
Shearing of frictional sphere packings

Jean-François Métayer, * Donald J. Suntrup III, †

Charles Radin, ‡ Harry L. Swinney † Matthias Schröter *

January 21, 2010

Submitted to the themed issue on granular and jammed materials.

Abstract

We measure shear stress in packings of glass spheres by pulling a thin metal

plate vertically through a bed of volume fractions φ , which is set (before the plate

is pulled) to be in the range 0.575 to 0.628. The yield stress increases exponen-

tially with φ with a change in slope at φ ≈ 0.594. An analysis of the shear stress

fluctuations provides a measure of the shear modulus divided by shear zone width;

this measure also exhibits distinct regimes above and below φ ≈ 0.594. The yield

stress and the rescaled shear modulus are velocity independent over 4 decades.

1 Introduction

The jamming paradigm proposed by Liu and Nagel1 in 1998 has stimulated an exten-

sive effort to develop a unified picture of jamming/unjamming in particulate soft-matter

systems such as colloids, foams and emulsions. However, most of this numerical2–6 and

experimental7 work has been done for frictionless particles, while the interaction be-

tween granular particles involves friction and, consequently, departures from the jam-

ming paradigm. This is most apparent in the range of volume fractions φ in which
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mechanically stable packings exist. For frictionless spheres the lower limit is φ ≈ 0.64,

while packings of frictional spheres are stable down to φ ≈ 0.55, the so-called random

loose packing8, 9 limit. Numerical studies of jamming in frictional systems10–15 have

been helpful but not definitive, and there is a need for experimental clarification.

In probing experimentally the mechanical properties of granular matter it is ad-

vantageous16 to disentangle the contributions from compression and shear. This is not

possible in penetration tests17–21 where the tip of a rod advancing in a granular sample

will both shear and compress the sample. Coming from the fluid side, one can also try

to determine the onset of jamming from rheological measurements of granular suspen-

sions.22, 23 However, in the absence of perfect density matching between particles and

liquid, shear bands make the results hard to interprete.22 Contributions of shear and

compression could be separated with a triaxial shear tester,24 which would however

complicate the control of the probed volume fraction. Precise data have been obtained

for 2-dimensional collections of photoelastic discs;25, 26 an advantage of the restriction

to two dimensions is that one can additionally obtain local information.27

In this paper we present experimental results showing how 3-dimensional packings

with frictional particles yield when sheared. After describing our experimental setup

we will present results on the yield stress and rescaled shear modulus and the results

will be discussed in the context of jamming paradigm and dilatancy onset.

2 Experiment

Our experimental set-up [Fig. 1] consists of a vertical glass tube (diameter 38.7 mm,

height 300 mm) filled with water and soda-lime glass beads (diameter d = 200±10

µm). The packing fraction φ is controlled using flow pulses21 created by a computer-

controlled gear pump. The granular bed is fluidized during flow pulses of 1 min du-

ration, followed by a 2 min settling time during which the bed completely sediments.

The packing fraction after sedimentation depends on the flow rate during the fluidiza-

tion phase: loose packings are obtained using a small number of pulses of flow rates

on the order of 50 ml/min, while larger packing fractions are obtained by fluidizing the
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Fig. 1 Left: a sketch of the experimental setup. The enlargement shows how the plate
and nylon thread are held in place during fluidization by a rod, which is then withdrawn
during the measurements. Right: cartoon of the sheared zone with the apriori unknown
size L of the sheared region.

granular bed repeatedly with pulses of decreasing flow rates.

To measure the shear force needed to initiate a displacement in the granular bed, a

thin metallic plate (12.8 mm high × 9.8 mm wide × 0.1 mm thick) is pulled vertically

through the bed. Both sides of the plate are covered with glass beads (glued there with

3M Bonding film 583); the resulting total thickness of the plate is 0.6 mm. The plate

is immersed in the bed before fluidization and is connected to a load cell (Honeywell

Sensotec Model 31, range 250 g) by a nylon thread (diameter 150 µm, length 275 mm,

elastic constant 7× 10−4N−1 ). To keep the plate in place during the fluidization, a

nylon thread is attached to the plate bottom and the other end of the thread is attached

to a plastic rod [cf. Fig. 1]. After the sedimentation following the fluidization pulses,

the plastic rod is withdrawn through a metallic cylinder to minimize disturbances to the

granular bed. Then the plate is free to move.

During a measurement, a translation stage driven by a DC-Servo motor pulls the

plate upwards over a distance of 2 mm at a constant velocity of 0.15 mm/min (except

for a set of measurements made to determine the velocity dependence). Before the

measurement the upper edge of the plate is 160 ± 5 mm below the sand surface. The

shear force is measured with the load cell connected to a bridge amplifier (Omega

DMD-465WB); its output voltage is digitized with a 16 bit data acquisition card (NI
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PCI-6036E) at a frequency of 100 Hz. This corresponds to one data point every 1∗10−4

grain diameters. The noise level of this setup corresponds to about 1 mN, as determined

from a measurement done in an empty tube.

3 Results
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Fig. 2 Force needed to pull the plate up at different packing fractions.

Typical force measurements, as a function of the displacement of the plate, are

presented in Fig. 2. For low packing fraction (below 0.59) the force is constant for

the whole displacement. For higher φ , the force reaches a maximum value in the

first 0.5mm before it begins to decrease again. We consider this maximum to be the

yield stress, the force needed to initiate a reorganization of the structure of the bed.

This yield force is measured as the average over a length of aproximately two grain

diameters centered on the position of the maximum. The dependence of this yield

force on packing fraction is shown in the inset of Fig. 3 (open circles).

The forces we measure result not only from the shear at the sidewalls of the plate;
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Fig. 3 Yield shear stress as a function of the volume fraction. The inset shows the
force needed to pull the plate (open circles) and to pull a horizontal rod of the same
dimensions as the upper edge of the plate (filled squares). The pure shear yield compo-
nent shown in the main plot was obtained from the data in the inset by subtracting the
dashed line from the data given by the open circles. (The datum at the highest volume
fraction was taken with a Model 31 load cell with the range 1 kg.) The solid lines are
exponential fits for packing fractions below and above 0.5942; the lines intersect at
φ = 0.5943.
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there is also a compression component due to the upward motion of the top edge of

the plate. To determine the value of this compression component we made measure-

ments using a horizontal cylindrical rod which has the same length as the plate width

(9.8mm) and a diameter the same as the thickness of the plate (0.6mm). Results for dif-

ferent packing fractions are shown in the inset of Fig. 3 (filled square). The yield shear

stress is then obtained by subtracting the compression component (which is obtained

by fitting each couple of successive points by an exponential function) from measure-

ments made with the plate and by dividing the results by its area (125.4mm2) [Fig. 3].

Though the data are noisy, there is a clear change in slope at φ ≈ 0.594.
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Fig. 4 The yield stress is velocity independent. All other measurement presented in
this paper were done at a velocity of 0.0125 grain diameters per second.

Fig. 4 shows that the measured yield stress is independent of the velocity of the

plate, both above and below φ = 0.594. The larger fluctuations at lower velocities and

higher packing fractions are an unexpected result.

The fluctuations in the force measurements shown in Fig. 2 contain information

concerning the shear modulus of the granular medium as a function of the packing
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fraction. Fig. 5 shows on an expanded scale a force measurement as a function of

position for φ = 0.623. Smooth “elastic” increases of the force are followed by rapid

plastic decreases, very similar to stick-slip motion. The frequency of the jumps is

found to be independent of the velocity of the plate. An analysis of the fluctuations,

inspired by work of Cantat and Pitois,28 yields the shear modulus: G = ∆F
∆x ∗

L
A . The

ratio ∆F/∆x is the slope of the elastic increases we observe, as illustrated in Fig. 5, L

is the width of the sheared zone around the plate [Fig. 1] and A the area of the plate. To

calculate the shear modulus we need to know the lengthscale L, but its value has not

been determined. Therefore, we compute the shear modulus per length, g∗ = G
L .
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Fig. 5 Identification of stick-slip events in the yielding regime. The solid black line
is the raw data, and the red dots are the minima and maxima. Consecutive extremas are
separated by at least 5mN, which corresponds to 5 times the noise level.

Knowing the value and the position of each extremum, we compute the slope, the

amplitude, and the duration of elastic loading and the plastic relaxation. The displace-

ment during a plastic jump downward (typically 5× 10−3 grain diameters) is well re-

solved in our measurements, where measurements are made with a typical mesh of

1×10−4 grain diameters.
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The probability distributions for the shear modulus per unit length, g∗, for packing

fractions below the transition at φ = 0.594 are different from the distributions above

the transition, but each is well-defined (cf. Fig. 6). Further, as Fig. 7 illustrates, g∗

behaves differently below and above φ = 0.594, which is the same packing fraction

value obtained for the transition observed in the shear stress. The shear modulus per

unit length, g∗, is found to be velocity-independent for a wide range of forcings, just as

we found for the shear stress.
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Fig. 6 The probability distribution functions for the shear modulus per unit length g∗

for packing fractions φ above and below the transition value, φ = 0.594.

The values of g∗ in Fig. 7 obtained for the two highest packing fraction values are

well below the line given by the nearby data. To determine the origin of this unexpected

behaviour we compute the amplitude of elastic loads [Fig. 8 top] and their length, as a

function of packing fraction [Fig. 8 bottom]. As can be seen, the low values of g∗ for

packing fractions higher than 0.623 arise not because of a decrease of the elastic loads

amplitude but because of an increase of their length.
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Fig. 7 The shear modulus per unit length exhibits a transition at φ = 0.594, as given
by the intersection of the red lines which were fit to the data below and above 0.5937
(not included in fit: the g∗ values obtained for the two highest values of φ ). The error
bars correspond to the standard deviation of g∗ distributions ([Fig. 6]).
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Fig. 8 Top: average force increase during elastic loading, bottom: average length of
the elastic events.
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4 Discussion

Our results are consistent with the previously observed transition at φ ≈ 0.595.21 Both

the transition and dilatancy onset concern the response of the system to shear, the for-

mer in terms of a sharp change in yield stress, and the latter in terms of the sign of

the change of volume fraction due to shear. The interpretation of the two as the same

phenomenon is consistent with previous results.21, 29, 30

In comparing our results with the jamming paradigm we first note a conceptual

ambiguity: what is the equivalent in granular systems of point J in the frictionless

jamming phase diagram? Possible candidates are the random loose packing density

φ = 0.55, the transition value we report here, φ = 0.594, and the random close packing

density φ = 0.64.

For simulations of nonfrictional, soft particles the value φ = 0.64 corresponds to

two phenomena: a) the lower limit in which the system supports a positive yield stress

and b) the only possible density of amorphous packings of undeformed, pressure free

spheres. Denser packings can only be built from compressed spheres and therefore

need to have a finite pressure. This property is independent of friction and therefore

also applicable in our granular system. A recent 2D experiment27 has suggested that

point J might indeed describe frictional systems near random close packing.

However, with friction there exists, for any positive pressure, mechanically stable

states at a continuum of packing fractions below φ = 0.64. The lowest volume fraction

then depends on pressure and friction.9, 13 Its zero pressure limit is the random loose

packing limit, and in recent work it has been repeatedly taken as point J.9, 11, 13

Finally, the onset of dilatancy at φ ≈ 0.594 might also bear some resemblance to

point J. In a closed volume ensemble any shear at higher densities would require strong

deformation of the particles.

One possible way to resolve the ambiguity in the identification of the J point with

the observed transitions would be to use an ensemble-based theory, such as that of Ed-

wards and coworkers,31 to explain the observed behavior of granular matter throughout

the full range 0.55 < φ < 0.74. From such a theory one could compute the response of
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the material to shear, to elucidate the observed behavior at φ = 0.594 and 0.64. This

has not yet been done.

We would also like to note that the yield stress presented in Fig. 3 corresponds to

the jammed-unjammed transition in the base plane of the classical jamming phase dia-

gram,1, 3 at least for a given pressure. And once the length of the shear zone has been

determined independently, the volume fraction dependence of g∗ in Fig. 7 can be com-

pared to the power laws2, 3 found for the shear modulus in simulations of nonfrictional

particles.

The velocity independence of both the yield shear stress and the shear modulus

per length contrast with the previously observed logarithmic velocity dependence in

sheared 2-dimensional photoelastic discs.25, 26 This might be either related to the differ-

ence in dimensionality or to the different values of the Young’s moduli of the materials

used: 70 GPa/m2 for the glass beads and 4 MPa/m2 for the photoelastic discs.

An interesting question open question is the role of pressure in these results. Pre-

vious measurements have shown that, even at a constant depth in the sample as in our

measurements, the pressure depends on volume fraction and preparation.32 Therefore,

future work should include independent measurements of pressure.

In this paper we focused on unjamming properties under shear of 3-dimensional

packings of frictional spheres. We show that both yield shear stress and shear modulus

per length present a transition at packing fraction φ ≈ 0.594. Additionally the shear

stress is shown to be velocity independent in a range of four decades. This velocity

independence was found below and above φ ≈ 0.594. As mentioned, this particular

value of φ could be the dilatancy onset.
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