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Abstract

We study elliptic lower dimensional invariant tori of Hamiltonian systems via parame
terizations. The method is based in solving iteratively the functional equatabstand
for invariance and reducibility. In contrast with classical methods, weal@ssume that
the system is close to integrable nor that is written in action-angle variablegnhy/ee-
quire an approximation of an invariant torus of fixed vector of basiaeegies and a basis
along the torus that approximately reduces the normal variational equtgioasstant co-
efficients. We want to highlight that this approach presents many adesntagnpared
with methods which are built in terms of canonical transformations, e.g., iupesisim-
pler and more constructive proofs that lead to more efficient numericatitdms for the
computation of these objects. Such numerical algorithms are suitable to hecuoaprder
to perform computer assisted proofs.
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1 Introduction

Persistence of quasi-periodic solutions has been for long & subject of remarkable impor-
tance in dynamical systems. Roughly speaking, KAM theory meth after A.N. Kolmogo-
rov [38], V.I. Arnold [1] and J.K. Moser [46]— deals with thdfect of small perturbations on
dynamical systems (typically Hamiltonian) which admitamant tori carrying quasi-periodic
motion. Nowadays, KAM theory is a vast area of research thailves a large collection of
methods and applications to a wide set of contexts: Hamdtosystems, reversible systems,
volume-preserving systems, symplectic maps, PDEs anddsiftjust to mention a few. We
refer to [2, 6, 12, 55] for different surveys or tutorials tlcallect many aspects of the theory
and cover a large amount of bibliography.

In this work we are concerned with lower dimensional (ispicd tori of Hamiltonian sys-
tems. Thus, let us consider a real analytic Hamiltonianesysivith n degrees of freedom
having an invariant torus of dimension< n, carrying quasi-periodic dynamics with vector
of basic frequencies € R”". The variational equations around such a torus correspmiad t
2n-dimensional linear quasi-periodic system with vectorrefjienciesv. For this linear sys-
tem we have2r trivial directions (i.e., zero eigenvalues of the reduceatrin of the system
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restricted to these directions) associated to the tangesttidns of the torus and the symplec-
tic conjugate ones (these trivial directions are usualfgrred as the central directions of the
torus). If the remainin@(n — r) directions (normal directions of the torus) are hyperhalie
say that the torus is hyperbolic or whiskered. Hyperbolit &oe very robust under perturba-
tions [15, 20, 23, 28, 41]. For example, if we consider a pestion of the system depending
analytically on external parameters, it can be establisheder suitable conditions, the exis-
tence of an analytic (with respect to these parameters)yfarhinyperbolic tori having the same
basic frequencies. In the above setting, if the torus pessesome elliptic (oscillatory) normal
directions we say that it is elliptic or partially elliptitn this case the situation is completely dif-
ferent, since we have to take into account combinationsdmtwasic and normal frequencies in
the small divisors that appear in the construction of thesdthe corresponding non-resonance
conditions are usually referred as Melnikov conditions j8]). As a consequence, families of
elliptic or partially elliptic invariant tori with fixed bas frequenciess cannot be continuous in
general, but they turn out to be Cantorian with respect tomaters. First rigorous proofs of
existence of elliptic tori were given in [49] for=n — 1 and in [17, 40] forr < n. We refer
also to [5, 6, 24, 31, 35, 36, 52, 54, 62, 64, 66] as interestorgributions covering different
points of view.

The main source of difficulty in presence of elliptic normakdtions is the so-called lack of
parameters problem [6, 49, 63]. Basically, since we have asilyany internal parameters (“ac-
tions”) as the number of basic frequencies of the torus, waaicontrol simultaneously the
normal ones, so we cannot prevent them from “falling int@rnesice”. This is equivalent to say
that, for a given Hamiltonian system, we cannot constructrastwith a fixed set of basic and
normal frequencies because there are not enough paramiterprevious fact leads to the ex-
clusion of a small set of these internal parameters in omlavoid resonances involving normal
frequencies. To control the measure of the set of excludesthpeters, it is necessary to assume
that the normal frequencies “move” as a function of the maéparameters. Another possibility
to overcome this problem is to apply the so-called Broer-¢tud-Takens theory (see [7]). This
consists in adding as many (external) parameters as neededttol simultaneously the values
of both basic and normal frequencies (this process is eders unfolding). With this setting, we
can prove that —under small perturbations— there existiamatori for a nearly full-measure
Cantor set of parameters. TG&-Whitney smoothness of this construction is also estaldishe
Finally, in order to ensure the existence of invariant tori the original system (free of pa-
rameters), one can apply the so-called Herman’'s methocethdexternal parameters can be
eliminated —under very weak non-degeneracy conditions-mégns of an appropriate techni-
cal result concerning Diophantine approximation on subfolls (see [6, 59, 61, 62, 63, 64]).

Another issue linked to persistence of lower dimensionadriiant tori refers to reducibility
of the normal variational equations (at least in the eltigtirections) which is usually asked
in order to simplify the study of the linearized equationgoined. In order to achieve this
reducibility, it is typical to consider second order Melownkconditions [43, 44] to control the
small divisors of the cohomological equations appearirténconstruction of the reduced ma-
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trix. Other approaches for studying persistence of invéutiari in the elliptic context, without
second order Melnikov conditions, are discussed in Remaxk 3.

Classical methods for studying persistence of lower dinograditori are based on canonical
transformations performed on the Hamiltonian functione3érmethods typically deal with a
perturbative setting in such a way that the problem is wrigte a perturbation of an “integrable”
Hamiltonian (in the sense that it has a continuous familyeolucible invariant tori), and take
advantage of the existence of action-angle-like coordmtr the unperturbed Hamiltonian sys-
tem. These coordinates play an important role in solvingtdf®mological equations involved
in the iterative KAM process, and they also allow us to cdrttie isotropi¢ character of the
tori thus simplifying a lot of details. However, classicajpaoaches present some shortcomings,
mainly due to the fact that they only allow us to face perttiviegproblems. For example:

e In many practical applications (design of space missiods 2], study of models in
Celestial Mechanics [11], Molecular Dynamics [53, 65] ordpt@-Beam Physics [45],
just to mention a few) we have to consider non-perturbaggéesns. For such systems we
can obtain approximate invariant tori by means of numegoafputations or asymptotic
expansions, butin general we cannot apply classical ssgufirove the existence of these
objects. Furthermore, in some cases it is possible to iiyeantiintegrable approximation
of a given system but the remaining part cannot be considaseah arbitrarily small
perturbation.

e Even if we are studying a concrete perturbative problem,etiones it is very compli-
cated to establish action-angle variables for the ungeetiHamiltonian. In some cases
action-angle variables are not explicit, become singutanitwoduce problems of regu-
larity (for example, when we approach to a separatrix). éufh in many contexts this
shortcoming has been solved by means of several technisge$df example [16, 27, 51]
for a construction in the case of an integrable HamiltoniafB8p37] for a construction
around a particular object), it introduces more technidétdlties in the problem.

e From the computational viewpoint, methods based on tramsfions are sometimes in-
efficient and quite expensive. This is a serious difficultpider to implement numerical
methods or computer assisted proofs based on them.

An alternative to the classical approach is the use of dedg@arameterization methods,
which consist in performing an iterative scheme to solveitiariance equation of the torus.
Instead of performing canonical transformations, thiseseé is carried out by adding a small
function to the previous approximation of the torus. Thisdiion is obtained by solving (ap-
proximately) the linearized equation around the appros@thdaorus (Newton method). Such
approach is suitable for studying existence of invarianitdbHamiltonian systems without us-
ing neither action-angle variables nor a perturbativarsgtdVe point out that the geometry of

LIf we pull-back an isotropic torus by means of a symplectgsh@m, the isotropic character is preserved.
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the problem plays an important role in the study of these ojug Such geometric approach
—also referred as KAM theory without action-angle variablewas introduced in [13] for La-
grangian tori and extended in [20] to hyperbolic lower disienal tori, following long-time
developed ideas (relevant work can be found in [11, 31, 4,/58860, 67]). Roughly speaking,
the insight of these methods is summarized in the followingte from [31]:“...near approxi-
mate solutions of certain equations satisfying certain-degeneracy assumptions, we can find
true solutions defined on a large set”

The aim of this paper is to adapt parameterization methogsuty normally elliptic tori
without using action-angle variables and in a non-pertiveaetting. Concretely, we assume
that we have a 1-parameter family of Hamiltonian systemsMaich we know a 1-parameter
family of approximately invariant lower dimensional etiptori —all of them with the same
vector of basic frequencies— and also approximations o¥¢laéors of normal frequencies and
the corresponding normal directions associated to thespiéncies (i.e., a basis of the nor-
mal directions along each torus that approximately redticeshormal variational equations
to constant coefficients). Then, we show that under suitajg@theses of non-resonance and
non-degeneracy, for a Cantorian subset of parameters —g#f fafative Lebesgue measure—
there exists a true elliptic torus close to the approximaie diaving the same vector of basic
frequencies and slightly modified vector of normal freques.c The scheme to deal with re-
ducibility of the normal directions of these tori is the maiontribution of this paper, and it
consists in performing suitable (small) corrections in tioemal directions at each step of the
iterative procedure.

This setting has been selected in order to simplify someiieahaspects of the result —both
in the assumptions and in the proof— thus highlighting thengetric construction of the paper.
We point out that all the basic ideas linked to parametadmanethods, without using action-
angle variables, for reducible lower-dimensional tori gresent in our approach. In Section 3
we discuss several extensions and generalizations thaedackled with the method presented
in this paper.

Let us remark that parameterization methods, as presebhte aare computationally ori-
ented in the sense that they can be implemented numerittallypbtaining very efficient algo-
rithms for the computation of invariant tori. For exampfaye approximate a torus by using
Fourier modes, such algorithms allow us to compute the bhijige a cost of orde® (N log N)
in time andO(/N) in memory (see Remark 3.11). This is another advantage ofpgroach in
contrast with classical methods based on transformatieoryh The reader interested in such
algorithms is referred to [14] for the implementation of ideas in [13, 20] for Lagrangian
and whiskered tori (see also [9] for the case of lattices anst maps) and to [32] for the im-
plementation of the ideas of [34] for reducible elliptic amgperbolic tori for quasi-periodic
skew-product maps (in this case, which corresponds to gqueagidic perturbations of equilib-
rium points for flows, the geometric part discussed in theg@népaper is not required).

Finally, we observe that in presence of hyperbolic direitione can approach the prob-
lem by combining techniques in [20] (for studying hyperbadlirections) together with those
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introduced here (for studying elliptic directions). Inde¢he methodology presented in this
work can be adapted to deal with invariant tori with redugiby/perbolic directions, but this

assumption is quite restrictive (see [25]) in the hypexbobntext (reducibility is not required

in [20]).

The paper is organized as follows. In Section 2 we provideesaotations, definitions
and background of the problem. In Section 3 we state the nesultrof this paper and we
discuss several extensions and generalizations of theoohgitesented. A motivating sketch
of the construction performed in the proof of this resultisgeg in Section 4, together with a
detailed description of some geometric properties of &dlipwer dimensional invariant tori
of Hamiltonian systems. Next, in Section 5 we perform on@ stethe iterative method to
correct both an approximation of an elliptic invariant ®rand a basis along this torus that
approximately reduces the normal variational equatiometstant coefficients. The new errors
in invariance and reducibility are quadratic in terms of finevious ones. The main result is
proved in Section 6.

2 General background

In this section we introduce some notation and, in order tp tie reader, we recall the basic
terminology and concepts related to the problem. Thusi, sétiéing the notation used along the
paper in Section 2.1, we provide the basic definitions reggidwer dimensional invariant tori
of Hamiltonian systems (Section 2.2) and their normal betig®ection 2.3).

2.1 Basic notations

Given a real or complex functiolfi of several variables, we denofef the Jacobian matrix,
grad f = Df ' the gradient vector anlskss f = D? f the Hessian matrix, respectively.

For any complex number € C we denotez* € C its complex conjugate number and
Re(z), Im(z) the real and imaginary parts of respectively. We extend these notations to
complex vectors and matrices.

Given a complex vector € C' we denote bydiag (v) € M,,;(C) the diagonal matrix
having the components of in the diagonal. Moreover, give#d € M,,,(C), we denote by
diag (Z) € M,;»,(C) the diagonal matrix having the same diagonal entries.as

For anyk € Z", we denotglk|; = |ki| + ... + |k.|. Given a vectorr € C!, we set
for complex matrices. Furthermore, given an analytic fiorcy, with bounded derivatives in a
complex domaid/ ¢ C', andm € N we introduce th&™-norm for f as

| fllem = sup sup \Dkf(z)\
ke(NU{0})! z€U
0<|k|1<m
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We denote byl" = R"/(27Z)" the realr-dimensional torus, withr > 1. We use the
| - |-norm introduced above to define the complex strip ardiindf width p > 0 as

Alp) = {6 € C' /(22" : [Im(8)| < p}.

Accordingly we will consider the Banach space of analyticcions f : A(p) — C equipped
with the norm

Ifllo= sup [f(O)I
0eA(p)

Similarly, if f takes values itC!, we set||f|l, = |(lfill,-- -, Ifill,)]- If fis @ matrix valued
function, we extend f||, by computing the-|-norm of the constant matrix defined by the| -
norms of the entries of. We observe that if the matrix product is defined then thicspsia
Banach algebra and we halé f>||, < || f1ll,|| f2|,- In addition, we can use Cauchy estimates
of /11, :

— < =1,...,m
H aej p_(s — 5 ) ] Y 7r

For any functionf analytic onT” and taking values itC, C' or in a space of complex
matrices, we denote its Fourier series as

FO) = [ fi= o / F(0)e  ®0qg

keZn (27T)T

and its average d¢],. = fo. We also sef (6) = f(#)—|f],.. Moreover, we have the following
bounds

e <1 WFl <2070 il < [ fllemk

Now, we introduce some notation regarding Lipschitz regiyla Assume thatf(u) is a
function defined fop, € I C R —the subsef may not be an interval— taking values@ C!
or M, «;,(C). We say thaff is Lipschitz with respect te on the sef if

Llp[(f) = sup ‘f(/vb2) - f(/vbl>| < 00.
pi,p2€l ’Mz - Ml’
K172

The valueLip,(f) is called the Lipschitz constant gfon /. For these functions we define
1fllr = sup,e; [f(1)]- Similarly, if we have a family: € I C R — f,, wheref, is a function
onT” taking values irC, C' or M, ., (C), we extend the previous notations as

Lipr(f) = sup HfHQ B f#l”l) < 00
pa,p2€l ‘:u2 - Ml’
H1F 2

o Al = sup ([ Full,
nel
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Analogously, given a family, € I C R — f,,, wheref, is an analytic function with bounded
derivatives in a complex domain c C!, we introduce form € N

. ||fu1 _fm”CmU
Lip; om 4(f) = sup ’
e ,U( ) p1,p2€l ‘,ul - ,u2|
H1F 2

: I fllz.cm,u = sup || fullem,u-
nel

Finally, we say tha is Lipschitz from below with respect to on the sef if

pm€l [y — pu|
H1F 2

In this work we are concerned with Hamiltonian systemRif with respect to the standard
symplectic formQ2°, given byQ°(&,n) = £7J,n where

0 Id,
= ( —Id, 0 )

is the canonical skew-symmetric matrix. We extend the rmtaabove to writeJ; for any
1 < j < n,andld, foranyl < j < 2n. For the sake of simplicity, we denote= J,, and
Id = Idg,.

Finally, given matrix-valued functiond : T" — My, (C) andB : T" — My, (C),
we set the notation§' 4 5(0) = A(0)"B(0), Qap(0) = AB)"JB(), G4(0) = Ga.(0) and
Qa(0) = Q4,4(0).

2.2 Invariant and approximately invariant tori

Given a Hamiltonian function : U ¢ R** — R, we study the existence of lower dimensional
quasi-periodic invariant tori for the Hamiltonian vectaltl X, (z) = Jgrad h(z).

Definition 2.1. For any integerl < r < n, Z C U is anr-dimensional quasi-periodic
invariant torus with basic frequencies € R" for X,,, if .7 is invariant under the flow ok,
and there exists a parameterization given by an embeddintj” — U such that7 = 7(T"),
making the following diagram commute

T

Tr%“}v]rr

T

T (1)
7 ot 7 7

whereT; ,(z) = = + wt is the (parallel) flow of the constant vector field

L —wi—i- —i—wi
© T e, T T e,



A. Luque and J.Villanueva 9

and ¢, is the flow of the Hamiltonian vector field,. In addition, if
(k,w) #0,  VkezZ\{0}, (2)
then we say that is non-resonant.

If w € R" is non-resonant, then the quasi-periodic functi¢t) = 7(wt + 6,) is an integral
curve of X, for anyd, € T" that fills densely7. Equivalently, we have that the embedding
satisfies

L,7(0) = Xn(7(0)). ®3)

By means ofr we can pull-back td" both the restrictions to7 of the standard metric and
the symplectic structure, obtaining the following matipresentations

Gp-(0) = DT(0)" D7(9), Qp.(0) = Dr(0)"JD7(h), geT.

Remark 2.2. We note that as is an embedding we havenk(D7(6)) = r for everyd € T", so
it turns out thatdet G, (¢) # 0 for everyd € T". Moreover, we see that the avera§gy, |,
is zero since if we write(0) = (x(6),y(0)) then we havélp. () = Da() — Da(6) ", where
a(f) = Dz () "y(0) and, by definition|Dal, = 0.

Lemma 2.3.Leth : U C R* — R be a Hamiltonian function andZan r-dimensional
invariant torus forX, of non-resonant frequencies Then the submanifold’ is isotropic, i.e.,
Qp,(0) = 0 for everyd € T". In particular, if - = n then.7 is Lagrangian.

Remark 2.4. Along the text there appear many functions depending enT”. In order to
simplify the notation sometimes we omit the dependenée-eaventually we even omit the fact
that some functions are evaluatedrd®d) if there is no source of confusion.

Proof of Lemma 2.3The isotropic character of is obtained as it was done in [13]. First, we
compute

L.(Qp,) = L,(D7"JD7) = [D(L,7)]" JDT + D7 JD(L,7T)
= [Jhess h(7)D7])" JD7 + D7 " JJhess h(t) D7 = 0,
where we used thab o L, = L, o D, the hypothesid.,7(6) = X,.(7(0)) and the properties

J' = —JandJ? = —Id. Then, sincev is non-resonant, the fact that the derivativevanishes
implies that, = [Q2p,];.. Finally, from Remark 2.2 we conclude tHa,, = 0. O

Finally, we set the idea of parameterization of an approte@hganvariant torus. Essentially,
we measure how far to commute is diagram (1).
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Definition 2.5. Given a Hamiltoniarh : U ¢ R?*" — R and an integed < r < n, we say that
Z C U is anr-dimensional approximately quasi-periodic invariantdsrwith non-resonant
basic frequencies € R" for X}, provided that there exists an embedding T" — U, such

that.7 = 7(T"), satisfying

L,7(0) = Jgrad h(7(0)) + e(0),
wheree : T" — R2?" is “small” in a suitable norm.

Among the conditions needed to find a true invariant torusraan approximately invari-
ant one, we are concerned with Diophantine conditions oneltor of basic frequencies.

Definition 2.6. We say thatv € R" satisfies Diophantine conditions 6f, v)-type, fory > 0
andv >r — 1, if
k)l 2 g FEZN0) (4)
1
It is well-known that if we consider a fixedthen, for almost every € R”, there isy > 0
for which (4) is fulfilled (see [42]).

2.3 Linear normal behavior of invariant tori

In order to study the behavior of the solutions in a neighbochof anr-dimensional quasi-
periodic invariant torus of basic frequencies—parameterized by— it is usual to consider
the variational equations around the torus, given by

Lo£(0) = Jhess h(7(8))€(6). (5)

If » = 1 the system (5) i&n /w-periodic. Then, following Floquet’s theorem, there exist
a linear periodic change of variables that reduces the sy&ieconstants coefficients. #f >
1, then we consider reducibility to constant coefficientstfie sense of Lyapunov-Perron) as
follows.

Definition 2.7. We say that the invariant toru§” in Definition 2.1 is reducible if there exists
a linear change of coordinates = M ()7, defined forf € T", such that the variational
equationg5) turn out to bel,,n () = Bn(f), whereB € Ma,,x2,(C).

It is immediate to check that this property is equivalenthe fact that)/ satisfies the
differential equation
L,M(0) = Jhessh(T(0))M(0) — M(0)B. (6)

In the Lagrangian case = n, under regularity assumptions, such transformation gxist
providedw satisfies (4) due to the geometric constrains of the probssa [13]). Indeed, we
can take derivatives at both sides of the invariance equésip thus obtaining

LoD7(0) = Jhess h(r(8)) Dr(6).
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Then, we can choose a suitable< n matrix C'(6) —given by the solution of certain cohomo-
logical equation— in such a way that the columngf(9) andJ D7(0)G,L(0) + DT (6)C(0)
give us the matrix\/ (#). The reduced matrix turns out to be of the form

0 BC
o6 %)

where B¢ € M,,,(R) is symmetric. Then zero eigenvalues correspond to the tangent di-
rections to the torus together with their symplectic coajegones, meanwhile the matrx”
controls the variation of the frequencies of the torus —thisttcondition readsglet B¢ # 0—
when moving the “actions” of the system.

In the lower dimensional case < r < n we cannot guarantee, in general, reducibility
to constant coefficients (we refer to [29, 30, 56]). Nevddbg, if we consider a family of
guasi-periodic linear perturbations of a linear systemhvaibnstant coefficients then, under
some generic hypothesis of non-resonance and non-deggneeacan state the reducibility of
a large subfamily. On the one hand, if we restri¢{0) to the space of close-to-the-identity
matrices, then we can prove that the reducible subfamily igd@&n and has large Lebesgue
measure (we refer to [33, 34]). On the other hand, consigerimore general class of matrices
(see ideas introduced in [18, 19, 39, 50]) this result carxbeneled to a full measure subfamily
(this was conjectured in [19] and proved in [26]).

If the system (5) is reducible, it turns out that the geomefryhe problem allows us to
choose the matri¥ with the following block structure

0 BY| 0

B=|0 00

0 0 |BY
where B¢ € M,...(R) is symmetric (it plays the same “twist” role as in the Lagriangcase),
andBY € Mg, )x2(n—r)(C) can be written a3 = J,_,.S, whereS is also symmetric. In
this context,B" gives the normal linear behavior of the torus. The real pertke eigenvalues
of BY correspond to Lyapunov exponents and their imaginary parsrmal frequencies. As
discussed in the introduction, in this work we are inter@stethe normally elliptic case, in
which all the eigenvalues @8"¥ have vanishing real part, i.e.,

spec (BY) = {iXy, ... iAoy, —iAg, ..., —idup )

where); € R\{0} are the so-called normal frequencies. Thoughtout the pape&ssume that
they have different modulus.

In order to simplify the resolution of the obtained cohongit@l equations, it is convenient
to put the matrixB”" in diagonal form. In the classical KAM approach —using syeaic
transformations and action-angle variables adapted ttotlus— this is possible with a com-
plex canonical change of coordinates, that transformsiihelireal Hamiltonian into a complex
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one, having some symmetries. As these symmetries are peelday the canonical transforma-
tions performed along these classical proofs, the final Haman can be realified and thus
the obtained tori are real. In this paper we perform this demification by selecting a com-
plex matrix functionNV : T" — M, »—n(C) associated to the eigenfunctions of eigenvalues
iA,...,i\,_,. Itis clear that the real and imaginary parts of these vecpan the associated
real normal subspace at any point of the torus. Indeed, frqoaton (6), the matrix function
N satisfies

L,N(0) = Jhess h(7(0))N(0) — N(0)A,

whereA = diag (i\) = diag (i\,...,i\,_.). Then, together with these vectors, we resort to
the use of the complex conjugate ones, that clearly satisfy

L,N*(0) = Jhess h(7(0))N*(0) + N*(0)A,

to span a basis of the complexified normal space along the {tinis is guaranteed by the
conditionsdet Gy y+ # 0 on'T").

As we have pointed out in the introduction of the paper, ineottd face the resolution of
the cohomological equations standing for invariance addawility of elliptic tori, we assume
additional non-resonance conditions apart from (2).

Definition 2.8. We say that the normal frequencigs= R"~" are non-resonant with respect to
we Rif
(b,w)y+ X #£0,  VK€Z, i=1..n-r (7)

and
(k,w) + A £ X #0, Vk € Z"\{0}, h,j=1,....,n—r. (8)

Conditions(7) and (8) are referred as first and second order Melnikov conditiorspectively
(see [43, 44]).

In the spirit of Definition 2.5, we introduce the idea of appmate reducibility as follows.

Definition 2.9. We say that the approximately invariant tords in Definition 2.5 is approxi-
mately elliptic if there exists amap : T — M, (»—r)(C) and normal frequencies € R"",
which are non-resonant with respectio satisfying

L,N(0) = Jhessh(T(0))N(0) — N(0)A + R(0),

where A = diag (i\), det Gyny+~ # 0onT" and R : T" — Mo,y (n—r)(C) is “small” in a
suitable norm.

In order to avoid the effect of the small divisors associdte(¥) and (8), we assume addi-
tional Diophantine conditions.
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Definition 2.10. Let us consider non-resonant basic and normal frequericies) € R" xR" "
and constants > 0 andv > r—1. We say thah satisfies Diophantine conditions @f, v)-type
with respect tav if

Y
L

[k, w) + A £ | > —L 9)

| k7w>+)\l > PR
< | T

Vk € Z'\{0}andi,j =1,...,n—r.

3 Statement of the main result

In this section we state the main result of the paper. Corlgréte/e have a 1-parameter family
of Hamiltonian systems for which we know a family of paramietgions of approximately
(with small error) elliptic lower dimensional invariantripall with the same basic frequencies
and satisfying certain non-degeneracy conditions, theruseethe parameter to control the
normal frequencies in order to prove that there exists alagg of parameters for which we
have a true elliptic invariant torus close to the approxamate. We emphasize that we do not
assume that the system is given in action-angle-like coatds nor that the Hamiltonians are
close to integrable.

Theorem 3.1. Let us consider a family of Hamiltonianse I € R — h, withh, : U C
R?" — R, wherel is a finite interval and’/ is an open set. Let € R" be a vector of basic
frequencies satisfying Diophantine conditio@3 of (7, v)-type, withy > 0 andv > r — 1.
Assume that the following hypotheses hold:

H; The functiong:, are real analytic and can be holomorphically extended toseomplex
neighborhood/ of U. Moreover, we assume thgik||; ¢+ ;4 < oo.

H, There exists a family of approximate invariant and elligbd of #,, in the sense of Def-
initions 2.5 and 2.9, i.e., we have families of embeddings / C R — 7,, matrix
functionsy € I C R — N, and approximated normal eigenvalugs = diag (i\,), with
A, € R*77, satisfying

Ly7u(0) = Jerad hy(7,(0)) + €,.(0),
L,Nu(0) = Jhess hy,(7,(6))Nu(6) — Nu(0)A, + R, (6),
for certain error functions;, and R, wherer,, and NV, are analytic and can be holomor-

phically extended td\(p) for certain0 < p < 1, satisfyingr,(A(p)) C U. Assume also
that we have constants, o, such that

D775 IN 115 1G el 1,0 G xe

1p <01, dist(7,(A(p)), 0U) > o9 > 0,

for everyu € I, whereold stands for the boundary of.
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H; We haveliag [Qn, v er = ild,,_, for everyu € I.
H, The family of matrix functions
A1,u(0) = G, () D7 (0) T (T1,u(0) + T2,u(0) + T2,4(0) ") D7u(0)Gy, (6),
where

Ty ,.(0) = J " hess h,,(7,(0))J — hess h,,(1,.(0)),
T5,u(0) = T,,1(0)J [D7(0)Gpr,, (6) " D7,,(8) " — 1d] RE(IN,(O)N;:(6) ),
satisfies the non-degeneracy (twist) condiﬂi]c{lﬂﬁl]q}1 Ilr < o1.

H; There exist constants;, o4 such that for every: € I the approximated normal frequen-
ciesh, = (A1, Apy,) Satisfy

O: gy
0< ?‘3 <|Aiul < =,

5 0<o3< |Ai7MiAJ7M|7

fori,j=1,...,n—r,withi # j.

H¢ The objects,, 7,,, N, and )\, are at leastC* with respect tq:, and we have

H dr dDTt dN d\;
- — — < 05,
dp Icfu dplly, |l dp dpfly, Il dully
fori =1,...,n — r. Moreover, we have the next separation conditions
o d d d
O - _)\z 5 0 5 < )\z :i: )\ I
< 5 < i " < 0g ‘d M dp It

fori,j=1,...,n—r,withi # j.

Under these assumptions, given < %min{l,ﬁ} andv > v, there exists a constauit,
that depends on the initial objects but is independentp$uch that if

H dp

satisfiess, < Cy4§, then there exists a Cantorian subdet,) C I such thatvy € (4, the
Hamiltonianh,, has anr-dimensional elliptic invariant torus?,, .y with basic frequenmes
and normal frequencie)sm(oo) that satisfy Diophantine conditions of the form

ee = llellr, + [[Bllr, + ‘

Lp

’</{Z w>+)\zu(oo)‘_ ‘</€ w>+)\lu(00):|:)\]/t(oo)‘ VkGZT\{O},

Ik’l Ik’l
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fori,j =1,...,n—r,such that
026* 026*
1T00) = Ty w2 < == [[Nieo) = Ny oz < —5 (10)
Y0 Yo
andfori=1,...,n—r,
025*
80)

Moreover,/ .. has big relative Lebesgue measure
measg (1\/(o0)) < Csv0. (12)
The constant€’, andC5 depend onw|, 4, 7, v, r, n, 09, 01, 02, 03, 04, 05 @and og.

Remark 3.2. We will see that, ifle|;, and || R||;, are small enough, hypothedis, and Hs,
together with suitable Diophantine conditions @orand A\, imply that the matriX2y - is pure
imaginary, approximately constant and close to diagonak(®ropositions 4.1 and 5.3 for
details). In order to follow our approach for constructing approximately symplectic basis
along the torus, we assume that the average of this matrixnssnogular. According to this,
it is clear that we can assume (after a suitable choice of tga sf the components ofand
scaling of the columns aV) that diag [Qy n+];. = ild,—,, as it is done in hypothesid; of
Theorem 3.1.

Remark 3.3. As it is customary in parameterization methods —we encouttagi@eader to
compare this result with those in [13, 20, 31]— the conditioh3'heorem 3.1 can be verified
using information provided by the initial approximationshis fact is useful in the validation
of numerical computations that consist in looking for tmgonetric functions that satisfy in-
variance and reducibility equations approximately. Conelg let us assume that for a given
parametery, € I we have computed approximations, N,, and A, satisfying the explicit
conditions of Theorem 3.1 for certain € R”. Then, for most of the values pfclose topu,
there exist an elliptic quasi-periodic invariant torus mbg, whose normal frequencies are just
slightly changed.

Remark 3.4. Hypothesidl, is called twist condition because when applying this resudt per-
turbative setting it stands for the Kolmogorov non-degangicondition (see the computations
performed for Hamiltoniar{13) below). Observe that in the Lagrangian case hypothdsis
reads asA, , = G, D7, T, DTG, for the same matrisf ,, thus recovering the condition
in [13].

Remark 3.5. Let us assume that fgr = 0 we have a true elliptic quasi-periodic invariant
torus satisfying the Diophantine and non-degeneracy dmd of Theorem 3.1. In this case,
it is expected that the measure of true invariant tori neaidbyarger that the one predicted
by our result. Actually, it is known that the complementary [s.o, 110]\/(~) has measure
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exponentially small whep, — 0 (see [35, 36]). To obtain such estimates we would need
to modify slightly some details of the proof performed hetatnot the scheme— asking for
Diophantine conditions as those used in [34, 36] (which tuat to be exponentially small in

|K[1)-

Remark 3.6. Theorem 3.1 can be extended to the case of exact symple@s: wetually, the
parameterization approach in the context of maps is the matting in [13, 20, 31]. To this
end, we should “translate” the computations performed altimg paper to the context of maps,
following the “dictionary” of these references. Attemptishould be taken in order to adapt
the geometric conditions that we highlight in Remarks 4.54fidwhich are not true for maps,
but satisfied up to quadratic terms (this is enough for theveagence of the scheme).

Remark 3.7. It would be also interesting to extend the result in order taldeith symplectic

vector fields or symplectic maps. Let us recall that a vectdd k' on a symplectic manifold
with 2-form €2 is said to be symplectic £ x2 = 0, i.e., if the2-form is preserved along the
flow of X (symplectic vector fields that are not Hamiltonian can bentbéor example in the
context of magnetic fields). In this situation, the methdtrahslated torus” should be adapted
as it is done in [20] for the hyperbolic case. To this end, itstibe taken into account that
the cohomology of the torus must be compatible with the cologyelass of the contraction
Q- X).

Remark 3.8. The scheme of the proof of Theorem 3.1 can be also used fangribne existence
of reducible tori having some hyperbolic directions, unter assumption of first and second
order Melnikov. In this case, we need to adapt the geometiiesls of the paper in order to
deal simultaneously with elliptic and hyperbolic directsonHowever, as hyperbolic tori are
known to exist beyond the breakdown of reducibility (see [2b]s interesting to approach
the problem of partially elliptic tori by combining technigs in [20] (for studying hyperbolic
directions) together with those presented here (for stuglgihiptic directions).

Remark 3.9. The scheme can be also adapted to deal with the classical Blokema-Takens
approach (see [7]) explained in the introduction. On the twa@d, this allows obtaining -
Whitney regularity for the constructed tori, and on the othand this permits to deal with de-
generate cases where Kolmogorov condition does not holdyétiave other higher-order non-
degeneracy conditions such as the so-calléd¥nann’s non-degeneracy condition (see [62]).

Remark 3.10. After the work in [3, 4, 19, 26, 66] it is known that second ordezliMkov con-
ditions are not necessary for proving existence of lower dsr@nal tori in the elliptic context.
For example, Bourgain approached the problem without usedcibility, thus avoiding to
ask for these non-resonance conditions. However, cumberswtiiescale analysis is required
to approximate the solution of truncated cohomologicalauns, thus leading to a process
which is not suitable for numerical implementations —at esielp, one has to invert a large
matrix which has a huge computational cost. Neverthelessn@$ar reducibility we end up
inverting a diagonal matrix in Fourier space (see Remarkl}.1Another approach to avoid
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second Melnikov conditions was proposed by Eliasson in [1f] eonsists in performing a
far-from-identity transformation when we have to deal withrstesonant frequencies. Con-
cretely, if A € R"™" does not satisfies second Melnikov conditions, then we ceodude new
normal frequencies; = \; — (m;,w/2), and we can choose carefully the vecters € Z"

in such a way that second Melnikov conditions are satisfied Gtso necessary to work in the
double coverin@T” = R"/(4x7Z)" of the torus). In this paper we study reducible tori without
using Eliasson’s method (thus emphasizing the geomeemsidinked with parameterization
methods), so we ask for second Melnikov conditions payingribe of excluding a small set
of invariant tori. Nevertheless, when implementing numdgidhis method, the use of Ellias-
son’s transformation is very useful (this was used in [25] ¢atnue elliptic tori beyond their
bifurcation to hyperbolic tori).

Remark 3.11. All the computations performed in the proof of Theorem 3rikmimplemented
very efficiently in a computer. For example, the solutionaifanological equations with con-
stant coefficients and the computation of derivatives Iikeor L 7 correspond to diagonal
operators in Fourier space. Other algebraic manipulatiaas be performed efficiently in real
space and there are very fast and robust FFT algorithms tHathepassing from real (or com-
plex) space to Fourier space (and “vice versa”). Accordigf we approximate a torus by
using N Fourier modes, we can implement an algorithm to compute thecblwvith a cost of
order O(N log N) in time andO(N) in memory. We refer to the works [9, 14, 32] to analo-
gous algorithms in several contexts. Therefore, this apgingoresents significant advantages
in contrast with methods which require to deal with large masicsince they represent a cost
of O(N?) in memory and?(N?) in time (we refer for example to [10]).

Although one of the main features of both the formulation #relproof of Theorem 3.1
is that we do not require to write the problem in action-angperdinates, we think that it
can be illustrative to express this result for a close-tegrable system, in order to clarify the
meaning of hypothesd$; andH, in this context. Indeed, let us consider the following famil
of Hamiltonian systems written in action-angle-like cdaedes(p, 3, z) € T" x R" x R*~7)

h#(gpa Y, Z) - h0<y7 Z) + Mf(gpvyJ Z) (13)

such that fory = 0, we have that = 0 is an elliptic non-degenerate equilibrium for the system
ho(y, z). This means that,(#) = (0,0,0) gives a parameterization of an invariant torus:f
with basic frequencies = grad ,h(0,0) € R". By performing a suitable canonical change of
variables in order to eliminate crossed quadratic ternig.in), we can assume that

ho(y, 2) = (w,y) + %@7 Ay) + %<Z7 Bz) + Os(y, 2)

close to(y, z) = (0,0), whereA and B are symmetric matrices, such that

spec (Jp—pB) = {iA1, .., idgr, —iA1, .o, =1 ]y
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are the normal eigenvalues of the torus givenTyx {0} x {0}. The associated normal
directions are given by the real and imaginary parts of th&irmaf eigenvectors satisfying
Jo_»BN = NA, whereA = diag (i\) = diag (i\y, .. .,i\,_,). Using symplectic properties,
we can select the signs of the componenta ahd the complex matri®/ in such a way that it
satisfiesN T J, . N* = ild,,_,.

Then, to apply Theorem 3.1 to the family of Hamiltonidnsgiven by (13), for smal|y|,
we consider the family of approximately elliptic and inart torit,(0) = 7(6) + O(n) with
normal frequencies,, = A + O(x) and normal vectorsV,,(6)T = (00 NT) + O(y), where
the termsO () stand for the first order corrections in—they can be computed by means of
Lindstedt series or normal forms with respecjte- that are needed in order to check that the
normal frequencies “move” as a function@f This family satisfies

L,7,(0) = Jgrad h,(7,(0)) + O2(1),
LaNu(8) = Thess hu(ru(0))N(6) — Nu()A, + Oa(),

and, fory = 0, we have

Id, 0
DT()(Q) = ( 0 ) N No(@) = (Q) s GE)%(G) = Idr, QNO,NS (0) = ﬂdn—r-
0 N

Moreover, it is not difficult to check that the matrik ,(0) in Hy at ;. = 0 reads asd; o(0) =
—A, which implies that, is equivalent to the standard (Kolmogorov) non-degenecacyli-
tion for the unperturbed system.

4 Overview and heuristics of the method

In this section we outline the main ideas of the presentedoggh emphasizing the geometric
interpretation of our construction and highlighting thelgidnal difficulties with respect to the
Lagrangian and normally hyperbolic cases. First, in Sadlid, we sketch briefly the proof
of Theorem 3.1. Our aim is to emphasize that —even though s&rts of the proof involve
quite cumbersome computations— the construction of thmatitee procedure is fairly natural.
Then, in Section 4.2 we focus on the geometric propertieBeirtvariant and elliptic case that
allow us to obtain approximate solutions for the equatiogrsvéd in Section 4.1 associated to
approximately invariant and elliptic tori.

4.1 Sketch of the proof

Leth : U C R*™ — R be a Hamiltonian function and let us suppose tffais an approximately
invariant and elliptic torus of basic frequenciess R” and normal onea € R"", satisfying
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non-resonance conditions (4) and (9). The translation éhidens 2.5 and 2.9 into a functional
setting is
F(r) =e, G(r,N,A) = R,

with A = diag (i\), where we have introduced the following operators

F(r) = L, — Jgrad h(r),
G(r,N,A) = L,N — Jhess h(T)N + NA.

Then, we look for an embedding : T" — U and a set of normal vectol§ : T —
Moy (n—r)(C), with normal frequencies, satisfying

F(7) =0, G(7,N,\) =0,

with A = diag (i\). Since these equations have triangular structure, we aphprfirst the
correction of the parameterization of the torus, i.e., veklior 7 = 7+ A, satisfying the above
expressions. We write the first equation as

F(r+A;)=e+ L,A; — Jhess h(T7)A, + O2(A;) = 0.
If we neglect termg), (A, ) we obtain the following linearized equation (Newton method
L,A; — Jhessh(T)A, = —e, (14)

that allows us to correct the invariance of the torus up tmseof second order ia In a similar
way, we look forNV = N + Ay andA = A + A, such that

G(7,N,A) = R+ L,Ax — Jhess h(7)Ayx + NAy + AxA + Oo(An, Ap) = 0,

where
R = R+ Jhess h(T)N — Jhess h(T)N (15)

includes both the error in reducibility and the one introgligvhen correcting the torus (which
is expected to be of order of the size«f Hence, in order to apply one step of the Newton
method to correct reducibility, we have to solve the follogiliinearized equation fo\ y and
Ap
LoAy — Jhess h(T) Ay + NAy + AyA = —R. (16)
For convenience, once we fix N andA, we define the following differential operators
(acting on vectors or matrices B rows)

R(€) = Lo,€ — Jhess h(T)E, (17)
S(&,n) =R(§) + Nn+ €A, (18)
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so Equations (14) and (16) are equivalent to inf@dndS

A

R(AT> = =6 S(ANa AA) =—-R. (19)

As it was done in [13], the main idea is to use the geometripgnes of the problem
to prove that the linearized Equation (14) can be transfdrnosing a suitable basis along
the approximate torus, into a simpler linear equation —wahstant coefficients— that can be
approximately solved by means of Fourier series. Indeedparoximate solution with an error
of quadratic size im and R is enough for the convergence of the scheme —the Newton mhetho
still converges quadratically if we have a good enough appration of the Jacobian matrix.
Under suitable conditions of non-resonance and non-degeyeteration of this process leads
to a quadratic scheme that allows us to overcome the effébeamall divisors of the problem.
The main contribution of this paper is to adapt this consiondthat we describe nextin a more
precise way) to deal with Equations (14) and (16) simultasgo

Let us discuss the construction of the basis mentioned ablovéhe Lagrangian case we
only have to deal with Equation (14) and the columns of theicet D+ and.J DTG} give us
an approximately symplectic basisBf” at any point of the torus. Moreover, it turns out that
R(D7) =0+ O(e) andR(JD7G L) = DTA; + O(e), whereA, : T* — M,,,,.(R) is a sym-
metric matrix. Using this basis we can write the linearizgdagtion (14) in “triangular form”
with respect to the projections @, over D+ and.JD7G}, in such a way that the problem
is reduced to solve two cohomological equations with canistaefficients. However, in the
lower dimensional case the previous construction is notighsince we also have to take into
account the normal directions of the torus. As mentionedhénimtroduction, this scheme has
been recently adapted in [20] for the normally hyperbol®e;avithout requiring reducibility of
the normal variational equations. The main ingredientas there exists a splitting between the
center and the hyperbolic directions of the torus and we edaae the study of Equation (14)
to the projections according to this splitting. The dynasa the hyperbolic directions is char-
acterized by asymptotic (geometric) growth conditfoasboth in the future and in the past—
and the linearized equation (14) restricted to the centiessace follows as in the Lagragian
case (now the ambient spacer¥).

In the normally elliptic context, we ask for reducibility arder to express equation (14) in a
simple form. Hence, we solve simultaneously equation (bl obtaining a basis that reduces
the normal variational equations of the torus to constaogdficients up to a quadratic error.
In this case, the approximately (with an error of the ordethefsize ofe and R) symplectic
basis is obtained by completing the columndf, N andiN* with the columns of a suitably
constructed matri¥” : T" — Ms,..(R). Basically, we take advantage of the fact that
satisfiesR(V) = D7t A; modulo terms of orde¢ and R, whereA; : T" — M,,..(R) will be
specified later on. Hence, we find approximately solutiomsefpuations (19) in terms of the

2Concretely, the solution for the equations projected iht hyperbolic directions are obtained by means of
absolutely convergent power series. See details in [20].
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constructed basis as follows

AT:DTA1—|—VA2+NA3—|—1N*A4,
AN:DTP1+VP2+NP3+1N*P4,

where{A;},{P;}, withi = 1,..., 4, are the solutions of cohomological equations (37)-(40),
and (42)-(45), respectively. The correctidn, in the normal eigenvalues is determined from
the compatibility condition of these last equations.

Let us observe that in order to correct the reducibility efttbrus we have to change slightly
the normal directions and the normal frequencies. Sincadheal frequencies are modified
at each step of the process, we do not know in advance if tHegatisfy the required Diophan-
tine conditions for all steps —unless we have enough paemné&t control the value of all of
them simultaneously. To deal with this problem we requimasaontrol on the change of these
frequencies, in such a way that we can remove parametergivieaise to resonant frequencies.
Since at every step of the inductive process we are remowilegse set of parameters, this does
not allow us to keep any kind of smooth dependence with regpdabem (because now they
move on a set of empty interior).

There are several methods in the literature to deal withghablem. The first approach
was due to Arnold (see [1]) and it consists in working, at g\w&tep of the inductive procedure,
with a finite number of terms in the Fourier expansions (auiolet cut-off”). Then, since
we only need to deal with a finite number of resonances at estery, we can work on open
sets of parameters and keep the smooth dependence on thesésether possibility is to
consider Lipschitz parametric dependence and to checkhisadependence is preserved along
the iterative procedure (this is the method used in [33, 8438]). Lipschitz regularity suffices
to control the measure of the resonant sets. In this papeolievfthe Lipschitz approach
because it does not forces to modify, by the effect of therdulblet cut-off”, the geometric
construction we have developed in the Diophantine case.

4.2 Characterization of the invariant and reducible case

Our goal now is to formally “invert” the linear operatoRs given by (17) andS given by (18)
—see Propositions 4.4 and 4.6, respectively— when the gporeding torus” is invariant and
normally elliptic. In order to do this, first we characteriata formal level some geometric
properties of lower dimensional elliptic invariant toriater on, the same construction provided
in this section will be used to study approximately invatitori in order to solve equations
in (19) with a small error (controlled by the errors of inarce and reducibility).

All along this section we consider ardimensional normally elliptic quasi-periodic invari-
ant torus7 for a Hamiltoniam., of basic frequencies € R” and normal frequenciese R"~"
satisfying non-resonance conditions (2), (7) and (8),we.have

L,7(0) = Jgrad h(7(0)), (20)
LuN(8) = Jhess h(r(0))N(6) — N(B)A, 1)
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with A = diag (i\). We assume also that the matricg@s.(¢) andGy - (6) are invertible for
everyd € T". Then, we claim (see the proof if Proposition 4.1) that unitiese conditions
Qn N+ IS constant, pure imaginary and diagonal. If we assume ititatrix is non-singular,
then we can suppose that (see Remark 3.2)

Proposition 4.1. Given.7 an invariant and elliptic torus as above, we define the matrnctf
tions
Ni(0) = N(0),  N2(0) =iN"(6),

and the real matrix

V(0) = JD7(0)G1(0) + N1(0) B1(0) + No(0) By(0) + D7(0) Bs(6), (23)
where
B1(0) = Gy, ()G (0), (24)
By(0) = =Gy 0+ (0)G 51 (0), (25)
Bs3(0) = Re(G', 5, (0))- (26)

Then, the columns of the matricés (), V' (6), N,(¢) and Nz( ) form a symplectic basis for
any ¢ € T7, in the sense that the matricéy,.(0), 2y (9), Uy, (6), 2o, N, (6) and Qy;, v (6)
vanish, for; = 1,2, and

QN27N1 (‘9) - Idnfra QV,DT(Q) = Idr

Proof. To obtain the geometric properties associated to the neatfie, NV; andV; we proceed
as in the proof of Lemma 2.3, where we proved that = 0. Let us start studying the matrix
Qn,.n, by computing
LoQn,n, = Lo (NS JNy) = (L,No) "INy + N, JL,N,
= (Jhess h(T)Ny + NoA) "INy + N, J(Jhess h(7)N; — NiA)
= AN, JN; — Ny JN{A = AQn, vy — Qg A

Then, if we expand2y, n, in Fourier series we obtain
where (Qy,.n,)™) denotes thei, j)-th entry of Qy, n,. Recalling the non-resonance hy-

pothesis(k,w) — A\; + A; # 0 (if i # j or k # 0) we obtain that(Qy, v,)"7) = 0, for
all k € z"\{0}, and (Q,.n,)5" = 0if i # j, so this matrix is constant and diagonal.
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Moreover, QJT\,QW1 = Oy, n, SO its entries are real. Finally, using hypothesis (22) witewr
Qny,vy = 10+ v = =18 e = Idpy
To prove that2y, vanishes we compute

LoQy, = —AQy, — Qu, A,

in a similar way as above. Now, the Fourier coefficientSqf satisfy

((k, W)+ A + Aj) Q) =0,
so it turns out that all of them vanish (using the non-resoeaonditions). Moreover, taking
derivatives at Equation (20) we obtain
L,Dt = JhesshDr,
that together with Equation (21), leads to
L,Qprn, = —Qprn A,

which implies that2, 5, = 0, since the Fourier coefficients of the component functiatisty
the equation

((k:,w> + )\i) (Qprn,)V? = 0.

Finally, it is easy to see théty, = —Qy, andQp, n, = i)}, y,, SO these matrices also vanish.

Next, we see that the columns of the (real) matribes J DTG}, Rg(N) and Im( V) form
aR-basis ofR?". To this end, it suffices to check that the columngof, /DTG5!, N; and N,
areC-independent of©?". Thus, let us consider a linear combination

Dra+ JDTGpb + Nic+ Nod = 0,

for vector functions:, b : T" — C" ande, d : T" — C"~". Multiplying by D7 ", D7".J, N, J
and N," J and using the geometric properties proved above, we obtaifotiowing system of
equations

Gp- 0 Gprn, Gprn, a 0

0 —1d, 0 0 bl |0
0 —GuprGy Id, 0 el = 1o (27)

0 —-Gnp.Gpt 0 —Id,,./) \d 0

My
wheredet M, = det Gp, # 0, so we conclude that=b6 = 0 andc = d = 0.

To check that the matri¥” is real, we use the expressioNs = —iN, and B} = iB, that
are obtained in a straightforward way. Then, we comp\itd3; = —i?N,B, = N,B,, thus

concluding that’* = V.
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Finally, the following computations are straightforward

Qpryv = —1dy + Qprny B1 + Qpr N, B + Qp, By = —1d,,

Qv = — Guy,prGpr + Qny Br + Qny Ny Be + Qv e Bs
= — Gny,p:Gpr — B, =0,

Oy v = — Gy Gpr + B1 =0,

Qv =(GpDr"J" + B/ N] + BJ N} + B{ Dr")JV

= GprGprn Bi + GGy pr Ba + Bs — By
= —Gpy,p, +Gp.p, + Bs — By
—ilm(Gp, 5, — Gp,p,) = 0.

In the last computation we used tHats real. Il
Remark 4.2. Notice that the matrix3; can be taken modulo the addition of a symmetric real
matrix. This freedom can be used to ask for reducibility atsthe “central directions” of the
torus. Hence, instead of the matri that appears in Lemma 4.3 we would obtain its average
[A4]1.. Since this does not give us any significant advantage, we teswmrt to this fact.

In the invariant and reducible case, we characterize theraof R on D7(#), N,(#) and
N, (0) in a very simple way

R(Dr(0) =0,  RN(0) =—N(0)A,  R(N:(0)) = Na(@)A.  (28)

The first expression follows immediately from equation (28nvariance— and the other ones
from equation (21) —reducibility. Moreover, we have thddaling result forV/ (9).

Lemma 4.3. Under the setting of Proposition 4.1, we have that
R(V(0)) = D7(0)A(0),
whereA; : T — M,,(R) is given by the real symmetric matrix
A1(0) = G (0)D7(0) " (Ta(0) + Ta(0) + T2(0) ") D7(0)G 1 (6), (29)
where

T1(0) = J " hess h(7())J — hess h(7(6)), (30)
T5(0) = T1.J [D7(0)Gp,(0) "' D7(6) " — I1d] Re(N1(8) N2 (6) ).
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Proof. We only have to write the expression f&(1") in terms of the previously constructed
symplectic basis
R(V) == DTA1 + VAQ + N1A3 + N2A4, (31)

and then to show that, is given by (29) andl, = A3 = A, = 0. First, we use (23) and (28)
to expressk (V) as

R(V) = R(JDTGpL) 4+ Ny(LuBy — ABy) + No(Ly,By + ABy) + D7 L, Bs.

Then, multiplying at both sides of equation (31) By J, Dr".J, N, J, N/ J and using the
symplectic properties of the basis we obtain the followirgressions:

Ay = L,Bs + V' JR(JDTGRL), (32)
Ay = —D7 " JR(JDTGLY), (33)
As = L,By — ABy + N, JR(JDTGpY), (34)
Ay = LBy + ABy — N/ JR(JDTGL). (35)

First, introducingB; = G, p,G - into equation (34), we obtain

Az = L,(Ny DTG,L) — AN, DTG + Ny JR(JDTGLY)
= L N, DTG, + N, L,(DTGpL) — AN, DTGl
+ Ny JL,(JDTGpL) + Ny hess hJ DTG5
= (LuNy — Jhess hNy —N,A) ' DTG L = 0,

R(N2)

where we used the property (28) k. Recalling thatV, = iV we observe thatl; = iA, so
we also havel, = 0.
Now, we expand the expression fB(.JDrG5}), obtaining

R(JDTGL) = R(JDT)Gpt + JDTL,(GLL)
= —hess hDTG L — JDTG L (D7 " Jhess h — D7 Thess hJ) DTG
— JhesshJ DGt = (1d, + JDTGRE DT )Ty DTG Rl

where we used expression (30) fi. Then, on the one hand we hake " JR(JDTGLL) =0
—in combination with (33) this implies that, = 0— and on the other hand we have

VIIR(JDTGLL) = (B D" + By Ny + B/ N + GLDr"JT)JR(JDTGLL)
= — By (LyB) — ABy) + B} (LyBy + ABy) + GpL D7 " T\ DTG L,
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where we have used equations (34) and (35) taking into attioatd; = A, = 0. Finally, we
introduce this last expression into (32) and recall that= Re(Gs, 5, ) in order to obtain

Ay =Re(L,(By B1)) — By (L,By — ABy) + B (L,By + ABy) + G DT "' DTG5t
=Re(L,By By — By LBy + 2B AB,) + G- DT Ty DTG L,

where we used that3| (L, By + ABs))* = — B, (L,B; — AB;). Now we replace3; and B,
by equations (24) and (25) respectively, and we expand theessgion forL, B, and L, B, as
follows (we also use thaB, = —iB;)

L,By = — L,N, DTG, — N/ L, (DrGh)
= AN, DTG — N hesshJ ' DrGpt — N L, (DTG L)
= — ABy + N/ JT\ DTG} — N/ D7L,(GR})
= — ABy + N/ JT\ DTG, — N/ DTG LD " JT DTG L.
L,By = AB, — N, JI1 DTGt + Ny DrGpLD7 " Ty DTG
From this expressions we observe that tefgj AB; in A, is cancelled. Finally, sincgV, N, )* =

—N,N| = (=N; N, )7, it turns out that ReV, N, ) = Re((—N; N, )") so we obtain the ex-
pression (29) for;. ]

Now we have all the ingredients for inverting formally thesogtorR.

Proposition 4.4. Under the setting of Proposition 4.1, we assume that the matyigiven
in (29) satisfies the twist conditiodet [A;];. # 0. Then, given a functioa : T” — R*"
satisfying[DrT Je} o = 0, we obtain a formal solution for the equation

R(A;(0)) = LA, — Jhess h(1)A, = —e(0),
which is unique up to terms irer(R) = {D7A : A € M, (R)}.
Proof. We express the unknowd, () in terms of the constructed symplectic basis
A. = DTAL 4+ VAs + N1 Ay + NoAy, (36)

expandR (A, ) and project to compute the functiof4;},—; 4. Concretely, we have

-----

R(A:) =R(DT)A1 + R(V)As + R(N1)As + R(N2) Ay
+ DTLwAl + VLwAg + NleA;g + N2LwA4
== DT(LwAl + AlAg) + VLWAQ + N1<LMA3 - AAg) + NQ(LWA4 + AA4>
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Multiplying at both sides of this expression by'.J, D7".J, N,)J and N|"J, we obtain the
following four cohomological equations:

LAy + ANy = =V 1 Je, (37)
L.,Ay = D7 Je, (38)

LoAs — AAs = —N, Je, (39)
LAy + AN, = N/ Je. (40)

As [DTTJe} o = 0, the solution of equation (38) is unique, up to an arbitrargrage
[As] -, provided that the non-resonance condition (2) holds. Theimg the non-degeneracy
conditiondet [A]. # 0, we choose

[Ag)e, = [Ay]2] ( —VTJe],, — [AIAQ] w> (41)

in such a way tha{AlAz + VTJe} = 0 s0 we have a unique solution fdx, up to the
freedom of fixing[A4].. Actually, it is easy to check (39) and (40) have unique sofufor
Asz andA, provided that the non-resonance condition (9) is fulfillstbreover, since is a real
function, we conclude thak} = iA, and this allows us to guarantee that the expression (36) is
also real. ]

Remark 4.5. We will see that the compatibility conditioD7 " Je],, = 0 is automatically
fulfilled if 7 parametrices and approximately invariant torusbeing the error of invariance
—see computations {{93).

Proposition 4.6. Under the setting of Proposition 4.1, given a function T" — Mopny(n—r)(C),
we obtain a solution for the equation

~

S(An,Ap) = R(ANn) + NAy + AyA = —R,
which is unique for\ , and for Ay up to terms irker(S) = {ND : D = diag(d),d € C""}.
Proof. As before, we write the solutioA y of this equation in terms of the symplectic basis as
Ax = DTPy + VP + NP3+ Ny Py.
Then, we compute the action §fon the pair( Ay, Ay), thus obtaining

S(Ax,Ay) = R(Ax) + NiAy + AyA
= R(D7)Py + R(V)Py + R(N,)Ps + R(N3) P,
+ D7L Py + VL,Py+ NiL,Ps + NyL, P + N1 Ay
+ DTP A + VA + Ny PA + No Py A
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= D7(L,P + PA+ A1 Py) + V(L P> + P2A)
+N1(pr3+P3A—AP3+AA) —|—N2(pr4+P4A+AP4) — R

If we multiply this expression by " .J, D7 ".J, N, J and N, .J, we end up with the follow-
ing four cohomological equations:

L,P 4+ PA+ APy =V IR, (42)
L,P>+ P,A = D7 JR, (43)
LoPs+ PsA — APy = —N, JR — Ay, (44)
L,P,+ P,A+ AP, = N/ JR. (45)

Let us observe that, under the assumed non-resonanceioosdif) and (8), the only un-
avoidable resonances are those in the diagonal of the avefagpuation (44), so we require
that the diagonal of the average of the right-hand side efdfuation vanishes. This is attained

by fixing the correction of the normal eigenvaludg = —diag [NQTJR]TT. Therefore, we ob-
tain a unique solutio®;, P», P5, Py and A, —modulo terms inliag [Ps].— of this system of
equations. O

Remark 4.7. We will see that if? corresponds to the error in reducibility as defined in equa-
tion (15)then the geometry imposes that the correctionis a pure imaginary diagonal matrix,
thus preserving the elliptic normal behavior —see companiatin (96).

5 One step of the Newton method

In this section we perform one step of the Newton method teecoan approximately invariant
and elliptic torus. To this end, we follow the scheme preseénh Section 4.2 for the case
of a true elliptic invariant torus. The main difficulty is thae have to handle with “noise”
introduced by the approximately invariant an reduciblerabger.

Proposition 5.1. Let us consider a Hamiltoniah : U ¢ R** — R, whereU is an open set,
and a vector of basic frequenciesc R". Let us assume that the following hypotheses hold:

H; The Hamiltoniam is real analytic and can be holomorphically extended to soomplex
neighborhood/ of U. Moreover, we assume thgk||cs ;, < 0y.

H,; There exists an approximate invariant and elliptic torushe sense of Definitions 2.5
and 2.9, i.e., we have an embeddinga matrix functionN and approximated normal
eigenvalues\ = diag (i\), with A € R"~", satisfying

L,7(0) = Jgrad h(7(0)) + (), (46)
L,N(0) = Jhess h(T(0))N(0) — N(0)A + R(6), 47
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Hy

He

for certain error functions and R, where the functions and NV are analytic and can
be holomorphically extended t(p) for certain0 < p < 1, satisfyingr(A(p)) C U.
Assume also that we have constantso, such that

1D7 (Lo, (1N 1l G D2l 1 G e

p < 01, dist(7(A(p)),0U) > a9 > 0.

We haveliag [Qy y+|p, = ild,—,.

The real symmetric matriXd; given by

Ai(0) = G (0)D7(0) T (T1(8) + To(0) + T2(0) ') DT (8) G0 (9), (48)
where

Ti(0) = J " hess h(7(6))J — hess h(7(8)), (49)

T5(0) = T1(0)J [D7(0)Gp-(0) ' D7(0) " — 1d] Re(iN (6)N*(6) "), (50)

satisfies the non-degeneracy (twist) conditiga, |1 | < ;.

There exist constants;, o4 such that the approximated normal frequencies satisfy

O<%<|Ai|<%, 0<U3<|/\ii)\j|7

fori,j=1,...,n—r,withi # j.

The basic frequencies € R" and the normal frequencies< R"~" satisfy Diophantine
conditions(4) and (9) of (v, v)-type, for certain) < v < 1 andv > r — 1.

Then, there exist a constant> 1 depending ow, r, n, |w|, 0o, 01, 02, 03 and o, such that
if the following bounds are satisfied

« e . *
g (H (SHP + ||R||p) < min{l,0; — 0"}, (51)
. o
dist(7(A(p)), OU) — WHGHp > 03, (52)
. a (el
Igéljn [N £ A = A252-1 ( S £+ ||RHp) > 03, (53)
. a e]l 03
min [Ai — W( 3 £+ ||R||p) > 5 (54)

a (e 04
m?X |)\Z| + 72521/,1 ( 5 L + ||R||p) < 57 (55)
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where
o* = max { | D7ll,, N[, G5t Gy

o |1z

for somed < § < p/4, then we have an approximate invariant and elliptic torésfor X, of

the same basic frequencies i.e., we have an embeddirig= 7 + A,, with 7(T") = 7, a

matrix functionNV = N + Ay, which are analytic inA(p — 25) and A(p — 44), respectively,
and approximated normal eigenvalués= diag (i\) = A + Ay, with A\ € R*~", such that

L,7(0) = Jgrad h(7(0)) + (),
L,N(0) = Jhess h(7(0))N(0) — N(O)A + R(6).

In addition, the following estimates hold

1A [lp25 < (56)

o
2521,”6”[)7

_ & (Il
Iel-25 < s (102 + 11, )l 57)

Qa
|AA|§W( 5

[ Axllp-is < ;fﬂ ( ‘ ) (59)

_ Q
HR”P*M < 8582 (

(58)

(60)

IG5} = Gotllo-ss < gz el (61)
165 = Gty lo-ss < e (12 4 41, ), 62)
A = 1 < o (19 + 0, ). 63
Furthermore, the new objects satisfy the following condgio
dist(F(A(p — 26)), 0U) > o, % <N < % o3 < A £\, (64)
fori,j=1,...,n—r,withi # 7, and
e { D7l p-5, | ¥llp-15: 1G53 -6, |G s | [A) 57 1} < o (69)

where A, corresponds to formula@8), (49) and (50) for 7 and NV . Moreover, the columns of
N are normalized in such a way thétag [Qy x|, = ild,_,.



A. Luque and J.Villanueva 31

To prove this result, we first construct an approximately ghattic basis along the torus
following the ideas of Section 4.2. This is done in Proposits.3. The geometric properties of
this basis will allow us to approximately invert the operat® andS —given by (17) and (18),
respectively— as it is required to obtain the iterative hesiuProposition 5.1. Basically, it turns
out that the solutions of the cohomological equations @erim Section 4.2 are enough to get
the desired result. Before that, we state the following steshdesult that allows us to control
the small divisors.

Lemma 5.2 (Russmann estimateshet g : T" — C be an analytic function oi\(p) and
bounded in the closure. Given € R"\{0} andd € R\{0} we consider the sets of complex
numbers{d; }wezr (03, {d}, }rez- given byd) = (k,w), d;, = (k,w) + d, satisfying

(il 1| = /1KY, V€ Z\{0}

for certainy > 0 andv > r — 1. Then, the functiong’ and f! whose Fourier coefficients are
given by

fR=a/d),  kezZ\{0},  fg=0,
f,g = 0x/d;, ke,
satisfy

Qp 1 1 Qp
Wl 1M < (— i —) gl
yov ’ |d| g

0
5 <
||f HP T~ ’}/(SV
foranyé € (0, min{1, p}), wherea, > 1is a constant depending orandv.

Proof. We can control the functiong'(9) = f(6) — [f'],. as
~ |§k| 1/2 1 1/2
Hszpfé < Z Wem\l(P*é) < < Z |gk‘2€2|k|1p> ( Z y 262|k|16> 7
kezZr\{0} A keZr\{0} kezZr\{0} A

for i = 0,1, where we used Cauchy-Schwarz inequality. On the one haisdndt difficult to
see —using Bessel's inequality, see details in [57]— thafiteeterm can be bounded by

D ol < 2rg|l7,
kezm\{0}

and on the other hand, the second term is controlled by estigide sum

1 —2|k|16 - 1 —21§ —2(141)8
> aE° oy Z AL (e —¢ ). (66)
kez\{0} I=1 kez"\{0}

[k[1<1



32 KAM theorem without action-angle for elliptic tori

Now, we study in detail the case df (the case of) is analogous). First, we observe that the
divisorsd}, = (k,w) + d satisfydy, # dy, if k; # ke. Then, givenl € N, we define

D, = {k € Z'\{0} : |k|; <landd; > 0}

and we sort the divisors accordingo< di, < ... < dk#Dl with k; € Dy, forj =1,...,#D;.
Then, we observe that (single, — k;_,| < 21)

d;lcj - djlﬂj71 - |<kj - kjfla(*})’ 2 dgl,mim (67)

where the have introduced the notation

= min |d;|.
[,min keZr\{0} | k’
|k[1 <1

From expression (67) we obtain recursively

2l,min — 2l,min"*

Then, using thaty, . > ~/(2()” andd;

20,min [,min

> ~/1, we have

#Dy

(]

1 - % 1 - i > - a(u)lQV
= () 7 o i + = Dy n)® 5 P+ G- 12772 7 2

<
<

and using a similar argument fdkj < 0, we obtain

1 2a(v)
< I,
2. TP

2
keZr\{0} v
[kl <l

so we can control the sum (66) as follows

1 —2|k|16 20a(v) . 2w _—28x a(v)
> gEe M=) vV Mdr < 5o o5 T2 +1).
cerviop |4l — 72(29)

=1
Combining the obtained expressions —and using|thd{.., | = |jo|/|d|— we end up with the
stated estimates. O

Proposition 5.3. Under the same notations and assumptions of Propositioomieldefine the
matrix functions

Ni(0) = N(O),  Na(6) = iN*(0),
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and the real analytic matriX’(6) given by(23)-(26). Then, for any) < § < p/2 the following
estimates hold:

~

[90rllp-25 <~z el (68)
[94l-5 < 5 1l (69)
&(w&%me) (70)

L L )
1920 — 1, 25 < &(”}wwmm) 72)

| < 5 (L1, ), 73)
0tz < 5 (1o 4 ), (7

fori = 1,2, whereq > 1is a constant depending enr, n, |w|, 0g, 01, 03 ando,. Furthermore,
if the errors|le||, and || R||, satisfy

& (lel, ¥
e L DE (75)

then the columns abr(#), V' (0), N1(0), N2(f) form an approximately symplectic basis for
everyd € T". In addition, it turns out that the action of the operat@rgiven in(17)onV is
expressed in terms of this basis as

DO I

R(V(0)) = Dr(6)(A:(6) + A{(6)) + V(0) A5 (0) + Ni(0) A (6) + Na(6) AL (0),  (76)

whereA; is the matrix(48)and A, A, AT and A satisfy the estimate

+ « Hfpr
||Az ||P—25 S ,y(s,,Jrl( 5

Proof. For the sake of simplicity, we redefine (enlarge) the cortstaalong the proof to meet
the different conditions given in the statement. For exanple observe that there exist a
constanty > 0, depending om, n, |w|, oy andoy, such that

(77)

fori=1,...,4.

1Billos 11l (121, 1AL, IV, < @, ([ Lo Billp-s < (78)

=l
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fori = 1,2,3 —we recall that; andT; are given in (49) and (50), respectively. Now we
take derivatives at both sides of the approximated invagaguation in (46) and we read the
reducibility equations in (47) folN; and N,

L,Dt = Jhess h(1) D7 + De,
L,N; = Jhess h(T)N; — N;A + R,
L,Ny = Jhess h(T7)Ny + NoA + iR (79)

Using the previous expressions, we compute the deriligtef the matrice2p,, Qy,,
Qp-n, andQy, n, thus obtaining

Lo(Qpr) = Qpe,pr + Qb7 De (80)
L,(Qn,) = —AQM Qv A+ Qg N, + Qnir, (81)
Lo(Qprn,) = —Qprn A+ Qpeny + Qpr g, (82)
L,(Qn,n,) = AN, Ny — Qv A+ 1Qp N, + Qs k- (83)

First, we get estimate (68) fét,, by applying Lemma 5.2 to the, j)-component of2 .,
obtained from (80), i.e., taking = (w, k) andg = —i(Qpe.pr+2pr.pe) ™) that (using Cauchy
estimates) is analytic in(p — 0). Moreover, sincé2 .|, = 0 (see Remark 2.2), we obtain

~

(7)) (0%
19207 [l p—25 < 75VH!JH;~$ < WﬂeHn

Then, we proceed in a similar way to get (69) f§r, by applying Lemma 5.2 to thg, j)-
component ofy, obtained from (81), i.e., taking;, = (w, k) + \; + \; andg = —i(Qr N, +
Qn,r)@7), analytic inA(p). To bound the average 6fy,, we use hypothesiH; of Proposi-

tion 5.1.
1 (%)) 1 ) a
Q s < — — < —|R
1l < (i * o ol < (o + 25 ) < S5lRl

Analogous computations from Equations (82) and (83) allewouobtain estimate (70) fav,
and (71). Of course, to obtain (71) we resort to the hyposhtisg [Qy n-]p. = ild,—, in Hs
of Proposition 5.1. The corresponding estimates (69) a@yfof NV, are straightforward using
thatQN2 Q?\h andQDT Ny = IQET N1

Next we show that the columns éir, JD7G L, RgN;) and ImV;) form aR-basis of
R?", As in the proof of Proposition 4.1, we consider a linear coration

Dra+ JDTGpLb + Nic+ Nod = 0,
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for functionsa,b : T" — C" andc,d : T" — C™". We project this equation multiplying by
D7, Dr"J, N, JandN, J, thus obtaining

0 Qp,GpL 0 0 0
QDT 0 QDT,Nl QDT,NQ “
M+ Qn,,Dr 0 Qnyony, — Idpy Qn, bl = 8 ,
Qn,,Dr 0 O, Qny v, + 1dy—r ¢
. . d 0
Mo

where M, is the same matrix that appears in equation (27). Now, we ttaveert the matrix
M, + My = M, (Id + M; ' M,), where

Ghr M 5 —GpiGprny GpiGpr,
1 0 —Id, 0 0
Mt=10 _GumG)  Id,., 0 :
0  Gu.p-Gp 0 —1Id,_,

with M, 5 = G5 (Gprn,Gny.pr — Gprn,Giy.pr )G oL, SO it is clear that| M, !, < &. By
means of Neumann series we obtain
1
“Hlp—as <
P T — || M M| p2s

|(Td + M, My)

that it is well posed since (using bounds (68)-(71))
- a (el 1
I alas < 5 (14 g ) < 5,

and applying hypothesis (75). Then, it mustde b = 0 andc = d = 0 alongT".

Now, we consider the basis defined by the column®of V', N; and Ny, whereV is given
by (23)-(26), and we characterize the fact that the new hssipproximately symplectic. Itis
straightforward to compute

Qprv = —Id, + Qpr N, Br + Qpr n, By + Qp, Bs,
Qny v = =Gy prGpr 4 Qv Br + Qg e Bo + Oy pr Bs
= Qn, B1 + (v, v, + 1dy—r) Bo + Qn, s Bs,
Qv = By (Qpry +1d.) + B Qn, v + By Qv + GprQp-Gp,

andQy, v = {0y, . Then, estimates (72)-(74) follow from (68)-(71) and (78).
Let us characterize the action of the linear oper&oon the elements of this basis. By
hypothesis, we immediately have that

R(DT) = De, R(Nl) = —NlA + R, R(NQ) = NQA + IR*, (84)
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and we have to see that if we write
R(V) = Dr(A; + AT) + VAT + N1 AJ + No AT,

where A; is the matrix (29), then the functions], A, A3 and A are small —i.e., they
satisfy (77). To this end, expandifig1) in the previous expression as

R(V) = R(JDTGL) + Ni(L,By — ABy) + No(LyBy + ABy) + DTL,Bs
+ RBl + IR*BQ + D@Bg,

and multiplying at both sides of this equation By .J, D7 ".J, N,) J and N, .J, we obtain the
linear system

AT Cy
A7 | _ | G

(d+05) |5 = | o | (85)
Af Cy

where
QV,DT — Id»,, QV QV,Nl QVJVQ
_QDT QVDT - Idr _QDT N _QDT N.
Ms = ’ o N2 86
3 QNQ,DT QN2,V QNQ,Nl - Id'nfT QNQ ( )
_QNLDT _QNl,V _QNl QNQJ\[1 —1d,,_,

and the functiong’;, C, C3 andC, have the following form

of
Oy = VTJR(JDTG3Y) + LBy — A +Qv, (Lo By — ABy) + Qyn, (Lo Bs + ABy)
+VTJ(RB; +iR*By + DeBs) + (Qv.p, — 1d,)(L,Bs — Ay),
cy
Cy = —Dr ' JR(JDTGEL) —Qprn, (LuBy — AB1) — Qpyn, (Lo Ba + ABy)
— D7"J(RB, +iR*By + DeBs) + Qp,(A; — L, Bs),
ci
Oy = NJ JR(JDTG3L) + LoBy — ABy +Q, (LuBs + ABs) + Qnypr (L Bs — Ay)
+ (v, n, — Id, ) (LuBy — ABy) + N) J(RB; +iR*By + DeBs),
ci
Cy = —N, JR(JDTGEL) + LBy + ABy —Qy, (LuBy — ABy) + Qv pr (A — Lo Bs)
— (v, vy +1dy, ) (L By 4+ ABy) — N J(RBy +iR* By + DeBs),




A. Luque and J.Villanueva 37

and we observe that, = —iC; andC; = —i(C5)*. Apart fromC{", Cf, C andC, the size
of the other terms that appear in the above expressions sitg eantrolled in terms ofle||,
and|| R||, —using approximately symplectic properties in (68)-(MJe see next tha‘Dj, for
j =1,...,4, are also controlled in a similar way, since they are giveretpyation which are
close to (32)-(35) for the invariant and reducible case.example, using equation (24) féh
in the expressions af;” we obtain

Cf = (L,Ns — Jhess hNy — NoA) T DrG oyt = iGpe p, Gl (87)

where we used equation (79). To contég andC,” we have to compute the action &f on
the matrixJ DTG 5L

R(JDTGLL) = R(JDT)Gp: + JDTL,(Gp) = (Id + JDTGp D7 T J)T DTG5l
+ JDeGBi — JDTGB},-[GDe,DT -+ GDT,DE]GB]+'

whereT} is given by (49). Then, if we multiply this expression by ".J we get
Cy = —Gpep-Gph (88)
and if we multiply byl " .J and use the definitions @f, , C; andC;", we obtain
Cf = (By Dt" 4+ By Ny + BN + GpLDr " J")JR(IDTGL) + LBz — Ay
= — B O + B (Cy — L,By +ABy) + B (~C{ + L,By + ABy,)
+GpiDT " R(JDTGLL) + LyBs — Ay

= — B, CS + B, Cf — B/ Cf + G Qp,.GoLDT T T DTG oL (89)
+ G5 0.Gpr — Gy, G (Gpe.nr + Gprpe)Gpy + CF T,

whereC| " is given as

CIt =G DT "' DTG LY + Bl (LuBy + ABy) — By (LuB1 — ABy) + L,Bs — A,
=GptDT ' T\DTGpE + Re(L, By By — By L,By + 2B, AB;) — Ay,

where we used tha; = Re(Gp, p,) and (B (L,Bas + ABy))* = —B, (L,B; — AB;). By
introducing the expression (48) fak,, expandinglL,,B; andL,B; as in Lemma 4.3

L,By = —ABy + N]'JT' DG, — N DrG LD JTyDrG L

- GR,DTGE — GNl,DeGBi + GNI,DTGﬁlT(GDe,DT + GDT,D@)GB},--
L,By = AB, — N, JT, DG} + Ny DTG, D" JT\ DTGt

+iGre prGpL + Gy peG oL — Gy pr G (Gpe.pr + Gprpe)GpL,



38 KAM theorem without action-angle for elliptic tori

and usingthat ReV, N, ) = —Re((N, N, ) ") and RéG p, rGn,.p,)" = —Re&(iGp, n,GrDr),
we obtain (after some cancellations)

Cit =ReT3 + 1)), (90)

where
Ty = —Gpt (GDT,R + Gpeny — (Gpepr + GDT,De)GBITGDT,Nl) G oG- (91)
Now, we control the expressions (88), (87), (91) and (90) as

a A le]
ICS -5 < <lellos NC s 1CT o=s < A Rllps T3l -5, 1CF Mo ( 5p+||R||p)

and we use these bounds to control the expression (89) awfoll

el el
165 l-as < a( L5l + 0 + i, ).

and we use hypothesis (75) to get rid of the quadratic tetms, @btaining

(5 1-as < 5 (e 1 ).

Therefore, we have

a (el
HCin—Q(S S ,)/51/-‘,-1 < ) . + HR”P)7

fori=1,...,4. Finally, we obtain estimates for the inverse of the mdidix- M3 that appears
in system (85), given by

1

Id + M- T
H( 3) HP 25 < 1_ HM3HP 26

(92)
that, by using hypothesis (75) again, is well-posed since

el 1
(1 1,

Therefore, we obtain (77) for the functiofid },—; O

.....

M3 p-25 <

Do I
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Proof of Proposition 5.1 We organize the proof of this iterative procedure in thregspaln
partl), we correct the invariance of the torus by approximatelyisg the linearized equation
R(A,) = —e, given by (17), as it was explained in Proposition 4.4. Nexpartll ) we correct
the reducibility of the torus by approximately solving theelarized equatio(Ax, Ay) =
—R, given by (15) and (18), as it was explained in Propositidh 4inally, in partlll ) we
compute some additional estimates regarding the non-deggnconditions for the new torus.

Firstly, let us observe that condition (51) implies coralit(75) in Proposition 5.3 by taking
a constantv larger thanyv. Then, we use Proposition 5.3 construct an approximatehpssctic
basis at every point of the torus. As before, we redefine gejdhe constant along the proof
to meet the different conditions given in the statement.

I) Correction of the torus:The idea is that the solution of the equat®{A,) = —e
obtained in the invariant and reducible case —as discuss&daposition 4.4— provides an
approximate solution in the approximately invariant ca%ethis end, we consider the function

A, = D1A; + VAy+ NiAs + NoAy,

where A;, for i = 1,...,4, are solutions of the cohomological equations (37)-(48kingy
[A]p. = 0 and[As];. given by (41). Then we claim that the new embedding: 7 + A,
parameterizes an approximate reducible and invarians térwith an error which is quadratic
in |le]|, and||R||,. Of course, first we have to check the compatibility conditi®r ' Je|, ., =
0, that follows from the next computation

Dr'Je = D7 J(L,m — Jgrad h(7)) = Qp,w + grad 4(h(7)), (93)

by observing that both terms at the right hand side have zaerage (see Remark 2.2). Itis
important to observe that}; = iA, so the correctior, is real analytic.

As far as the estimates are concerned, we have (using Len2wta &ontrol the solution of
the cohomological equations)

Q Q
180llo-2s < —zgzzllello: 1Al < Z el

fori = 2, 3,4, so we can control the correctiak, in the parameterization as follows
a
A ]p-25 < WH@Hm

thus obtaining estimate (56). Moreover, we observe thatiénwative of the new parameteri-
zation can be controlled easily as follows

1D (|55 < |1D7[l, + [ DA p—35 < [|D7], +

8]
WHeﬂp<Ula
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where we used hypothesis (51), and also the distaneé&Xfp — 24)) to the boundary o/
dist (T(A(p — 28)), 8U) > dist (7(A(p)), OU) — [|A, -2
> dist (T(A(p)), 0U) —

«
Wﬂeﬂp > 02,

where we used hypothesis (52). Notice that we have achiemea{p(64) and (65).

Next we control the new error in the invariance. To this end, fisst introduce/ ;. into
R(A,) + e and we use properties (76) and (84) of the oper&a@nd also the cohomological
equations (37)-(40), thus obtaining

R(A;) +e=R(D1)A; + R(V)As + R(N1)Asz + R(No) Ay
+ D17L, Ay +V L ,Ay+ N1 L,As+ NoL,Ay+ €
= DeA, + (DTAT + VAT + N AT + Ny AT Ay + RA3 +iR* A, (94)
—D7V'Je+ VD7 Je = NiN, Je+ NoN| Je + ¢

e

et

We note that the terms not includeckinh are clearly quadratic inandR, since the functions

----------

remaining pare™. To this end, we write in terms of the constructed basis

et = Drel + Vel + Nieg + Naej,

77777

to study the linear system

ef D1
+

(1d+0) | 2| = | bl (95)
GI D4

whereMs3 is given in (86) and the matrices in the right-hand side aedalowing
Dy = — (Qp, — 1)V Je+ QyD7r"Je — Qun, Ny Je + Quy, Ny Je,
Dy =Qp. V' Je— (Qpry +1d,)D7 " Je + Qprny Ny Je — Qprn, Ny e,

D3 = —Qun, V' Je+ Qn,v D1 Je — (Qnyn, — Idy )Ny Je + Qn, Ny Je,
D, = —iDj.

Now we control these functions using estimates (68)-(7#rwposition 5.3

i (Il
1Dz < 5 (1L i, e
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fori = 1,...,4. We have shown in the proof of Proposition 5.3 that the mdttix M5 is
invertible and that] (Id 4+ M) ~'||,_2s < 2 (see (92)) so we conclude that

& (e
e l-as < 5 (L 4 1 Y e,

Going back to equation (94) we get

@ e
IR + elyas < s (152 + 11, el

and therefore, we conclude thR{A,) = —e is solved modulo quadratic terms in the errors.
Then, we observe that
e =L, — Jgrad h(T)
=R(A;) + e+ J(grad h(T) + hess h(T)A, — grad h(T + A,))
and control the last terms by estimating the residue of tlygoT@&xpansion of:, up to second
order, thus obtaining
a

|lgrad h(7) 4+ hess h(T) A, — grad A(T + A;)|| p—2s < igh He||i.

Hence, we end up with

_ & (el
el 25 < ~zgmr (152 + 1A el

where we used that > » — 1 > 1, finally obtaining estimate (57).

I1) Correction of the reducibilityTo square the error in reducibility of the new torgswe
have to deal with the equatid®(Ay, Ay) = — R, given by (15) and (18). As before, we solve
approximately this equation by taking (the reason of wgitiny rather thanA  will be clear
later on)

AN:DTP1+VP2+N1P3+N2P4,

{P,}i=1...« andA, being the solution of the cohomological equations (42)-(46
R = R+ Jhess h(t)N — Jhess h(7)N,

and fixingdiag [Ps];. = 0. The formal solution of these equation has been discussebjpo-
sition 4.6 so we know that we must take, = —diag [N, JR]y-.

Firstly, we claim that the geometry of the problem imposes the selected\, is pure
imaginary, so our procedure automatically preserves theoapmately elliptic character of the
torus. To see that, we observe that transposing equatighe@ads to

L,On, Ny, = —AQNn, N, + Qny N A+ Qe v, + 1N, R--
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Since the left-hand side of this expression has vanishiageae andiag [y, n,|p = —Id,—;,
it turns out that
dlag [QR7N2 + iQNl,R*]'ﬂ‘r = 0,

and sodiag [iQy, g+|p. = diag [Qn,, R};. Then, it is straightforward to compute

A\ = — diag [NQTJ]A%} = —diag [—iQu, g+ + N, (hessh(7) — hess h(7))Na| 1.

T'f‘
= diag [QN%R]TTFT — diag [N, (hess h(7) — hess h(f))Nl]; (96)
= diag [Qn,,r — N, (hess h(7) — hess h(%))NIET = A} = —Ay,

SO0A, IS pure imaginary.

Now obtaining estimates for the solution of the cohomolaberuations is straightforward
after controlling

~ « e Q e
IR0 < s (192 4 080,). 1801 < s (1 4 g, ),

and applying Lemma 5.2

& (el & (el
1P lo-as < —zgims (D52 1R ), 1l < s (15 1 ),

fori = 2,3, 4. With these estimates we check condition (64) for the newapmate normal
frequencies\. For example,

where we used (53). Similar computations allow us to see3hat |\;| < %, using (54)
and (55), respectively.
We also have

A i (lel
(3nlha < —fs (1L 4, )

and we observe that, if we introduéé= N + A, using (51) we obtain that

A A o (Il
19045 < DT+ 1l a5 < IV + s (02 411 ) <0 07

and that the matridiag [ 5. |- IS constant, diagonal and pure imaginary, but it isihaf
as we want. Nevertheles, from the following expression

Qg e = Ovne = Qyay + 04, 5
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and using hypothesis (51) we obtain

& (el
1905 5 = Ovloess <~ (1 ),

where we recall thatiag [0y n-],. = ild,—,. Hence, we have that the elementslofs [ 5. |1
are of the formi(1 + d;) with

Q e
= s (10 11 )

Hence, using again hypothesis (51), we have fat< 1/2 fori = 1,...,n —r, so we can
normalizeN in order to preserve hypothedis. To this end, we define the real matrix

1
14d;’

B = diag (bl, ce 7bn—7‘)7 with b; =

and it turns out that the matri¥ = N B satisfiesdiag [QN N+ } = ild,,_,. Let us observe
that the performed correction is small, since if we take= N + Ay we have that

Ax = N(B —1d,_,) + AxB,

and so

a lle
[AN][p-a5 < AA§v—1 ( ’(;Hp + ||R||p)w

that corresponds to estimate (59). We seelfft\df, 15 < o1 by similar computations as in (97),
thus obtaining the corresponding condition in (65).

The rest of this part is devoted to check that, usihgndA, the new approximately invariant
torus.7 is approximately elliptic up to a quadratic error. To thislewe compute

R = L,N — Jhessh(7)N + NA
=S(An,Ap) + R+ J(hess h(T) — hess h(T))An + ANAn, (98)

where the action af on Ay is written in terms of the action oA y as follows

~

S(An, AN+ R
S(N(B —1d,_,) + ANB,Ay) + R

R(N(B —1d,_,)) + R(ANB) + NA, + N(B —1d,_,)A + AyBA + R
R(B —1d,_,) + R(AN)B+ NAy + AyBA + R

= (S(AN,AN) + R)B+ (R— R— NAx + AyA)(B —1d,_,),
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where we used th&®(N) = —NA + RandBA = AB.
Then, we introducé\ y andA, in S(Ax, Ay) + R and we use the properties (76) and (84)
of the operatofR and also the cohomological equations (42)-(45), thus ointgi

S(AN, Ap) + R= R(AN) + N1 Ap + ANA + R
= R(D7)P, + R(V)Py + R(N1) P5 + R(No) Py
+ DTLy,Py + VL, Py + NiL,P; + NoL,Py + N1 A,
+ DTP A+ VPA + NiPsA + NoPAA + R
= DeP, + (DTAT + VA + NiAS + NoAD)Py + RP; +1R*Py
—DrV'JR+VDr " JR— N\N] JR+ N,N| JR + R.

Rt

As we made in equation (94), the terms not include&inare clearly quadratic inandR.
Then, we expres&™ in terms of the basis

R™ = DTR} + VR} + N\Rf + NyR],

and foer we get a system like (95) farj, simply by replacing: with R in the definition of
D;. Hence,

73631/—1 )
Therefore, we can compute a bound for the error in the selwfdhe linear equation that
corrects reducibility

a (el ’
R pm2s < ( Py ||R||p) .

_ 2
. A a e
IS(ANn, Ap) + R|| j—a5 < W(H 5”;2 + ||RHp) )

so we obtain —again, we use hypothesis (51) to control thdratia terms—

_ 2
. a e
IS(An, Ap) + Rl p—4s < W(H 5||p + ||R||p) )

Therefore, recalling (98), we easily show that the new g6} in reducibility is quadratic

a_ (el ’
78581/—2 < ) . + ||R”P) .

[l ) Additional estimatesFinally, we have to check estimates that allow us to contrel t
non-degeneracy of the basis and the twist condition. Usiag t

1Rl -6 <

Gpr — Gpr = Gprpa, + Gpa, pr
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and recalling (51) and (56), we get

a
|Gpr — Gprllp-35 < WHQHP'

Now, we observe that/,. = (Id, + G, (Gpr — Gp,)) 'Gp: so we can compute the
following —again, we make use of (51)—

1GDr — Gorllp-ss < |Gorll (1, + Gy (Gpr — Gpr)) ™ = Td, || 35
IG5 2 Gos — Gorllp-ss a

- D = lel
1 —||GoiIIGpr — Gprllpess — 202+t

thus obtaining (61) and the term in (65) that corresponds tb. Similar computations allow
us to control the non-degeneracy of the set of normal vectbus getting (62) and (65) for
G'-.. Now, we are able to estimate the new twist condition for

NN+
where

Ti(0) = J hess h(7())J — hess h(7(0)),
T5(0) = Ty J [D7(0)Gp-(0) " D7(6)" — 1d]Re(iN(O)N*(6)").

As before, we first bound

_ Q e
) = Ml < s (102 4 10, ).

Now we estimate the inverse ¢fl;] , by using the fact thatl; = A; + A; — A;. Then,
we repeat the same argument used before, using hypothé&$jsh{Bs obtaining bounds (63)
and (65) for[A,] .. 0

6 Proof of the main result

In this section we prove Theorem 3.1 by applying inductiveéfgposition 5.1. First, in Sec-
tion 6.1 we study the convergence of the obtained iteratihierme, without worrying about the
exclusion of parameters that lead to resonances. As uleajytadratic convergence overcomes
the effect of small divisors. Then, in Section 6.2 we proa thipschitz regularity is preserved
along the iterative procedure. Finally, in Section 6.3, waneate the measure of the set of
excluded parameters.
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6.1 Convergence of the Newton scheme

Given a parameter € I, we denote the objects that characterize the corresporagipigpxi-
mately elliptic and invariant torus as (from now on we omé ttependence on the parameter)

T(0) = Tus

N(O) - Nl“ A(O) - AN’
and we introduce also

€(0) = €pus R(O) - R;u Al,(O) = Al,,“ )\(0) = (/\( ce /\(0) ) = )‘M'

) n—r

where we recall thad o) = diag (i)\()). Moreover, giveny, > 0 such thaty, < ; min{1,4},
we define the following quantities (recall tHak p < 1)

P(0) o) s
Py =P, O = 160 PO =P~ 4(s—1), O = 20 Vo = (1427%)7,
for anys > 1, and consider the normalized error
lello
E) = 5—(0) + 1 R0 ll oy - (99)
(0)

Then, we are going to show that, considering the constgmovided by Proposition 5.1,
which depends on the quantitiesr, n, |w|, g, 01, 09, 03 ando, in the statement of Theo-
rem 3.1, if the normalized errayy, is sufficiently small so that

28v—1lqe 1 . .
W)éo) < émln{l,al—a ,dist (10 (A(p)), 0U) =09, 0 —03,04—2mjax|)\§-0)|}, (100)
where

« _ -1
0" = max { D70y Nl 1G B oy NG e Nl | [AL@]o 1}, (202)

o = mln{mm\)\ j:)\(o\ Qmm\)\ ]} (102)

i#j

then we can apply recursively Proposition 5.1 to the inipproximation, thus obtaining a
sequence

T(s) = T(s—1) = T(s=1) T Dr ) €(s) = €(s—1);
Ns)y = Ns—1) = Ns—1) + Ay R = R(s—1),
Ay = Ns—1) = Ns-1) T Day)s Ay o) = Al (s-1),
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all these objects being analyticix(ps) ). Notice that, in order to applytimes Proposition 5.1,
we restrict the parametgrto the set/(,_,) defined iteratively by_;) = I and

Iy = {p € I1s—1) : M) satisfies Diophantine conditions (9) (103)
of (y(s), v)-type with respect ta}.
Let us observe that the basic frequenciesutomatically satisfy Diophantine conditions (4) of
(7(s), v)-type, for everys > 0, since they are fixed along the procedure and we haye<
27 < v andv > .

Now we proceed by induction. We suppose that we have appltedes Proposition 5.1,
for certains > 0, and we verify that we can apply it again. To this end, we defipg (s
andoz‘:) as in (99), (101) and (102), just by replacing flte-objects with(s)-ones. First, we
observe that we have

oly < o1, dist (75 (A(p(s))), OU) > 02, 03 > 03, mjaxp\g,s)’ < %,

so the construction of the constamtof Proposition 5.1 is uniform for all iterative steps —it
depends on the constants, o1, 09, 03 ando, that remain unchanged along the procedure—
and so, conditions (51)-(55) are fullfilled provided that trtormalized error ) satisfies

QE (4 1 . N .
Wéyj_l < 5 min {1,01 — 0(s), dist (7(5)(A(p(s))), OU) — 02,005 — 03,04 — 2max|/\ |}
(104)
In order to verify this inequality, we start by computing th@malized error at the-th step
—recall thaty,) < 1andd(,) < 1—

2 2s—1(8r-2)+15
< —52 < 2 (105)
P(s) — Sv—2 ( 1) — Sv—2 (8 1)7

les)llps
) = ——= + || Ry)]
O(s)

where we used (57), (60) and the fact that.;) > .. Then, by iterating this sequence back-
wards, we obtain that

858”_2 281/ 1 2°
0 < BO_y-terie- (5_80‘5;)> | (106)
@ 1690)

Using this expression of the error, we verify condition (L0%order to perform the step
s + 1. For example, the first term in this condition is straightfard

_ b1~ 2s
C“5(5) (541/ 1o~ (4v— l)s—8u+2(28 10‘5(0)> <

1
541/ 1 — 2 8581/—2 5’
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recalling thatr > » — 1 > 1 and (100). In order to verify the remaining conditions in4}L0
we have to control also the objedt® ()|, |V |y, A, €tc. For example, we discuss
in detail the following inequality

QE(s)

D7 Il i g1

+ < 01.

P(s)
By usingD7(y) = D7(s—1) + DAT(S_I) recursively as follows

df() A E(s)
oo + 01 < D75

HDT(S)’ 5411 1 P(s—1) + HDAT(sq)‘ P(s) + 5—21
< ||D N DA —5(5)
< T(O)Hpm) + Z | ;) ||P(j+1) + siv—1
j—O 7 (8)7(s)
@8(3)
< HDT(O)HP(O) +Z 7 521/ + g1
7=0 (4)
< |ID7o)ll ooy + Z W (107)
0 1 °0G)

Notice that in the above computations we used estimate (@8)aposition 5.1 and the fact
that ), ;) < 1. Then, we introduce the expression for the eregys previously computed
and use thaj + 1 < 27 in order to obtain

J
A E(s) b y b 28'/_10_56(0) 2
||DT ||P() 5— < ||DT ||P(o) +7064 teH 22 (=1 ( 8 58v—2

4 cAy—16—8u+1 2% 1045@) o
< ||DT ||p<0 + Y (5 V Qs Z (W)
=0 N T0%o

0_68(0)

< HDT(O) H/J(o) 45001

<oy,

where in the last two inequalities we have used hypothe8)(h order to bound the expression
by the sum of a geometric progression of ratj@. Analogous computations show that —we
use estimates (59), (61), (62) and (63), respectively—

) QE(s)
”N( T <oy, HGDT(G) P(s) +W < 01,
)7 (s)
— A E(s) -1 QE(s)
1G N w loo + g <o Aol 1+ e <o
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thus obtaining the second condition in (104). Next, to yetfile inequality which corresponds
to the third term in (104) we observe that

dist (7(5)(A(p(s))), OU) = dist (7(5-1)(A(ps-1))), OU) — | Ar )|

P(s)?

and we use again (56) and (100), thus concluding —computatoe analogous as those per-
formed for D7,y above—

Q E(s)
4 4v—1
V)0(s)

2@8(0)

dist (T(S)(A<p(s))),aU) - W
70%(0)

> dist (T(o)(A(p(0)>)7 aU) —

Checking fourth and fifth conditions in (104) —which involvestimates (58) for the normal
frequencies— is left to the reader, since it follows in thensavay.

We now observe that hypothesds, H,, Hs, H, andH; are automatically satisfied for the
s-objects and Diophantine conditionslify are guaranteed after defining the skts of “good
parameters”. Then, we can apply Proposition 5.1 again.

Therefore, we can apply inductively this scheme and, siheesequence of normalized
errors satisfies,) — 0 ass — oo (due to hypothesis (100)) we converge to a true quasi-
periodic invariant torus for every in the set

Iy = [ Lio)- (108)
s>0
Notice also that
: - P
Py = im iy = poy =4 89 = pio) — 810) = =
s=0

and that the limit objects are close to the initial (approxie) ones:

20 (o) 25«45(0)
%) — < N(co) = N < — -1
||T( ) 7—(0)‘|1(oo)7p(o)/2 = 735(2(1]/) H (o0) (O)”I(oo)vp(())/Q 735216/)—1
2548(0)
|)\i,oo —/\z‘,0|1<x> > o1
(c0) (0) 1 (o0) %2)5(20) 1
fori = 1,...,n —r. Then, from these expressions we obtain bounds (10) andir{lthe

statement of the theorem, just observing that < .. /d(g).

6.2 Lipschitz regularity

As we pointed out in Section 4.1, to control the measure os#teof removed parameters we
cannot use any kind of smooth dependence with respecthecause the sefg, have empty
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interior. Then, following closely [33, 34, 35, 36], to cooltthis measure we use a Lipschitz
condition from below with respect foon the eigenvalues of the matrix,), for s > 0. In order

to guarantee this condition we prove that) is Lipschitz and then, using that, is close to

A (), we can ensure a posteriori thigt, is Lipschitz from below. For the sake of completeness,
we provide some basic results related to Lipschitz depereden

Lemma 6.1. Given Lipschitz functiong, ¢ : I C R — C, we have
(i) Lip;(f +g) < Lip;(f) + Lip;(g).
(i) Lip,(fg) < Lip;(f)llgllr + [IfI[r Lip,(9)-
(i) Lip;(1/f) < |11/ f|I?Lip;(f), if f does not vanish id.

Moreover, an equivalent result holds fifand ¢ take values in spaces of complex matricés (
must be invertible in the third item) and also for familigs— f, of functions orll", using

Lipy,,(f) and| fI|,.

Proof. The result is straightforward. ]

Lemma 6.2. Given a familyy € I ¢ R — f,, wheref, : & C C' — C is an analytic function
with bounded derivatives (that we dend' f,,) in ¢/, and given familieg. : I C R — g,,, h,,
whereg,, h, : T — U are analytic inA(p), we have

() Lip;,(fog) < Lip;y(f) + [ fllrer.ulipy ,(9).
(i) Lip;,(fog— foh)<BW(Lip;,(9—h)+|g—hll)
(iii) Lip;,(fog—foh—Dfohlg—h]) <BP|g—hllr(lg—hl,+ Lip;,(g — h)).

The constant'” depends ofip; c1 1, (f), || fll1.c2,u @ndsup ey Lipy,(h + s(g — h)). The
constant3®® depends ofiip; c2 1, (f), || fl1¢,.u @ndsup,g(o i) Lipy ,(h + (g — h)).

Proof. Item (i) is straightforward. Then, items (ii) and (iii) arbtained by using the expressions

1
Juogu— fuohy= / Df, o (h,+ S(QM - hu))[gu - hu]ds,
0

and

1
fu °G9u— f,u o h,u - Dfu © h,u[gu - hu] = / D2fu ° (hu + 5(9# o hu))[g# o h#]®2d57
0

respectively, and then applying item (i). Il
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Lemma 6.3.Lety € I C R — g, be a family of functiong,, : T" — C that are analytic in
A(p) and satisfyind.ip; ,(g) < co. If we expandy in Fourier series

9u(0) = gr(p)e ),
kezr

then we have

(i) Lip;(gx) < LipI’p(g)e—\k\m_

N L 0 1. .
(i) Lip;, s (a—i) < ngpI,p(g), forj=1,...,r.

(i) Given w € R"\{0} and a Lipschitz functionl : I ¢ R — C, we consider the sets
{d)}vezm (o1, {d}. }rez- Of complex functions qf given byd] = (k,w), d}, = (k,w) +
d(p), satisfying|d?|, |dy| > ~/|k|y, if |k|; # 0, for certainl > v > 0 andv > r — 1.
Then, the functiong® and f! whose Fourier coefficients are given by

flg = gk/dgv k€ ZT\{O}7 f(‘_()) = 07
f;zgk/d}w kEZT’

satisfy

. 0 Qo .

Llp[,pfé(f ) < WLlpI,pfé(g)v

. Lip; ,(9) Lip, (d) . 1 1.
Livg,-o(") < 6o Z 2+ ol o) + iy (o) |5 + | 3] Limvt@ll

foranyé € (0, min{1, p}), wherea, > 1 is the constant that appears in Lemma 5.2, and
By > « IS a constant depending onv anday.

Proof. Items (i) and (ii) are straightforward (see [34]). Item)(follows from the same argu-
ments used in Lemma 5.2 and applying the properties in Lemfna 6 O

Now, we use these elementary results to control recursitiely.ipschitz dependence of the
constructed objects. To this end, we obtain an “extendesioe of Proposition 5.1.

Lemma 6.4 (Addenda to Proposition 5.1) et us consider a Lipschitz family of Hamiltonian
systems € I C R — h,,, where[ is an arbitrary set, withh, : U C R*" — R, and a vector
of basic frequencies € R". Assume that there exist families= 7 — 7,, N,,, A, satisfying alll
the hypotheses of Proposition 5.1 for everg I and also that

HhHI,C‘*,u < 0y, Lip],CS,u(h)aLip[,p(7>:Lip],p(DT)aLipl,p<N)aLipI(A) < O5.
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Then, there exists a constaht> @ —wherex is introduced in Proposition 5.1— depending on
r,m, v, |w|, 0o, 01, 09, 03, 04 @ndos, such that if the condition

. ) ) ) 3¢
maX{Llpr(T)a Llpl,p(DT)7 Llpr(N), LlpI(A)} + # < 03 (109)
holds, where
. Lip;(e) . L (el
e =2 vipy (1) + o (102 4 1, ). (10)

then we have that the familiegs— 7,, D7, N,,, A, A,, Ax, A, obtained in Proposition 5.1
satisfy

Lipl,p—25<77—)7 Lipr_g(;(D%), Lip[,p—46(N)7 LlpI(A) < 05, (111)
. 3é . 3é , Bé
Lip; ,_05(A7) < 25T Lip; , 45(An) < Y Lip;(Ax) < ey (112)
and . Y
. _ Bé ) - Bé
Llpf,p—sa(e) < Llpl,p—45(R) < (113)

73631/—2 ! 7757V—2 ’

Proof. Basically, it consists in using the properties in Lemmata 6.2 and 6.3 to control the
different functions that appear along the proof of Propms# 5.3 (construction of the approxi-
mately symplectic basis) and Proposition 5.1 (iterativecpdure). Since the computations are
similar as those detailed in Section 5, we will omit somernmiediate steps.

First, let us study the objects in Proposition 5.3. To thigd,eme observe that there exists a
constant3 (which is enlarged along the proof in order to include depere on, n, v, |w|, oo,
o1, 09, 03, 04 andos) such that

Lip],p(Gglr)v Lip],p(G]_V,lN*)v Lip],p(ﬂ)’ Lip]([Al]%}% Lipr(V), Lip[,p(Bj) S B?

Lip[7p_5(Lsz‘) <

SRy

fori =1,2andj = 1,2, 3. For example, we have that
Lip; ,(Gpb) < G52, Lips ,(Gor)
< 1G5, (Lipr (DD + D7 s Lipr, (D7) )
< 4n||GpH7 IID7[lrLipy (D7) < B.

Then, we estimate Lipschitz constants for the matriegs, (2, ...,y that characterize
the approximately symplectic character of the basis in &sjons 5.3. For example, we get
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Lip; ,_25(©2p-) by applying item (iii) of Lemma 6.3 to théi, j)-component of2, obtained
from equation (80), i.e., taking) = (w, k) andg = —i(Qpe.pr + Qpr.pe) 7, thus obtaining

Liprp25(20r) €~y (Lipr, () + el

Similarly, to boundLip, , 5(QN1) we proceed in the same way takidf = (k,w) + A\ + \;
andg = —i(Qr.n, + Qn,.z) 7). We obtain

| e R,
Liby5(Q) <~ (Livr (R) + H,y(!y” .

In this way, we have the following bounds in terms of the efrdefined in (110)

. . . Be
Llp[,pf%(QDT)a Llpr,(;(QNi), Llp[,pfzS(QN%Nl) < W?

. . . . Be
Llpl,p—Qa(QDr,Ni)a Llp],p—za(QV,Dr)a L1p17p—2(5(QV:Ni)7 Llp],p—25<Qv) < ~ov

for : = 1,2. Furthermore, by performing similar computations to eatinthe Lipschitz con-
stants ofMs5 in (86),C; in (89),C5 in (88),C5 in (87) and(Id + M3)~! in (92) we obtain that
the functionsA;", fori = 1,..., 4, in the statement of Proposition 5.3 are controlled by

Be

Lip],pf25(A2—) < 75,/+17

provided¢ is small enough —indeed, under condition (51) in Proposifidl.

Now we can estimate the Lipschitz constantof : = 1,...,4, defined as the solutions
of cohomological equations (37)-(40). In analogy with theation in Proposition 5.1, we
introduce a constart > 3 depending on the same variablesias\le have

pé pe

. . Bé
Lipr , 95(A1) < W7 Lip; ,s(A) Hov1

Lip;, 25(A7) < 25T

IN

fori = 2,3, 4. In particular, we observe that condition (109) guarantkat
Llp[p 25( ) Llp]p 3(5(D7—) < 05.
Now, to control the Lipschitz constant of expression (94)oempute

e
Yov

Lip[,p—25<Di)7 Lip],p—25(€+) < 6%, Lip],p—35(R(AT> +e)) <
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fori = 1,2, 3,4. Finally, an estimate for the Lipschitz constantedbllows by applying item
(iif) in Lemma 6.2 that allows controlling the Taylor remdar, thus obtaining

. _ B2
Lip; ,_3s(€) < Jagz

Similarly we control the Lipschitz constant of the new nofra@envalues of the new re-
ducibility error. As in Section 5, we start by controlling

R Bé

. pé
Llp],p—25(R) S ,yzagy_l? T o o1

LlpI(AA) S ’}/2(52u_1 )

where we used item (ii) in Lemma 6.2, and then we apply Lemr@atorder to obtain

. je . pé
Lip; ,_55(F) < Ry Lip; ,_45(P1) < g
fori = 2,3, 4. From these estimates it follows that
. A . . . Bé
Llp[,p—45(AN)’ Lip;(d;), Lip;(b:), Llp[,p—45(AN) < Wa

and we observe that condition (109) guarantees that

In order to control the Lipschitz constant of the new erroreducibility 2 we have to
compute

. + /Bé2 . N ~ Béz
Llp[,p—25(R ) < Wa Llp[,p—45(8(AN7 AA) + R) < 3530’
Y Y
and _
: - Be?
Llpl7p_45(S(AN,AA> + R) S W

Finally, estimate (113) for the Lipschitz constant ®ffollows by applying Lemma 6.2 that
allows us to control the Taylor remainder in (98). ]

In order to prove that the Lipschitz dependence is preseaigdy the iterative scheme, we
only have to check —together with conditions for the coneae of the quadratic method—
that condition (109) is satisfied at every step of the prooedls in Section 6.1, assuming that
we have applied times Proposition 5.1 and Lemma 6.4, we have to ensure that

. . . . BE(s)
max{Lip; _ . (79), Lips_, 0, (D7) Lipg o (Nes), Lipg (A(S))}+W <05
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To this end, we compute the normalized error (110) atthestep

+ HR(S) ’ I(sl)vp(s)>

(114)

Lip, (e( )) 1 ||€ ||
A (s—1):P(s) \ (8 . () (s—1):P(s)
o = + L Rio) +

E(s) 5(5) lpl(s—l)vp(s)( ( )) 7(5)5(us) ( 5(3)

in terms ofé ). Analogous computations as those performed in (106) shatv th

2(5—1)(71/—2)-1-1/-1-25
Eg) < Er,_
(s) = 757V—2 (s—1)

where we used (57), (60) and (113). Then, by iterating thgsisece backwards, we obtain that

7TSTv—2 v Aana 928
A o 5(0) 9—(s+1)(Tv—2)—v—2 2° B (0)
Es) > B 767V_2 ’

and the convergence of the Lipschitz procedure follows feamilar computations as those
in (107) (but using (112)), asking for the condition

28Vﬁ€

W ~ mln{l 05 — O'***} (115)

where
Next, we show that the Lipschitz constants from below of threcfions

pE€ Ts1y = Nigs) (1), p€ To—1y = Nigo) (1) £ Ajs) (1),

fori # 5 =1,...,n—r, have a lower bound that does not depend on thessteotice that
Lipschitz (from above) constants are controlled for eveag (111). Indeed, we have

s—1 3 A
. . 258(0)
Liby, (A = Aw) < D Lipg, (An,) < s "
0

Jj=0

where we used condition (115).
Finally, using that

hpl(g 1)()\ (s )) > hp](>\ ,(0) ) Lip[(s_l)(Aiv(S) - )\17(0))

(and analogous computations hold #or.) (1) £ A 5)(1)) we end up with the bounds

. O¢ . Og
11p1(871)(>\i7(5)) Z Z hp[(s,l)(Ai,(S) :t )\j,(s ) Z 7 (116)
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fori,j=1,...,n—r,withi # j, ands > 0, provided that —we usHg in Theorem 3.1—

235(0) Og
o1 < g
705(0) 4
Therefore, the quadratic procedure to obtain invariantigh Lipschitz dependence con-
verges fonu € Iy —see (108)— provided conditions (100), (115) and (117) hidreover,
notice that if we control the erroes,y andé o) (given by (99) and (114), respectively) in terms
of the errorz, that appears in the statement of Theorem 3.1 as follows

Ex . Ex
£0) < —71 (118)
(0) ,}/05(0451

(117)

£0) < ;

(0) 5(0)
then we have convergence provided that C45, where( is taken in order to meet all the
required conditions.

6.3 Measure of the set of excluded parameters

It remains to control the measure of the $gt) given by (103) and (108), for which all steps
performed along the iterative procedure of Section 6.1 aieposed. Let us recall thdf,) is
constructed by taking out, in recursive form, the set of peai@rs. for which (4) and (9) do not
hold at any step of the KAM process. Concretely, we bound thesone of the complementary
set/\ (), that we write as

NNy = (I\(0) U (L0)\L(50)) = (I\L(0)) U | Lis—1)\ L)
s>1
We start by controlling the measure f_1)\ ), for s > 1. To simplify the notation, in the
following discussion we consider a generic divisor of therfdw, k) — d(,) (1), whered (1)
is either); (1) or \j (1) £ Ais)(1e). For this purpose, we introduce theth resonant set
for the divisord,) as

s V(s
Res](g) — {u & I(s,l) : |(w,k) —d(s)(,u)| < ’/C(”ij}7

and we control
measR< U Resl(:)) (119)
keZr\{0}
using the following two elementary results.
Lemma 6.5. In the above setting, let us assume that I(,_,), with s > 1. Then, there exists
K*(s) € N such thatu ¢ Res'”) provided|k|, < K*(s). Concretely,

-1 281’_10_48(0)

K*(s) = Lé—%L where &= 735?%72 . (120)
0
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Proof. To prove this result, we observe that the correction of thenab frequencies —and
hence of ofd(, (;:)— is smaller at each step of the iterative procedure. Indesidg (58) at the
s-th step, (105), (106) and (118), we have that

ld(s) — dis—1)]

Is—1y < 2HAA(571)‘

6 $6v—10—(6v—1)s—2v+1 251
Is-v) < 705(0) 2 € .

Then, givery € I(,_y), it turns out thaj, ¢ Res,(j) provided the quantity

[{w, k) = dis) ()] = (ks w) = dis—) ()] = [ldsy = dis—1) 11y

> Ao kT — Agaly O

is larger thany,)|k|;. This is equivalent to ask for (recall thgt) = (1 4+ 27%)~0)
v—1o—(6v—1)s—2v+1 251 —s —v
012 O g,

which is satisfied for everyt|; < K*(s), whereK*(s) is given in (120). O

Lemma 6.6. Let us consider a vectas € R" satisfying Diophantine condition®) of (7, ©)-
type, withy > 0 and? > r — 1. Then, given/J C [«, 5] C R, witha > 0,y > 0, v > ¥ and
K € N, we have that the measure of the set

Ag = {d eJ: [(kw)—d| < #, for somek € Z", with |k|; > K} (121)
1
is controlled as )
ERIN 7
meaSR<AK> S 2 +11/(6 — OZ)T Z W (122)
I>K

Proof. Let us introduce the following notation

Res; = {de T (k,w) —d| < VZ\}
1

if ||, > K, Resy =@ if |k|; < K, and alsd/%vesj = Uy/,=, Resi. Then, we have that

measg (Ax) = measg (U E\e/sj> < Z measR(f{\e/sj),

I>K J>K

thus reducing the problem to study the SBAL%]-, which only contain resonances of order
j. Now, let us observe that the width of one resonantisej, of order; is controlled by
measg (Resi) < 2v;57%. Hence, it remains to estimate the number of resonantisets with
|k|; = 7, that intersect/. This follows using similar arguments as in Lemma 5.2.
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For this purpose we introduce some notation. We define (k,w), which corresponds to
the exact resonant valuec Res;, and

By =la AN (U{dk}) b, =D
lk|1=j I<j
With these ingredients, we have

1 D;
measg (Ag) < Z# = 272# ( Gt 1)y> < 2fyyz %}Hj, (123)

I>K I>K iI>K J

where we used the conventites;, = @ if |k, < K.
In order to estimate:D;, we sort the resonanceg for |k|; < j according to

< dy, < dp_, <0 <dy, <di, <

and we observe thal,, # d, if k; # k;. Then, using that is Diophantine of(¥, 7)-type, we
have|dy,,, —d;,| > 7/(2j)". Hence:

N — 2?47
#(Dj) < u
Y
By introducing this expression into (123) we end up with (122) [

Now let us control (119). On the one hand, we use Lemma 6.5derawestrict the in-
dexes in (119) tok € Z"\{0} such that|k|, > K*(s) —see (120)— and, on the other
hand, we use Lemma 6.6 to control the corresponding mea3oreo that, we observe that
lip; (d( ) > 0¢/4 by (116) and thatl(,)(/(s—1)) C [03/2,04] —this follows from the fact
that (64) is preserved along the iterative procedure. Tienl.ipschitz constant from below of
d(s) allows moving the measure of the “resonant” sets (121),rotlatl in terms ofl = d,)(u),
to the corresponding measure in termg.oHence, we get

. s cu oy — 2 1
measR( U Res/,(C )) = measR( U Resfg )> < Uty (%) ﬁ Z —
kezr\ {0} k| > K (s) 6 T iSke(s)?

where we used thaf, < 2v,. Notice that this estimate does not depend on the selected
ds (1), S0 we can control the measure of thekgh /() as follows —we multiply the obtained
bound of the measure B(n — r)? to take into account all possible combinations of normal
frequencies—

C’

205, (n— T)2 o4 — G Co
measR(I(o)\[(oo)) < 5 ( o )702 Z jroorl = y—yZK* v—i’

s=1 j>K* (s
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where we usedr > ©. Then, we introduce the expression (120) f6f(s) and using that
£ < 1/2 (see (100)) and that< 2°~!, we have

Y0-

vV—U T v—U

s=1

C’YO V= 9s—1 C'YO _
m I ]oo < g v < — E 275 <L
casg(l0)\ (o)) < ) (&) R e

Finally, we estimate the measure of the Sef,) = 1)\ using the same arguments,
and it turns out that it is also proportionaltg. Hence, we obtain (12) as follows

measg (/\ /(o)) < measg(I\(g)) + measr(/0)\/(x)) < C5%.
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