}\left(B_{R}\right)$.

To prove this we construct a sequence of step functions that converges in $L^{p}\left(B_{R}\right)$ to $f(t, u(t, x))$ for almost all t.

Since the function f is continuous we can approximate it with a following sequence:
$\left.f_{n}(t, x)=\sum_{j=1-n}^{n} a_{j n}(x) \chi_{\left[\frac{j-1}{n} T, \frac{j}{n} T\right.}\right]^{(t),} \sup _{t \in \bar{I}_{T}}\left\|f_{n}(t, \cdot)-f(t, \cdot)\right\|_{C\left(\bar{B}_{R+T M}\right)} \rightarrow 0$.
In this formula χ stands for the set indicator function, $a_{j n} \in C\left(\bar{B}_{R+T M}\right)$.
Since the function $u(t, x) \in C\left(\bar{I}_{T}, L^{p}\left(B_{R}\right)\right)$ there exists a sequence

$$
\left.u_{k}(t, x)=\sum_{i=1-k}^{k} u_{i k}(x) \chi_{\left[\frac{i-1}{k} T, \frac{i}{k} T\right.}\right](t)
$$

such that

$$
u_{i k}(x) \in L^{p}\left(B_{R}\right), \quad \sup _{t \in \bar{I}_{T}}\left\|u_{k}(t, \cdot)-u(t, \cdot)\right\|_{L^{p}\left(B_{R}\right)} \rightarrow 0
$$

This implies the convergence in measure. For every $t \in \bar{I}_{T}$ and for every $\varepsilon, \sigma>0$ there is a number N such that

$$
\mu\left\{x \in B_{R} \mid\left\|u_{k}(t, x)-u(t, x)\right\|>\sigma\right\}<\varepsilon, \quad k>N .
$$

By Proposition 2, for every $t \in \bar{I}_{T}$ we have $a_{j n}\left(u_{k}(t, x)\right) \rightarrow a_{j n}(u(t, x))$ in measure as $k \rightarrow \infty$ and $a_{j n}(u(t, x))$ is measurable in x [2]. Thus by Proposition 1 it follows that for every $t \in \bar{I}_{T}$ we obtain

$$
\left\|a_{j n}\left(u_{k}(t, x)\right)-a_{j n}(u(t, x))\right\|_{L^{p}\left(B_{R}\right)} \rightarrow 0
$$

as $k \rightarrow \infty$.
By the same argument for every $t \in \bar{I}_{T}$ we get

$$
\left\|f_{n}\left(t, u_{k}(t, x)\right)-f(t, u(t, x))\right\|_{L^{p}\left(B_{R}\right)} \rightarrow 0, \quad n, k \rightarrow \infty .
$$

Lemma is proved.
Now let us endow the space X with a partial order \preceq. We shall say that $u(t, x)=\left(u^{1}, \ldots, u^{m}\right)(t, x) \in X$ and $v(t, x)=\left(v^{1}, \ldots, v^{m}\right)(t, x) \in X$ satisfy the relation $u \preceq v$ iff for every $t \in \bar{I}_{T}$ the inequality $u^{k}(t, x) \leq v^{k}(t, x), \quad k=$ $1, \ldots, m$ holds almost everywhere in B_{R}.

Lemma 2. A set $E=\{u \in X \mid u \preceq F(u)\}$ possesses a maximal element:

$$
w=\max E .
$$

Observe that by Lemma 1 the space E is non void: $-(R+T M, \ldots, R+$ $T M) \in E$.

Proof of Lemma 2. The assertion of the Lemma is surely based on the Zorn Lemma. So it is sufficient to prove that any chain $C \subseteq E$ has an upper bound.

The space $L^{p}\left(B_{R}\right)$ is separable and the interval \bar{I}_{T} is compact. So the space $C\left(\bar{I}_{T}, L^{p}\left(B_{R}\right)\right)$ is separable [1].

Since the set C belongs to $C\left(\bar{I}_{T}, L^{p}\left(B_{R}\right)\right)$, it is also separable. This implies that there is a countable set $Q \subseteq C$ such that for any element $p \in C$ there exists a sequence $\left\{p_{n}\right\}_{n \in \mathbb{N}} \subseteq Q$ and $\max _{t \in \overline{I_{T}}}\left\|p_{n}(t, \cdot)-p(t, \cdot)\right\|_{L^{p}\left(B_{R}\right)} \rightarrow 0$ as $n \rightarrow \infty$.

Arrange the set Q as a sequence: $Q=\left\{g_{j}\right\}_{j \in \mathbb{N}}$ and consider a sequence $h_{l}=\max \left\{g_{1}, \ldots, g_{l}\right\}, \quad\left\{h_{l}\right\} \subseteq Q$. Here max stands in regard to the relation \preceq.

We claim that for each $t \in \bar{I}_{T}$ this sequence converges almost everywhere to a function h and this function is the desired upper bound of C.

Since for all $t \in \bar{I}_{T}$ and for almost all $x \in B_{R}$ the inequalities

$$
\left\|h_{l}(t, x)\right\| \leq R+T M, \quad h_{l}^{n}(t, x) \leq h_{l+1}^{n}(t, x), \quad n=1, \ldots, m
$$

fulfill for all $l \in \mathbb{N}$, then for every $t \in \bar{I}_{T}$ the sequence h_{l} converges to a function h almost everywhere in $x \in B_{R}$. And for every $t, t^{\prime}, t^{\prime \prime} \in \bar{I}_{T}$ and almost everywhere in B_{R} we also get

$$
\begin{equation*}
\|h(t, x)\| \leq R+T M, \quad\left\|h\left(t^{\prime}, x\right)-h\left(t^{\prime \prime}, x\right)\right\| \leq M\left|t^{\prime}-t^{\prime \prime}\right| . \tag{2.2}
\end{equation*}
$$

By the Dominated convergence theorem for every $t \in \bar{I}_{T}$ the function $h(t, x) \in L^{\infty}\left(B_{R}\right)$ and $h_{l}(t, \cdot) \rightarrow h(t, \cdot)$ in $L^{p}\left(B_{R}\right)$.

Since the functions $h_{l}(t, x)$ satisfy item (3) of Definition 1 we write

$$
\left\|h_{l}\left(t^{\prime}, \cdot\right)-h_{l}\left(t^{\prime \prime}, \cdot\right)\right\|_{L^{p}\left(B_{R}\right)} \leq M\left(\mu\left(B_{R}\right)\right)^{1 / p}\left|t^{\prime}-t^{\prime \prime}\right|
$$

Thus the sequence $\left\{h_{l}\right\} \subset C\left(\bar{I}_{T}, L^{p}\left(B_{R}\right)\right)$ is uniformly continuous in t and it converges to h in $C\left(\bar{I}_{T}, L^{p}\left(B_{R}\right)\right)$ [4]. Particularly we have $h \in C\left(\bar{I}_{T}, L^{p}\left(B_{R}\right)\right)$ and from formulas (2.2) it follows that $h \in X$.

Owing to the continuity of the function f for every $t \in \bar{I}_{T}$ we obtain

$$
f\left(t, h_{l}(t, x)\right) \rightarrow f(t, h(t, x))
$$

almost everywhere in B_{R}.
By the Dominated convergence theorem we have

$$
\left\|f\left(t, h_{l}(t, x)\right) \rightarrow f(t, h(t, x))\right\|_{L^{p}\left(B_{R}\right)} \rightarrow 0, \quad t \in \bar{I}_{T}
$$

Now we apply the Dominated convergence theorem again, but this time we use its Bochner integral version :

$$
\left\|\int_{0}^{t} f\left(s, h_{l}(s, x)\right) d s-\int_{0}^{t} f(s, h(s, x)) d s\right\|_{L^{p}\left(B_{R}\right)} \rightarrow 0
$$

From this formula it follows that there exists a subsequence $\left\{h_{l_{i}}\right\}$ such that

$$
\int_{0}^{t} f\left(s, h_{l_{i}}(s, x)\right) d s \rightarrow \int_{0}^{t} f(s, h(s, x)) d s
$$

for almost all $x \in B_{R}$. This states that $h \in E$.
Obviously the function h is an upper bound for Q. Check that h is an upper bound for C.

Assume the converse: there exists an element $b \in C$ such that the relation $b \preceq h$ does not hold. This implies that for some $t^{\prime} \in \bar{I}_{T}$ and for some index k a set

$$
D^{\prime}=\left\{x \in B_{R} \mid b^{k}\left(t^{\prime}, x\right)-h^{k}\left(t^{\prime}, x\right)>0\right\}
$$

has non zero measure: $\mu\left(D^{\prime}\right)>0$.
Actually there exists a set $D \subseteq D^{\prime}, \quad \mu(D)>0$ such that for some constant $c>0$ one has $b^{k}\left(t^{\prime}, x\right)-h^{k}\left(t^{\prime}, x\right) \geq c, \quad x \in D$. Indeed, if it is not true then we can take a sequence

$$
\left\{c_{l}\right\}_{l \in \mathbb{N}}, \quad c_{l}>0, \quad c_{l} \rightarrow 0
$$

and consider sets $D_{l}=\left\{x \in D^{\prime} \mid b^{k}\left(t^{\prime}, x\right)-h^{k}\left(t^{\prime}, x\right) \geq c_{l}\right\}$. By the assumption for all l we have $\mu\left(D_{l}\right)=0$ but on the other hand $D^{\prime}=\bigcup_{l} D_{l}$ and $\mu\left(D^{\prime}\right) \leq \sum_{l} \mu\left(D_{l}\right)=0$.

Take a sequence $\left\{b_{j}\right\}_{j \in \mathbb{N}} \subseteq Q$ such that $b_{j} \rightarrow b$ in $C\left(\bar{I}_{T}, L^{p}\left(B_{R}\right)\right)$. We obtain

$$
\begin{equation*}
c+h^{k}\left(t^{\prime}, x\right)-b_{j}^{k}\left(t^{\prime}, x\right) \leq b^{k}\left(t^{\prime}, x\right)-b_{j}^{k}\left(t^{\prime}, x\right) \tag{2.3}
\end{equation*}
$$

almost everywhere in D. It is obvious $h^{k}\left(t^{\prime}, x\right)-b_{j}^{k}\left(t^{\prime}, x\right) \geq 0$ almost everywhere in B_{R} and from formula (2.3) we get

$$
\begin{equation*}
b^{k}\left(t^{\prime}, x\right)-b_{j}^{k}\left(t^{\prime}, x\right) \geq c \tag{2.4}
\end{equation*}
$$

almost everywhere in D.
The L^{p}-convergence implies the convergence in measure [2] thus for every $q, \sigma>0$ there is an index J such that if $j>J$ then

$$
\mu\left(\left\{x \in B_{R}| | b^{k}\left(t^{\prime}, x\right)-b_{j}^{k}\left(t^{\prime}, x\right) \mid \geq q\right\}\right)<\sigma .
$$

Putting in this formula $q=c$ and $\sigma=\mu(D) / 2$ we obtain a contradiction with inequality (2.4).

The Lemma is proved.
Now we are ready to prove the Theorem. By Lemma 1 and inequality (1.1) it follows that $F(E) \subseteq E$. Particularly $F(w) \in E$, where $w=\max E$ is a maximal element given by Lemma 2 . Consequently the relation $w \preceq F(w)$ implies that $w=F(w)$.

Now the assertion of Theorem 2 directly follows from the formula

$$
w(t, x)=x+\int_{0}^{t} f(s, w(s, x)) d s
$$

if only we check that

$$
f(t, w(t, x)) \in C\left(\bar{I}_{T}, L^{p}\left(B_{R}\right)\right) .
$$

Take a sequence $t_{k} \rightarrow t$. Then $w\left(t_{k}, x\right) \rightarrow w(t, x)$ in $L^{p}\left(B_{R}\right)$ and in measure. By Propositions 2, 1

$$
f\left(t_{k}, w\left(t_{k}, x\right)\right) \rightarrow f(t, w(t, x))
$$

in $L^{p}\left(B_{R}\right)$.
Theorem 2 is proved.

References

[1] R. Engelking General Topology. Warszawa, 1977.
[2] G. B. Folland Real Analysis modern Techniques and Their Applications. John Willey and Sons, Inc. New York, 1999.
[3] Ph. Hartman Ordinary Differential Equations Jhon Wiley New York 1964.
[4] L. Schwartz Analyse mathématique, Hermann, 1967.
E-mail address: ozubel@yandex.ru
Current address: 2-nd Krestovskii Pereulok 12-179, 129110, Moscow, Russia

[^0]: 2000 Mathematics Subject Classification. 34A12.
 Key words and phrases. Peano existence theorem, Non-Lipschitz nonlinearity.
 Partially supported by grants RFBR 08-01-00681, Science Sch.-8784.2010.1.

