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Let A = (aij) be an n × n matrix over a field F . Write |A| for the determinant
of A , and, for each pair of indices (i, j) , let Aij be the (i, j) ’th minor of A , that is, the
(n − 1) × (n − 1) matrix obtained from A by deleting its i ’th row and j ’th column. The
cofactor of aij in A is the element Aij of F defined by the formula

Aij = (−1)i+j
∣

∣Aij
∣

∣.

The objective of this note is to give a simple conceptual proof of the formula

(1) |A| =

n
∑

j=1

aijAij for i = 1, . . . , n

(expansion by the i ’th row).
In what follows, it is useful to visualize a matrix A = (aij) ∈ Mn(F) (the algebra of

n × n matrices over F ) as a presentation of its ordered n ’ple of column vectors
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as canonical basis of the vector space V of n × 1 matrices (cf. [2], p. 204, Th. 7.3.9). We
regard the mapping A 7→ |A| as the unique mapping f : Vn → F that is multilinear (for
each i , a linear function of γi while the other coordinates are held fixed), alternate (equal
to 0 whenever γi = γj for some pair i, j with i 6= j ), and normalized ( f(e1, . . . , en) = 1 ),
briefly, an alternate multilinear form on Vn , normalized with respect to the canonical basis
of V (cf. [2], p. 197, Lemma 7.1.13). We assume shown that |A′| = |A| , where A′ is the
transpose of A (cf. [2], Th. 7.3.5).

The heart of the matter is to prove the formula for expansion by, say, the first row:

(2) |A| =

n
∑

j=1

a1jA1j

in other words,

(2′) f(γ1, . . . , γn) = a11A11 + a12A12 + · · · + a1nA1n .

The strategy of the proof is to define a function g : Vn → F via the right side of (2′),

(2′′) g(γ1, . . . , γn) = a11A11 + a12A12 + · · · + a1nA1n ,
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and to show that g = f by verifying that g is an alternate multilinear form such that
g(e1, . . . , en) = 1 .

(a) Normalization: When A = I (the n × n identity matrix), formula (2′′) reduces to
g(e1, . . . , en) = 1 · A11 =

∣

∣A11
∣

∣ = 1 (A11 is the (n − 1) × (n − 1) identity matrix).
(b) Multilinearity : We are to show that g(γ1, γ2, . . . , γn) is a linear function of γj for

each j , while the other γ ’s are held fixed. In fact, each term on the right side of (2′′) is
a linear function of γj for each j , whence linearity for their sum. It will suffice to verify
this for the first two terms and for γ1 and γ2 to exhibit the pattern of the proof. At work
will be the properties of the determinants

∣

∣Aij
∣

∣ and the distributive law in F .
Linearity of a11A11 as a function of γ1 : The coefficient a11 is a linear function of γ1

(of which it is the first coordinate), whereas A11 is independent of γ1 .
Linearity of a12A12 as a function of γ1 : A12 is a linear function of the first column of

A12 (a subcolumn of γ1 ), whereas a12 is independent of γ1 ; the same argument applies
to the terms a13A13 , . . . ,a1nA1n . Thus g(γ1, γ2, . . . , γn) is a linear function of γ1 .

Linearity of a11A11 as a function of γ2 : A11 is a linear function of the first column
of A11 (a subcolumn of γ2 ), whereas the coefficient a11 is independent of γ2 ; the same
argument applies to the terms a13A13 , . . . ,a1nA1n .

Linearity of a12A12 as a function of γ2 : the coefficient a12 is a linear function of γ2 (of
which it is the first coordinate), whereas A12 is independent of γ2 . Thus g(γ1, γ2, . . . , γn)
is a linear function of γ2 .

The arguments for γ3, . . . , γn are straightforward variations on the foregoing themes.
(c) Alternateness: Assuming j, k are indices such that j 6= k and γj = γk , it remains

only to show that g(γ1, . . . , γn) = 0 . We will show that the formula (2′′) reduces to the
two terms a1jA1j and a1kA1k and that their sum is 0 . We can suppose that j < k . If
h is an index such that h 6= j and h 6= k , then

∣

∣A1h
∣

∣ = 0 because deleting row 1 and
column h from A leaves intact the equality of (what is left of) columns j and k , thus

g(γ1, . . . , γn) = a1jA1j + a1kA1k = a1j(A1j + A1k)

(because a1j = a1k on account of γj = γk ); we need only show that

(3) A1j + A1k = 0 .

If 1 < j < k < n , the matrices in question are

A1k =




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a21 a22 . . . a2j a2,j+1 . . . a2,k−2 a2,k−1 a2,k+1 . . . a2n

a31 a32 . . . a3j a3,j+1 . . . a3,k−2 a3,k−1 a3,k+1 . . . a3n

· · ·
an1 an2 . . . anj an,j+1 . . . an,k−2 an,k−1 an,k+1 . . . ann
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
,

A1j =
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a21 a22 . . . a2,j−1 a2,j+1 . . . a2,k−1 a2k a2,k+1 . . . a2n

a31 a32 . . . a3,j−1 a3,j+1 . . . a3,k−1 a3k a3,k+1 . . . a3n

· · ·
an1 an2 . . . an,j−1 an,j+1 . . . an,k−1 ank an,k+1 . . . ann






.

The j ’th column of A1k (whose column indices are j ) is, by assumption, equal to the
(k −1) ’th column of A1j (whose column indices are k ); if the column of A1j with column
indices k is moved to the left past

(k − 1) − (j + 1) + 1 = k − j − 1
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columns, one arrives at the matrix A1k ; it follows that

∣

∣A1k
∣

∣ = (−1)k−j−1
∣

∣A1j
∣

∣ ,

thus
A1k = (−1)1+k

∣

∣A1k
∣

∣

= (−1)1+k(−1)k−j−1
∣

∣A1j
∣

∣

= (−1)2k−j
∣

∣A1j
∣

∣

= (−1)−j
∣

∣A1j
∣

∣

= (−1)−j · (−1)−(1+j)A1j = −A1j

whence A1j+A1k = 0 . In the remaining cases that j = 1 or k = n or both ( j = 1 < k < n ;
j = 1 < k = n ; 1 < j < k = n ), the matrices and arguments are modified in the obvious
way.

To summarize, g has been shown to have the properties that characterize f ; in other
words, g = f . Thus g , acting on the column vectors of a matrix A , produces |A| ; in other
words, the formula that defines g (expansion by cofactors by the first row) produces |A| .

In particular, g acting on the column vectors of A′ produces |A′| = |A| .

Let B = A′ = (bij ) , where bij = aji . Note that Bij =
(

Aji
)

′

; for, deleting row i and
column j of A′ produces the same matrix as transposing the result of deleting column i

and row j of A . Whence

Bij = (−1)i+j
∣

∣Bij
∣

∣ = (−1)i+j
∣

∣

(

Aji
)

′
∣

∣ = (−1)j+i
∣

∣Aji
∣

∣ = Aji .

It follows that bijBij = ajiAji and so

(4)

n
∑

j=1

bijBij =

n
∑

j=1

ajiAji

for every i , thus the formula for expanding |B| by the i ’th row of B is equal to the formula
for expanding |A| by the i ’th column of A . Putting i = 1 , we know that the left side is
the expansion of |B| = |A| by the 1st row of B , whence the formula for expanding |A| by

the first column of A .
For later use, summing instead on i we have

(4′)

n
∑

i=1

bijBij =

n
∑

i=1

ajiAji

for every j , relating the formula for expansion of |A| by the j ’th row of A and the formula
for expansion of |B| by the j ’th column of B .

Expansion of |A| by the k ’th column of A , k > 1 : Let C be the result of interchanging
columns 1 and k of A , so that C = (cij) , where ci1 = aik for all i , cik = ai1 for all i ,
and cij = aij for all other pairs (i, j) . The idea is to expand |C| = −|A| by column 1 of C ,
then change the sign of the result. But we also want the resulting formula to agree with
the right side of (4) (with the indices j, i replaced by i, k ). We know that the expansion
of |C| by column 1 of C is

|C| =

n
∑

i=1

ci1Ci1 =

n
∑

i=1

aikCi1 .
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We wish to show that

|A| =

n
∑

i=1

aikAik ;

since |A| = −|C| , it will suffice to show that Ci1 = −Aik for all i . Let us inspect Ci1 : it
is the result of deleting column 1 of C (formerly column k of A ) and row i of C (equal
to row i of A with aik and ai1 interchanged), thus
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In this matrix, if the (k − 1) ’th column (with column indices 1 ) is moved to the left end,
past k − 2 columns, one obtains Aik , therefore

∣

∣Ci1
∣

∣ = (−1)k−2
∣

∣Aik
∣

∣ = (−1)k
∣

∣Aik
∣

∣ ,

whence
Ci1 = (−1)i+1

∣

∣Ci1
∣

∣ = (−1)i+1(−1)k(−1)−(i+k)Aik = −Aik .

Expansion of |A| by the j ’th row of A , j > 1 : The left side of (4′) is the expansion
of |B| = |A| by the j ’th column of B (by the result just proved), thus the right side
establishes the expansion of |A| by the j ’th row of A .

In brief, if one has proved the existence and uniqueness of a function A 7→ |A| of
Mn(F) into F that is an alternate multilinear function of the column vectors of A satisfying
|I| = 1 , and established that |A′| = |A| , then expansion by cofactors is a straightforward
elementary corollary, albeit with a lot of steps.

Inspection of textbooks available to me revealed a surprising diversity of proofs. Most
(including [2]) proceed by reassociating the n! terms in the development of |A| . The proof
in [3] is accomplished in four sentences, but it comes at a high cost in prerequisites.

The proof in [4] is closest in spirit to the one given above, but proceeds in the reverse
order: the formula for g provides a determinant function for 2×2 matrices, is extended to
n × n matrices by induction, and is followed by efficient proofs of uniqueness and further
properties (such as |AB| = |A| |B| and A · adj A = |A| I ). Thus expansion by cofactors
is built into the very definition of determinant. (I am indebted to Robert Burckel for the
observation that this was the method employed in the book of Artin [1].)
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