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Abstract. We present a space discretization for advection equations on unstructured and
structured grids. In this discretization, the flux is calculated on edges, and then distributed over the
nodes of the grid. The distribution is based on advection speeds which are edge-based or cell-based,
corresponding to flux vector splitting or to flux difference splitting. Enlarging the distribution
stencil leads to upwind and central directional higher order schemes. The discretization method
includes and extends residual distribution methods. In this paper, the distribution is based on the
N scheme since the aim is to reduce the truncation error for certain directions, but the method
allows for more general distributions with improved accuracy. For systems of equations, the flux
vector is decomposed in scalar parts which are distributed separately. Discretizations using limiters
are locally inconsistent.
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1. Introduction.

The Finite Volume (FV) method is frequently used for the discretization of advection
equations. The FV method is closely linked to the integral form of the partial differential
equations, and leads easily to a scheme in conservation form. Its geometrical flexibility
contributes to its popularity. In the FV method, the volume-centered unknowns represent
the volume-averaged state. They are used to approximate the interface fluxes through the
edges in a central or upwind manner. The contour integral of the flux is then used to
advance the unknowns to the next time level. More accurate schemes are obtained with
higher order interpolation of variables or fluxes. Limiters or artificial viscosity lead to
monotone solutions.

Godunov’s method [1] of solving the Riemann problem has inspired approximate up-
wind solvers which use for the upwind flux calculation Flux Difference Splitting (FDS).
In the FDS method, the flux difference between two neighboring states is decomposed in
waves related to the local Riemann problem [2, 3]. The waves arriving at the edge are
added to approximate the interface flux [4, 5].

In the Flux Vector Splitting (FVS) upwind method, the flux in a cell is split in parts
depending on the velocities in the cell. The interface flux is the sum of those parts which
have velocities toward the interface. There is a close relationship with Boltzmann schemes,
where particles move in and out of a cell with a certain velocity distribution [6, 7].

In two or three dimensions, the approximation of the numerical flux at a cell boundary
is essentially a grid related one-dimensional process. Efforts have been made to remove
this restriction by upwinding along grid independent directions like streamlines and bi-
characteristics in the case of systems of equations, see

[8,
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11,
12,
13,
14,
15,
16,
17]

e.g. [8]–[17], and references therein.
Multi-dimensional upwind methods are not yet widely accepted, contrary to grid-normal
based methods. In the case of systems of equations with non-commuting Jacobians, early
versions had problems of convergence and monotonicity.

A closely related alternative to the FV method is the Residual Distribution (RD)
method1, which has been developed over the past thirty

[18,
19,
20,
21,
22,
23,
24,
25]

years [18]-[25]. The unknowns are
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placed at the nodes of the grid, using a Finite Element (FE) type of representation. The
residual is calculated on a volume of the structured or unstructured mesh. An approxima-
tion is involved in distributing the residuals to the nodes. Scalar distribution discretiza-
tions have been formulated for triangular grids [21]-[26]. Certain properties can be imposed
such as monotonicity preservation and linearity preservation. The latter corresponds to
second order accuracy on structured grids. Among the distribution discretizations are the
Lax-Wendroff scheme (linearity preserving, not monotone), the upwind N-discretization
(N for narrow, first order, monotone), the PSI discretization, which is a minmod lim-
ited N-discretization, and the LDA discretization (linearity preserving, not monotone).
The residual distribution formulation works fine for the scalar advection equation, and
shows advantages over the standard finite volume upwind discretizations. For systems
of equations, first upwind attempts with the RD method were with the wave models of
Roe [27, 26], which is a multi-dimensional extension of the one-dimensional FDS of Roe.
This was followed by a hybrid method [28], solving the acoustic part with the Lax-Wendroff
scheme. Matrix distribution schemes [29] have been cast into the RD framework [30, 31].
Several publications report extensions to higher order discretizations [32, 33, 34]. Chang-
ing the linear variation of the unknowns to a higher order variation presents complications
with the linearization for systems of equations.

We present in this paper a flux distribution method. Contrary to the RD method
where the fluxes are gathered into a residual, which is distributed using a cell-averaged
speed, the individual flux at an edge of the grid will be distributed over the nodes. The
distribution depends on the local advection speed at the edge, or on the advection speeds
of the adjacent cells, and corresponds to FVS or FDS.

This paper is organized as follows. First, discretizations in one dimension are cast in a
FVD formulation, assuming linearly varying unknowns. In one dimension, edges and sides
collapse to nodes. Therefore, the flux is calculated at the nodes and distributed based on
a node-based or cell-based advection speed. Classical discretizations are recovered with an
appropriate choice of the distribution of the flux. Higher order discretizations with non-
linear variation of the unknowns are possible, but are not exploited in this paper. Instead,
we consider distributions to more distant nodes. The FVS or FDS extension to systems
of equations makes use of a flux splitting in scalar parts or waves, with corresponding
advection speeds.

In the following section, discretizations for two space dimensions are treated. The RD
formulation of the N scheme on a triangle is the starting point for the derivation of the FVD
N scheme. The N scheme is an example of a directional discretization, i.e. a discretization
which aims to reduce specific terms in the truncation error given a preferential direction.
Distribution to more distant nodes leads to the second order N scheme. The discretizations
are analyzed for accuracy and consistency. Using a structured grid of triangles, a second
order directional upwind discretization for structured meshes is derived.

It appears that discretizations with a distribution derived from the N scheme can be
inconsistent on unstructured grids. This is the case in two dimensions when a node is not
surrounded by six triangles. In three dimensions, inconsistency appears for the icosahedron
and for structured grids where the cubes are dissected in tetrahedra.

The N scheme is not an essential part of the FVD method. More general discretizations
which can be rewritten in the FVD formulation, some of which with better accuracy or
stability, are described in a separate paper [35].
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2. One-dimensional schemes in the Flux Vector Distribution formulation.

We start with discretizations of the scalar advection equation in nonlinear or linear
form,

∂u

∂t
+
∂f

∂x
= 0 , or

∂u

∂t
+ a

∂u

∂x
= 0 , with a =

∂f

∂u
, (2.1)

on a regular grid with nodes x = xi and grid spacing ∆x. We will restrict the analysis
to explicit schemes. We recapitulate the Finite Volume (FV) and Residual Distribution
(RD) methods for a clearer presentation and better comprehension of the Flux Vector
Distribution (FVD) formulation.

2.1. Three point schemes.
Consider the space discretizations on the three point stencil i− 1, i, i+ 1. The upwind

schemes on this stencil will be first order, the central scheme second order.

2.1.1. The Finite Volume scheme.
The volume for node i in the FV method is [xi−1/2, xi+1/2]. Over this volume, the

unknowns ui are assumed constant. The numerical flux fi±1/2 is approximated at xi±1/2

using ui and the neighboring values ui±1. The cell residual Ri is the difference of the
approximated numerical fluxes fi+1/2 − fi−1/2. With forward Euler time stepping, this
leads to the standard update

un+1
i − uni = −∆t

∆x
Ri = −∆t

∆x
{
fi+1/2 − fi−1/2

}
. (2.2)

The scheme is indicated in Fig. 2.1, where the dotted arrows indicate the computation of
the interface fluxes, approximated from the nodal values, and the solid arrows show the
construction of the residual from the fluxes and the update from the residual.
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Figure 2.1. Discretization of (2.1) with the FV scheme, approximating the fluxes fi±1/2 for the
computation of the residual Ri which is used in the update of node ui.

Well-known schemes are the central scheme, fi+1/2 = 1/2 {fi + fi+1}, and the upwind
schemes. Upwind schemes are classified as FVS and FDS, and come in a great variety, see
e.g. [2, 3]. The main difference between the schemes is in the way they capture disconti-
nuities of the solution.
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The interface flux for FVS can be written as fi+1/2 = f+
i +f−i+1. The update for node i

becomes
un+1
i − uni = −∆t

∆x
{
f+
i − f

+
i−1 + f−i+1 − f

−
i

}
. (2.3)

An example of a FDS flux is

fi+1/2 = 1
2 {fi + fi+1} − 1

2 |ai+1/2| (ui+1 − ui) , (2.4)

where the cell-wise speed ai+1/2 satisfies

fi+1 − fi = ai+1/2 (ui+1 − ui) , (2.5)

and the update for node i is obtained with (2.2). For the linear advection equation with
a > 0, the upwind schemes revert to fi+1/2 = fi and un+1

i − uni = −(∆t/∆x) (fi+1 − fi).

2.1.2. The Residual Distribution scheme.
In the RD method [18, 19, 22], the solution is approximated by a continuous piece-wise

linear function often used in FE methods,

u(x, t) =
∑
i

ui(t)wi(x) , (2.6)

where wi(x) is the piece-wise linear basis function. With this representation, the space
integral of the time derivative of (2.1) becomes

∫ xN

x1
(∂ui/∂t) dx =

∑N
i=1 li (∂ui/∂t) dx. The

nodal volumes are the intervals li = xi+1/2−xi−1/2 = 1/2 (xi+1 − xi−1), l1 = 1/2 (x2 − x1),
and lN = 1/2 (xN − xN−1). The residual computed on the interval (i, i + 1), Ri+1/2 =∫ x1+1

xi
(∂f/∂x) dx = fi+1 − fi, is distributed over the nodes i + 1 and i such that δui :=

δui − (∆t/li)α
i+1/2
i Ri+1/2, and δui+1 := δui+1 − (∆t/li+1)α

i+1/2
i+1 Ri+1/2. In the notation

of the distribution coefficient αcn, c indicates the cell where the residual is calculated,
while n is the node to which it is sent. The scheme is shown in Fig. 2.2, where the solid
arrows indicate the computation of the flux from the nodal values, the construction of the
residual from the nodal fluxes, and the dotted arrows the approximated update from the
distribution of the residual.

The update for node i on a three point stencil can then be written as a sum of contri-
butions from the neighboring residuals,

un+1
i = uni −

∆t
li

i+1/2∑
j=i−1/2

αjiRj . (2.7)

The weights αi+1/2
i and αi+1/2

i+1 determine the properties of the scheme. Distribution of the

entire residual of each cell, i.e. αi+1/2
i+1 + α

i+1/2
i = 1, ensures conservation [21]. Note that

in [21] the fluctuation φi+1/2 = −Ri+1/2 is distributed.
The central scheme is obtained by equidistribution of the residual Ri+1/2 over nodes

i and i + 1 with α
i+1/2
i+1 = α

i+1/2
i = 1/2. For some upwind schemes the same linearized

advection speed ai+1/2 is used as in the FV method with the Roe solver. For ai+1/2 > 0,

α
i+1/2
i+1 = 1 and α

i+1/2
i = 0, and Ri+1/2 is subtracted from the update of node i + 1 ; if

ai+1/2 < 0, αi+1/2
i+1 = 0 and αi+1/2

i = 1, and node i receives −Ri+1/2. The distribution coef-

ficients can be written in short as αi+1/2
i+1 = 1/2 (1 + sgn(ai+1/2)) and αi+1/2

i = 1−αi+1/2
i+1 =
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Figure 2.2. Discretization of (2.1) with the RD scheme, computing the residual Ri with nodal
fluxes, and approximately updating the node ui with parts of the residuals.

1/2 (1− sgn(ai+1/2)). With these coefficients we can write αi−1/2
i Ri−1/2 = 1/2 {fi − fi−1}+

1/2 |ai−1/2| (ui − ui−1) and α
i+1/2
i Ri+1/2 = 1/2 {fi+1 − fi} − 1/2 |ai+1/2| (ui+1 − ui) . The

resulting update for node i is identical to (2.2) and (2.4). The method is in one dimension
just an alternative to the FDS method of the FV discretization, §2.1.1. In two and three
dimensions, however, the distribution coefficients can be tuned to the advection speed.
This reduces the grid dependence of the schemes and increases the accuracy and stability.

2.1.3. The Flux Vector Distribution scheme.
The solution is approximated by a continuous piece-wise linear function like in the RD

method, (2.6). But instead of assembling the fluxes into a residual which is distributed
with an averaged advection speed, the fluxes are distributed individually according to the
local advection speed ai = ∂f

∂u

∣∣∣
i
, or the adjacent cell advection speeds ai−1/2 and ai+1/2.

This enables the formulation of both the FVS and the FDS schemes mentioned in the FV
discretization, §2.1.1. The scheme is indicated in Fig. 2.3, where the solid arrows indicate
the computation of the flux from the nodal values, and the dotted arrows the approximated
update from the distribution of the nodal fluxes.

Let the effect of flux fi at node j be given by δuj := δuj−(∆t/lj)α
i
jfi. The distribution

coefficients αen determine the properties of the scheme, where e stands for the edge interface
(node in one dimension, surface in three dimensions) where the flux is calculated, and n the
receiving node. We maintain the sign convention of the RD method. It has the advantage
that the distribution coefficients are just the coefficients appearing in a standard finite
difference expression of the residual. For conservation we need

∑
j α

i
j = 0 ∀ i except for

i = 1 or i = N at the boundaries of the domain. The update for node i on a three point
stencil can then be written as

un+1
i = uni −

∆t
li

i+1∑
j=i−1

αjifj . (2.8)

Upwind schemes. We use the standard notation

a± = 1
2(a± |a|) , with a+ ≥ 0 , a− ≤ 0 , a+ + a− = a , a+ − a− = |a| , (2.9)



6 robert struijs

�
�
�
�

u

x i∆

����
x

������������ i i+1i−1

f

f

i

i+1

i−1
f

Figure 2.3. Discretization of (2.1) with the FVD scheme, where the approximated update of node
ui involves the nodal fluxes fi−1, fi, and fi+1.

and for a 6= 0 the adimensional directional coefficients d,

d =
a

|a|
= ±1 = sgn(a) , d =

1
d
, with d± = 1

2(d± |d|) ,

d+ ≥ 0 , d− ≤ 0 , d+ + d− = d = ±1 , d+ − d− = |d| = 1 . (2.10)

Flow-dependent switching functions have been introduced by Murman and Cole [36] for
their central-upwind discretization. Switching functions are also found in the flux splitting
of Engquist and Osher [37]. The extension of these coefficients to more space dimensions
and to systems of equations is trivial.

A normalized flux which has f = 0 for a = 0 is insensitive to the discontinuity of the
coefficient d.

The distribution of the nodal flux can be based on the nodal advection speed ai =
∂f/∂u|i or on the cell advection speeds ai−1/2 and ai+1/2.

With the distribution based on the nodal speed, the distribution coefficients for the
flux fi are

for ai > 0 : αii−1 = 0 , αii = 1 , αii+1 = −1 ,

for ai < 0 : αii−1 = 1 , αii = −1 , αii+1 = 0 , (2.11)

or

αii−1 = −d−i , αii = d+
i + d−i = di , and αii+1 = −d+

i . (2.12)

The distribution for ai > 0 is indicated in Fig. 2.4.
The fluxes which are distributed to the nodes i−1, i, and i+1 are αii−1fi = −d−i fi = f−i ,

αiifi = (d+
i + d−i )fi = difi = f+

i − f
−
i = |fi|, and αii+1fi = −d+

i fi = −f+
i respectively. The

update of node i then becomes

un+1
i − uni = −∆ti

∆xi

{
αi−1
i fi−1 + αiifi + αi+1

i fi+1

}
= −∆ti

∆xi

{
−d+

i−1fi−1 + (d+
i + d−i )fi − d−i+1fi+1

}
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Figure 2.4. Discretization of (2.1) with the FVD scheme for ai > 0 : the fluxes are distributed
downstream with the weights as indicated.

= −∆ti
∆xi

{
f−i+1 + f+

i − (f−i + f+
i−1)

}
. (2.13)

This is the FVS scheme of (2.3) derived in a FVD context. The interface fluxes are

fi+1/2 = d+
i fi − d

−
i+1fi+1 = f+

i + f−i+1 . (2.14)

For the distribution with the cell advection speeds we use the coefficients α based on
speed ai−1/2 to send the flux fi to nodes i − 1 and i, and coefficients β based on speed
ai+1/2 to send the flux fi to nodes i and i+ 1, similar to (2.11),

αii−1 = −d−i−1/2 , αii= d+
i−1/2 , αii+1 = 0 ,

βii−1 = 0 , βii= d−i+1/2 , βii+1 = −d+
i+1/2 . (2.15)

The update of node i and the interface fluxes using (2.15) is

un+1
i − uni = −∆ti

∆xi

{
(αi−1

i + βi−1
i )fi−1 + (αii + βii)fi + (αi+1

i + βi+1
i )fi+1

}
= −∆ti

∆xi

{
−d+

i−1/2fi−1 + (d+
i−1/2 + d−i+1/2)fi − d−i+1/2fi+1

}
= −∆t

∆x

{
−d−i+1/2(fi+1 − fi) + d+

i−1/2(fi − fi−1)
}

= −∆ti
∆xi

{
1
2 {fi+1 − fi−1} − 1

2di+1/2 (fi+1 − fi) + 1
2di−1/2 (fi − fi−1)

}
,

(2.16)

fi+1/2 = d+
i+1/2fi − d

−
i+1/2fi+1 = 1

2 {fi+1 + fi} − 1
2di+1/2 (fi+1 − fi) . (2.17)

This formulation leaves freedom in the choice of ai−1/2 and ai+1/2. The trivial choice is to
take some average, e.g.

ai+1/2 = 1
2(ai + ai+1) , or ai+1/2 =

∂f

∂u

∣∣∣∣
i+1/2

, (2.18)
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or the advection of (2.5). With the second choice of (2.18) we obtain the flux difference
splitting of Huang [38]. For a discussion see [2].

There are still other distributions possible. We can use the distribution of (2.11) with
the average of the cell speeds, a = 1/2(ai−1/2 + ai+1/2). This gives (2.13) and (2.14) based
on a. The same result is obtained when half of the flux is distributed with each of the cell
advection speeds using the full distribution of (2.11).

The above distributions take for granted that the advection speed can be split according
to (2.9). For non-convex fluxes, a general flux splitting was proposed by Engquist and
Osher [37], which can be expressed in d± as

f±EO(u) =
∫ u

0
±d±ξ a(ξ) dξ =

∫ u

0
a±ξ dξ , with a(u) = f ′(u). (2.19)

For the interface flux see [37, 3]. This is a local splitting of the flux in f+
i and f−i , and for

reasons of consistency the parts can only be distributed with the local splitting of (2.11),
resulting in the update of (2.13). However, we can compute a±EO(ui+1/2), and apply the
cell-based split advection speeds to the distribution coefficients of (2.15) and to the FDS
scheme of (2.16). The upwind speeds are

a+
EO(u) =

∂f+

∂u
=

∂

∂u

∫ u

0
a+(ξ) dξ =

∂

∂u

∫ u

0

1
2(a(ξ) + |a(ξ)|) dξ , (2.20)

where the last integral has to be taken over the successive intervals between the sonic
points, where a(u) changes sign. In the absence of sonic points in the integration path,
this is just the flux splitting of (2.9).

In the case of a flux function which is homogeneous in u, we can split fi = aiui in
positive and negative parts according to the sign of ai or according to the methods just
described.

Finally, we can construct a non-conservative distribution in the case of a homogeneous
flux. Instead of distributing the flux fi = aiui, distribute fi−1/2 = ai−1/2ui and fi+1/2 =
ai+1/2ui with (2.15). The result is

un+1
i − uni = −∆t

∆x

{
a−i+1/2(ui+1 − ui) + a+

i−1/2(ui − ui−1)
}
, (2.21)

which is the characteristic scheme of Courant et al. [39] for the linear advection equation.
The sum of the distributed fluxes is nonzero for the nonlinear equation.

The schemes of (2.13) and (2.16) have different behavior in capturing discontinuities of
the solution. They are well-documented, see e.g. [2, 3]. The FDS captures discontinuities
with less intermediate points than FVS, but allows non-physical expansion fans. The
PDE of (2.1) has no viscous terms which prevent entropy decrease and therefore the
solutions which violate the entropy inequality have to be excluded explicitly. The transonic
expansion is characterized by ai−1/2 < 0 < ai+1/2. This has the effect that node ui does
not change its value with the FVD discretization of (2.16). In the present formulation, this
can easily be prevented by switching to a different scheme. The value of ui will change
when the local advection speed ai is used in the update of (2.16), turning it into the FVS
of (2.13). The switching of schemes has been proposed by Coquel and Liou [40].
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Another option is to apply a sub-cell resolution scheme in the case that a sonic point
is present in the region (xi−1/2, xi+1/2), see e.g. [41, 42]. If the position of the sonic point
xs is given by the parameter θ, with θ = 0 for xs = xi−1/2, we can apply two distributions
of the flux : the part θfi with the left speed and (1− θ)fi with the right speed. This avoids
an expansion shock, and sharpens also the compression shock.

The central scheme. The distribution coefficients for the central scheme are

αii−1 = 1
2 , αii = 0 , and αii+1 = −1

2 , (2.22)

which are the same for the nodal and cell-wise distributions.

The Lax-Wendroff type schemes. We begin by defining the nodal CFL number νN and
the cell CFL number νC which are limited by stability constraints. These numbers define
the time step used in the update of the nodal value and the cell time step, given by

∆ti = νN
∆xi
ai

, and ∆ti+1/2 = νC
∆xi+1/2

ai+1/2
. (2.23)

With the distribution coefficients

αii−1 = 1
2(1− νC) , αii = νC , and αii+1 = −1

2(1 + νC) , (2.24)

the update becomes

un+1
i − uni = −∆ti

∆xi

{
−1

2(1 + νC)fi−1 + νCfi + +1
2(1− νC)fi+1

}
= −∆ti

∆xi

{
1
2 {fi+1 − fi−1} − 1

2νC (fi+1 − 2fi + fi−1)
}
, (2.25)

fi+1/2 = 1
2 {fi+1 + fi} − 1

2νC (fi+1 − fi) . (2.26)

This version of the Lax-Wendroff scheme has been analyzed by Crumpton et al. [43], who
find that the scheme is stable under the restrictions νN ≤ νC and νNνC < 1. The transition
between the central part and the advection dependent part is governed by the parameter
νC . For νN = νC , the discretization of [21] is obtained.

We have seen that classical discretizations can be cast in a FVD formulation. Since
the origin of residual distribution schemes [18], the distribution has been based on the
cell based advection speed. The RD formulation of Roe [44] is the counterpart of his flux
difference splitter [22], and is therefore tuned to the use of the cell advection speed of (2.5).
It turns out that FVD is more general since it includes FVS.

2.2. The distribution for the advection equation with source term.
A small review of the treatment of source terms tells us how to incorporate the effect

of a source in the flux which is distributed in a FVD scheme.
Sidilkover [45] considers Cartesian grids with a central treatment of the source term

for the N scheme. A thorough analysis is given by Rudgyard [42], who distributes the
residual which includes the source term. The idea of applying an upwind discretization
to the source term can be found e.g. in [46, 47, 48]. Koren [47] supports the approach of
including the source term in an extended advective flux for reasons of convergence. The
approaches of Rudgyard and Koren are closely related.
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Consider the scalar advection equation for u(x, t) containing a source term,

∂u

∂t
+
∂f

∂x
+ s(u, x) = 0 , or

∂u

∂t
+ a

∂u

∂x
+ s(u, x) = 0 , with a =

∂f

∂u
, (2.27)

with initial condition u(x, 0) = u0(x). At the sonic point the source term vanishes since
otherwise u becomes unbounded, and the problem becomes ill-posed. Rudgyard shows
that this condition furnishes the missing information which can be used to prevent an
expansion shock.

Due to the presence of the source term, monotonicity of the solution cannot be guaran-
teed even when a monotonicity preserving discretization is used. On a characteristic curve

x = c(t) , with
∂c

∂t
=
∂f

∂u
, (2.28)

the solution u evolves due to the source term according to

Du

Dt
=
∂u

∂t
+
∂f

∂x
= −s(u, x) . (2.29)

It is possible to choose a variable which remains constant on the characteristic curve.
When we define

ũ = u+ S(u, x) with S(u, x) such that
∂f(ũ)
∂x

=
∂f(u)
∂x

+ s(u, x) , (2.30)

then we have
Dũ

Dt
=
∂ũ

∂t
+
∂f(ũ)
∂x

= 0 . (2.31)

This is the homogeneous equation for ũ which we can solve with a monotonic discretization.
The condition on S becomes clear in the linear case since it reduces to

a
∂S

∂x
= s(u, x) . (2.32)

This is the relation proposed by Koren for improved convergence, S = (1/a)
∫
s dx, and

aũ = au + ∆xS if
∫
s dx = S∆x as used by Sidilkover [45]. The source term S can then

be joined with the space discretization of the flux, which corresponds to the distribution
of the residual including the source term of Rudgyard. In general, an analytical expression
for S is not available, and the only approach is a numerical integration of (2.32). Let us
define nodal values

Si =
1

∆xi

∫ xi+1/2

xi−1/2

(
∂f

∂u

)−1

s(u, x) dx . (2.33)

The effect of the flux fi and source term Si at node j are now δuj := δuj−(∆t/lj)α
i
j (fi + Si)

since the distribution is equivalent to a discretization of a space derivative. The value of
ui + Si now takes the rôle of ũ. In the case of the presence of a sonic point in the region
around the node, a sub-cell distribution can be applied as explained before. The inte-
gral appearing in the formulation of the source term in (2.33) can be split in the parts
(xi−1/2, xi) and (xi, xi+1/2). This is useful if the advection speeds of both cells are used
for the distribution.
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2.3. The Flux Vector Distribution for systems of equations.
We illustrate the application of FVD to systems of equations with the Euler equations

for fluid dynamics. The Euler equations in conservative and linear form are given by

∂U
∂t

+
∂F
∂x

= 0 , and
∂U
∂t

+A
∂U
∂x

= 0 . (2.34)

The conservative variables U = (ρ, ρu, ρE)τ and flux vector F = (ρu, ρu2 + p, ρuH)T

are expressed in the density ρ, the velocity u, the total specific energy E, the pressure
p = ρ(γ − 1)(E − u2

/2), and the total specific enthalpy H = E + p/ρ . The corresponding
Jacobian matrix is A = ∂F/∂U. The matrix A−1 exists with R and L the matrices of the
right and left eigenvectors of A.

The Euler equations admit wave-like solutions which are the transport of entropy and
acoustical disturbances with their respective advection speeds u, u + c, and u − c. The
classical flux decomposition in three components using those speeds is

F = u ρ
γ − 1
γ

 1
u

u2
/2

+ (u+ c)
ρ

2γ

 1
u+ c
H + c

+ (u− c) ρ

2γ

 1
u− c
H − c

 . (2.35)

The integration which appears in the scalar flux computation of Engquist-Osher, (2.19),
generalizes to a triple integral in the space of U for the Euler equations. The lower bound of
the integration is the vacuum state U = 0. This is not a valid state for the Euler equations,
which are based on sufficient interactions between the particles which constitute the fluid.
We take as ρE the density where the mean free path of the particles is sufficiently small to
be able to define pressure and temperature in a meaningful way. The assumption is that
the contribution to the flux for values of the density below ρE is negligible, which is easier
to justify when the actual state with density ρ is far from rarefied. For the integration
path in the triple integral we choose the path where u and E have the value of the final
state, while integrating from ρE ≈ 0 to ρ. This means that we keep E− u2

/2 and therefore
the speed of sound constant. On the integration path, the Mach number is constant and
the splitting in forward and backward flux only depends on the final state. The result is
the splitting of (2.35).

Another integration path is along the Riemann invariants as originally proposed by
Osher [49, 50]. The order of integration was changed from the O-variant to the P-variant
by Hemker and Spekreijse [51] to improve efficiency. The integration from the vacuum
state to the desired state U makes use of two intermediate states U1/3 and U2/3. The
remaining two state variables at U = 0 with ρ = ρE are not determined, and lead to a
two-parameter class of splittings.

For the distribution we can extend the directional coefficients d of (2.10) to directional
matrices D = A |A−1|. The flux components are then D±F = RΛ±LR|Λ|−1LF, or the
terms of (2.35).

If we distribute the flux components of (2.35) with the nodal advection speeds, we have
the splitting of Steger and Warming [52].

When we distribute the flux components with the cell wise speeds, we base the compu-
tation of the factors u and u± c in (2.35) on cell-averaged values, while the state vectors
are computed with nodal values. Using the system version of the conservative linearization
of (2.5),

Fi+1 − Fi = Ai+1/2(Ui+1 −Ui) , (2.36)
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we have the scheme of Roe [44].
The same flux splitting can therefore be used for generating FVS and FDS schemes

depending on distributing the flux components with nodal or cell-wise velocities. This
applies also to other decompositions than (2.35).

The extension to systems of equations of the non-conservative distribution of (2.21)
gives the split coefficient matrix method of Chakravarthy et al. [53].

2.4. Extra nodes for higher order schemes.
We consider five point stencils for monotonic second order schemes with limiters in the

spirit of [4, 54, 55, 56, 57, 5, 58].
For the FV method, we have two extrapolations at our disposal to arrive at a higher

order estimate of the interface flux fi±1/2. With variable extrapolation, the piecewise
constant states are replaced by higher order variations. The arguments ui and ui+1 of
the numerical flux fi±1/2 are replaced by the extrapolated values uLi+1/2 and uRi+1/2. The
interface flux fi±1/2(uLi+1/2, u

R
i+1/2), and hence the update, thus depend on a larger sten-

cil. For monotonic results with FVS or FDS, the second order contributions are limited,
uLi+1/2 = ui + 1/2φ (ri) [ui − ui−1] and uRi+1/2 = ui+1 − 1/2φ (1/ri+1) [ui+2 − ui+1]. Here, ri
is the ratio of consecutive gradients [59], ri = ∆i+1/2u/∆i−1/2u = (ui+1 − ui)/(ui − ui−1).

An alternative to variable extrapolation is flux extrapolation. For monotonic results
with FVS, limiters are introduced on the extrapolated fluxes (see e.g. Hirsch [60]), leading
to fLi+1/2 = f+

i + 1/2φ
(
r+
i

) [
f+
i − f

+
i−1

]
, and fRi+1/2 = f−i+1 − 1/2φ (1/r−i+1

)
[
f−i+2 − f

−
i+1

]
.

Now, r±i is the ratio of consecutive flux gradients [59, 60], r±i = ∆i+1/2f
±

/∆i−1/2f
± =

(f±i+1 − f
±
i )/(f±i − f

±
i−1). The update for FVS is then

un+1
i − uni = −∆t

∆x

{
fLi+1/2 + fRi+1/2 − f

L
i−1/2 − f

R
i−1/2

}
. (2.37)

The flux computation is consistent since the numerical interface flux reverts to the physical
flux in the case that all the arguments of the numerical flux are identical.

For linear advection, flux extrapolation reverts to variable extrapolation, which for the
case a > 0 becomes

un+1
i − uni =− a∆t

∆x

{
uLi+1/2 − u

L
i−1/2

}
=

− a∆t
∆x

{
ui + 1

2 φi(ui − ui−1)− ui−1 − 1
2 φi−1(ui−1 − ui−2)

}
, (2.38)

where φi = φ (ri). In smooth regions of the flow, the limiting functions φ have a value close
to one. Only in regions of gradients φ can go to zero, resulting in a first order scheme.
A Taylor series expansion on a grid with uniform spacing shows that

a

∆x

(
uLi+1/2 − u

L
i−1/2

)
=
{

1 + 1
2(φi − φi−1)

}
a
∂u

∂x

+ 1
2

{
−1 + 1

2(3φi − φi−1)
}
a
∂2u

∂x2
∆x+O(∆x2) . (2.39)

This is an inconsistent discretization of a∂u/∂x with an error 1/2(φi − φi−1)a∂u/∂x. The
condition for a consistent discretization is φi = φi−1 ∀i. In the case that one flux is calcu-
lated with a second order extrapolation and the other flux with a first order extrapolation,
the numerical method discretizes an advection equation with 0.5 or 1.5 times the desired
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advection speed. The use of compressive limiters with values of φ exceeding the range
[0, 1] could even change the sign of a. Central schemes with a TVD artificial viscosity are
equally concerned.

In practice, this inconsistency is absorbed in the time step. The temporal behavior is
affected, but the effects are hardly noticeable. In the vicinity of a discontinuity, the scheme
is first order, and the truncation error is of the order of ∆x. Furthermore, the conservative
formulation ensures respecting the Rankine-Hugoniot relations, and therefore the correct
overall shock speed and strength. In the case of a shock, the advection speeds point toward
the shock, and an error in the magnitude will not show up. This is not the case for an
expansion fan. In extreme cases like a slowly moving shock, or near sonic points, one
might expect some noticeable effects. The effect of a locally inconsistent scheme on the
convergence needs investigation.

The update of (2.2) can be combined with a monotonic second order FDS. The interface
flux contains limited contributions,

f
(2)
i+1/2 = fi+1/2 + 1

2φ
(
r+
i

)
α+
i−1/2(ui − ui−1)− 1

2φ
( 1
r−i+1

)
α−i+3/2(ui+2 − ui+1) . (2.40)

In the above, we have r±i = a±i+1/2(ui+1 − ui)/(a±i−1/2[ui − ui−1]), with fi+1/2 the first order
flux of(2.4).

Higher order schemes can be obtained in various ways in the RD method. Similar to
variable extrapolation with FV, the linear basis functions used in (2.6) can be replaced
by higher order polynomials as explored e.g. in [61]. While this should work fine in one
dimension, problems arise in more dimensions with the construction of the linearized
advection speed [62], especially for systems of equations (in [61] the problem of linearization
was not addressed). Another possibility, already indicated in [22], is the distribution of the
residual to nodes further away. This corresponds to flux extrapolation in the FV method.
In the following, we use the simplified notation φ+

i = φ
(
r+
i

)
and φ−i = φ (1/r−i ). Consider

RD with the second order coefficients (2)α
i+1/2
j (see Fig. 2.5) :

(2)α
i+1/2
i =

(
1 + 1

2φ
−
i

)
α
i+1/2
i , (2)α

i+1/2
i+1 =

(
1 + 1

2φ
+
i+1

)
α
i+1/2
i+1 ,

(2)α
i+1/2
i−1 = −1

2φ
−
i α

i+1/2
i , (2)α

i+1/2
i+2 = −1

2φ
+
i+1α

i+1/2
i+1 . (2.41)

The update procedure is the same as described in §2.1.2, but taking into account
contributions from residuals further away. For all values of φ, the distribution coefficients
add up to 1, and the scheme is conservative. The coefficients of (2.41) amount to an update
of node i as indicated in Fig. 2.6. This corresponds to the second order FDS update, (2.2)
and (2.40). A higher order extension of FVD can be obtained, like in the RD method,
by means of changing the basis functions, or by distribution over nodes further away. For
the moment we focus on a wider distribution stencil with second order coefficients (2)αij
(see Fig. 2.7),

(2)αii+2 = −1
2φ

+
i+1α

i
i+1 ,

(2)αii+1=
{

1 + 1
2

(
φ+
i + φ+

i+1

)}
αii+1 ,

(2)αii−2 = −1
2φ
−
i−1α

i
i−1 ,

(2)αii−1=
{

1 + 1
2

(
φ−i + φ−i−1

)}
αii−1 ,

(2)αii = αii − 1
2φ

+
i α

i
i+1 − 1

2 φ
−
i α

i
i−1 . (2.42)
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Figure 2.5. Distribution of the residual Ri+1/2 with coefficients for the 2 nd order RD scheme
of (2.41).
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Figure 2.7. Distribution of the flux fi with coefficients for the 2 nd order FVD scheme of (2.42).

The sum of the second order distribution coefficients is zero, as required for conser-
vation. The update procedure is the same as described in §2.1.3, but taking into account
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contributions from fluxes further away. The coefficients of (2.42) amount to an update of
node i as indicated in Fig. 2.8. This corresponds to the second order FVS update, (2.37).
Note that either αii−1 or αii+1 is zero, and thus the target nodes are either i, i+ 1, i+ 2 or
i, i− 1, i− 2, dependent on the sign of ai.
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Figure 2.8. Update of node i with the 2 nd order FVD scheme.

3. Two-dimensional schemes in the Flux Vector Distribution formulation.

In this chapter we discuss the N scheme in the RD formulation on a grid consisting of
triangles [21, 22], from which we will derive the FVD version. This is followed by schemes
on structured grids with a consistency analysis.

The discretizations will be used to solve the scalar advection equation in nonlinear or
linear form,

∂u

∂t
+
∂f

∂x
+
∂g

∂y
= 0 , or

∂u

∂t
+a

∂u

∂x
+ b

∂u

∂y
= 0 , with a =

∂f

∂u
, b =

∂g

∂u
. (3.1)

The N scheme is our point of departure because it is monotonic and it has a reduced
grid dependency compared to the one-dimensional upwind scheme applied to each space
direction. The one-dimensional schemes preserve a one-dimensional solution along the grid
lines, while the N scheme is also exact along the diagonals of a quadrilateral on a structured
grid. More general discretizations which can be expressed in the FVD formulation can be
found in [35].

3.1. The Residual Distribution N scheme.
Define unknowns u at the nodes of a triangle of the grid. Opposite to node i is the edge i

with an inward pointing edge normal vector ~ni, which has the length of edge i (Fig. 3.1a).

As a consequence,
∑3

i=1 ~ni = ~0. The flux fi through edge i is the dot product of the
flux vector ~f = (f, g)T , the edge normal ~ni, fi = ~fi · ~ni, and the cell residual of triangle T
is

RT =
∫∫

ST

~∇ · ~f dx dy = −
∮
∂T

~f · d~n = −
3∑
i=1

fi . (3.2)
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Figure 3.1. Geometry of triangles with either one or two inflow sides.

The residuals RT are distributed over the nodes of the triangles. Node i is updated like in
one dimension (see §2.1.2) under the assumption of linear variation of u over the cell,

un+1
i = uni −

∆t
SDi

∑
T

αTi RT . (3.3)

If the variation of u is not linear, the update formula changes, but like in the FE method,
mass lumping can be applied. The term SDi is the dual volume associated to node i
and αTi is the weight with which the cell residual RT is distributed to node i. Taking∑3

i=1 α
T
i = 1∀T means that the residuals are completely distributed, and that the scheme

is conservative. Additional constraints can be imposed on the distribution coefficients αTi
to provide e.g. monotonicity or linearity preservation. The schemes use the cell-based
advection speed ~a = (a, b)T , and the distribution depends now on ai or di, where ai = ~a·~ni,
and di = ai/|ai|.

For upwind schemes like the N scheme, distribution is to the downwind nodes only.
Two types of configurations are encountered (Fig. 3.1). Take e.g. d1 < 0, d2 < 0, and
d3 > 0 which means that the flow enters through one edge, E3. The residual is distributed
to the downwind node V3 which means that

α3 = 1 , α1 = α2 = 0 , and δu3 := δu3 −
∆t
S3

RT . (3.4)

In the case where the flow enters through two edges of the triangle, d1 < 0, d2 > 0 and
d3 > 0, the distribution is to the two downstream nodes V2 and V3. In the linear case, the
distribution is for the N scheme

δu2 := δu2 −
∆t
S2

1
2a2(u2 − u1) , δu3 := δu3 −

∆t
S3

1
2a3(u3 − u1) . (3.5)

The distribution of (3.4)–(3.5) has been generalized by Bourgois and Deconinck [63] to D
dimensions as

δui := δui −
∆t
SDi

ai

D
∑D+1

l=1 a+
l

D+1∑
j=1

a−j (uj − ui) . (3.6)

For a suitable time step the scheme is monotone, as follow from (3.6) (see [22, 26] for
details).

For the nonlinear advection equation an extension of (2.5) is

~∇ · f = ~aC · ~∇u . (3.7)
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Under the assumption of linear variation of u over the cell,∫∫
ST

~∇ · ~f dx dy =
∫∫

ST

~a · ~∇udx dy = ~∇u ·
∫∫

ST

~adx dy = ~aC · ~∇u , (3.8)

and ~aC = 1/ST

∫∫
(∂f/∂u, ∂g/∂u)T dS =

(
∂f/∂u|uC

, ∂g/∂u|uC

)T
= ~a(uC). This advection

speed can then be used in the distribution of (3.4)–(3.5).

The N scheme can be applied to a structured grid as indicated in Fig. 3.2.

a
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x∆

�
�
�
�

��
��

����
����

����

�
�
�
�

−2

i

1

0

−1

−2

j

−1 0 1

Figure 3.2. The structured triangular grid for the derivation of a first order N scheme. The triangles
and nodes are indicated which contribute to u0,0.

We consider the case a∆y > b∆x > 0, which means that the direction of the advection
vector ~a is between the x-axis and the y = x diagonal. Other advection directions follow
by a permutation. For the linear advection equation, the resulting structured N scheme is

un+1
0,0 = un0,0 −

a∆t
∆x

(u0,0 − u−1,0)− b∆t
∆y

(u−1,0 − u−1,−1) , (3.9)

see e.g. [45, 64]. When the diagonals in Fig. 3.2 are swapped, the resulting scheme is the
one-dimensional grid-aligned upwind scheme for each coordinate direction. The N scheme
has lesser cross-diffusion than the one-dimensional grid-aligned upwind scheme, since it
also captures a one-dimensional flow along a diagonal. This is easily shown by a transfor-
mation to streamline coordinates, see e.g. [45, 65, 14, 64, 35]. When the flow is along the
diagonal, a∆y = b∆x, the node (−1, 0) disappears from the discretization, and the only
points involved in the update are on the diagonal. This is further exploited in [35] for the
construction of higher order diagonal discretizations in any number of dimensions.

The N scheme is consistent on a regular triangulation like the one shown in Fig. 3.2.
It loses consistency locally in different grid configurations. Figure 3.3 shows an example
of a grid on which the first order N scheme is inconsistent.

The vertices are surrounded either by four or eight triangles, resulting in a different
numerical scheme for each node. For the node surrounded by four triangles, the update is
given by

2
3

∆x∆y
∆t

(
un+1

0,0 − u
n
0,0

)
= − a

∆x
(u0,0 − u−1,0)− b

2∆y
(u−1,0 − u0,−1) , (3.10)
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y∆

x∆

Figure 3.3. A structured triangular grid with either four or eight triangles meeting at a vertex.

and for the node surrounded by eight triangles by

4
3

∆x∆y
∆t

(
un+1

0,0 − u
n
0,0

)
=− a

∆x
(u0,0 − u−1,0)

− b

∆y
(
u0,0 + 1

2u−1,0 − u−1,−1 − 1
2u0,−1

)
. (3.11)

The left hand side of the above equations contains the dual surface surrounding the node,
while the right hand side is a numerical approximation for the advection term −~a.~∇u.
When the nodal values are developed in a Taylor series around u0,0, the updates become
respectively

2
3

∆x∆y
∆t

(
un+1

0,0 − u
n
0,0

)
=−

(
a− b ∆x

2∆y

)
∂u

∂x
− 1

2
b
∂u

∂y
+O

(
∆x,∆y,

(∆x)2

∆y

)
,

and

4
3

∆x∆y
∆t

(
un+1

0,0 − u
n
0,0

)
=−

(
a+ b

∆x
2∆y

)
∂u

∂x
− 3

2
b
∂u

∂y
+O

(
∆x,∆y,

(∆x)2

∆y

)
. (3.12)

Evidently, both discretizations are inconsistent.
It is possible to define flux functions which produces the N scheme in a FV discretiza-

tion. The fluxes through the edges of the dual volume of the nodes are

for one inflow


fe1 = f(ue2) ,
fe2 = f(ue1) ,
fet2 = f(ut1) ,

and for two inflow


fe1 = f(ue1) ,
fe2 = f(ue1) ,
fet2 = f(ue1) ,

(3.13)

see Fig. 3.4. On the regular grid of Fig. 3.2, this gives back the N scheme. The fluxes are
discontinuous functions of the flow angle.

The central discretization is consistent on the grid of Fig. 3.3.

3.2. The Flux Vector Distribution N scheme.
We rewrite the distribution of the residual with the N scheme as a distribution of the

fluxes. We use the notation of the previous section. The update formula to advance node i
in time under the effect of the contributing fluxes is

un+1
i = uni −

∆t
SDi

∑
j

αjifj . (3.14)
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Figure 3.4. The names of the edges which are used in the FV formulation correspond to the opposite
nodes in the triangle.

This is the two-dimensional version of (2.8), and similar to (3.3), except for the distribution
of fluxes with their coefficients.

In the one-target case when the flow enters the triangle through one side only, all
fluxes fi are simply sent to the downstream node V3. The downstream distribution, (3.4),
becomes in the flux distribution δu3 := δu3 + (∆t/S3)

∑3
i=1 fi with coefficients

α1
3 = α2

3 = α3
3 = −1 . (3.15)

We rewrite the two-target linear case of (3.5) as

δu2 := δu2 −
∆t
S2

(
a2

a1
f1 − f2) , δu3 := δu3 −

∆t
S3

(
a3

a1
f1 − f3) , (3.16)

The two terms (a2/a1f1−f2) and (a3/a1f1−f3) add up to RT , (3.2). The FVD distribution
coefficients in this case can be written as

α1
2 =

a2

a1
, α1

3 =
a3

a1
, α2

2 = α3
3 = −1 . (3.17)

The update in D dimensions is in compact form

δui := δui −
∆t
SDi

−di ~fi · ~ni − ai∑D+1
l=1 a+

l

D+1∑
j=1

d−j
~fj · ~nj

 , (3.18)

which is a generalization of (2.16).

The above coefficients are used for the three fluxes of a triangle. In an implementation
of a FVD scheme, the distribution loop is over the edges of the grid. We need therefore a
distribution formula for the flux of each edge between two triangles. In Fig. 3.5, a general
layout is shown for the case that the flow enters the right triangle through edge e between
nodes e1 and e2. The edge normal ~ne is pointing to the right, and ae = ~a · ~ne > 0.

Concerning the right triangle, for both the one-inflow or two-inflow case, the flux
fe = ~fe · ~ne goes to node t2, and αet2 = −1. With respect to the left triangle, we have to
take care of the signs, since the convention of Fig. 3.1 assumes inward pointing normals.
Dependent on the direction of ~ae with respect to the edges l1 between vertices t1 and e2,
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Figure 3.5. The FVD scheme in an edge-based context. For clarity sake the normals have been
drawn too small. Left : the geometry. Right : the distribution of the edge flux.

and l2 between vertices t1 and e1, the distribution is towards nodes e1 and e2 :

αee1 =


0 for ~a · ~nl1 < 0
al1
ae

for ~a · ~nl1 > 0 and ~a · ~nl2 > 0 ,

1 for ~a · ~nl2 < 0

αee2 =


1 for ~a · ~nl1 < 0
al2
ae

for ~a · ~nl1 > 0 and ~a · ~nl2 > 0 .

0 for ~a · ~nl2 < 0
(3.19)

In all the cases, the sum adds up to zero as required for conservation. Remark the similarity
with the schemes of §2.1.3, where for a > 0 αii−1 = 0, αii = 1, and αii+1 = −1. Here, αet1 = 0,
αee1 +αee2 = 1, and αet2 = −1. The one-dimensional grid-aligned central scheme is recovered
using weights αet1 = −1/3, αet2 = 1/3, and αee1 = αee1 = 0.

The N scheme is based on a cell-averaged advection speed for the non-linear case. In
the FVD formulation we have the options of §2.1.3. For distribution with the cell-based
advection speed we can choose an average of the advection speeds at the nodes, or an
average of the advection speeds at the edges, of the advection speeds computed from the
average of the nodal unknowns,

~aC =
1

D + 1

D+1∑
i=1

∂ ~f

∂u

∣∣∣∣∣
i

, or ~aC =
1

D + 1

D+1∑
i=1

∂ ~f

∂u

∣∣∣∣∣
edge i

, or ~aC =
∂ ~f

∂u

∣∣∣∣∣
uC

, (3.20)

where uC = 1/(D + 1)
∑D+1

i=1 ui is the cell averaged unknown. The third choice of (3.20)
leads to a generalization of the method of Huang [38], while the advection speed of (3.7)
is a generalization of the splitting of Roe [22].

Distribution of the edge flux with cell-averaged advection speeds implies that the av-
eraged advection speeds on both sides of the edge are involved, like in §2.1.3.

The distribution with edge-based advection speeds leads to a directional generalization
of the FVS method.

3.3. A Flux Vector Distribution scheme in Finite Volume context.
Instead of positioning the unknowns at the vertices of the triangles, a more FV like

approach can be taken when the unknowns are edge-centered. This is indicated in Fig. 3.6
for triangles with one and two inflow sides. Also shown is the dual volume around the
unknowns. The dual volumes are now quadrilaterals, with two corners at the vertices of
the triangle, and two meeting in the gravity centers of the triangles. We define the inward
pointing normals such that ~n1 is normal to the edge on which node V1 is situated. The
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residual in the linear case is RT = −~a ·
∑

i ui~ni = −
∑

i
~fi ·~ni = −

∑
i fi. In the two-inflow

case (Fig. 3.6b) the residual goes to node 2, δu2 := δu2 − (∆t/S2)RT . In the one-inflow
case (Fig. 3.6a) we distribute similar to (3.16),

δu2 : = δu2 −
∆t
S2

~a · ~n2(u1 − u2) = δu2 −
∆t
S2

(
~a · ~n2

~a · ~n1
f1 − f2

)
,

δu3 : = δu3 −
∆t
S3

~a · ~n3(u1 − u3) = δu3 −
∆t
S3

(
~a · ~n3

~a · ~n1
f1 − f3

)
. (3.21)

A further analysis of this scheme shows that the resulting discretization is inconsistent
with the original partial differential equation, (3.1). This edge-based data structure will
not be further considered.
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a) one inflow side b) two inflow sides c) dual volume around
edge-centered node V1

Figure 3.6. The FVD scheme in an edge-based context ; geometry of triangles with either one or
two inflow sides.

3.4. The Flux Vector Distribution for systems of equations.

We take again the example of the Euler equations in conservative and linear form,

∂U
∂t

+
∂F
∂x

+
∂G
∂y

= 0 , and
∂U
∂t

+A
∂U
∂x

+B
∂U
∂y

= 0 . (3.22)

The conservative variables and fluxes in x and y direction are U = (ρ, ρu, ρv, ρE)τ with
u and v the velocity components, F = (ρu, ρu2 + p, ρuv, ρuH)T , and G = (ρu, ρuv, ρv2 +
p, ρuH)T respectively. The corresponding non-commuting Jacobian matrices A and B are
A = ∂F/∂U and B = ∂G/∂U. Given ~n a unit vector, the vectors rk are right eigenvectors
of Cn = Anx +Bny, related to entropy, shear, and acoustic wave components.

Following common practice we can decompose U in this base,

U =


ρ
ρu
ρv
ρE

 = ρ
γ − 1
γ


1
u
v

1
2(u2 + v2)

+
ρ

2γ


1

u+ cnx
v + cny
H + cun

+
ρ

2γ


1

u− cnx
v − cny
H − cun

 , (3.23)

where un = ~u · ~n. From the individual components of (3.23) we compute the flux compo-
nents F = AU and G = BU. The individual components of the edge flux can then be
distributed according to the proper advection speed, leaving the choice for cell-averaged
or edge-based speeds.
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The system version of the conservative linearization ((3.7)) uses the parameter vector
Z = (z1, z2, z3, z4)τ =

√
ρ(1, u, v,H)τ which varies linearly over the triangle [66, 26, 62].

This allows us to write with ~F = (F,G)T and ~A = (A,B)T ,

~̂∇ · ~F = ~A · ~̂∇U = A
∂̂U
∂x

+B
∂̂U
∂y

. (3.24)

The notation .̂.. is a reminder that the gradients are based on a linearly varying Z, while
... indicates that the expression is evaluated at the averaged state Z = 1/3

∑
i Zi. While in

the one-dimensional case the linearization can be based on linearly varying primitive vari-
ables [67, 68], the only reasonable candidate in two and three dimensions is the parameter
vector Z [62].

Based on the conservative linearization, we can write for the flux through an edge of
a triangle, e.g. edge 3,

1
2(~F1 + ~F2) · ~n3 = C3

1
2(U1 + U2) , (3.25)

with C3 = ~A · ~n3 = (A,B)T · ~n3. This flux can be distributed in a FVD scheme, illustrat-
ing that RD matrix distribution schemes [69, 30, 31] can be accommodated in the FDV
formulation.

3.5. Higher order Flux Vector Distribution schemes.
Like in one dimension, we increase the order of the N scheme by distributing the edge

flux to nodes further downstream. We have to recalculate the distribution coefficients to
obtain consistent higher order schemes. We will start with the FVD formulation, leading
to RD expressions.

3.5.1. The second order Flux Vector Distribution N scheme.
We start with the stencil of Fig. 3.5 to which we add the closest downstream nodes r1

and r2, see Fig. 3.7. With this stencil, a second order scheme can be constructed. It is not
necessary to include nodes on the right of t2.
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Figure 3.7. a) The stencil for a second order
FVD scheme.

b) the weather-vane for target
nodes r1 and r2.

Like before, we consider the case that the flow enters the right center triangle through
edge e, with ae > 0. We distinguish three types of flux receiving nodes : a) e1 and e2 with
distribution coefficients αee1 and αee2 ; b) t2 with distribution coefficient αet2 ; c) r1 and r2

with distribution coefficients αer1 and αer2 . For category a) and b), we take the first order
coefficients of (3.17) and (3.15), multiplied by factors CE and CT respectively, which will
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be determined below. For the remaining downstream nodes, using a factor CR, the desired
coefficients must contain information of the angle between the advection speeds and the
normals, like the first order coefficients, or like the coefficients of (3.21). In Fig. 3.7b, three
domains have been indicated in the weather-vane associated with ~a. If ~a falls in sector II,
we send fe to node r2 ; if ~a falls in sector III, we send fe to node r1. In sector I, we use the
distribution coefficients αer1 = ar1/ae and αer2 = ar2/ae. In summary, the coefficients are

αer1 =


0 for ~a · ~nr1 > 0

~fe · ~nr1
~fe · ~ne

for ~a · ~nr1 < 0 and ~a · ~nr2 < 0 ,

−1 for ~a · ~nr2 > 0

αer2 =


−1 for ~a · ~nr1 > 0

~fe · ~nr2
~fe · ~ne

for ~a · ~nr1 < 0 and ~a · ~nr2 < 0 .

0 for ~a · ~nr2 > 0

(3.26)

The conservation condition,
∑

j α
i
j = 0, now becomes

CE
{
αee1 + αee2

}
+ CTα

e
t2 + CR

{
αer1 + αer2

}
= 0 , or CE − CT − CR = 0 . (3.27)

The above scheme is easiest analyzed on a structured grid with spacings ∆x and ∆y and
with the three possible edge normal vectors ~n1 =

(−∆y
0

)
, ~n2 =

(
∆y
−∆x

)
and ~n3 =

(
0

∆x

)
, as

shown in Fig. 3.8. We consider the case a∆y > b∆x > 0, which means that the advection
vector ~a lies between the x-axis and the y = x diagonal.
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Figure 3.8. The structured triangular grid with the three possible edge normal vectors ~n1, ~n2, and
~n3, for the derivation of a second order FVD N scheme. The edges and vertices are indicated which
contribute to u0,0.

As a short notation for the fluxes, take for the flux through a horizontal edge ~fi+1/2,j =
~f((i + 1/2)∆x, j∆y) = ~a 1/2 (ui,j + ui+1,j), through a vertical edge ~fi,j+1/2 = ~f(i∆x,
(j + 1/2)∆y) = ~a 1/2 (ui,j + ui,j+1), and through a diagonal ~fi+1/2,j+1/2 = ~f((i+ 1/2)∆x,
(j+ 1/2)∆y) = ~a 1/2 (ui,j + ui+1,j+1). The analysis is simplified by using a program which
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handles symbolic manipulation, like MuPAD [70]. The fluxes contribute in the following
way to the update of u0,0, which is an approximation for −~a · ~∇u, as :

−(∆x∆y)~a · ~∇u =CE
(
−~f0,1/2 · ~n2 + ~f−1/2,0 · (−~n3) + ~f−1/2,−1/2 · (−~n2)− ~f0,−1/2 · ~n3

)
+

CT

(
~f−1/2,1/2 · ~n2 + ~f−1,−1/2 · (−~n1) + ~f−1/2,−1 · ~n3

)
+

CR

(
~f−1,1/2 · ~n2 + ~f−1,−3/2 · ~n3 + ~f−3/2,−1/2 · ~n2 + ~f−3/2,−1 · ~n3

)
.

(3.28)

When CE = CT = 1 and CR = 0 we have the first order N scheme. For the second order
scheme, the only nodes contributing to an update of u0,0 are : u−2,−1, u−1,−2, u−1,−1,
u−1,0, u−1,1, u0,−1, u0,0, and u0,1. We develop the nodal values of (3.28) in a Taylor series
to obtain

−~a · ~∇u =
a

2
(CE − 5CR − 3CT )

∂u

∂x
+
b

2
(CE − 5CR − 3CT )

∂u

∂y
+

a

4
(−CE + 7CR + 3CT ) ∆x

∂2u

∂x2
+[

(CE + 5CR + CT ) +
a∆y
2∆x

(−CE + CR + CT )
]

∆y
∂2u

∂y2
+[

(CE + 5CR + CT ) ∆x+
a

2
(−CE + CR + CT ) ∆y

] ∂2u

∂x ∂y
+

O
(
∆x2,∆x∆y,∆y2

)
. (3.29)

With the conservation condition, (3.27),

− ~a · ~∇u = −a (2CR + CT )
∂u

∂x
− b (2CR + CT )

∂u

∂y
+
a

2
(3CR + CT ) ∆x

∂2u

∂x2
+

b

2
(3CR + CT ) ∆y

∂2u

∂y2
+ b (3CR + CT ) ∆x

∂2u

∂x ∂y
+O

(
∆x2,∆x∆y,∆y2

)
. (3.30)

For consistency, we need 2CR + CT = 1, which reduces (3.30) to

− ~a · ~∇u = −a∂u
∂x
− b∂u

∂y
− (CT − 3)

[
a

4
∆x

∂2u

∂x2
+
b

4
∆y

∂2u

∂y2
+
b

2
∆x

∂2u

∂x ∂y

]
+

O
(
∆x2,∆x∆y,∆y2

)
, (3.31)

and the conditions for a second order N scheme are therefore :

CT = 3 , CR = −1 , and CE = 2 . (3.32)

We finally arrive at the numerical approximation

− ~a · ~∇u = −a∂u
∂x
− b∂u

∂y
− a

3
(∆x)2∂

3u

∂x3
− a

2
∆x∆y

∂3u

∂x2 ∂y
− a

2
(∆y)2 ∂3u

∂x ∂y2

− b

3
(∆y)2∂

3u

∂y3
+O

(
∆x3,∆x2∆y,∆x∆y2,∆y3

)
. (3.33)
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Note that node u0,1 is a downstream node with respect to node u0,0 given the advection
speed ~a. This is a somewhat unexpected development given the starting point of upwind
schemes. It is due to the particular triangulation used in the derivation of the second
order coefficients. On a grid consisting of equilateral triangles, the node is downstream.
The first order N scheme for the linear advection equation on the grid of Fig. 3.8, (3.9),
does not use node u0,1. For the nonlinear equation, the RD N scheme uses node u0,1 for
the averaged advection speed. The FVD method uses the node u0,1 for computing the edge
flux between nodes u0,1 and u−1,0, and the advection speed. For the second order method,
the contribution of node u0,1 appears anyway in the FVD method due to the difference in
weights : flux f−1/2,1/2 is multiplied by CT while flux f0,1/2 is multiplied by CE .

3.5.2. The second order N scheme in Finite Volume formulation for struc-
tured quadrilateral grids.

When substituting the coefficients of (3.32) in (3.28), and substituting the expressions
for the edge fluxes, the second order N scheme can be written as

un+1
0,0 = un0,0 −

a∆t
∆x

[
2u0,0 − 2u−1,0 − 1

2u0,1 − 1
2u−1,−1 + 1

2u−2,−1 + 1
2u−1,1

]
−b∆t

∆y
[

3
2u−1,0 − 3

2u−1,−1 − 1
2u0,−1 + 1

2u0,1 + 1
2u−1,−2 − 1

2u−1,1

]
. (3.34)

The stencils for the derivatives ux and uy are given in Fig. 3.9.
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Figure 3.9. The stencils for a∆y > b∆x > 0 of the derivatives ux and uy of the second order
N scheme of (3.34). Also indicated is the dual volume around u0,0 in a FV formulation.

It is useful to separate the first order N scheme and the remaining terms, and write as
differences :

un+1
0,0 = un0,0 −

a∆t
∆x

(u0,0 − u−1,0)− b∆t
∆y

(u−1,0 − u−1,−1)

−a∆t
∆x

[
(u0,0 − u−1,0)− 1

2(u0,1 − u−1,1)− 1
2(u−1,−1 − u−2,−1)

]
−b∆t

∆y
[

1
2(u0,1 − u0,0) + 1

2(u0,0 − u0,−1)

−1
2(u−1,1 − u−1,0)− 1

2(u−1,−1 − u−1,−2)
]
. (3.35)

In order to write the update in terms of interface fluxes in a FV context, we use interface
fluxes f±1/2,0 and g0,±1/2 for the volume around node u0,0 as indicated in Fig. 3.9, where
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the classical notation f±1/2,0 is now different from the previous section. Denote by Si,j =
∆x∆y the cell volume around node (i, j), and by Ri,j the cell residual. Similar to (2.2),
the update for the structured FV scheme is

un+1
i,j − u

n
i,j =− ∆t

Si,j
Ri,j =− ∆t

Si,j

{
(fi+1/2,j − fi−1/2,j)∆y + (gi,j+1/2 − gi,j−1/2)∆x

}
.

(3.36)
The interface fluxes can be easily obtained from (3.35),

f−1/2,0 = a
[
u−1,0 + (u−1,0 − 1

2u−1,1 − 1
2u−2,−1)

]
= a

[
u−1,0 + (u−1,0 − u∗−3/2,0)

]
= au−1/2,0 ,

g0,−1/2 = b
[
u−1,−1 + 1

2 (u0,0 + u0,−1 − u−1,0 − u−1,−2)
]

= b
[
u−1,−1 + (u∗0,−1/2 − u

∗
−1,−1)

]
= bu0,−1/2 . (3.37)

The fluxes have been simplified introducing the averaged values u∗−3/2,0 =
1/2(u−1,1 + u−2,−1), u∗−1,−1 = 1/2(u−1,0 + u−1,−2), and u∗0,−1/2 = 1/2(u0,0 + u0,−1). In the
following we will use the superscript ∗ to indicate averaged values which can be thought to
be located at nodal points or in between. Compared to the standard second order interface
fluxes, f−1/2,0 = a[u−1,0 +1/2(u−1,0−u−2,0)] and g0,−1/2 = b[u0,−1 +1/2(u0,−1−u0,−2)], the
difference is the use of eight instead of five points in the stencil, where most of the points of
the stencil are used both in the x and in the y extrapolation. Moreover, the extrapolations
are more compact in the sense that in the standard extrapolation the single extreme point
of the extrapolation is both further in distance from the node used in the first order calcu-
lation, and further from the advection direction. The more directionally compact scheme
reduces the cross-diffusion, like for the first order N scheme. For advection along the dia-
gonal, ~a = a/h

(
∆x
∆y

)
, where h2 = ∆x2 + ∆y2, the second order N scheme becomes un+1

0,0 −
un0,0 = −a∆t/h

(
2un0,0 − 1/2{un−1,0 + un0,−1} − 2u−1,−1 + 1/2{un−2,−1 + un−1,−2}

)
. This corre-

sponds to the one-dimensional second order upwind scheme un+1
0 − un0 = −a∆t/∆x(2un0 −

un−1/2−2un−1+un−3/2), and when we take u−1/2 = 1/2(u0+u−1) and u−3/2 = 1/2(u−1+u−2),
we get un+1

0 − un0 = −a∆t/∆x(3/2u
n
0 − 2un−1 + 1/2u

n
−2). The one-dimensional discretization

along the diagonal is therefore essentially the same as the one-dimensional discretization
along a coordinate axis. Applying a one-dimensional solution for the case that the advec-
tion direction is along the x-axis or along the diagonal results in leaving the node u0,0

unchanged. However, since the discretization involves nodal values off the diagonal in the
case that the flow is along the diagonal, certain error terms remain when the transforma-
tion to a stream wise coordinate system is made. This scheme is further analyzed in [35],
and it is shown that better discretizations can be found on structured grids.

3.5.3. The second order N scheme in Residual Distribution formulation.
The second order FVD N scheme can be rewritten as a RD scheme. The idea is to

assemble the fluxes through the edges of a triangle in a residual, and to distribute the
residual with the cell-averaged advection speed. It is important to use the proper advection
speeds. The FVD N scheme uses two types of distribution coefficients : to edge nodes e1

and e2 according to (3.19) using the speed of the left triangle, and to the top node t2 using
the speed of the right triangle. For the coefficients of the second order N scheme, we can
rewrite the coefficients of (3.32) as

CT = 1 + FL + FR , CR = −FR , and CE = 1 + FL . (3.38)
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Now we can separate the part of the flux which is distributed according to the right advec-
tion speed, from the part which depends on the left advection speed : the edge coefficients
(CE and the part FL of CT ) depend on the left, the rest on the right triangle. In writing
the second order RD N scheme, we again separate the treatment of the case of a triangle
with inflow through one edge, or inflow through two edges. We arrive at the following
distributions for the configurations depicted in Fig. 3.10 :

1

4

5

2

3

1 4

2

3

a

a

Figure 3.10. The second order RD scheme for triangle 123 in the case of one or two inflow sides.

One inflow Two inflow

δu1 := δu1 − 2
∆t
S1

RT , δu2 := δu2 − 2
∆t
S2

(
a2

a1
f1 − f2) ,

δu4 := δu4 +
∆t
S4

(
a2

a1
f1 − f2) , δu3 := δu3 − 2

∆t
S3

(
a3

a1
f1 − f3) ,

δu5 := δu5 +
∆t
S5

(
a3

a1
f1 − f3) , δu4 := δu4 +

∆t
S4

RT . (3.39)

When the RD is used with the conservative linearization of (3.7), the distribution reduces
to

One inflow Two inflow

δu1 := δu1 − 2
∆t
S1

RT , δu2 := δu2 − 2
∆t
S2

1
2a2(u2 − u1) ,

δu4 := δu4 +
∆t
S4

1
2a2(u2 − u1) , δu3 := δu3 − 2

∆t
S3

1
2a3(u3 − u1) ,

δu5 := δu5 +
∆t
S5

1
2a3(u3 − u1) , δu4 := δu4 +

∆t
S4

RT . (3.40)

In the one-inflow case, twice the residual is sent to node 1, while the residual is subtracted
from nodes 4 and 5 with the coefficients of the first order N scheme. For the two-inflow
case, the nodes 2 and 3 now receive twice the update compared to the first order N scheme,
while the residual is subtracted from the downstream node 4. In all the cases, the sum of
the distributed updates adds up to the residual.

3.5.4. The directional central discretization.
The central scheme in one dimension can be interpreted as the average of two first

order upwind schemes for advection speeds a and −a,

1
2∆x

(fi+1 − fi−1) =
1
2

{
1

∆x
(fi+1 − fi) +

1
∆x

(fi − fi−1)
}
. (3.41)
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Applying this idea to two dimensions, we average the N scheme with advection speeds ~a
and −~a. For the FVD formulation, this means averaging the distribution formulas of §3.2
for the two opposite advection directions. The distribution coefficients for the flux fe =
1/2(ue1 + ue2)~a.~ne are αee1 = 1/2~a.(~nl1 + ~nr1), αee2 = 1/2~a.(~nl2 + ~nr2), αet1 = 1/2, and
αet2 = −1/2. The sum of the distribution coefficients is zero since ~nl1 +~nr1 +~nl2 +~nr2 = 0,
see Fig. 3.5.

The interface fluxes used in (3.36) on a structured grid for a∆y > b∆x > 0 are

fi+1/2,j = 1
2 (fi+1,j + fi,j) , gi,j+1/2 = 1

2 (gi+1,j+1 + gi−1,j) . (3.42)

The directional central scheme is then

un+1
i,j −u

n
i,j = − ∆t

Si,j
{1

2(fi+1,j−fi−1,j)∆y+ 1
2(gi+1,j+1−gi+1,j−gi−1,j+gi−1,j−1)∆x} . (3.43)

The stencil is as expected the combination of the N scheme with its opposite, which as
required eliminates the central node. The stencils for the derivatives ux and uy are shown
in Fig. 3.11.

1

0

−1
j

i

0 1−1

−1/2 1/2 1/2

1/2

−1/2

−1/2

Figure 3.11. The stencils for the derivatives ux and uy of the second order directional central
scheme for a∆y > b∆x > 0 of (3.43).

For advection along the diagonal, the scheme for the linear advection equation re-
duces to the one-dimensional central scheme along the streamline, which is un+1

0,0 − un0,0 =
−a∆t/h (u1,1 − u−1,−1). The directional central scheme shares the increased accuracy with
the N scheme. This is further elaborated in [35].

The RD formulation uses the average of the updates of (3.4) and (3.16).

3.5.5. Other directional schemes.
The methodology used so far can be used to derive other directional schemes starting

from the N scheme, e.g. a fourth order central scheme, which is given by

12∆xux = u−1,1 − 3u0,1 + 3u1,1 − u2,1 − 6u−1,0 + 6u1,0

+ u−2,−2 − 3u−1,−1 + 3u0,−1 − u1,−1 ,

12∆yuy = u−1,−2 − 3u−1,−1 + 3u−1,0 − u−1,1 − 6u0,−1 + 6u0,1

+ u1,−1 − 3u1,0 + 3u1,1 − u1,2 . (3.44)

The stencils are given in Fig. 3.12.
It is a central discretization with directional improved behavior with respect to the

standard one-dimensional approximations. Like the second order N scheme, other, and in
some respects better discretizations can be derived [35].



flux vector distribution 29

j

i
-1 0-2

0

1

-1

-2

6

3

-1

-6

-31

2

1 2

6

-6

1

1

1

3

-3 3

-3

-1

-1 -1

3

-3

Figure 3.12. The stencils of ux and uy for the directional central approximations (3.44).

The first residual distribution scheme was the Lax-Wendroff scheme described by Ni
on quadrilaterals [18]. However, like all versions of the Lax-Wendroff scheme since, it
incorporates a one-dimensional grid-aligned central scheme, which is less optimal than the
directional central scheme of the previous section.

Other first order schemes can be used in the distribution to nodes further away, such
as the LDA scheme [26]. Since the LDA scheme can be written as the N scheme plus a
correction term, this means distributing the correction term.

In the derivation of (3.31), we apply the consistency condition in order to obtain an
approximation for the gradient. We can of course apply the consistency condition for
a second derivative, ∇2, or any other derivative using wider distribution stencils. This
approach is used in [35].

The FVD method can also be used with the quadrilateral elements used by Paillère et
al. [71].

4. Three-dimensional Flux Vector Distribution schemes.

We will look at discretizations derived from the N scheme on structured tetrahedral
grids in three dimensions. In [35], discretizations other than the N scheme are discussed
on structured and unstructured grids in N dimensions.

4.1. Directional discretizations in three dimensions on tetrahedra.

In three dimensions, no grid exists which consists of regular tetrahedra with equilateral
surfaces. There are two well-known regular structures in three dimensions, the icosahedron
and the diamond structure. The first has a regular surface consisting of equilateral trian-
gles, but the distance from one of the constituting vertices to the central node is about
5% shorter than the length of the equilateral triangle. The central node is surrounded by
twelve vertices and twenty triangles meet at the central vertex. The second is a collection
of carbon atoms in a regular tetrahedral structure. This does not bring us any further
since the carbon atoms form a face centered cubic cell [72], which cannot be used in our
context.

The discretizations on an icosahedron is discussed in [35]. Here, we consider a hexahe-
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dron, dissected in either five or six tetrahedra. The nodes of the tetrahedra are the nodes
of the hexahedron.

The splitting in five tetrahedra is possible in two different ways, one of which is shown
in Fig. 4.1. This dissection of the hexahedron is without the use of a body diagonal. The
surface diagonals on opposite sides of the hexahedron have different orientation, and both
types of dissections are needed to fill the space.

x
y

z

Figure 4.1. Dissection of a hexahedron in five tetrahedra, one of two possibilities.

The first order N scheme, expressed in a distribution formulation such as (3.18) then
results in an inconsistent discretization, and does not result in the N scheme on the under-
lying structured grid. The expression for the update is too cumbersome to include here,
but it can be easily seen that the node (-1,-1,-1) is absent from the approximation of the
first derivative at (0,0,0). The central directional discretization which is the average of two
opposite N-discretizations as described in §3.5.4 is therefore also inconsistent.

The same happens with the dissection in six tetrahedra. There are eight dissections
which have the same direction of the side diagonals on opposite walls of the hexahedron.
One example is shown in Fig. 4.2.

x

y

z

Figure 4.2. Dissection of a hexahedron in six tetrahedra, one of the eight possibilities which has
the side diagonals parallel.

The distribution according to (3.18) gives inconsistent discretizations, and does not
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revert to the structured N scheme. It does not only depend on the unknowns at (0,0,0),
(-1,0,0), (-1,-1,0), and (-1,-1,-1), but also on the variables at (0,-1,0), (-1,0,-1), and (0,0,1).
The central directional discretization is again inconsistent.

The problem of inconsistencies seems unavoidable in three dimensions for directional
discretizations on structured tetrahedral grids based on the N scheme. Remark that the
residual on a cube can be written as a sum of differences over the four body diagonals,
and therefore defies to be cast in a form based on the N scheme.

In two dimensions, a regular triangulation exists, and inconsistencies appear only on
irregular grids. In three dimensions, the absence of a regular tetrahedral grid leads to
inconsistent directional discretizations. It would be interesting to see which impact the
inconsistencies have on the numerical solution. Most likely, the average advection speed
will be found back over a number of cells. Current unstructured solvers do not seem to
exhibit a dominant deviation of the advection direction. However, the reduction in accuracy
may hurt, especially for higher order approximations.

5. Conclusion.

In this paper we have considered numerical schemes for systems of hyperbolic equations
from the point of view of distributing the fluxes. This idea is a logic consequence of the
distribution schemes for residuals which have been under development for some thirty
years now. The shift of viewpoint has been advantageous, and the main results of this
paper are the following :

The Flux Vector Distribution formulation. The FVD method is a convenient way of
formulating space discretizations. The commonly available schemes are readily recovered,
while the formulation of new discretizations is easy. Distribution is based on directional
coefficients, which can also be used in the RD formulation.

Flux splitting is common to FVS and FDS. It is known that some FVS and FDS have a
flux splitting in common. The most basic flux splitting is the decomposition in an entropy
part and into acoustic parts. The separate treatment of the entropy in two and three
dimensions may be advantageous. As FVS this is known as the Steger-Warming splitting,
while when used with the conservative linearization it is known as Roe’s FDS. This flux
splitting also appears when the matrix extension is made of the scalar schemes. When
using the extension to systems of the flux of Engquist and Osher, the integration path
which keeps the Mach number constant again gives the entropy-acoustic splitting. Other
integration paths are possible, using the Riemann invariants as in the FDS of Osher.

Higher order directional schemes. In two space dimensions, directional central and
upwind schemes can be easily derived for any order. This is generally based on a Taylor
series development, such as fully exploited in [35], but in this paper we have focused on
distribution coefficients which are derived from the N scheme. The second order directional
upwind scheme is different from all previous attempts for directionally higher order upwind
schemes. Perhaps the most surprising result is the second order directional central scheme.
The directional central scheme is a building block for, among others, the Lax-Wendroff type
schemes. In fact, the directional ideas can be applied to any discretization for advection
phenomena, including compact schemes.

Inconsistent schemes. At several occasions we encountered inconsistent space dis-
cretizations. To begin with, higher order schemes using limiters are locally inconsistent.
Central schemes with a TVD artificial viscosity have the same problem. The inconsistency
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is in the advection speed. While the schemes are shown to be inconsistent, the effects have
so far gone unnoticed. The N scheme on triangles is locally inconsistent on an irregular
triangulation. In three dimensions, asymmetric discretizations are inconsistent on regular
tetrahedral meshes.
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