
PHASE TRANSITIONS IN EXPONENTIAL RANDOM GRAPHS

CHARLES RADIN AND MEI YIN

August 1, 2011

Abstract. We derive the full phase diagram for a large family of exponential random graph
models, each containing a first order transition curve ending in a critical point.

1. Introduction

We will treat a class of models of ‘dense’ random graphs, that is, simple graphs on n vertices in
which the average number of edges is of order n2. More specifically we will consider exponential
random graphs in which dependence between the random edges is defined through some finite
graph, in imitation of the use of potential energy to provide dependence between particle
states in a grand canonical ensemble of statistical physics. Exponential random graphs have
been widely studied (see [3, 4] for a range of recent work) since the pioneering work on the
independent case by Erdős and Rényi [2]. We will concentrate on the phenomenon of phase
transitions which can emerge for dependent variables. Following analyses using mean-field
and other uncontrolled approximations (see [9, 10]) there has recently been important progress
by Chatterjee and Diaconis [1], including the first rigorous proof of singular dependence on
parameters. We will extend their result both in the class of models and parameter values under
control and provide an appropriate formalism of phase structure for such models.

2. Statement of Results

We consider the class of models in which the probability of the simple graph Gn on n vertices
is given by:

P
β1,β2
n (Gn) = en

2[β1t(H1,Gn)+β2t(H2,Gn)−ψn], (1)

where: H1 is an edge, H2 is any finite simple graph with p ≥ 2 edges, ψn = ψn(β1, β2) is the
normalization constant, t(H,Gn) is the density of graph homomorphisms H → Gn:

t(H,Gn) =
|hom(H,Gn)|

|V (Gn)||V (H)|
, (2)

and V (·) denotes the vertex set. Expectation of a real function of a random graph is denoted
Eβ1,β2{·}. Our main results are the following.

Theorem 2.1. Restrict to β2 > 0. Then the pointwise limit

ψ∞(β1, β2) = lim
n→∞

ψn(β1, β2) (3)
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exists and is analytic in β1 and β2 off a certain curve β2 = q(β1) which includes the end point

(βc1, β
c
2) =

(1

2
log(p− 1)−

p

2(p− 1)
,

pp−1

2(p − 1)p

)

. (4)

The derivatives
∂

∂β1
ψ∞ and

∂

∂β2
ψ∞ are both discontinuous across the curve, except at (βc1, β

c
2)

where, however, all the second derivatives
∂2

∂β21
ψ∞,

∂2

∂β1∂β2
ψ∞, and

∂2

∂β22
ψ∞ diverge.

Theorem 2.2. If in Theorem 2.1 the graph H2 is a p-star, p ≥ 2, the analogous result also
holds for β2 < 0.

Remark. A p-star has p edges meeting at a vertex.

Corollary 2.3. The parameter space {(β1, β2)} of each of the models consists of a single phase
with a first order phase transition across the indicated curve and a second order phase transition
at the critical point (βc1, β

c
2).

To explain the language of phase transitions in Corollary 2.3 we first give a superficial in-
troduction to the formalism of classical statistical mechanics within d-dimensional lattice gas
models; for more details see for instance [8].

Assume each point in a d-dimensional cube

C = {−n,−(n− 1), · · · 0, · · · (n− 1), n}d ⊂ Z
d (5)

is randomly occupied (by one particle) or not occupied, and assume there is a (many-body)
potential energy of value a 6= 0 associated with every occupied subset of C congruent to a
certain H2 ⊂ C. The interaction is attractive if a < 0 and repulsive if a > 0. We define the
probability that the occupied sites in C are precisely c by

P
β,µ
n (c) =

e−β[µE1(c)+aE2(c)]

Zn
, (6)

where the parameter β > 0 is called the inverse temperature, the parameter µ ∈ R is called the
chemical potential, the normalization constant Zn(β, µ) is called the partition function, H1 and
H2 are subsets of C with H1 a singleton and the cardinality |H2| ≥ 2, and Ej(c) is the number
of copies of Hj in c. (We are using ‘free’ boundary conditions.) One of the basic features

of the formalism is that the free energy density, Fn(β, µ) = ln[Zn(β, µ)]/n
d, contains all ways

to interact with or influence the system, so that ‘all’ physically significant quantities can be
obtained by differentiating it with respect to β and µ. For instance

∂

∂µ
Fn(β, µ) = −βEβ,µ

{E1

nd

}

, (7)

the (average) particle density. To model materials in thermal equilibrium, calculations in this
formalism normally require that the system size be sufficiently large, and in practice one often
resorts to using n→ ∞. With this as motivation we tentatively define a ‘phase’ as a set of states
(i.e. probability distributions) corresponding to a connected region of the (β, µ) parameter

space, which is maximal for the condition that lim
n→∞

∂j+k

∂βj∂µk
Fn(β, µ) are analytic in β and µ

for all j, k. Intuitively one associates a ‘phase transition’ with singularities which develop in
some of these quantities as the system size diverges. An important simplification was proven by
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Yang and Lee [11] who showed that the limiting free energy density F∞(β, µ) = lim
n→∞

Fn(β, µ)

always exists and that certain limits commute:

lim
n→∞

∂j+k

∂βj∂µk
Fn(β, µ) =

∂j+k

∂βj∂µk
lim
n→∞

Fn(β, µ) =
∂j+k

∂βj∂µk
F∞(β, µ). (8)

This implies that phases and phase transitions can be determined from the limiting free energy
density, and so a phase is commonly defined (see for instance [5]) as a connected region of the
(β, µ) parameter space maximal for the condition that F∞(β, µ) is analytic.

Using the obvious analogues for random graphs, with β1 playing the role of −βµ and β2 the
role of −βa (and therefore positive if and only if the model is ‘attractive’), ψn = ψn(β1, β2)
plays the key role of free energy density. We will show in Theorems 3.9 and 3.10 below that
the limiting free energy density ψ∞(β1, β2) exists, and the proof of Theorem 2 by Yang and
Lee [11], on the commutation of limits, goes through without any difficulty in this setting, so
we can again define phases and phase transitions through the limiting free energy density, as
follows.

Definition 2.4. A phase is a connected region, of the parameter space {(β1, β2)}, maximal for
the condition that the limiting free energy density, ψ∞(β1, β2), is analytic. There is a jth-order
transition at a boundary point of a phase if at least one jth-order partial derivative of ψ∞(β1, β2)
is discontinuous there, while all lower order derivatives are continuous.

Theorems 2.1 and 2.2 thereby justify our interpretation in Corollary 2.3 that each of our models
consists of a single phase with a first order phase transition across the indicated curve except at
the end (or ‘critical’) point (βc1, β

c
2), where the transition is second order, superficially similar

to the transition between liquid and gas in equilibrium materials.

3. Proofs

The following detailed analysis of a maximization problem is fundamental to our argument.
We adopt the common notation on graph limits as used for instance in [1] and [7].

Proposition 3.1. Fix an integer p ≥ 2. Consider the maximization problem for

l(u;β1, β2) = β1u+ β2u
p −

1

2
u log u−

1

2
(1− u) log(1− u) (9)

on the interval [0, 1], where −∞ < β1 <∞ and −∞ < β2 <∞ are parameters. Then there is a
V-shaped region in the (β1, β2) plane with corner point (βc1, β

c
2) such that outside this region, l(u)

has a unique local maximizer (hence global maximizer) u∗; whereas inside this region, l(u) always
has exactly two local maximizers u∗1 and u∗2. Moreover, for every β1 inside this V-shaped region
(β1 < βc1), there is a unique β2 = q(β1) such that the two local maximizers of l(u;β1, q(β1)) are
both global maximizers. Furthermore q is a continuous and decreasing function of β1.

Remark. By the Lebesgue Differentiation Theorem, q being monotone guarantees that it is
differentiable almost everywhere.

Proof. The location of maximizers of l(u) on the interval [0, 1] are closely related to properties
of its derivatives l′(u) and l′′(u):

l′(u) = β1 + pβ2u
p−1 −

1

2
log

u

1− u
, (10)

l′′(u) = p(p− 1)β2u
p−2 −

1

2u(1− u)
. (11)
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Figure 1. Outside the V-shaped region, l(u) has a unique local maximizer
(hence global maximizer) u∗. Graph drawn for β1 = −0.8, β2 = 0.1, and p = 3.
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Figure 2. Outside the V-shaped region, l(u) has a unique local maximizer
(hence global maximizer) u∗. Graph drawn for β1 = −0.8, β2 = 2, and p = 3.

We first analyze properties of l′′(u) on the interval [0, 1]. Consider instead the function

m(u) =
1

2p(p − 1)up−1(1− u)
. (12)

Simple optimization shows

0 ≤ (p− 1)up−1(1− u) ≤

(

p− 1

p

)p

, (13)

and the equality holds if and only if u = p−1
p

. Thus

pp−1

2(p − 1)p
≤ m(u) <∞. (14)
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The graph of m(u) is concave up with two ends both growing unbounded, and the global

minimum is achieved at u = p−1
p

. This implies that for β2 ≤ pp−1

2(p−1)p , l
′′(u) ≤ 0 on the whole

interval [0, 1]; whereas for β2 >
pp−1

2(p−1)p , l
′′(u) will take on both positive and negative values,

and we denote the transition points by u1 and u2 (u1 <
p−1
p
< u2).

Based on properties of l′′(u), we next analyze properties of l′(u) on the interval [0, 1]. For

β2 ≤ pp−1

2(p−1)p , l
′(u) is monotonically decreasing. For β2 >

pp−1

2(p−1)p , l
′(u) is decreasing from 0 to

u1, increasing from u1 to u2, then decreasing again from u2 to 1.
Based on properties of l′(u) and l′′(u), we analyze properties of l(u) on the interval [0, 1].

Independent of the choice of parameters β1 and β2, l(u) is a bounded continuous function,

l′(0) = ∞, and l′(1) = −∞, so l(u) can not be maximized at 0 or 1. For β2 ≤ pp−1

2(p−1)p , l
′(u)

crosses the u-axis only once, going from positive to negative. Thus l(u) has a unique local

maximizer ((hence global maximizer) u∗. For β2 >
pp−1

2(p−1)p , the situation is more complicated

and deserves a careful analysis. If l′(u1) ≥ 0 (resp. l′(u2) ≤ 0), l(u) has a unique local maximizer
(hence global maximizer) at a point u∗ > u2 (resp. u∗ < u1). If l′(u1) < 0 < l′(u2), then l(u)

has two local maximizers u∗1 and u∗2, with u
∗
1 < u1 <

p−1
p
< u2 < u∗2.

Notice that u1 and u2 are solely determined by the choice of parameter β2 >
pp−1

2(p−1)p , and

vice versa. By (12),

l′(u1) = β1 +
1

2(p − 1)(1 − u1)
−

1

2
log

u1
1− u1

, (15)

l′(u2) = β1 +
1

2(p − 1)(1 − u2)
−

1

2
log

u2
1− u2

. (16)

Consider the function

n(u) =
1

2(p − 1)(1− u)
−

1

2
log

u

1− u
. (17)

It is not hard to see that n(0) = ∞, n(1) = ∞, n(u) is decreasing from 0 to p−1
p
, then increasing

from p−1
p

to 1, and the global minimum value is

n
(p− 1

p

)

=
p

2(p − 1)
−

1

2
log(p − 1). (18)

This implies in particular that l′(u1) ≥ 0 for β1 ≥ 1
2 log(p−1)− p

2(p−1) . The only possible region

in the (β1, β2) plane where l′(u1) < 0 < l′(u2) is thus bounded by β1 <
1
2 log(p − 1) − p

2(p−1)

and β2 >
pp−1

2(p−1)p .

We now analyze the behavior of l′(u1) and l′(u2) more closely when β1 and β2 are chosen

from this region. Recall that by construction, u1 <
p−1
p
< u2. By monotonicity of n(u) on the

intervals (0, p−1
p
) and (p−1

p
, 1), there exist continuous functions a(β1) and b(β1) of β1, such that

l′(u1) < 0 for u1 > a(β1) and l′(u2) > 0 for u2 > b(β1). a(β1) is an increasing function of β1,
whereas b(β1) is a decreasing function, and they satisfy

n(a(β1)) = n(b(β1)) = −β1. (19)

Also, as β1 → −∞, a(β1) → 0 and b(β1) → 1. By (12), the restrictions on u1 and u2 yield
restrictions on β2. We have l′(u1) < 0 for β2 < m(a(β1)) and l′(u2) > 0 for β2 > m(b(β1)).
Notice that m(a(β1)) and m(b(β1)) are both decreasing functions of β1, and as β1 → −∞, they
both grow unbounded. By construction, for every parameter value (β1, β2), l

′(u2) > l′(u1).
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Figure 3. Along the lower bounding curve of the V-shaped region, l′(u) has
two zeros u∗1 and u∗2, but only u

∗
1 is the global maximizer for l(u). Graph drawn

for β1 = −0.8, β2 = 0.769, and p = 3.
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Figure 4. Along the upper bounding curve of the V-shaped region, l′(u) has
two zeros u∗1 and u∗2, but only u

∗
2 is the global maximizer for l(u). Graph drawn

for β1 = −0.8, β2 = 1.396, and p = 3.

Also, for fixed β1, m(a(β1)) is the value of β2 for which l′(u1) = 0, and m(b(β1)) is the value
for which l′(u2) = 0. Thus the curve m(b(β1)) must lie below the curve m(a(β1)). And
together they generate the bounding curves of the V-shaped region in the (β1, β2) plane where
two local maximizers exist for l(u). It is not hard to see that the corner point is given by

(βc1, β
c
2) =

(

1
2 log(p− 1)− p

2(p−1) ,
pp−1

2(p−1)p

)

. (See Figures 1–6.)

Fixing an arbitrary β1 < βc1, we examine the effect of varying β2 on the graph of l′(u). It
is clear from (10) that l′(u) shifts upward as β2 increases. As a result, as β2 gets large, the
positive area bounded by the curve l′(u) increases, whereas the negative area decreases. By
the fundamental theorem of calculus, the difference between the positive and negative areas is
the difference between l(u∗2) and l(u∗1), which goes from negative (l′(u2) = 0, u∗1 is the global
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Figure 5. Along the phase transition curve, l(u) has two local maximizers u∗1
and u∗2, and both are global maximizers. Graph drawn for β1 = −0.8, β2 = 0.884,
and p = 3.
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Figure 6. The V-shaped region (with phase transition curve inside) in the
(β1, β2) plane. Graph drawn for p = 3.

maximizer) to positive (l′(u1) = 0, u∗2 is the global maximizer) as β2 goes from m(b(β1)) to
m(a(β1)). Thus there must be a unique β2 : m(b(β1)) < β2 < m(a(β1)) such that u∗1 and u∗2
are both global maximizers. We denote this β2 by q(β1); see Figure 6.

By analyzing the graph of l′(u), we see that the parameter values of (β1, q(β1)) are exactly
the ones for which positive and negative areas bounded by l′(u) equal each other. An increase
in β1 will induce an upward shift of l′(u), which must be balanced by a decrease in β2 = q(β1).
Similarly, a decrease in β1 will induce a downward shift of l′(u), which must be balanced by an
increase in β2 = q(β1). This justifies that q is monotonically decreasing in β1. Furthermore,
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the continuity of l′(u) as a function of β1 and β2 implies the continuity of q as a function of
β1. �

Corollary 3.2. The transition curve β2 = q(β1) displays a universal asymptotic behavior as
β1 → −∞:

lim
β1→−∞

|q(β1) + β1| = 0. (20)

Proof. By Proposition 3.1, it suffices to show that as β1 → −∞, l(u;β1,−β1) has two global
maximizers u∗1 and u∗2. This is easy when we realize that as β1 → −∞, l(u;β1,−β1) → −∞
for every u in (0, 1). The limiting maximizers on [0, 1] are thus u∗1 = 0 and u∗2 = 1, with
l(u∗1) = l(u∗2) = 0. �

Theorem 3.3. Let Gn be a random graph on n vertices in one of our models. For parameter
values of (β1, β2) in the upper half-plane β2 > − 2

p(p−1) , the behavior of Gn in the large n limit

is as follows:

min
u∈U

δ�(G̃n, ũ) → 0 in probability as n→ ∞, (21)

where U is the set of maximizers of (9).

Proof. The assumptions of Theorems 4.2 and 6.1 in [1] are satisfied for parameter values β2 >
− 2
p(p−1) . By Proposition 3.1, along the curve (β1, q(β1)), the maximization problem (9) is

solved at two values u∗1 and u∗2; whereas off this curve, it is solved at a unique value u∗. Thus
in the large n limit, along the curve (β1, q(β1)), Gn behaves like an Erdős-Rényi graph G(n, u)
(u picked randomly from u∗1 and u∗2); whereas off this curve, Gn is indistinguishable from the
Erdős-Rényi graph G(n, u∗). �

Corollary 3.4. Fix any β2 > βc2. Let H be an edge, so t(H,Gn) is the edge density of Gn.
Then there exists a continuous and decreasing function q−1(β2) such that

lim
n→∞

P
β1,β2
n (t(H,Gn) > u2) = 1 if β1 > q−1(β2) (22)

and

lim
n→∞

P
β1,β2
n (t(H,Gn) < u1) = 1 if β1 < q−1(β2). (23)

Here u1 and u2 are defined as in the proof of Proposition 3.1: m(u1) = m(u2) = β2.

Remark. As β2 → ∞, u1 → 0 and u2 → 1 and the jump is noticeable even for relatively small
values of β2.

Proof. As q(β1) is a continuous and decreasing function of β1, the inverse function q−1(β2)
exists and is also continuous and decreasing. We examine the effect of varying β1 on the
graph of l′(u) (and hence on the global maximizers of l(u)). First note that varying β1 does
not change the shape of l′(u). Inside the V-shaped region, there are three cases. Recall that

u∗1 < u1 <
p−1
p

< u2 < u∗2. For β1 = q−1(β2), positive and negative areas bounded by l′(u)

equal each other, thus u∗1 and u∗2 are both global maximizers. For β1 < q−1(β2), the graph
of l′(u) shifts downward, negative area exceeds positive area, thus u∗1 is the global maximizer.
For β1 > q−1(β2), the graph of l′(u) shifts upward, positive area exceeds negative area, thus
u∗2 is the global maximizer. Outside the V-shaped region, there are two cases. Below the lower
bounding curve, l′(u) has a unique local maximizer u∗ < u1. Above the upper bounding curve,
l′(u) has a unique local maximizer u∗ > u2. Our conclusion then follows from Theorem 3.3. �
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Theorem 3.5. Assume that in one of our models H2 is a p-star (p ≥ 2). For all parameter
values (β1, β2), the behavior of Gn in the large n limit is as follows:

min
u∈U

δ�(G̃n, ũ) → 0 in probability as n→ ∞, (24)

where U is the set of maximizers of (9).

Proof. This follows from related results in [1]. We separate the parameter plane {(β1, β2)}
into upper and lower half-planes. The upper half-plane (β2 ≥ 0) satisfies the assumptions of
Theorem 4.2, and the lower half-plane (β2 ≤ 0) satisfies the assumptions of Theorem 6.4. By
similar reasoning as in Theorem 3.3, the rest of the proof follows. �

Real and complex analyticity are both defined in terms of convergent power series. Any
problem in the real analytic category may be complexified and thereby turned into a complex
analytic one, and any complex analytic situation with real coefficients is obviously real analytic
and can thus be treated with real analytic techniques. The following analytic implicit function
theorem may be interpreted in either the real or complex setting.

Theorem 3.6 (Krantz-Parks [6]). Suppose that the power series

F (x, y) =
∑

α,k

aα,kx
αyk (25)

is absolutely convergent for |x| ≤ R1, |y| ≤ R2. If a0,0 = 0 and a0,1 6= 0, then there exist r0 > 0
and a power series

f(x) =
∑

|α|>0

cαx
α (26)

such that (26) is absolutely convergent for |x| ≤ r0 and F (x, f(x)) = 0.

Proposition 3.7. Off the end point (βc1, β
c
2), the local maximizer u∗ for l(u;β1, β2) (u

∗
1 and u∗2

if inside the V-shaped region) is an analytic function of the parameters β1 and β2.

Proof. A local maximizer u∗ for l(u) is a zero for l′(u) with the additional property that l′(u)
would change sign from positive to negative across u = u∗. Fix a choice of parameters (β′1, β

′
2) 6=

(βc1, β
c
2). Set x = (β1 − β′1, β2 − β′2) and y = u − u∗(β′1, β

′
2). The function l′(u;β1, β2) is thus

transformed into a function F (x, y). It is clear that l′(u;β1, β2) is analytic for u ∈ (0, 1),
β1 ∈ (−∞,∞), and β2 ∈ (−∞,∞). Recall that l(u) bounded continuous, l′(0) = ∞, and
l′(1) = −∞ implies that u∗ can not be 0 or 1. It follows that the transformed function
F (x, y) has the desired domain of analyticity, and is locally absolutely convergent. As for the
coefficients,

a0,0 = F (0, 0) = l′(u∗(β′1, β
′
2);β

′
1, β

′
2) = 0 (27)

by construction, and

a0,1 =
∂F

∂y
(0, 0) = l′′(u∗(β′1, β

′
2);β

′
1, β

′
2) 6= 0, (28)

as can be seen from the proof of Proposition 3.1. In more detail, for β′2 < βc2, l
′′(u) is positive

for all u in (0, 1). And for β′2 = βc2, l
′′(u) = 0 only for u = p−1

p
, which coincides with u∗ only

for β′1 = βc1. Lastly, for β′2 > βc2, l
′′(u) = 0 only for u = u1 and u = u2. Three possible

situations might occur. Outside the V-shaped region, l(u) has a unique local maximizer u∗,
with u∗ > u2 if above or along the upper bounding curve, and u∗ < u1 if below or along
the lower bounding curve. Inside the V-shaped region, l(u) has two local maximizers u∗1 and
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u∗2, with u∗1 < u1 <
p−1
p

< u2 < u∗2. All the conditions of Theorem 3.6 are satisfied, thus

f(x) = u∗(β1, β2)− u∗(β′1, β
′
2) converges for (β1, β2) close to (β′1, β

′
2). �

Proposition 3.8. Off the phase transition curve, l(u∗) = max l(u;β1, β2) (l(u∗1) or l(u∗2) if
inside the V-shaped region) is an analytic function of the parameters β1 and β2.

Proof. It is clear that l(u;β1, β2) is analytic for u ∈ (0, 1), β1 ∈ (−∞,∞), and β2 ∈ (−∞,∞).
Outside the V-shaped region, l(u) has a unique local maximizer u∗ in (0, 1), which is analytic
of β1 and β2 by Proposition 3.7. Inside the V-shaped region, l(u) has two local maximizers
u∗1 and u∗2, both have values in (0, 1) and analytic of β1 and β2 by Proposition 3.7. Below the
phase transition curve, max l(u) is given by l(u∗1), which coincides with l(u∗) along the lower
bounding curve. Above the phase transition curve, max l(u) is given by l(u∗2), which coincides
with l(u∗) along the upper bounding curve. Our claim follows by realizing that compositions
of analytic functions are analytic as long as the domains and ranges match up. �

Theorem 3.9. Let Gn be a random graph on n vertices in one of our models. The limiting
free energy density ψ∞ = limn→∞ ψn is an analytic function of the parameters β1 and β2 off
the phase transition curve in the upper half-plane β2 > − 2

p(p−1) .

Proof. The assumptions of Theorems 4.2 and 6.1 in [1] are satisfied for parameter values β2 >
− 2
p(p−1) . Our claim then follows from Proposition 3.8. �

Theorem 3.10. Assume that in one of our models H2 is a p-star (p ≥ 2). The limiting free
energy density ψ∞ = limn→∞ ψn is an analytic function of the parameters β1 and β2 off the
phase transition curve.

Proof. The assumptions of Theorems 4.2 and 6.4 in [1] are satisfied. Our claim again follows
from Proposition 3.8. �

Lemma 3.11 (Lovász-Szegedy [7]). Let U,W : [0, 1]2 → [0, 1] be two symmetric integrable
functions. Then for every finite simple graph F ,

|t(F,U) − t(F,W )| ≤ |E(F )| · δ�(Ũ , W̃ ). (29)

Proof of Theorems 2.1 and 2.2. The stated analyticity is proven in Theorems 3.9 and 3.10,
so we only need to examine the situation along the phase transition curve. We know from
Theorems 3.3 and 3.5 that G̃n converges in probability to u∗, off the curve. By Lemma 3.11,
t(H1, Gn) then converges in probability to t(H1, u

∗). As t(H1, Gn) is uniformly bounded in n,
this implies that

Eβ1,β2{|t(H1, Gn)− t(H1, u
∗)|} → 0 as n→ ∞. (30)

Therefore

Eβ1,β2{t(H1, Gn)} → Eβ1,β2{t(H1, u
∗)} = u∗(β1, β2) =

∂

∂β1
ψ∞(β1, β2) as n→ ∞. (31)

Similarly,

Eβ1,β2{t(H2, Gn)} → Eβ1,β2{t(H2, u
∗)} = (u∗(β1, β2))

p =
∂

∂β2
ψ∞(β1, β2) as n→ ∞. (32)

By Corollary 3.4, these two first derivatives
∂

∂β1
ψ∞ and

∂

∂β2
ψ∞ are discontinuous across the

curve (except at the end point). Let us now take a closer look at the behavior of ψ∞ at the
critical point. Recall that l′(u;βc1, β

c
2) is monotonically decreasing on [0, 1], and the unique zero
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is achieved at p−1
p

. Take any 0 < ǫ < 1
p
. Set δ = min{l′(p−1

p
− ǫ),−l′(p−1

p
+ ǫ)}. Consider

(β1, β2) so close to (βc1, β
c
2) such that |β1 − βc1| + p|β2 − βc2| < δ. For every u in [0, 1], we then

have |l′(u;β1, β2)− l′(u;βc1, β
c
2)| < δ. It follows that the zeros u∗(β1, β2) (u

∗
1 and u∗2 if inside the

V-shaped region) must satisfy
∣

∣

∣
u∗ − p−1

p

∣

∣

∣
< ǫ, which easily implies the continuity of

∂

∂β1
ψ∞

and
∂

∂β2
ψ∞ at (βc1, β

c
2). To see that the transition at the critical point is second-order, we check

the second derivatives of ψ∞ in its neighborhood. Off the phase transition curve,

lim
n→∞

∂2

∂β21
ψn =

∂2

∂β21
ψ∞ =

∂

∂β1
u∗ = −

1

l′′(u∗)
, (33)

lim
n→∞

∂2

∂β1∂β2
ψn =

∂2

∂β1∂β2
ψ∞ =

∂

∂β1
(u∗)p = −

p(u∗)p−1

l′′(u∗)
, (34)

lim
n→∞

∂2

∂β22
ψn =

∂2

∂β22
ψ∞ =

∂

∂β2
(u∗)p = −

(p(u∗)p−1)2

l′′(u∗)
. (35)

But as was explained in Proposition 3.1, l′′(u∗) converges to zero as (β1, β2) approaches (β
c
1, β

c
2);

the desired singularity is thus justified. �

4. Summary.

Much of the literature on phase transitions in exponential random graph models uses tech-
niques, such as mean-field approximations, which are mathematically uncontrolled. As such
they have been useful in discovering interesting behavior but they can be misleading in detail;
compare our Corollary 2.3 with Fig. 3 in [9] and Fig. 2 in [10].

Chatterjee and Diaconis [1] gave the first rigorous proof of singular behavior in an exponential
random graph model, the edge-triangle model (H2 a triangle). Our paper is an extension of
this important first step; besides extending the models and parameters under control we have
provided a mathematical framework of ‘phases’ which we hope will be useful in motivating
future mathematical work in this subject.
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[2] Erdős, P. and Rényi, A. (1960). On the evolution of random graphs, Magyar Tud. Akad. Mat. Kutató Int.
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