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Abstract

We prove that for almost all rotation numbers, every two C2+α-smooth circle
diffeomorphisms with a break point, with the same irrational rotation number and
the same size of the break, are C1-smoothly conjugate to each other, provided that
the corresponding renormalizations approach asymptotically each other with an ex-
ponential rate.

1 Introduction

The problem of smoothness of a conjugacy to a linear rotation for smooth diffeomorphisms
of a circle T1 is a classical problem in one-dimensional dynamics. It has been proved by
Arnol’d [1] that every analytic circle diffeomorphism with a Diophantine rotation number,
i.e., with a rotation number ρ for which there exists C > 0 and β ≥ 0 such that |ρ−p/q| >
C/q2+β, for every p ∈ Z and q ∈ N, sufficiently close to the linear rigid rotation Rρ : x 7→
x+ρ, is analytically conjugate to Rρ. Arnol’d also conjectured that the result remains true
if the requirement of closeness to the rigid rotation is removed. The global C∞-version
of this result has been proved by Herman [4], and is the subject of classical Herman’s
theory [4, 15, 5, 13, 10]. Arnol’d also proved that his local result cannot be extended to
all rotation numbers [1]. He constructed examples of analytic circle diffeomorphisms with
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irrational rotation numbers for which the invariant measure is singular, which implies that
the conjugacy to the rigid rotation is not absolutely continuous.

The crucial step in establishing the smoothness of conjugation is C1-smoothness. We
use the term rigidity for the phenomenon that any two maps, within a given equivalence
class determined by their topological conjugacy, are, in fact, C1-smoothly conjugate to
each other. It follows from the results of Arnol’d and Herman that, in the case of circle
diffeomorphisms, rigidity is guaranteed only when rotation numbers satisfy a certain Dio-
phantine condition. It was discovered recently that in the presence of singular points, this
rigidity may actually be stronger, i.e., valid for a “larger” set of rotation numbers. The
singular points refer either to the points where the derivative vanishes (critical points) or
where it has a jump discontinuity (break points). In the case of critical circle maps, i.e.,
diffeomorphisms of a circle with a single critical point, the rigidity is especially strong. It
has been proved by Khanin and Teplinsky [9] that any two analytic critical circle maps
with the same rotation number and the same odd integer order of the critical point are
C1-smoothly conjugate to each other. This phenomenon, when rigidity holds without any
Diophantine-type conditions, is called robust rigidity. This result relies on the exponential
convergence of renormalizations proved by de Faria and de Melo for C∞-smooth critical
circle maps and rotation numbers of bounded type [2, 3], and extended, in the analytic
setting, to all rotation numbers by Yampolsky [14]. Though robust rigidity is believed to
be present in the general case of non-analytic critical circle maps, there is currently no
proof of the exponential “convergence” of renormalizations in this case.

The above results for critical circle maps suggested that the rigidity may also be
robust in the case of circle diffeomorphisms with a break point. Partial results in this
direction were obtained in [6], where rigidity was established for a countable set of rotation
numbers, and in [11], for a set of rotation numbers of zero Lebesgue measure. However, as
was shown by two of us [7], the above conjecture is false — robust rigidity does not hold
for circle maps with breaks. We proved in [7] that there are irrational rotation numbers,
and pairs of analytic circle diffeomorphisms with breaks, with the same rotation number
and the same size of the break (see below), for which any conjugacy between them is
not even Lipschitz continuous. The question whether rigidity holds for typical rotation
numbers, however, remained open. The following theorem, which is the main result of
this paper, provides an affirmative answer to this question.

To be precise, every circle diffeomorphism with a break T : T1 → T1, is defined
uniquely by a function T : R → R that is continuous and strictly increasing on R, with
T (0) ∈ [0, 1), and satisfies T (x + 1) = T (x) + 1, for every x ∈ R. It is assumed that
there exists a point xbr ∈ [0, 1) such that T (x) ∈ Cr, r ≥ 2, on [xbr, xbr + 1], and T ′(x) is
bounded from below by a positive constant for every x ∈ [xbr, xbr + 1]. The square root
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of the ratios of the one sided derivatives at xbr,√
T ′−(xbr)

T ′+(xbr)
= c 6= 1, (1.1)

is called the size of the break.

Theorem 1.1 There exists a set of rotation numbers A1 ⊂ [0, 1] of full Lebesgue measure
such that any two C2+α-smooth, α ∈ (0, 1), circle diffeomorphisms with breaks T and
T̃ , with the same irrational rotation number ρ ∈ A1, and the same size of the break
c ∈ R+\{1}, are C1-smoothly conjugate to each other. Namely, there exists a C1-smooth
diffeomorphism ϕ : T1 → T1, such that

ϕ ◦ T ◦ ϕ−1 = T̃ . (1.2)

Remark 1 The proof of this theorem uses exponential “convergence” of renormalizations
for circle diffeomorphisms with breaks: If fn and f̃n are renormalizations (see Section 2) of
two circle diffeomorphisms with breaks T and T̃ with the same irrational rotation number,
respectively, then there exist λ ∈ (0, 1), and C > 0, such that ‖fn − f̃n‖C2 ≤ Cλn, for
every n ∈ N. It has been shown in [11], that the renormalizations approach exponentially
fast to each other for a set of rotation numbers of zero Lebesgue measure. The full proof
of the exponential approach of the renormalizations, for all irrational rotation numbers,
will be given in [8].

Remark 2 The set A1 consists of all irrational rotation numbers ρ ∈ (0, 1) whose subse-
quence of partial quotients kn+1 for even n, if 0 < c < 1, or odd n, if c > 1, satisfies the
bound kn+1 ≤ C1λ

−n
1 , for some λ1 ∈ (λ, 1), and C1 > 0. One can see that A1 contains some

strongly Liouville numbers. This is one manifestation of the remnants of robust rigidity
still present in the case of circle diffeomorphisms with breaks. The difference between the
cases of odd and even n is related to a difference in the behavior of the renormalizations
(which is opposite for maps with 0 < c < 1 and c > 1). This will be explained in more
details in the next section.

The paper is organized as follows. In Section 2, we introduce the general renormaliza-
tion setting for circle homeomorphisms and formulate regularity conditions and a rigidity
theorem (Theorem 2.2) which follows from them. In Section 3, we formulate a criterion
of smoothness of the conjugacy in terms of ratios of the lengths of the corresponding
intervals of dynamical partitions. In the same section, we obtain necessary estimates on
these ratios on a fundamental interval and prove Theorem 2.2 by spreading them to the
whole circle and using the criterion of smoothness. Theorem 1.1 is then proved by simply
verifying that the regularity conditions of Theorem 2.2 hold true in the case of circle
diffeomorphisms with breaks.
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2 Renormalizations of circle homeomorphisms and a
formulation of a rigidity theorem

2.1 Renormalizations of circle homeomorphisms

It has been known since Poincaré that for every orientation-preserving homeomorphism
T of the circle T1 = R\Z there is a unique rotation number ρ, which is given by the x-
independent limit ρ = limn→∞ T n(x)/n mod 1, where T is a lift of T to R. The rotation
number ρ ∈ (0, 1] can be expressed in the form of a continued fraction expansion

ρ =
1

k1 + 1
k2+ 1

k3+...

, (2.1)

that we write as ρ = [k1, k2, k3, . . . ]. The sequence of integers kn, called partial quotients, is
infinite and defined uniquely if and only if ρ is irrational. Every infinite sequence of partial
quotients defines uniquely an irrational number ρ as the limit of the sequence of rational
convergents pn/qn = [k1, k2, . . . , kn]. It is well-known that this sequence forms the sequence
of best rational approximates of ρ, i.e. there are no rational numbers with denominators
smaller or equal to qn, that are closer to ρ than pn/qn. The rational convergents can also
be defined recursively as pn = knpn−1 +pn−2 and qn = knqn−1 + qn−2, starting with p0 = 0,
q0 = 1, p−1 = 1, q−1 = 0.

To define the renormalizations, we start with a marked point x0 ∈ T1, and consider
the marked trajectory xi = T ix0, with i ≥ 0. The subsequence xqn , n ≥ 0, indexed by the
denominators of the sequence of rational convergents of the rotation number ρ, will be
called the sequence of dynamical convergents. We define xq−1 = x0−1. The combinatorial
equivalence of all circle homeomorphisms with the same irrational rotation number implies
that the order of the dynamical convergents of T is the same as the order of the dynamical
convergents for the rigid rotation Tρ : x 7→ x + ρ. The well-known arithmetic properties
of the rational convergents now imply that dynamical convergents alternate their order
in the following way:

xq−1 < xq1 < xq3 < · · · < x0 < · · · < xq2 < xq0 . (2.2)

The intervals [xqn , x0], for n odd, and [x0, xqn ], for n even, will be denoted by ∆
(n)
0 , and

called the n-th renormalization segments. The n-th renormalization segment associated
to the marked point xi will be denoted by ∆

(n)
i . We will also define ∆̄

(n)
0 = ∆

(n)
0 ∪∆

(n+1)
0 ,

and ∆̌
(n)
0 = ∆

(n)
0 \∆

(n+2)
0 . In addition to the property (2.2), we also have the following

important property: the only points of the trajectory {xi : 0 < i ≤ qn+2} that belong to
∆

(n)
0 are {xqn+iqn+1 : 0 ≤ i ≤ kn+2}.
Images of ∆

(n−1)
0 and ∆

(n)
0 under T qn and T qn−1 , respectively, until they return to

∆̄
(n−1)
0 , cover the whole circle without overlapping beyond the end points, thus forming
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the n-th dynamical partition of T1,

Pn = {T i∆(n−1)
0 : 0 ≤ i < qn} ∪ {T i∆(n)

0 : 0 ≤ i < qn−1}. (2.3)

The iterates of T qn and T qn−1 restricted to ∆
(n−1)
0 and ∆

(n)
0 , respectively, are the two

continuous components of the first return map for T on the interval ∆̄
(n−1)
0 . The endpoints

of the segments from Pn form the set

Ξn = {xi : 0 ≤ i < qn−1 + qn}. (2.4)

We also define the extended partition P∗n = Pn∪{T qn∆
(n−1)
0 , T qn−1∆

(n)
0 } and the extended

set Ξ∗n = Ξn ∪ {xqn−1+qn}.
The following simple lemma follows directly from the properties of the continued frac-

tion expansion of the rotation number.

Lemma 2.1 For every m > n, we have the following decomposition

Ξm ∩ ∆̌
(n−1)
0 =

⋃
xl∈Ξm∩∆

(n)
0 \{xqn}

⋃
0≤i<kn+1

{xl+qn−1+iqn}. (2.5)

Furthermore, for every xl ∈ Ξm∩∆
(n)
0 \{xqn}, we have xl+qn−1+kn+1qn=xl+qn+1 ∈ Ξ∗m∩ ∆̄

(n)
0 .

The n-th renormalization of an orientation-preserving homeomorphism T of the circle
T1, with rotation number ρ = [k1, k2, k3, . . . ], with respect to the marked point x0 ∈ T1,
is a function fn : [−1, 0] → R obtained from T qn , by rescaling the coordinates. More
precisely, if τn is the affine change of coordinates that maps xqn−1 to −1 and x0 to 0, then

fn = τn ◦ T qn ◦ τ−1
n . (2.6)

If we identify x0 with zero, then τn is exactly a multiplication by (−1)n/|∆(n−1)
0 |. Here

and in what follows, we use | · | to denote the length of an interval. Definition (2.6) is
valid for all n ≥ 0 if and only if ρ is irrational; otherwise, n must be less than the length
of the continued fraction expansion of ρ or can be equal to it if xqn−1 6= x0.

2.2 Renormalizations of circle diffeomorphisms with breaks

In the case of a circle diffeomorphism with a break, we will use the break point xbr as the
marked point x0.

It is well known [12] that renormalizations fn of circle diffeomorphisms with a break
of size c ∈ R+\{1} approach exponentially fast in C2-norm to a particular family of linear
functional transformations

Fa(n),v(n),c(n) : z 7→ a(n) + c(n)z

1− v(n)z
, (2.7)
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Figure 1: The graph of a renormalized map fn for sufficiently large n and large kn+1: a) Case
0 < c < 1 and n even, or c > 1 and n odd; b) Case 0 < c < 1 and n odd, or c > 1 and n even.

where c(n) = c if n is even, c(n) = c−1 if n is odd, and

a(n) =
|∆(n)

0 |
|∆(n−1)

0 |
, v(n) =

c(n) − a(n) − b(n)

b(n)
, b(n) =

|∆(n−1)
0 | − |∆(n)

qn−1 |
|∆(n−1)

0 |
. (2.8)

The following estimates have also been proved in [12]. For every circle diffeomorphism
with a break T , there exist constants C > 0 and λ ∈ (0, 1), such that, for all n ∈ N:

(A) | ln(T qn)′(x)| ≤ C, for all x ∈ T1 (at points where the derivative has a break, both
left and right derivatives are considered),

(B) ‖fn − Fa(n),v(n),c(n)‖C2 ≤ Cλn.

As already mentioned in Remark 2, for maps with breaks, the graphs of the renormal-
izations fn look different in the cases of odd and even n (see Figure 1).

If c > 1, the map fn is concave for sufficiently large odd n. Moreover, as kn+1 → ∞,
the graph of fn approaches the diagonal w = z at the end points z = −1 and z = 0.
Below, we call the small intervals containing these end points the gates (the intervals
[−1, z

(1)
g ] and [z

(2)
g , 0] on Figure 1 (a)). On the contrary, if n is even and sufficiently large,

the map fn is convex. It approaches the diagonal as kn+1 → ∞ at a single point of
almost-tangency, strictly between −1 and 0. We will later call an interval containing this
point of almost-tangency the tunnel (the interval [z

(1)
t , z

(2)
t ] on Figure 1 (b)).

If 0 < c < 1, the behavior is the opposite, i.e., fn is convex for n odd, and concave for
n even. The restriction on kn+1 in Remark 2 is related to the concave case.
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2.3 Regularity conditions and a rigidity theorem

A sequence of functions gn : [−1, 0]→ R, with n ∈ N0 = N∪{0}, will be called K-regular,
if it satisfies the following conditions for some vector K = (K1, K2, K3, K4, K5, K6), with
positive components:

(i) ‖gn‖C2 ≤ K1 on [−1, 0],

(ii) g′n(z) > K2 for every z ∈ [−1, 0],

(iii) for all odd n, the set Bgn,K3 = {z ∈ [−1, 0] : gn(z) − z < K3} is either empty or
consists of one or the union of two half-open intervals each of which contains an end
point (we refer to these intervals as the gates),

(iv) for all odd n, g′′n(z) < −K4, for z ∈ Bgn,K3 ,

(v) for all even n, the set Bgn,K5 is either an open interval or empty (we refer to this
interval as the tunnel; since the points −1 and 0 are outside of the tunnel, this
implies gn(−1) ≥ K5 − 1 and gn(0) ≥ K5),

(vi) for all even n, g′′n(z) > K6, for z ∈ Bgn,K5 .

A system of nested partitions Pn, i.e., a sequence of partitions such that each element
of a partition Pn+1 is contained in an element of a partition Pn, is called refining if the
maximal length of elements of partition Pn approaches zero as n→∞. It is called expo-
nentially refining if there exist Cref > 0 and 0 < λref < 1, such that |Im| ≤ Crefλ

m−n
ref |In|,

for any In ∈ Pn and Im ∈ Pm, with Im ⊂ In.

Theorem 2.2 Let T and T̃ be two C2+α-smooth, α > 0, orientation-preserving circle
diffeomorphisms with breaks that satisfy the following conditions:

(a) ρ(T ) = ρ(T̃ ) ∈ A1;

(b) there exists a vector K = (K1, K2, K3, K4, K5, K6) ∈ R6
+, such that the sequences of

renormalizations gn = fn+1 and g̃n = f̃n+1, n ∈ N0, if 0 < c < 1, and the sequences
gn = fn and g̃n = f̃n, n ∈ N, if c > 1, are K-regular;

(c) the systems of dynamical partitions Pn and P̃n are exponentially refining;

(d) ‖fn − f̃n‖C2 ≤ Cλn, for some λ ∈ (0, 1) and C > 0.

Then, there exists a C1-smooth orientation-preserving circle diffeomorphism ϕ such that

ϕ ◦ T ◦ ϕ−1 = T̃ . (2.9)
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Remark 3 Though the theorem has been formulated for circle maps with breaks, the
result is valid for any two circle homeomorphisms which satisfy the assumptions (a), (c)
and (d) of the theorem and whose renormalizations fn are C2+α-smooth, and such that
either the sequences gn = fn, g̃n = f̃n or the sequences gn = fn+1, g̃n = f̃n+1 satisfy the
above regularity conditions.

Remark 4 Condition (c) of the theorem implies that T and T̃ are topologically conjugate
to each other. It is easy to see that in the case of circle diffeomorphisms with breaks, the
conjugacy ϕ can be C1-smooth only in the case when it maps the break point x0 of T into
the break point x̃0 of T̃ . This condition defines ϕ uniquely, and below we only consider
the case of this particular conjugacy.

A similar theorem has been proved in [9] under different regularity conditions (valid
for renormalizations of critical circle maps) which require a simpler analysis.

3 A criterion of smoothness and the proof of the main
theorem

3.1 A criterion of smoothness

We will use the following criterion of smoothness of ϕ. It is inspired by a similar criterion
in [2] called the “coherence property”. The same criterion was also used in [9]. For a
segment I ⊂ T1, we define

σ(I) =
|ϕ(I)|
|I|

, (3.1)

where | · | is the length of an interval.

Proposition 3.1 [9] Suppose that the system of partitions Pn of the circle is refining, and
that there exist constants C̄ > 0 and λ̄ ∈ (0, 1) such that for any two segments I, I ′ ∈ Pn
which are either adjacent or I, I ′ ⊂ J for some J ∈ Pn−1 the following estimate holds

| lnσ(I)− lnσ(I ′)| ≤ C̄λ̄n. (3.2)

Then, ϕ ∈ C1(T1) and ϕ′ > 0.

Proof. We present the proof below for completeness of the argument. Let ϕn be a
homeomorphism of T1 that equals ϕ on Ξn and is linear on each of the segments I ⊂ Pn.
Let further (ϕn)′+ be the right derivative of ϕn. It follows from (3.2) that the sequence
of differences ln((ϕn)′+(x)) is a Cauchy sequence, uniformly on T1, and thus converges to
some h(x). To see this, notice first that over each I ⊂ Pn without the right endpoint,
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(ϕn)′+(x) = σ(I), and that (3.2), for any two intervals I, I ′ ⊂ J for some J ∈ Pn−1, implies
that

| lnσ(I)− lnσ(J)| ≤ C̄λ̄n. (3.3)

Now, it is easy to show using (3.2) for adjacent intervals I, I ′ ∈ Pn that the function
h is continuous on T1. Taking the limit n → ∞ of ϕn(x) =

∫ x
0

(ϕn)′+(z) dz, we get
ϕ(x) =

∫ x
0
eh(z) dz. Thus, ϕ′ = eh is continuous and positive on T1. QED

We will also use the ratios of the corresponding rescaled intervals:

sn(I) =
|τ̃n(ϕ(I))|
|τn(I)|

. (3.4)

3.2 Renormalization graphs concave inside the gates

In this section we consider dynamics of a subsequence of renormalizations fn and f̃n of
maps T and T̃ for even n, if 0 < c < 1, or odd n, if c > 1. The graphs of these
renormalizations are concave inside the gates.

The following proposition gives the control of derivatives of renormalizations inside
the narrow gates.

Proposition 3.2 There exists ε > 0 and B > 1, such that for all even n, if 0 < c < 1,
or all odd n, if c > 1, either fn(−1) + 1 > K3/2 or f ′n(z) > B for z ∈ [−1,−1 + ε] and
either fn(0) > K3/2 or f ′n(z) < B−1 for z ∈ [−ε, 0].

Proof. It follows directly from the regularity conditions of Section 2.3 that if fn(−1)+1 ≤
K3/2, then f ′n(−1) > 1 + K3/2 and if fn(0) ≤ K3/2, then f ′n(0) = 1 −K3/2. Since the
second derivative of fn is bounded, in these cases, there exists ε > 0 and B > 1 such that
f ′n(z) > B for z ∈ [−1,−1 + ε] and f ′n(z) < B−1 for z ∈ [−ε, 0]. QED

The next proposition will be used repeatedly.

Proposition 3.3 Let bn, n ∈ N0, be a sequence of positive numbers such that bi > B > 1
for i ≥ 1, and

sn =
n∑
j=0

j∏
i=0

bi. (3.5)

Then, there exists A > 0 such that
∏n

i=0 bi > Asn, for all n ∈ N.

Proof. We can assume without loss of generality that b0 = 1. The claim is proved by
simple induction. For n = 1, the claim is obviously true for any A < B

1+B
. Assume that
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the claim is true for some n ∈ N, with A < 1− 1
B
. Then,

n+1∏
i=0

bi > Asnbn+1 = Abn+1(sn+1 −
n+1∏
i=0

bi), (3.6)

and thus
n+1∏
i=0

bi > A
bn+1

1 + Abn+1

sn+1 > Asn+1. (3.7)

QED

Below λ is the exponent for the exponential approach of renormalizations (see Re-
mark 1), and λ−1

1 is the exponent of the maximal growth of a subsequence of partial
quotients (see Remark 2). It is assumed that 0 < λ < λ1 < 1.

Proposition 3.4 Let λ3 ∈ (
√
λ/λ1, 1). There exists C2 > 0 such that for all even n, if

0 < c < 1, or all odd n, if c > 1, we have

sn(∆(n)
qn−1

), (sn(∆(n)
qn−1

))−1 ≤ 1 + C2λ
n
3 . (3.8)

Proof. Let λ2 be a number in [λ/λ3, 1), whose choice will be specified later on. Notice first
that if either |τ̃n(∆̃

(n)
qn−1)| ≥ λn2 or |τn(∆

(n)
qn−1)| ≥ λn2 , then the claim follows directly from the

closeness of renormalizations, since ||τ̃n(∆̃
(n)
qn−1)|−|τn(∆

(n)
qn−1)|| = |f̃n(−1)−fn(−1)| ≤ Cλn.

In the case when |τ̃n(∆̃
(n)
qn−1)| < λn2 and |τn(∆

(n)
qn−1)| < λn2 , we will prove the claim by

contradiction. To prove the first inequality, let us assume that sn(∆
(n)
qn−1) > 1 + λn3 (the

proof of the second inequality is analogous, by assuming (sn(∆
(n)
qn−1))

−1 > 1 + λn3 ). Then,
for 1 ≤ j ≤ kn+1 such that τn(∆

(n)
qn−1+(j−1)qn

), τ̃n(∆̃
(n)
qn−1+(j−1)qn

) ⊂ [−1,−1 + λn2 ], we have

sn(∆
(n)
qn−1+jqn

) =

j∏
i=1

(
1 +

f̃ ′n(ζ̃i)− f ′n(ζi)

f ′n(ζi)

)
sn(∆(n)

qn−1
)

≥
j∏
i=1

(
1− |f̃

′
n(ζ̃i)− f ′n(ζ̃i)|+ |f ′n(ζ̃i)− f ′n(ζi)|

|f ′n(ζi)|

)
sn(∆(n)

qn−1
)

≥
(
1−K−1

2 (Cλn +K1λ
n
2 )
)j
sn(∆(n)

qn−1
).

(3.9)

Here ζi ∈ τn(∆
(n)
qn−1+(i−1)qn

), and ζ̃i ∈ τ̃n(∆̃
(n)
qn−1+(i−1)qn

). Since j ≤ kn+1 ≤ C1λ
−n
1 , for every

ε1 > 0 and sufficiently large n, we have

sn(∆
(n)
qn−1+jqn

) > 1 + (1− ε1)λn3 , (3.10)

if λ ≤ λ2 < λ1λ3.
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This estimate implies that if jλ2 is the index j of the last interval τ̃n(∆̃
(n)
qn−1+jqn

) that
belongs to the interval [−1,−1 + λn2 ] then we have

τ̃n(x̃qn−1+jλ2qn
)− τn(xqn−1+jλ2qn

) =

jλ2−1∑
j=0

|τ̃n(∆̃
(n)
qn−1+jqn

)| −
jλ2−1∑
j=0

|τn(∆
(n)
qn−1+jqn

)|

>
(1− ε1)λn3

1 + (1− ε1)λn3

jλ2−1∑
j=0

|τ̃n(∆̃
(n)
qn−1+jqn

)| > C3λ
n
2λ

n
3 ,

(3.11)

for some C3 > 0, since
∑jλ2−1

j=0 |τ̃n(∆̃
(n)
qn−1+jqn

)| is of the order of λn2 by Proposition 3.3.
Here, we have also used Proposition 3.2 and that λn2 < ε, for sufficiently large n.

We now have

τ̃n(x̃qn−1+jqn)− τn(xqn−1+jqn) = f̃n(τ̃n(x̃qn−1+(j−1)qn))− fn(τn(xqn−1+(j−1)qn))

≥ f̃ ′n(ξj)(τ̃n(x̃qn−1+(j−1)qn)− τn(xqn−1+(j−1)qn))− Cλn

≥ (f̃ ′n(ξj)− ε2)(τ̃n(x̃qn−1+(j−1)qn)− τn(xqn−1+(j−1)qn)),

(3.12)

if ε2(τ̃n(x̃qn−1+(j−1)qn) − τn(xqn−1+(j−1)qn)) ≥ Cλn, for some small ε2 > 0. Here, ξj is a
point in the interval (τn(xqn−1+(j−1)qn), τ̃n(x̃qn−1+(j−1)qn)). If λ < λ2λ3, then this condition
is satisfied for j = jλ2 and sufficiently large n, by condition (3.11). By iterating the
estimate (3.12), we see that the estimate (3.11) gets only better as j is increased from
jλ2 , as long as f̃ ′n(ξj) > 1 + ε2, for some ε2 > 0. This is satisfied with ε2 = B − 1, where
B is the constant from Proposition 3.2, as long as the intervals τ̃n(∆̃

(n)
qn−1+jqn

) lie inside
[−1,−1 + ε].

From the first inequality in (3.12), we have

τ̃n(x̃qn−1+jqn)− τn(xqn−1+jqn) ≥ K2(τ̃n(x̃qn−1+(j−1)qn)− τn(xqn−1+(j−1)qn))− Cλn, (3.13)

which can be iterated a constant number of times, if λ < λ2λ3, to obtain

τ̃n(x̃qn−1+jqn)− τn(xqn−1+jqn) ≥ C4λ
n
2λ

n
3 , (3.14)

for some constant C4 > 0, and all j such that τ̃n(∆̃
(n)
qn−1+jqn

) ∩ (−1 + ε,−ε) 6= ∅.
We will now prepare the setting to estimate the same difference, by starting from the
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other end of the interval [−1, 0]. Notice that

sn(∆
(n)
0 ) = sn(∆(n)

qn−1
)
f ′n−1(τn−1 ◦ τ−1

n (ζ0))

f̃ ′n−1(τ̃n−1 ◦ τ̃−1
n (ζ̃0))

= sn(∆(n)
qn−1

)
f ′n−1(−fn−1(0)ζ0)

f̃ ′n−1(−f̃n−1(0)ζ̃0)

= sn(∆(n)
qn−1

)

(
1 +

f ′n−1(−fn−1(0)ζ0)− f̃ ′n−1(−f̃n−1(0)ζ̃0)

f̃ ′n−1(−f̃n−1(0)ζ̃0)

)
≥ sn(∆(n)

qn−1
)
(

1−K−1
2 (Cλn−1 +K2

1Cλ
n−1 +K2

1 |ζ0 − ζ̃0|)
)

(3.15)

where ζ0 ∈ τn(∆
(n)
0 ) and ζ̃0 ∈ τ̃n(∆̃

(n)
0 ). We next estimate |ζ0 − ζ̃0|. Since

sn(∆(n)
qn−1

) =
1 + f̃n(−1)

1 + fn(−1)
≤ 1 +

Cλn

|τn(∆
(n)
qn−1)|

, (3.16)

and, by assumption sn(∆
(n)
qn−1) > 1+λn3 , we have |τn(∆

(n)
qn−1)| < Cλn2 , if λ < λ2λ3, which we

assume. Furthermore, since the length of τn(∆
(n)
qn−1) is of the same order as fn(0), we have

fn(0) ≤ C5λ
n
2 , for some C5 > 0. This implies that |ζ0− ζ̃0| ≤ fn(0) +Cλn ≤ C5λ

n
2 +Cλn.

Using this estimate and the last inequality in (3.15), we obtain, that for some ε3 > 0 and
sufficiently large n,

sn(∆
(n)
0 ) ≥ 1 + (1− ε3)λn3 . (3.17)

Notice, further, that

sn(∆
(n)
qn+1)

sn(∆
(n)
0 )

=
τ̃n(x̃qn+1+qn)− τ̃n(x̃qn+1)

τn(xqn+1+qn)− τn(xqn+1)
· 1

sn(∆
(n)
0 )

=
f̃n+1(0)− f̃n+1(−1)

fn+1(0)− fn+1(−1)
, (3.18)

and that the right hand side is bounded from below by 1 − C6λ
n, for some C6 > 0.

Together with (3.17), this implies that, for sufficiently large n,

sn(∆(n)
qn+1

) > 1 + (1− 2ε3)λn3 . (3.19)

For sufficiently large n, we also have

sn(∆
(n+1)
0 ) = sn(∆

(n)
0 )

f̃n+1(0)

fn+1(0)
> (1 + (1− ε3)λn3 )

(
1− Cλn

K5

)
> 1 + (1− 2ε3)λn3 . (3.20)

Here, we have used that fn+1(0) is bounded from below by K5.
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We can now perform backward iterations of the intervals τn(∆
(n)
qn+1) and τ̃n(∆̃

(n)
qn+1). The

estimates below are similar to the estimates for forward iterations that were used above.
For 1 ≤ j ≤ kn+1 such that τn(∆

(n)
qn−1+(j−1)qn

), τ̃n(∆̃
(n)
qn−1+(j−1)qn

) ⊂ [−λn2 , 0], we have

sn(∆
(n)
qn−1+jqn

) =

kn+1∏
i=j+1

(
1 +

f ′n(ζi)− f̃ ′n(ζ̃i)

f̃ ′n(ζ̃i)

)
sn(∆(n)

qn+1
)

=

kn+1∏
i=j+1

(
1 +

f ′n(ζi)− f̃ ′n(ζi) + f̃ ′n(ζi)− f̃ ′n(ζ̃i)

f̃ ′n(ζ̃i)

)
sn(∆(n)

qn+1
)

≥
kn+1∏
i=j+1

(
1− |f

′
n(ζi)− f̃ ′n(ζi)|+ |f̃ ′n(ζi)− f̃ ′n(ζ̃i)|

|f̃ ′n(ζ̃i)|

)
sn(∆(n)

qn+1
)

≥
(
1−K−1

2 (Cλn +K1λ
n
2 )
)kn+1−j sn(∆(n)

qn+1
).

(3.21)

As before, ζi ∈ τn(∆
(n)
qn−1+(i−1)qn

), and ζ̃i ∈ τ̃n(∆̃
(n)
qn−1+(i−1)qn

). Since j ≤ kn+1 ≤ C1λ
−n
1 ,

using (3.19), for sufficiently large n, we obtain

sn(∆
(n)
qn−1+jqn

) > 1 + (1− 3ε3)λn3 , (3.22)

if λ ≤ λ2 < λ1λ3.
If j−λ2 is the smallest index j of such that the interval τ̃n(∆̃

(n)
qn−1+jqn

) is a subset of
[−λn2 , 0], then we have

τn(xqn−1+j−λ2qn
)− τ̃n(x̃qn−1+j−λ2qn

) = |τ̃n(∆̃
(n+1)
0 )| − |τn(∆

(n+1)
0 )|

+

kn+1−1∑
j=j−λ2

|τ̃n(∆̃
(n)
qn−1+jqn

)| −
kn+1−1∑
j=j−λ2

|τn(∆
(n)
qn−1+jqn

)|

>

kn+1−1∑
j=j−λ2

|τ̃n(∆̃
(n)
qn−1+jqn

)| −
kn+1−1∑
j=j−λ2

|τn(∆
(n)
qn−1+jqn

)|

>
(1− 3ε3)λn3

1 + (1− 3ε3)λn3

kn+1−1∑
j=j−λ2

|τ̃n(∆̃
(n)
qn−1+jqn

)| > C7λ
n
2λ

n
3 ,

(3.23)

for some C7 > 0, since
∑kn+1−1

j=−λ2 |τ̃n(∆̃
(n)
qn−1+jqn

)| is of the order of λn2 . In the first of these
inequalities, we have also used the estimate (3.20).

We also have

τn(xqn−1+jqn)− τ̃n(x̃qn−1+jqn) ≥ (f̃ ′n(ξj+1))−1(τn(xqn−1+(j+1)qn)− τ̃n(x̃qn−1+(j+1)qn)− Cλn)

≥ ((f̃ ′n(ξj+1))−1 − ε4)(τn(xqn−1+(j+1)qn)− τ̃n(x̃qn−1+(j+1)qn)),

(3.24)
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if ε4(τn(xqn−1+(j+1)qn) − τ̃n(x̃qn−1+(j+1)qn)) ≥ (f̃ ′n(ξj+1))−1Cλn, for some small ε4 > 0. As
before, ξj+1 is a point in the interval (τn(xqn−1+jqn), τ̃n(x̃qn−1+jqn)). If λ < λ2λ3, then
this condition is satisfied for j = j−λ2 and sufficiently large n, by condition (3.23). We
can iterate this estimate, as long as (̃f ′n(ξj+1))−1 > 1 + ε4, for some ε4 > 0. This is
certainly the case as long as the intervals τ̃n(∆̃

(n)
qn−1+jqn

) lie inside [−ε, 0] as follows from
Proposition 3.2. Iterating again the first estimate in (3.24) a constant number of times,
we obtain an estimate opposite to (3.14), i.e.

τn(xqn−1+jqn)− τ̃n(x̃qn−1+jqn) ≥ C8λ
n
2λ

n
3 , (3.25)

for some C8 > 0, and all j such that τ̃n(∆̃
(n)
qn−1+jqn

) ∩ (−1 + ε,−ε) 6= ∅. By considering
this estimate for any such j, we get a contradiction with (3.14). QED

The next lemma deals with the iteration of “long” intervals, i.e., intervals whose lengths
are at least of the order of λn2 .

Let η and η̃ be the left or right ends of the intervals I ⊂ ∆
(n−1)
0 and Ĩ ⊂ ∆̃

(n−1)
0 , and

let rn(I) = |τ̃n(η̃)−τn(η)|
|τn(I)| . Let Ii = f in(τn(I)) and Ĩi = f̃ in(τ̃n(Ĩ)).

In what follows, we assume that λ2 is chosen such that λ2 ∈ ( λ
λ3
, λ1λ3).

Lemma 3.5 Assume that there exist C9, C10, C11 > 0 such that Ii ⊂ ∆
(n−1)
0 , Ĩi ⊂ ∆̃

(n−1)
0

and |τn(Ii)| ≥ C9λ
n
2 , for all 0 ≤ i ≤ Nn, where Nn ≤ C10n. Assume further that

rn(I) ≤ C11λ
n
3 . Then, there exists C12 > 0 such that rn(Ii) ≤ C12λ

n
3 for all 0 ≤ i ≤ Nn.

Proof. We will assume that η and η̃ are the left ends. For the right ends, the proof does
not change. The lemma is proved by induction. For i = 0, the claim is true. Assume
that for all 0 ≤ i ≤ j, rn(Ii) ≤ C12λ

n
3 < 1, for some C12 > 0 and n ≥ n0 specified below.

Clearly,

rn(Ii+1) ≤ f ′n(ξi+1)|τ̃n(η̃i)− τn(ηi)|+ Cλn

f ′n(ζ̄i+1)|τn(Ii)|

≤
(

1 +
|f ′n(ξi+1)− f ′n(ζ̄i+1)|

f ′n(ζ̄i+1)

)
rn(Ii) +

Cλn

K2C9λn2

≤
(
1 +K1K

−1
2 (1 + rn(Ii))|τn(Ii)|

)
rn(Ii) +

Cλn

K2C9λn2
,

(3.26)

where ξi+1 ∈ (τn(η̃i), τn(ηi)) and ζ̄i+1 ∈ τn(Ii). Applying this inequality recursively from
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i = j down to i = 0, we find

rn(Ij+1) ≤
j∏
i=0

(
1 + 2K1K

−1
2 |τn(Ii)|

)
rn(I) + CC−1

9 K−1
2 (λ/λ2)n

·

(
1 +

j−1∑
k=1

k∏
i=1

(
1 + 2K1K

−1
2 |τn(Ii)|

))
≤e2K1K

−1
2 rn(I) + CC−1

9 K−1
2 (λ/λ2)n(1 + C10ne

2K1K
−1
2 )

≤C12λ
n
3 ,

(3.27)

where C12 = C11e
2K1K

−1
2 +CC−1

9 K−1
2 +CC−1

9 K−1
2 C10e

2K1K
−1
2 max

n∈N

(
n
(

λ
λ2λ3

)n)
. For n0 ∈ N

such that C12λ
n0
3 < 1, we thus have rn(Ij+1) ≤ C12λ

n
3 , for all n ≥ n0. QED

In the next proposition, we again use kn+1 ≤ C1λ
−n
1 , for those n considered here.

Proposition 3.6 Assume that there exists C2 > 0 such that for all even n, if 0 < c < 1,
or all odd n, if c > 1, (3.8) is valid. Then, there exists C13 > 0 such that for all such n
and all 1 ≤ j ≤ kn+1, we have

sn(∆
(n)
qn−1+jqn

), (sn(∆
(n)
qn−1+jqn

))−1 ≤ 1 + C13λ
n
3 . (3.28)

Proof. Let λ2 again be chosen such that λ < λ2λ3 < λ2 < λ1λ3 < 1. For 1 ≤ j ≤ kn+1

such that both intervals τn(∆
(n)
qn−1+(j−1)qn

), τ̃n(∆̃
(n)
qn−1+(j−1)qn

) ⊂ [−1,−1 + λn2 ], we have

sn(∆
(n)
qn−1+jqn

) =

j∏
i=1

(
1 +

f̃ ′n(ζ̃i)− f ′n(ζi)

f ′n(ζi)

)
sn(∆(n)

qn−1
)

=

j∏
i=1

(
1 +

f̃ ′n(ζ̃i)− f ′n(ζ̃i) + f ′n(ζ̃i)− f ′n(ζi)

f ′n(ζi)

)
sn(∆(n)

qn−1
)

≤
j∏
i=1

(
1 +
|f̃ ′n(ζ̃i)− f ′n(ζ̃i)|+ |f ′n(ζ̃i)− f ′n(ζi)|

|f ′n(ζi)|

)
sn(∆(n)

qn−1
)

≤
[
1 +K−1

2 (Cλn +K1λ
n
2 )
]j
sn(∆(n)

qn−1
).

(3.29)

As in the proof of Proposition 3.4, ζi ∈ τn(∆
(n)
qn−1+(i−1)qn

) and ζ̃i ∈ τ̃n(∆̃
(n)
qn−1+(i−1)qn

).
Similarly, one can obtain the estimate(

sn(∆
(n)
qn−1+jqn

)
)−1

≤
[
1 +K−1

2 (Cλn +K1λ
n
2 )
]j (

sn(∆(n)
qn−1

)
)−1

. (3.30)
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Since j ≤ kn+1 ≤ C1λ
−n
1 and λ < λ2 < λ1λ3, by using these inequalities and Proposi-

tion 3.4, there exists a constant C14 > 0, such that

|sn(∆
(n)
qn−1+jqn

)− 1| ≤ C14λ
n
3 . (3.31)

Let jλ2 be the largest index j such that both intervals ∆
(n)
qn−1+jqn

and ∆̃
(n)
qn−1+jqn

are
contained inside the interval [−1,−1 +λn2 ], if such an index j exists. To be specific, let us
assume that τ̃n(x̃qn−1+jλ2qn

) ≥ τn(xqn−1+jλ2qn
). In the opposite case, the proof is analogous.

For all j such that 1 ≤ j ≤ jλ2 , we obtain

|τ̃n(x̃qn−1+jqn)− τn(xqn−1+jqn)| =

∣∣∣∣∣∣
(
sn

(
j−1⋃
i=0

∆
(n)
qn−1+iqn

))−1

− 1

∣∣∣∣∣∣
j−1∑
i=0

|τ̃n(∆̃
(n)
qn−1+iqn

)|

≤ max
0≤i≤j−1

|(sn(∆
(n)
qn−1+iqn

))−1 − 1|
j−1∑
i=0

|τ̃n(∆̃
(n)
qn−1+iqn

)|

≤ C15λ
n
2λ

n
3 ,

(3.32)

for some C15 > 0. In the last inequality, we have used the estimate (3.31). The same
estimate for j = jλ2 implies that |τn(∆

(n)
qn−1+jλ2qn

)| is of the order of λn2 since, by Propo-

sition 3.3, |τ̃n(∆̃
(n)
qn−1+jλ2qn

)| is of that order. If jλ2 is not defined, then |τ̃n(∆
(n)
qn−1)| and

|τn(∆
(n)
qn−1)| are at least of the order of λn2 .

We are now preparing the setting to extend these estimates to j such that both intervals
τn(∆

(n)
qn−1+(j−1)qn

), τ̃n(∆̃
(n)
qn−1+(j−1)qn

) ⊂ [−λn2 , 0]. Using the first three equalities in (3.15),
we obtain

|sn(∆
(n)
0 )− 1| ≤ |sn(∆(n)

qn−1
)− 1|

[
1 +K−1

2 (Cλn−1 +K2
1Cλ

n−1 +K2
1 |ζ0 − ζ̃0|)

]
+K−1

2 (Cλn−1 +K2
1Cλ

n−1 +K2
1 |ζ0 − ζ̃0|)

(3.33)

where ζ0 ∈ τn(∆
(n)
0 ) and ζ̃0 ∈ τ̃n(∆̃

(n)
0 ). Since |ζ0 − ζ̃0| ≤ fn(0) + Cλn, if fn(0) ≤ C16λ

n
2 ,

C16 > 0, then, for some C17 > 0, we have

|sn(∆
(n)
0 )− 1| ≤ C17λ

n
3 . (3.34)

In that case, since

sn(∆
(n+1)
0 ) = sn(∆

(n)
0 )

f̃n+1(0)

fn+1(0)
, (3.35)

we also have

|sn(∆
(n+1)
0 )− 1| ≤

∣∣∣sn(∆
(n)
0 )− 1

∣∣∣ f̃n+1(0)

fn+1(0)
+

∣∣∣∣∣ f̃n+1(0)

fn+1(0)
− 1

∣∣∣∣∣
≤ C17λ

n
3 (1 +K−1

5 Cλn+1) +K−1
5 Cλn+1 ≤ C18λ

n
3 ,

(3.36)
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for some C18 > 0. If, on the other hand, fn(0) > C16λ
n
2 , it is easy to show that the

estimates (3.34) and (3.36) are still valid, since |τn(∆
(n+1)
0 )| is of the same order as fn(0).

Since

sn(∆(n+1)
qn ) = sn+1(∆(n+1)

qn )sn(∆
(n)
0 ) =

f̃n+1(−1) + 1

fn+1(−1) + 1
sn(∆

(n)
0 ), (3.37)

we further have that there exists C19 > 0, such that

|sn(∆(n+1)
qn )− 1| ≤ Cλn+1

K5

(1 + C17λ
n
3 ) + C17λ

n
3 ≤ C19λ

n
3 . (3.38)

Using the estimates (3.34), (3.36) and (3.38), and the fact that |∆(n)
qn+1| = |∆(n)

0 | +
|∆(n+1)

0 | − |∆(n+1)
qn |, we obtain, for some C20 > 0,

|sn(∆(n)
qn+1

)− 1| ≤ max{C17, C18, C19}λn3
|τn(∆

(n)
0 )|+ |τn(∆

(n+1)
0 )|+ |τn(∆

(n+1)
qn )|

|τn(∆
(n)
0 )|+ |τn(∆

(n+1)
0 )| − |τn(∆

(n+1)
qn )|

≤ max{C17, C18, C19}λn3

(
1 + 2

|τn(∆
(n)
0 )|

|τn(∆
(n+1)
0 )|

)

≤ max{C17, C18, C19}λn3
(

1 +
2

K5

)
≤ C20λ

n
3 .

(3.39)

We can now perform backward iterations of the intervals τn(∆
(n)
qn+1) and τ̃n(∆̃

(n)
qn+1). For

1 ≤ j ≤ kn+1 such that τn(∆
(n)
qn−1+(j−1)qn

), τ̃n(∆̃
(n)
qn−1+(j−1)qn

) ⊂ [−λn2 , 0], we have

sn(∆
(n)
qn−1+jqn

) ≤
kn+1∏
i=j+1

(
1 +
|f ′n(ζi)− f̃ ′n(ζi)|+ |f̃ ′n(ζi)− f̃ ′n(ζ̃i)|

|f̃ ′n(ζ̃i)|

)
sn(∆(n)

qn+1
)

≤
[
1 +K−1

2 (Cλn +K1λ
n
2 )
]kn+1−j sn(∆(n)

qn+1
).

(3.40)

Since j ≤ kn+1 ≤ C1λ
−n
1 , for sufficiently large n, we obtain

sn(∆
(n)
qn−1+jqn

) ≤ 1 + C21λ
n
3 , (3.41)

for some C21 > 0. Similarly, one can obtain(
sn(∆

(n)
qn−1+jqn

)
)−1

≤ 1 + C22λ
n
3 , (3.42)

with C22 > 0, which together with estimate (3.41) gives us

|sn(∆
(n)
qn−1+jqn

)− 1| ≤ C23λ
n
3 , (3.43)
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for some C23 > 0, and j−λ2 ≤ j ≤ kn+1. Here, j−λ2 is the smallest index j such that both
intervals τn(∆

(n)
qn−1+jqn

) and τ̃n(∆̃
(n)
qn−1+jqn

) are subsets of [−λn2 , 0], if such a j exists.
We further have

|τn(xqn−1+j−λ2qn
)− τ̃n(x̃qn−1+j−λ2qn

)| ≤ C24λ
n
3

( kn+1−1∑
j=j−λ2

|τ̃n(∆̃
(n)
qn−1+jqn

)|

+|τ̃n(∆̃
(n+1)
0 )|

)
≤ C25λ

n
2λ

n
3 ,

(3.44)

for some C24, C25 > 0, since
∑kn+1−1

j=−λ2 |τ̃n(∆̃
(n)
qn−1+jqn

)| is of the order of λn2 . In the first of
these inequalities, we have also used the estimate (3.36). As before, we can conclude that
the lengths of both intervals τn(∆

(n)
qn−1+j−λ2qn

) and τ̃n(∆̃
(n)
qn−1+j−λ2qn

) are of the order of λn2 .
If j−λ2 is not defined, the lengths of these intervals are either again of this order or larger.

In order to prove the desired estimate for jλ2 < j < j−λ2 (if jλ2 is not defined,
we formally set jλ2 = 0 here; if j−λ2 is not defined, we formally set jλ2 = kn+1), we
can apply Lemma 3.5, since the lengths of the corresponding intervals τn(∆

(n)
qn−1+jqn

) and
τ̃n(∆̃

(n)
qn−1+jqn

) are at least of the order of λn2 . The remaining assumptions of this Lemma
are satisfied by (3.32) and (3.44), and the fact that the number of these indices is at most
of the order of n. The desired estimates then follow from this lemma. QED

3.3 Renormalization graphs which are convex inside the tunnels

In this section, we focus on the dynamics of a subsequence of renormalizations fn and
f̃n of maps T and T̃ for odd n, if 0 < c < 1, or even n, if c > 1. The graphs of these
renormalizations are convex inside the tunnels.

If Bfn,K5 is not empty, let ζ∗n be a point such that f ′n(ζ∗n) = 1. Similarly, if B̃f̃n,K5/2
is

not empty, let ζ̃∗n be a point such that f̃ ′n(ζ̃∗n) = 1.

Lemma 3.7 There exists C26 > 0 such that for all j = 1, . . . , kn+1, we have

|τ̃n(x̃qn−1+jqn)− τn(xqn−1+jqn)| ≤ C26λ
n/2. (3.45)

Proof. To simplify the notation let zi = τn(xqn−1+iqn) and z̃i = τ̃n(x̃qn−1+iqn). Notice that
first pair of points satisfies the desired bound since

z̃1 − z1 = |f̃n(−1)− fn(−1)| ≤ Cλn. (3.46)

The same is true for the last pair since

z̃kn+1 − zkn+1 = |f̃n+1(0)f̃n(0)− fn+1(0)fn(0)| ≤ K1C(1 + λ)λn. (3.47)
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Let ξi be a point between zi and z̃i such that |fn(z̃i)− fn(zi)| = f ′n(ξi)|z̃i − zi|. Then,

|z̃i+1 − zi+1| ≤ f ′n(ξi)|z̃i − zi|+ Cλn,

|z̃i−1 − zi−1| ≤ (f ′n(ξi−1))−1(|z̃i − zi|+ Cλn).
(3.48)

By iterating these two inequalities we obtain

|z̃j − zj| ≤ |z̃1 − z1|
j−1∏
i=1

f ′n(ξi) + Cλn

(
1 +

j−1∑
k=2

j−1∏
i=k

f ′n(ξi)

)
, (3.49)

|z̃kn+1−j − zkn+1−j| ≤ |z̃kn+1 − zkn+1|
kn+1−1∏
i=kn+1−j

(f ′n(ξi))
−1 + Cλn

kn+1−1∑
k=kn+1−j

kn+1−1∏
i=k

(f ′n(ξi))
−1.

We can now apply these estimates for all j ∈ N smaller or equal to J = [1/K5] + 1,
obtaining |z̃j − zj| ≤ C27λ

n, and |z̃kn+1−j − zkn+1−j| ≤ C27λ
n, for some C27 > 0. If

kn+1 ≤ 2J , then the claim is proved. Otherwise, all the remaining points zi and z̃i belong
to Bfn,K5 ∩Bf̃n,K5

, ζ∗n and ζ̃∗n are well-defined and |ζ̃∗n − ζ∗n| < Cλn.
The objective now is to apply the inequalities (3.49) to obtain the desired estimate

for all the remaining points. We will first make at most Ln = [λ−n/2] + 1 steps from both
ends. More precisely, we will make at most Ln steps from the left end, but stop when
max{zj, z̃j} > ζ∗n. From the first of the inequalities (3.49), we obtain |z̃j − zj| ≤ C28λ

n/2,
for some C28 > 0, and all J < j ≤ Ll, where Ll = min{Ln,min{k : max{zk, z̃k} > ζ∗n}}.
Here, we have used that the products of derivatives in (3.49) are smaller than 1, since all
points ξi now belong to Bfn,K5∩Bf̃n,K5

, and satisfy ξi ≤ ζ∗n. The same estimate is obtained
for kn+1−Lr ≤ j < kn+1−J , such that Lr = min{Ln, kn+1−max{k : min{zk, z̃k} < ζ∗n}},
by applying the second inequality in (3.49).

If an early stop did not occur in the previous iteration, i.e., if Ll = Lr = Ln, then
for the rest of the points we have |zj − ζ∗n| ≤ C29L

−1
n ≤ C29λ

n/2, and |z̃j − ζ̃∗n| ≤ C29λ
n/2,

for some C29 > 0. This follows from the asymptotic estimates for iterates under a non-
degenerate tangency [9]. Together with |ζ̃∗n − ζ∗n| < Cλn, this completes the proof, in
this case. If both the forward and the backward iterations were stopped earlier at Ll and
Lr, respectively, then the interval between the leftmost and the rightmost of the points
zLl , z̃Ll , zLr , z̃Lr has a length bounded by 2C28λ

n/2, and contains all the other points. If
the iteration in one direction was stopped earlier, while the other was not, then the two
arguments above can be easily combined to complete the proof. QED

Lemma 3.8 There exists C30 > 0, such that for all 0 ≤ j ≤ kn+1, we have

sn(∆
(n)
qn−1+jqn

), (sn(∆
(n)
qn−1+jqn

))−1 ≤ 1 + C30λ
n
4 , (3.50)

with λ4 = λ
(1+α)α
8(2+α) .
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Remark 5 This lemma holds without conditions on the growth rate of kn+1. Below we
prove it with the assumption kn+1 ≤ λ−n/8, for every λ4 ∈ [λ1/8, 1). We treat this case
differently, since for such kn+1 we have a stronger statement given in the corollary that
follows. For kn+1 > λ−n/8, one needs to perform a more detailed analysis of the asymptotic
behavior of iterates near a non-degenerate tangency. Such an analysis, in two different
asymptotic regimes, is carried out in [9] (see sections 3.2.2 and 3.2.3 therein), which we
reference for the completion of the proof.

Proof of Lemma 3.8. For intervals corresponding to 0 ≤ j ≤ min{J, kn+1} and
kn+1 − min{J, kn+1} ≤ j < kn+1, the estimates (3.50) follow directly from Lemma 3.7,
since the length of each of these intervals is bounded below by a positive constant.

If kn+1 > 2J , we can continue to propagate this estimate up to j ≤ min{J+λ−n5 , kn+1},
obtaining

sn(∆
(n)
qn−1+jqn

) =

j∏
i=J+1

(
1 +

f̃ ′n(ζ̃i)− f ′n(ζi)

f ′n(ζi)

)
sn(∆

(n)
qn−1+Jqn

)

≤
(
1 + C31λ

n/2λ−2n
5

)j−J
(1 + C26λ

n/2) ≤ (1 + C32λ
n/2λ−3n

5 ).

(3.51)

Here, ζi ∈ τn(∆
(n)
qn−1+(i−1)qn

) and ζ̃i ∈ τ̃n(∆̃
(n)
qn−1+(i−1)qn

), and C31, C32 > 0. We have used
the estimate

|f̃ ′n(ζ̃i)− f ′n(ζi)| =

∣∣∣∣∣∣
∫ z̃i
z̃i−1

f̃ ′n(z) dz

z̃i − z̃i−1

−

∫ zi
zi−1

f ′n(z) dz

zi − zi−1

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∫ z̃i
z̃i−1

(f̃ ′n(z)− f ′n(z)) dz

z̃i − z̃i−1

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫ z̃i
zi−1

f ′n(z) dz −
∫ z̃i
zi
f ′n(z) dz

z̃i − z̃i−1

∣∣∣∣∣∣+ f ′n(ζi)

∣∣∣∣zi − zi−1

z̃i − z̃i−1

− 1

∣∣∣∣
≤ Cλn + C33

λn/2

λ2n
5

≤ C34
λn/2

λ2n
5

,

(3.52)

where C33, C34 > 0. The last inequality follows by using the asymptotic estimates
|z̃i − z̃i−1| ≥ C35λ

2n
5 , with C35 > 0, for iterates under a non-degenerate tangency [9].

Similarly, we can propagate the desired estimate from j = kn+1 − J backwards to all
j ≥ max{0, kn+1 − J − λ−n5 }. Taking λ5 = λ1/8, we obtain the estimate

sn(∆
(n)
qn−1+jqn

) ≤ 1 + C32λ
n/8, (3.53)

which implies (3.50) for the considered indices j. This proves the first part of the claim,
if kn+1 ≤ λ−n5 .

The proof of the second estimate can be obtained in the same way. QED
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Corollary 3.9 If kn+1 ≤ λ−n/8, it follows from Lemma 3.7 and Lemma 3.8 that, for all
1 ≤ j ≤ kn+1, we have

|τ̃n(x̃qn−1+jqn)− τn(xqn−1+jqn)| ≤ C−1
35 λ

n
4 |τn(∆

(n)
qn−1+jqn

)|. (3.54)

Proof. It follows from Lemma 3.7 and Lemma 3.8 using the estimate |τn(∆
(n)
qn−1+jqn

)| >
C35λ

n/4. QED

3.4 The estimates on the fundamental intervals

Lemma 3.10 There exists C36 > 0 such that for all n ∈ N,∣∣∣sn(∆
(n)
0 )− 1

∣∣∣ ≤ C36λ
n
3 . (3.55)

Moreover, if C36 > 0 has been chosen sufficiently large, then for all odd n, if 0 < c < 1,
or all even n, if c > 1, we have ∣∣∣sn(∆

(n)
0 )− 1

∣∣∣ ≤ C36λ
n. (3.56)

Proof. For all even n, if 0 < c < 1, or all odd n, if c > 1, the first estimate follows from
inequality (3.34) in Proposition 3.6, and an analogous inequality for (sn(∆

(n)
0 ))−1. The

improved estimate for all odd n, if 0 < c < 1, or all even n, if c > 1, follows directly from∣∣∣sn(∆
(n)
0 )− 1

∣∣∣ =

∣∣∣∣∣ f̃n(0)− fn(0)

fn(0)

∣∣∣∣∣ ≤ K−1
5 Cλn, (3.57)

since for such an n, fn(0) ≥ K5. QED

Lemma 3.11 There exists σ∞ > 0 and C37 > 0 such that for all n ∈ N, we have∣∣∣∣∣ |∆̃(n)
0 |

|∆(n)
0 |
− σ∞

∣∣∣∣∣ ≤ C37λ
n
3 . (3.58)

Proof. Let σn =
|∆̃(n)

0 |
|∆(n)

0 |
. It follows from Lemma 3.10, that∣∣∣∣ σnσn−1

− 1

∣∣∣∣ ≤ C36λ
n
3 , (3.59)

and thus | lnσn − lnσn−1| = εn−1, where 0 ≤ εn−1 ≤ C38λ
n
3 , for some C38 > 0. Since the

sequence εn decreases exponentially, the sequence lnσn, n ∈ N, is a Cauchy sequence and
converges to some `∞ = limn→∞ lnσn. The sequence σn, thus, converges to σ∞ = e`∞ > 0.
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Furthermore, since

|lnσ∞ − lnσn| ≤
∞∑
m=n

εm ≤ C38
λn3

1− λ3

, (3.60)

we have ∣∣∣∣σ∞σn − 1

∣∣∣∣ ≤ C39λ
n
3 , (3.61)

for some C39 > 0. QED

Without loss of generality, we may assume that σ∞ = 1. This follows from the following
simple lemma.

Lemma 3.12 There exists an arbitrary smooth conjugation T̂ of T̃ and C40 > 0 such
that, for all n ∈ N, we have σ∞(T̂ ) = 1, i.e.,∣∣∣∣∣ |∆̂(n)

0 |
|∆(n)

0 |
− 1

∣∣∣∣∣ ≤ C40λ
n
3 . (3.62)

Proof. It is enough to rescale the intervals of ∆̃
(n)
0 by means of a smooth change of

coordinates affine in a neighborhood of the break point of T̃ . Assume that σ∞ < 1.
Let ψ be a smooth orientation-preserving diffeomorphism of T1, which is affine on a
neighborhood of x̃0, with factor σ−1

∞ . Let T̂ = ψ ◦ T̃ ◦ ψ−1. This change of T̃ will not
affect the renormalizations f̃n, n ≥ 2, but σ∞ corresponding to T̂ and T will be equal to
1. A similar argument works in the case σ∞ > 1. QED

3.5 Estimates on the intervals of the partition Pm, inside ∆
(n−1)
0 ,

with n a constant fraction of m

Assume that kn+1 ≤ C1λ
−n
1 , for all n odd, if 0 < c < 1, or for all n even, if c > 1. Let

λ6 = max{λ3, λ4}, and let S1 = max{C13, C30}.

Proposition 3.13 Assume that for all intervals Pm 3 I ⊂ ∆
(n)
qn−1, with m > n, and the

corresponding intervals P̃m 3 Ĩ ⊂ ∆̃
(n)
qn−1, we have |sn(I) − 1| < C41λ

n
6 . Then, there exist

C42 > 0 such that for all 0 ≤ i < kn+1, τn(Ii) = f in(τn(I)) and τ̃n(Ĩi) = f̃ in(τ̃n(Ĩ)), we have
|sn(Ii)− 1| < C42λ

n
6 .
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Proof. Let yi, ỹi and zi, z̃i the left and the right ends of the intervals τn(Ii) and τ̃n(Ĩi).
If zi − yi ≤ max{|ỹi − yi|, |z̃i − zi|}, then

|sn(Ii+1)− 1| =

∣∣∣∣∣ f̃ ′n(ζ̃i)|z̃i − ỹi|
f ′n(ζi)|zi − yi|

− 1

∣∣∣∣∣
≤
(
CλnK−1

2 + 3K1K
−1
2 max{|ỹi − yi|, |z̃i − zi|}

) |z̃i − ỹi|
|zi − yi|

+

∣∣∣∣ |z̃i − ỹi||zi − yi|
− 1

∣∣∣∣
≤
(
2CλnK−1

2 + 6K1K
−1
2 max{|ỹi − yi|, |z̃i − zi|}

)
+ |sn(Ii)− 1|,

(3.63)

if |sn(Ii)| < 2. If zi − yi > max{|ỹi − yi|, |z̃i − zi|}, then

|sn(Ii+1)− 1| =

∣∣∣∣∣
∫ z̃i
ỹi
f̃ ′n(ζ)dζ∫ zi

yi
f ′n(ζ)dζ

− 1

∣∣∣∣∣ =

∣∣∣∣∣ f̃
′
n(z̃i)(z̃i − ỹi)−

∫ z̃i
ỹi
f̃ ′′n(ζ)(ζ − ỹi)dζ

f ′n(zi)(zi − yi)−
∫ zi
yi
f ′′n(ζ)(ζ − yi)dζ

− 1

∣∣∣∣∣
=

∣∣∣∣∣∣
f̃ ′n(z̃i)
f ′n(zi)

z̃i−ỹi
zi−yi − 1− 1

f ′n(zi)(zi−yi)

(∫ z̃i
ỹi
f̃ ′′n(ζ)(ζ − ỹi)dζ −

∫ zi
yi
f ′′n(ζ)(ζ − yi)dζ

)
1− 1

f ′n(zi)(zi−yi)

∫ zi
yi
f ′′n(ζ)(ζ − yi)dζ

∣∣∣∣∣∣ ,
(3.64)

and, thus,

|sn(Ii+1)− 1| ≤

[
2CK−1

2 λn
(

1 +
zi − yi

4

)
+

3

2
K1K

−1
2 |ỹi − yi|

+4K1K
−1
2 |z̃i − zi|+ |sn(Ii)− 1|

]
· (1 +K1K

−1
2 |zi − yi|).

(3.65)

Here, we have used that∣∣∣∣∣ f̃ ′n(z̃i)

f ′n(zi)

z̃i − ỹi
zi − yi

− 1

∣∣∣∣∣ ≤ 2(CK−1
2 λn +K1K

−1
2 |z̃i − zi|) + |sn(Ii)− 1| , (3.66)

if z̃i−ỹi
zi−yi < 2,

1

f ′n(zi)(zi − yi)

∣∣∣∣∫ z̃i

ỹi

f̃ ′′n(ζ)(ζ − ỹi)dζ −
∫ zi

yi

f ′′n(ζ)(ζ − yi)dζ
∣∣∣∣

≤ 1

K2(zi − yi)

[
Cλn

(zi − yi)2

2
+K1|ỹi − yi||zi − yi|

+ K1
(ỹi − yi)2

2
+ 2K1|zi − yi||z̃i − zi|

]
≤ 1

K2

[
Cλn

(zi − yi)
2

+
3

2
K1|ỹi − yi|+ 2K1|z̃i − zi|

]
,

(3.67)

23



and
1

f ′n(zi)(zi − yi)

∫ zi

yi

|f ′′n(ζ)|(ζ − yi)dζ ≤
1

2
K1K

−1
2 |zi − yi|. (3.68)

We have also used that (1−x)−1 ≤ 1+2|x|, for x < 1/2, and assumed K1K
−1
2 |zi−yi| < 1.

Therefore, in either case we have

|sn(Ii+1)− 1| ≤

[
2CK−1

2 λn
(

1 +
zi − yi

4

)
+ 6K1K

−1
2 max{|ỹi − yi|, |z̃i − zi|}

+|sn(Ii)− 1|

]
· (1 +K1K

−1
2 |zi − yi|).

(3.69)

Using the estimate

max{|ỹi−yi|, |z̃i−zi|} ≤

C43S1λ
n
6 + max

Pm3Ii⊂∆
(n)
qn−1+iqn

|sn(Ii)− 1|

 |τn(∆
(n)
qn−1+iqn

)|, (3.70)

where C43 > 0, we obtain

|sn(Ii+1)− 1| ≤

4CK−1
2 λn + 6K1K

−1
2

C43S1λ
n
6 + max

Pm3Ii⊂∆
(n)
qn−1+iqn

|sn(Ii)− 1|


·|τn(∆

(n)
qn−1+iqn

)|+ max
Pm3Ii⊂∆

(n)
qn−1+iqn

|sn(Ii)− 1|

 (1 +K1K
−1
2 |τn(∆

(n)
qn−1+iqn

)|).

(3.71)

In the estimate (3.70), we have used the fact that for n odd, if 0 < c < 1, and n
even, if c > 1 (corresponding to renormalization graphs concave inside the gates), the
distance of the corresponding endpoints of the intervals τn(∆

(n)
qn−1+iqn

) and τ̃n(∆̃
(n)
qn−1+iqn

)

is bounded from above by C43S1λ
n
6 |τn(∆

(n)
qn−1+iqn

)|. The same estimate is valid for n even,
if 0 < c < 1, and n odd if c > 1 (corresponding to renormalization graphs convex inside
the tunnels), if i ≤ [λ−n/8] or i ≥ kn+1 − [λ−n/8] (assuming kn+1 > [λ−n/8]). This follows
from Corollary 3.9. In this case, we will consider first only i ≤ [λ−n/8].

Taking the maximum of the left hand side of (3.71) over all Ii+1, such that Pm 3
Ii+1 ⊂ ∆

(n)
qn−1+(i+1)qn

, we obtain the inequality

Mi+1 ≤ Pi +QiMi, (3.72)

where Mi = max
Pm3Ii⊂∆

(n)
qn−1+iqn

|sn(Ii)− 1|, and

Pi =
(

4CK−1
2 λn + 6K1K

−1
2 C43S1λ

n
6 |τn(∆

(n)
qn−1+iqn

)|
)

(1 +K1K
−1
2 |τn(∆

(n)
qn−1+iqn

)|),

Qi =
(

1 + 6K1K
−1
2 |τn(∆

(n)
qn−1+iqn

)|
)

(1 +K1K
−1
2 |τn(∆

(n)
qn−1+iqn

)|).
(3.73)
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By iterating this inequality from i = j down to i = 0, we obtain

Mj+1 ≤ Pj +

j−1∑
k=0

Pk

j∏
l=k+1

Ql +M0

j∏
l=0

Ql, (3.74)

and, thus,

|sn(Ij+1)− 1| ≤ e7K1K
−1
2

[
4CK−1

2 λn(j + 1) + 6K1K
−1
2 C43S1λ

n
6 + max

Pm3I⊂∆
(n)
qn−1

|sn(I)− 1|

]
.

(3.75)

Here, we have used that
∑j

i=0 |τn(∆
(n)
qn−1+iqn

)| < 1 and the inequality 1+x < ex, for x > 0.
To complete the proof in the case of renormalization graphs concave inside the gates,
with our standing assumption kn+1 ≤ C1λ

−n
1 , or in the case of renormalization graphs

convex inside tunnels if kn+1 ≤ [λ−n/8], we can proceed by induction in j. Let for some j,
|sn(Ij)− 1| < Mλn6 , where

M = e7K1K
−1
2 (4CK−1

2 C1 + 6K1K
−1
2 C43S1 + C41), (3.76)

and n is large enough such that Mλn6 < 1. Then, the inequality (3.75) implies the same
bound for j+1. Furthermore, for j = 0 the inequality is true due to our initial assumption.

In the following, we consider the case of such n and assume that kn+1 > [λ−n/8].
Notice first that there exist ζ1 ∈ τn(Ii), ζ̃1 ∈ τ̃n(Ĩi), ζ2, ζ3 ∈ τn(∆

(n)
qn−1+iqn

), ζ̃2, ζ̃3 ∈
τ̃n(∆̃

(n)
qn−1+iqn

), such that∣∣∣∣∣ln
(
sn(Ii+1)

sn(Ii)

sn(∆
(n)
qn−1+iqn

)

sn(∆
(n)
qn−1+(i+1)qn

)

)∣∣∣∣∣ = | ln f̃ ′n(ζ̃1)− ln f ′n(ζ1)− ln f̃ ′n(ζ̃2) + ln f ′n(ζ2)|

= |(ln f̃ ′)′(ζ̃3)(ζ̃2 − ζ̃1)− (ln f ′)′(ζ3)(ζ2 − ζ1)| ≤ K1

K2

|ζ̃2 − ζ̃1|+
K1

K2

|ζ2 − ζ1|.

(3.77)

Summing these inequalities from i = [λ−n/8] to j−1, for some [λ−n/8] < j ≤ kn+1−[λ−n/8],
we obtain∣∣∣∣∣∣ln

 sn(Ij)

sn(I[λ−n/8])

sn(∆
(n)

qn−1+[λ−n/8]qn
)

sn(∆
(n)
qn−1+jqn

)

∣∣∣∣∣∣ ≤ K1

K2

 j−1∑
i=[λ−n/8]

|τ̃n(∆̃
(n)
qn−1+iqn

)|

+

j−1∑
i=[λ−n/8]

|τn(∆
(n)
qn−1+iqn

)|

 ≤ C44
K1

K2

λn/8,

(3.78)
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for some C44 > 0. The last inequality follows from Lemma 5 of [9]. Using Lemma 3.8, we
find that there exists C45 > 0, such that

| ln sn(Ij)| ≤ | ln sn(I[λ−n/8])|+ | ln sn(∆
(n)

qn−1+[λ−n/8]qn
)|+ | ln sn(∆

(n)
qn−1+jqn

)|+ C44
K1

K2

λn/8

≤ | ln sn(I[λ−n/8])|+ C45λ
n
4 ,

and thus
|sn(Ij)− 1| < 2(|sn(I[λ−n/8])− 1|+ C45λ

n
4 ). (3.79)

For j = 0, . . . , [λ−n/8], the desired bound |sn(Ij) − 1| < C42λ
n
6 , for some C42 > 0, follows

from (3.75). For [λ−n/8] < j ≤ kn+1− [λ−n/8], the estimate (3.79) then proves this bound.
Finally, by iterating the inequality (3.72) from i = j − 1 down to i = kn+1 − [λ−n/8], we
obtain the desired bound for j = kn+1− [λ−n/8], . . . , kn+1, with C42 = e7K1K

−1
2 (4CK−1

2 C1 +
6K1K

−1
2 C43S1 + 2M + 2C45). QED

Proposition 3.14 For every λ7 ∈ (λ6, 1), there exists ν > 0 and C46 > 0, such that

|σ(I)− 1| ≤ C46λ
m
7 , (3.80)

for all I ∈ Pm such that I ⊂ ∆̄
(m−[νm])
0 .

Proof. It is easy to derive from Proposition 3.13 by induction, starting with Proposi-
tion 3.6 and Lemma 3.8, that for all I ∈ Pm such that I ⊂ ∆̄

(n)
0 ,

|sn(I)− 1| ≤ C47(C48C42)m−nλn6 , (3.81)

with C47, C48 > 0. The C48 comes from the mapping of the intervals from τn(∆
(i)
0 ) into

τn(∆
(i−1)
0 ), by the map fi−1, for i = m − 2, . . . , n + 1. The claim follows after we choose

ν > 0 such that (C48C42)νλ1−ν
6 ≤ λ7, and rescale the intervals, using (3.58) with σ∞ = 1.

QED

3.6 Spreading the estimates to the whole circle

Proof of Theorem 2.2. In order to prove the claim, we will use Proposition 3.1. To
verify the assumptions of Proposition 3.1, we need to spread the estimates (3.2) on the
intervals I, I ′ ⊂ Pm which are either adjacent or belong to the same element of partition
Pm−1, from ∆̄

(m−[νm])
0 to the whole circle T1. Proposition 3.14 implies the estimate

| lnσ(I)− lnσ(I ′)| ≤ 4C46λ
m
7 , (3.82)
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for sufficiently large m and all pairs of such intervals I, I ′ which are both contained in
∆̄

(m−[νm])
0 . We will now spread such an estimate from ∆̄

(n)
0 to ∆̄

(n−1)
0 in m − [νm] steps,

starting with n = m− [νm], and counting down to n = 1. In each step, the new intervals
for which we need to show such an estimate appear in threads Ii = T iqnI0 and I ′i = T iqnI ′0,
for 0 ≤ i < kn+1. Let us fix the order of the pairs in such a way that I ′0 is closer to x0

than I0. This implies that I0 ⊂ T qn−1(∆
(n)
0 ) and that either I ′0 belongs to T qn−1(∆

(n)
0 ) as

well or is adjacent to it.
We will prove that there is a constant C49 > 0, such that for all 0 ≤ i < kn+1, we have

| ln sn(Ii)− ln sn(I ′i)| ≤ | ln sn(Ikn+1)− ln sn(I ′kn+1
)|+ C49λ

m−n
ref . (3.83)

This estimate will follow from the estimates below on

δi = | ln |τn(Ii+1)| − ln |τn(Ii)| − ln |τn(I ′i+1)|+ ln |τn(I ′i)||, (3.84)

and similar estimates on δ̃i corresponding to T̃ .
Clearly, there exist ζ̄i ∈ τn(Ii), ζ̄ ′i ∈ τn(I ′i) and ζi ∈ [ζ̄i, ζ̄

′
i], such that

δi =

∣∣∣∣f ′′n(ζi)

f ′n(ζi)

∣∣∣∣ |ζ̄ ′i − ζ̄i|. (3.85)

There are two kinds of threads that we need to consider. First, if I0 and I ′0 belong
to the same element J0 of Pm−1, then there is a thread Ji = T iqnJ0 ∈ Pm−1, with
0 ≤ i < kn+1, such that Ii ∪ I ′i ⊂ Ji ⊂ T qn−1+iqn∆

(n)
0 . Then, δi ≤ K1K

−1
2 |τn(Ji)| ≤

K1K
−1
2 Crefλ

m−1−n
ref |τn(∆

(n)
qn−1+iqn

)|. Since the sum of |τn(∆
(n)
qn−1+iqn

)| is smaller than 1, the
bound (3.83) follows using

| ln sn(Ii)− ln sn(I ′i)| − | ln sn(Ii+1)− ln sn(I ′i+1)| ≤ δi + δ̃i. (3.86)

Second, if I0 and I ′0 are adjacent and belong to different elements of Pm−1, then we
similarly have δi ≤ 2K1K

−1
2 Crefλ

m−n
ref |τn(∆

(n)
qn−1+iqn

)|, and the bound (3.83) follows again.
Therefore, using the estimate (3.82) for n = m− [νm], we obtain

| lnσ(I)− lnσ(I ′)| ≤ 4C46λ
m
7 + C49

m−[νm]∑
n=1

λm−nref ≤ C50(λm7 + λνmref ), (3.87)

for all pairs of I, I ′ ∈ Pm, as in Proposition 3.1. Hence, (3.2) holds with λ̄ = max{λ7, λ
ν
ref},

and the claim is proven. QED
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3.7 The proof of Theorem 1.1

To prove Theorem 1.1, we need to verify that the conditions of Theorem 2.2 hold true in
the case of circle diffeomorphisms with a break point.

Condition (a) of Theorem 2.2 is an assumption of Theorem 1.1. To verify the condi-
tion (b), we need to check that the renormalization sequences for circle diffeomorphisms
with breaks are regularized. The first regularity condition is proved in [11]. The other
regularity conditions follow from the estimate (B) in Section 2.2 and the explicit form of
the fractional-linear transformations (2.7). Condition (c) follows from the estimate (A)
in Section 2.2. Condition (d) is proved in [8].
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