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Abstract: Solvability conditions for nonhomogeneous elliptic palriifferential
equations involving Schrodinger type operators withorgdRolm property were
derived in our preceding works [10], [11], [12]. We reforratd these relations
in terms of solutions of corresponding homogeneous pradlbalonging to the
appropriate functional spaces.
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1. Introduction
The first problem considered in the note is

—Au+V(z)u —au = f(x), x € R?, (1.1)
a > 0 is a constant and the corresponding homogeneous probléimewil
—Aw + V(z)w — aw = 0, (1.2)

whereV(x) is shallow and short-range and satisfies the conditionsogoak to
those used in works [10], [11], [12].
Assumption 1. The potential functiod’ (z) : R® — R satisfies the estimate
C
Viz)| € ——==—=
V(@) < e

with somes > 0 andx = (1, 72, z3) € R? a.e. such that
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Here C' denotes a finite positive constant ang s given on p.98 of [6] is the
constant in the Hardy-Littlewood-Sobolev inequality

) 3,53
2 dady| < c L2(R?).
| / : |x_y‘2 wdy| < sl il gos i€ LHR)

Here and further down the norm of a functigne LP(]Rd) 1 <p< oo, d e Nis
denoted a§ f1 | z»ra). We will be using(fi(z), f2(x)) r2re) = fRd f1(x) fo(z)de,
with a slight abuse of notations when the functions involvetthe inner product are
not square integrable, like for instaneéx) involved in relation (1.5). The sphere
of radiusr in the space ofl dimensions centered at the origin will be denoted by
S?. Due to the decay of the potential function at infinity theesgigl spectrum of
the Schrodinger operatefrA + V(z) — a on L*(R?) involved in the left side of
equation (1.1) fills the semi-axjs-a, ) (see e.g. [4]) such that there is no finite
dimensional isolated kernel and the Fredholm alternakieertem fails to work for
problem (1.1). Under our Assumption 1 the Schrodinger ajpeiis self-adjoint and
unitarily equivalent to- A — a on L?(R?) via the wave operators (see [1], [5], [8],
[10]) and its functions of the continuous spectrum satigfyi

(_A + V(l‘))(pk(l‘) = kQ@k(x)v ke Rgv (13)

the Lippmann-Schwinger equation for the perturbed planewésee e.g. [7] p.98)

etk 1 6i\l<:||mfy|
Vir)(y)dy

or() =

Njw

(27) AT Jra [ =y

and the orthogonality relations
(o(@), 0g(2))L2ms) = 6(k — q), kg €R®

form the complete system ih?(R?). Similarly to [10] for the right side of (1.1)
we have the following.

Assumption 2. The functionf(z) € L?(R?) and|z|f(z) € L*(R?).
Let us introduce the functional space
W2 2(R?) = {w(z) : R®* = C | w, Vw, Aw € L®(R?)} (1.4)

used in establishing solvability conditions for the Lapdacproblem with convec-
tion terms in [12]. Our first proposition will be as follows.



Theorem 3.Let Assumptions 1 and 2 hold. Then problem (1.1) admits aueniq
solutionu(x) € H*(R?) if and only if

(f (), w(z))2@s) = 0 (1.5)

for anyw(z) € W2 ~(R3) satisfying the homogeneous equation (1.2), where the
spacelV? *<(IR?3) is defined in (1.4).

The second equation studied in the work is given by
—Ayu+ V(z)u — Ayu+ U(y)u —au = F(x,y), =,y € R?, (1.6)
wherea is a positive constant and the corresponding homogeneobgepn is
A0+ V(x)0— A0+ U(y)d — ab = 0. (1.7)

Note that we do not consider the caseiof 0 here since the orthogonality condi-
tions are not required whenvanishes for problem (1.6) according to Theorem 3 of
[11]. The Laplace operators, andA, are inx = (x1, x2, x3) andy = (y1, Y2, y3)
respectively, the resulting operatdr = A, + A, and potentiald/(z) and U (y)

are shallow and decaying at infinity with the same rate asrbef®hus, problem
(1.6) involves the operator without Fredholm property sléft side. Analogously
to [11] for the right side of (1.6) we assume the following.

Assumption 4. The functionF'(z,y) € L*(R®) and |z|F(z,y), |y|F(z,y) €
LY(RS).

For the studies of the problem above we will be using the fonel space
W2 (RS .= {A(z,y) : R® = C |0, VO, A0, Afc LR},  (1.8)

whereV = V, + V, and the gradient¥, andV, are acting inz andy in R?
variables respectively. Our second statement is as follows

Theorem 5. Let the potential functiong (x) andU (y) satisfy Assumption 1 and
Assumption 4 holds. Then problem (1.6) has a unique solutiony) € H*(R") if
and only if

(F(2,y),0(z,y))r2@msy = 0 (1.9)

foranyd(z,y) € W2 (R solving the homogeneous problem (1.7) with the space
W2 > (RR%) defined in (1.8).

Finally, we aim to establish solvability conditions for teguation

—Agu— Ayu+U(y)u —au = ¢(z,y), v €R", y € R? (1.10)



with ¢ > 0 and the related homogeneous problem is given by

-AQ - AQ+U(y)Q —a@ =0. (1.11)

Whena > 0 the dimensiom € N is assumed to be arbitrary but whewanishes
we consider only: = 1 since according to Theorem 6 of [11] in higher dimensions
in this case the orthogonality conditions are not necessérg Laplace operators
A, andA, are inz = (x1, 2, ...,x,) andy = (y1, Y2, y3) variables respectively,
such thatA = A, + A, and the spatial behavior of the potential functidfy) is
analogous to the one considered in the two previous modedacéithe essential
spectrum of the operaterA, — A, + U(y) — a on L*(R™"?) consists of the un-
bounded interval—a, o0) and the Fredholm alternative theorem fails to work for
problem (1.10). We formulate the conditions on the righesid equation (1.10)
analogically to the ones stated in [11].

Assumption 6. We haveg(z,y) € L*(R"") and |z|o(z,y), |y|o(z,y) €
Ll(Rn+3).

Let us introduce the functional space which we will use forivdeg the solv-
ability relations for our problem.

W2 (R = {Q(z,y) : R" = C | Q, VQ, AQ, A,Q € L™ (R")}
(1.12)
with V = V,+V, and the operators, andV, act in variables: € R" andy € R?
respectively. Our final proposition is as follows.

Theorem 7.Let the potential function§(y) satisfy Assumption 1 and Assump-
tion 6 holds. Then problem (1.10) possesses a unique solutio y) € H*(R""3)
if and only if
(0(z,y), Q(,y)) L2mn+sy = 0 (1.13)

for an arbitrary Q(z, y) € W2 > (R"+3) solving the homogeneous problem (1.11),
where the spacl’? >°(R"*3) is defined in (1.12).

Note that the solvability conditions for problem (1.1) wel#ained in [10] and
for equations (1.6) and (1.10) in [11], such that in both vedHey were stated as or-
thogonality conditions to the appropriate functions of tbatinuous spectra of the
self-adjoint operators. In the present article the soligbielations for these equa-
tions are derived as orthogonality conditions to the sohgiof the corresponding
homogeneous problems belonging to the appropriate furaltgpaces. The simi-
larity with the usual Fredholm solvability conditions heseonly formal since the
operators involved here do not satisfy the Fredholm prgpant their ranges are
not closed.



The studies of operators without Fredholm property areialuor instance for
proving the existence in the appropriate functional spateasationary and travel-
ling wave solutions of reaction-diffusion equations (seg €2], [3], [9], [12]).

2. Proof of the solvability conditions

Let us introduce the sequence of infinitely smooth cut-afictions in the space
of an arbitrary dimensiod € N, {¢,}2° ,, which are dependent only upon the radial
variable such thaf, = 1 inside the ballz| < r,, it vanishes identically when
|z| > R,, and is monotonically decreasing inside the spherical layet |z| < R,,.
The sequences of radii, R, tend to infinity as: — oo and are chosen such thiat
increases at a higher rate. This enables us to B8 || .2(re), [|Aallz2®ey — 0
asn — oo. The cut-off functions will be needed to perform the limgiarguments
below since the solutions of the homogeneous Schrodirgeatmns discussed are
bounded but may not be decaying at infinity, like for instatiee perturbed plane
wavesyy (). The quadratic forms studied below will be finite due to thet that

w(xr) € W% > and the integration takes place over the compact suppgyt dfet
us procede with proving the solvability relations for thestndimensional problem.

Proof of Theorem 3First we assume that equation (1.1) admits a unique solution
u(x) € H*(R?). Letw(x) € W?* *(R?) be a solution of the homogeneous problem
(1.2) with the spac&/’* < (R?) defined in (1.4). Then we easily obtain

(—Au+ V(z)u — au, w&,) r2msy = (f, w&) 12(w3)- (2.14)

It can be trivially proven that the right side of (2.14) coryes to( f, w) ;2(rs), which
is finite (see the Proof of Theorem 3 in [12]). Integration laytp using thatv(x)
solves the corresponding homogeneous problem yieldshedett side of (2.14)
equals to

—(u, U}Agn)Lz(RS) — Q(U, vw.vgn)LQ(RS).
Here and further down the dot stands for the scalar produst@i/ectors in finite
dimensions. We easily estimate by means of the Schwarz atiegu

|(u, WAL p2rs)| < (wll ooy [[ull L2gs) | Anll L2 @3y — 0,

[(u, Vw. V&) r2@s)| < [|Vwl|eoms) l|ull2@s) [ Vnll L2gs) — 0

asn — oo, which yields relation (1.5).

On the other hand, let orthogonality condition (1.5) of thedrem hold and
a > 0 since whena vanishes the argument will be analogous. Let us consider
the functions of the continuous spectrym(z), k € Sf’/a a.e. By means of (1.3)
these functions satisfy the homogeneous Schrodingetieqy.2) and they belong
to the (1.4) space, which was proven in Lemma A3 of [12]. Theshave the
orthogonality condition

(f(z), or(T))r2@ms) =0, k € Sf’/a a.e.,



which implies that equation (1.1) admits a unique solutigm) € H?*(R?) by
means of Lemma 4 of [12] (see also Theorem 1 of [10]). [ |

Then we turn our attention to the non Fredholm situationxrdginensions.

Proof of Theorem 5Let us first suppose that equation (1.6) possesses a unique
solutionu(z,y) € H*(R%) andd(z,y) € W* *(R°) solves the homogeneous prob-
lem (1.7), where the spad&? >°(RR°) is defined in (1.8). Clearly we have

(—Azu+V(z)u — Ayu+ U(y)u — au, 08,) r2mey = (F(x,y), 06,) r2rs). (2.15)

Let us integrate by parts in the left side of (2.15) using that y) satisfies the
corresponding homogeneous equation. This yields

—(U, HAfn)Lz(Ra) — 2(U, V@.V{n)Lz(Ra).

Both of these terms tend to zeroras— oo, which can be easily shown analogously
to the argument in three dimensions performed in the protifeprevious theorem.
By means of Assumption 4 and Fact 2 of [11] we hdVer,y) € L'(R®). Then
for the right side of (2.15) we estimate

|(F(2,9), 06.) 2y — (F(2,9), 0) 2z < 18] o) / _ |Plz,ldady =0
asn — oo, which yields orthogonality relation (1.9).

On the other hand, assume that orthogonality conditior) (lo8ls, where is
an arbitrary solution of equation (1.7) W2 *(RR%). As discussed in the Proof of
Theorem 3 of [11], under the given conditions the Schroeiraperator involved in
the left side of (1.6) is unitarily equivalent teA, — A, —a on L*(R®) via the wave
operators. The functions of the continuous spectiyty)n,(y), k,q € R? form
the complete system in*(R%), wheren,(y) are the functions of the continuous
spectrum of the operaterA, + U(y), such that

(A, + UW)ng(y) = i*ng(y), q € R, (2.16)

They satisfy the orthogonality relations and the Lippm&ufwinger equation sim-
ilarly to i (). It was shown in Lemma A3 of [12] that,(x), n,(y) € W* *(R?).
Then functions given by

er(@)ng(y), (k,q) € Siz a.e. (2.17)
will belong to L>*(R%). When differentiating we easily arrive at
Vior(2)ng(y) = ng (1) Vaipr (@) + 0i(2)Vya(y) € L= (R?),

() Aapr(x) € L¥(R®), r(x)Ayn,(y) € L=(R®),



such that functions (2.17) belong 6% > (R®). By means of (1.3) and (2.16) they
satisfy equation (1.7). Therefore, we have the orthoggnadiation

(F(,9), eu(x)ng(y)) 2ws) = 0, (k. q) € S5 a.e.

and via Theorem 3 of [11] equation (1.6) admits a unique MUk (x,y) €
L?*(R%). From problem (1.6) under our assumptions on the scalampal® in-
volved in it and its right side we deduce thst(z, y) € L*(R®) such thatu(z,y) €
H?(R®) for this unique solution. |

We finish the article with the proof of the result when the freplacian is added
to the Schrodinger operator with a shallow, short-rangemtaal.

Proof of Theorem 7Let us first assume that problem (1.10) possesses a unique
solutionu(z,y) € H*(R*") andQ(z,y) € W? >*(R"*) satisfies the homoge-
neous equation (1.11) with? >°(R"*3) defined in (1.12). Hence

(_Aaru - Ayu + U(y)u — au, an)Lz(R"+3) = (¢7 an)L2(R"+3)-

We integrate by parts in the inner product on the left sidédefitlentity above and
perform the limiting argument with ideas similar to thosedi# the proofs of the
previous two theorems to obtain the orthogonality relafiba3).

In the second part of the proof we assume that condition Jlhb8ls. Ac-
cording to the Proof of Theorem 6 of [11], under the condimtated above
the Schrodinger type operator in the left side of (1.10)ngaxily equivalent to
—A, — A, —aonL?*(R"") by means of the wave operators. First we consider the
case ofa > 0. Sincen,(y) € W2 ~(R?) as discussed above, the functions of the
continuous spectrum of the original Schrodinger operatak? (R"3)

eikx

Wﬁq(y), (k,q) € S72° ace. (2.18)

belong toL>(R""3). Obviously,

ez’kx ikx ikx
14(y) = by (y) + e V() € LR,
amr W) = kG Sgmly) + o ag Vi) € LE R
A ﬂ (y) = —kQﬂ (y) € L®(R"3) ﬂA (y) € L=°(R")
1(271_)% N\y) = (QW)% Ng\Y ) (QW)% yNqg\Y )

such that the functions given by (2.18) belongité > (R"+?). A trivial calculation
using (2.16) yields that they satisfy (1.11). Thus we arate

eikx

(¢(z,y), qu(y))m(wﬁ) =0



with (k,q) € 3%3 a.e. Due to Theorem 6 of [11] problem (1.10) has a unique

solutionu(z,y) € L*(R™"3). From equation (1.10) under our assumptions on its
right side and the potential functidn(y) it can be easily observed that(x,y) €
L*(R™*3). Hence for this unique solution(x, y) € H?*(R""3).

We finish the proof of the theorem with the studies of the casenthe constant
a = 0 and the dimension = 1. For the function of the continuous spectrum with
the vanishing wave vectap (y) € L>=(R*) we haveVny(y) = V,no(y) € L= (RY).
SinceA,no(y) € L®(R*) andA,70(y) vanishes, we arrive aj(y) € W2 ©(RY).
By means of (2.16) it solves equation (1.11). Hence

(¢(x7y)vn0<y))L2(R4) =0

and via Theorem 6 of [11] equation (1.10) with= 0 andn = 1 admits a unique
solutionu(z, y) € L*(R*). Analogously to the case af > 0 discussed above this
unique solution will belong ta(z,y) € H*(R?). u
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