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1.Introduction

Semiclassical bounds for the moments of eigenvalues of Schrödinger operators considered in

the whole space, in domains, with or without magnetic fields comparing quantum mechanical

quantities with corresponding expressions appearing in the Weyl’s asymptotic formula were

studied extensively in recent years (see e.g. [3], [4], [5], [6]). In the first part of the article

we consider the operator h0 := −∆ on L2(Ω), where Ω ⊂ R
n, n ∈ N is an open set with finite

Lebesgue measure |Ω| < ∞ and the Dirichlet boundary conditions. Let {λ0
k}∞k=1 be the set of

the eigenvalues for h0, ordered monotonically, such that 0 < λ0
1 < λ0

2 ≤ ... ≤ λ0
k ≤ .... The

corresponding system of eigenfunctions {ϕk}∞k=1, which is a complete orthonormal system in

L2(Ω) equipped with the inner product (f, g)L2(Ω) :=
∫
Ω
f(x)ḡ(x)dx, satisfies the equation

h0ϕk = λ0
kϕk, k ∈ N.
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According to the H.Weyl’s asymptotic formula, the semiclassical expression for λ0
k is given by

Cn

(
k

|Ω|

) 2

n

, where Cn := (2π)2|Bn|−
2

n , Bn is the unit ball in R
n and |Bn| is its volume. Thus

for the eigenvalue sum
∑N

k=1 λ
0
k the semiclassical expression is

n

n+ 2
CnN

n+2

n |Ω|− 2

n . The sharp

semiclassical lower bound
N∑

k=1

λ0
k ≥

n

n + 2
CnN

n+2

n |Ω|− 2

n , N ∈ N (1)

was established in [7]. In fact, inequality (1) is the Legendre transformation of an earlier

result proved in [1], as it was pointed out in [10]. In the present article we show that the

method developed in [7] can be used to establish the sharp upper bound for the moments of

the Dirichlet eigenvalues λ0
k of certain negative powers. The optimality of the constant in the

inequality below is a consequence of the Weyl’s asymptotic formula.

Theorem 1. For 0 < q <
n

2
and an arbitrary N ∈ N the estimate

N∑

k=1

{λ0
k}−q ≤ n

n− 2q
{Cn}−qN

n−2q

n |Ω| 2qn (2)

holds. The constant {Cn}−q in it is the best possible.

In the second part of the article we turn our attention to the magnetic Laplacian operator

hA := (−i∇+A)2 on L2(Ω), where Ω is the set considered above with the Dirichlet boundary

conditions and {λA
k }∞k=1 is the sequence of monotonically ordered eigenvalues for hA. HereA(x)

is a one-form and the magnetic field is a constant two-form B(x) given by B(x) = dA(x).

For instance, in R
3 a constant magnetic field parallel to the z-axis, B = (0, 0, B0) can be

generated by a vector potential A =
B0

2
(−y, x, 0). Note that magnetic effects play their role

in dimensions two and higher since in one dimension a magnetic field can be gauged away, such

that a magnetic Laplacian is unitarily equivalent to the free Laplacian. The magnetic field

determines the vector potential only up to an exact one-form dφ. As it was discussed in [4],

when a nontrivial magnetic field is turned on, the sum of the first N Dirichlet eigenvalues can

decrease compared to the nonmagnetic case but Theorem 1 of [4] states that in an arbitrary

constant magnetic field the lower bound

N∑

k=1

λA
k ≥ n

n + 2
CnN

n+2

n |Ω|− 2

n , N ∈ N (3)
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still holds. The proposition below is the generalization of inequality (3) to moments of certain

positive powers of magnetic Dirichlet eigenvalues.

Theorem 2. For 0 < q ≤ 1, A generating a constant magnetic field and an arbitrary

N ∈ N the estimate
N∑

k=1

{λA
k }q ≥

n

n + 2q
{Cn}qN

n+2q

n |Ω|− 2q

n (4)

holds. The constant {Cn}q in it is the best possible.

Remark. The result of Theorem 2 holds, in particular in the nonmagnetic case, when the

vector potential A vanishes. The magnetic field does not contribute to the sum of powers of

eigenvalues to leading order as N → ∞. Thus, {Cn}q is best possible by means of the Weyl’s

asymptotic formula.

We finish the article with proving the inequality for the trace of the appropriate negative

powers of the operator H :=
√
−∆ + V (x) on L2(Rd), d ∈ N. The scalar potential function

here is assumed to be infinitely smooth and the relativistic kinetic energy operator
√
−∆ is

defined via the spectral calculus. Note that the quantum mechanical particle here is assumed

to be massless. For the studies of the case when the particle mass m is nontrivial, one can

use the bound in the sense of quadratic forms as

√
−∆−m ≤

√
−∆+m2 −m ≤

√
−∆

(see e.g. [9]), where the spectral properties of relativistic hamiltonians are being used for

proving the stability of matter. The semiclassical expression for TrH−γ is given by

Ssc :=
1

(2π)d

∫

Rd

dp

∫

Rd

dx{|p|+ V (x)}−γ . (5)

It comes from prescribing (2π)d phase space volume (in the proper units) to each bound state

of our Schrödinger operator. We prove the following Lieb-Thirring type inequality.

Theorem 3. For any γ > d, d ∈ N and for any nonnegative V (x) ∈ C∞(Rd), such that

V (x)−γ+d ∈ L1(Rd), we have

Tr(
√
−∆+ V (x))−γ ≤ C(γ)

∫

Rd

V (x)−γ+ddx. (6)
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The value of the sharp constant C(γ) is given by the Weyl’s asymptotics, i.e. by its value in

the semiclassical limit:

C(γ) :=
Γ(d+1

2
)Γ(γ − d)

π
d+1

2 Γ(γ)
. (7)

Here and further down the Γ symbol stands for the standard gamma function. Note that the

sharp semiclassical bounds for the moments of eigenvalues to negative powers of Schrödinger

operators with unbounded potentials were obtained in [3]. In their work, as distinct from our

case, the kinetic energy operator is a free Laplacian. In [2] the Lieb-Thirring type inequalities

were derived in the case of the relativistic kinetic energy when the potential function decays

at infinity. We start with the proof of Theorem 1, which exploits the ideas similar to the ones

of Li and Yau (see [7]).

2. Moments of eigenvalues of certain negative powers for the Dirichlet Lapla-

cian.

Proof of Theorem 1. Clearly λ0
k =

∫
Ω
(∇ϕk)

2dx, k ∈ N. We extend the eigenfunctions of

the Dirichlet Laplacian to the whole R
n by zero outside the domain Ω and use the standard

Fourier transform ϕ̂k(p) :=
1

(2π)
n
2

∫

Rn

ϕk(x)e
−ipxdx, p ∈ R

n. Thus λ0
k =

∫

Rn

p2|ϕ̂k(p)|2dp. For

our eigenvalue moments using the Jensen’s inequality we obtain

N∑

k=1

{λ0
k}−q =

N∑

k=1

{∫

Rn

p2|ϕ̂k(p)|2dp
}−q

≤
∫

Rn

1

|p|2q f(p)dp, (8)

where f(p) :=
∑N

k=1 |ϕ̂k(p)|2. Let us maximize the right side of the inequality above subject

to the two conditions, arising from the fact that the eigenfunctions {ϕk}∞k=1 of the Dirichlet

Laplacian form the orthonormal basis in L2(Ω). The first one is
∫

Rn

f(p)dp = N.

The second one relies on the Bessel’s inequality, such that

0 ≤ f(p) =
N∑

k=1

∣∣∣∣
( e−ipx

(2π)
n
2

, ϕk(x)
)
L2(Ω)

∣∣∣∣
2

≤
∫

Ω

1

(2π)n
dx =

|Ω|
(2π)n

.

By means of the Bathtub principle (see e.g. p.28 of [8]) the maximizer of the right side of

inequality (8) is given by

fm(p) :=
|Ω|

(2π)n
χBR

,
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where χBR
is the characteristic function of the ball centered at the origin of the radius

R := 2π
( N

|Ω||Bn|
) 1

n

. A straightforward computation of

∫

Rn

1

|p|2q fm(p)dp yields the result

of Theorem 1.

3. Moments of eigenvalues of the appropriate positive powers for the magnetic

Dirichlet Laplacian.

The proof of Theorem 2 is a consequence of the lemmas below. Let h denote our hamilto-

nian in the magnetic or a nonmagnetic case on L2(Rn), the notation Eλ stands for the spectral

family associated with h, such that we have the spectral decomposition h =
∫∞
0

λdEλ. The

projection from L2(Rn) onto L2(Ω) is designated by P . Thus, P = χΩ is the characteristic

function of the set Ω. Let f(λ) := Tr(PEλ), which is proportional to the integrated density

of states |Ω|−1f(λ), i.e. the number of states up to energy λ per unit volume and the oper-

ator hq is defined via the spectral calculus. Then we have the following lower bound for the

moments of the Dirichlet eigenvalues {λk}∞k=1 (the corresponding orthonormal eigenfunctions

are denoted by ϕk) of power q for the operator h on L2(Ω). The case of q = 1 was studied in

[4].

Lemma 4. For any N ∈ N and 0 < q ≤ 1

N∑

k=1

λ
q
k ≥

∫ ∞

0

(N − f(λ
1

q ))+dλ,

where (N − f(λ
1

q ))+ = max{N − f(λ
1

q ), 0} is the positive part of (N − f(λ
1

q )).

Proof. Via the spectral theorem

N∑

k=1

λ
q
k =

N∑

k=1

{∫ ∞

0

λdνk(λ)

}q

,

where the probability measure dνk(λ) := (dEλϕk, ϕk)L2(Ω), 1 ≤ k < ∞, such that
∫∞
0

dνk(λ) =

1. By means of the Jensen’s inequality the right side of the identity above is estimated from

below by
N∑

k=1

∫ ∞

0

λqdνk(λ) =

N∑

k=1

(hqϕk, ϕk)L2(Ω).
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Using Lemma 1 of [4] we obtain for it the lower bound
∫∞
0
(N − f̃(λ))+dλ with f̃(λ) :=

Tr(PẼλ) and Ẽλ is the spectral family for the operator hq. Consider the Heaviside step

function

θ(s) :=

{
1, s ≥ 0,

0, s < 0.

Then Ẽµ = θ(µ− hq) =

∫ µ
1
q

0

dEλ = E
µ

1
q
, such that f̃(λ) = Tr(PE

λ
1
q
) = f(λ

1

q ), which com-

pletes the proof of the lemma.

Let E0
λ andEA

λ be the spectral families for the operators h0 and hA on L2(Rn), n ∈ N, n ≥ 2

respectively, such that f 0(λ) := Tr(PE0
λ) and fA(λ) := Tr(PEA

λ ). We have the following

diamagnetic comparison for the integrals of the integrated densities of states, which is the

extension of the result of [4] from the case q = 1 to all the powers 0 < q ≤ 1 but fails to be

true when q > 1.

Lemma 5. For any E ≥ 0

∫ E

0

f 0(α
1

q )dα ≥
∫ E

0

fA(α
1

q )dα

is true for all 0 < q ≤ 1. This comparison does not hold in general for q > 1.

Proof. Let us define F (s) := (E − sq)+, 0 < q ≤ 1, s ∈ R
+. This function is nonnegative,

convex and lims→∞F (s) = 0. Thus by means of Proposition 1 of [4], which is the General-

ized diamagnetic inequality for constant magnetic fields, we have the following diamagnetic

comparison

(E − h
q
0)+(x, x) ≥ (E − h

q
A)+(x, x), x ∈ R

n, n ≥ 2

and

Tr(P (E − h
q
0)+P ) ≥ Tr(P (E − h

q
A)+P ).

Hence the statement of the lemma for 0 < q ≤ 1 is the consequence of the identity

(E − hq)+ =

∫ E

0

E
λ

1
q
dλ,

which holds in both magnetic and nonmagnetic cases.
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Let us make a counterexample to our diamagnetic comparison for q > 1. Consider the

problem in two dimensions. Thus in the case of the free Laplacian f 0(α
1

q ) =
α

1

q

4π
|Ω| and when a

constant magnetic field of a magnitude B > 0 is turned on we have fA(α
1

q ) =
B

2π

[α 1

q

2B
+

1

2

]
|Ω|

with the square brackets standing for the integer part (see e.g. formula (4.4) of Chapter 4 of

[4]). Let us choose E = (2B)q. An trivial computation yields

∫ Bq

0

f 0(α
1

q )dα−
∫ Bq

0

fA(α
1

q )dα =

∫ Bq

0

α
1

q

4π
|Ω|dα =

q

4π(q + 1)
Bq+1|Ω|

and
∫ (2B)q

Bq

f 0(α
1

q )dα−
∫ (2B)q

Bq

fA(α
1

q )dα =
Bq+1

4π
|Ω|

{ q

q + 1
(2q+1 − 1) + 2− 2q+1

}
.

Thus we easily obtain

∫ (2B)q

0

f 0(α
1

q )dα−
∫ (2B)q

0

fA(α
1

q )dα =
Bq+1

2π(q + 1)
|Ω|(q + 1− 2q) < 0

since the functions q+1 and 2q have the same value at q = 1 but the second one has a bigger

derivative for q > 1.

Armed with the auxiliary lemmas above we prove the sharp semiclassical lower bound on

the moments of certain positive powers of the Dirichlet eigenvalues of the Laplacian with and

without a constant magnetic field.

Proof of Theorem 2. Lemma 5 along with Lemma 2 of [4] implies
∫ ∞

0

(N − fA(λ
1

q ))+dλ ≥
∫ ∞

0

(N − f 0(λ
1

q ))+dλ

for all N ≥ 0 and 0 < q ≤ 1. Therefore, by means of Lemma 4 and using the formula for the

integrated density of states in the nonmagnetic case, given for instance in formula (5.17) of

Chapter 5 of [4], we have

N∑

k=1

{λA
k }q ≥

∫ ∞

0

(N − f 0(λ
1

q ))+dλ =

∫ ∞

0

(
N − λ

n
2q

(2π)n
|Bn||Ω|

)

+

dλ.

A trivial computation of the integral in the right side of this estimate completes the proof of

the theorem.
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4. Moments of negative powers for the semi-relativistic massless Schrödinger

operator.

The following elementary lemma yields that the semiclassical expression (5) for the sum

of eigenvalues of the operator H−γ coincides with the right side of inequality (6).

Lemma 6. Let γ > d, d ∈ N, the potential function V (x)−γ+d ∈ L1(Rd). Then the

integral expression Ssc given by (5) is equal to C(γ)
∫
Rd V (x)−γ+ddx with the constant C(γ)

given by (7).

Proof. Clearly, the right side of (5) can be easily written as

|Sd−1|
(2π)d

∫

Rd

dx

∫ ∞

0

d|q||q|d−1{|q|+ V (x)}−γ,

where |Sd−1| stands for the surface area of the unit sphere in R
d. Let us introduce the following

auxiliary quantity

I(γ, d, x) :=

∫ ∞

0

{r + V (x)}−γrd−1dr, (9)

such that Ssc =
|Sd−1|
(2π)d

∫

Rd

I(γ, d, x)dx. An easy computation yields

I(γ, 1, x) =
V (x)−γ+1

γ − 1
, (10)

such that the statement of the lemma holds when dimension d = 1. Integration by parts gives

us the recurrence relation

I(γ, d, x) =
d− 1

γ − 1
I(γ − 1, d− 1, x).

By repeating the procedure after a finite number of steps using (10) we arrive at

I(γ, d, x) =
Γ(d)Γ(γ − d)

Γ(γ)
V (x)−γ+d,

which yields

Ssc =
Γ(d)Γ(γ − d)

2d−1Γ(d
2
)Γ(γ)π

d
2

∫

Rd

V (x)−γ+ddx.

The lemma will be proved if we manage to show that

Γ(d)

Γ(d
2
)2d−1

=
Γ(d+1

2
)√

π
, d ∈ N. (11)
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This can be easily done by means of the mathematical induction principle over the dimension

of the problem. Obviously, the identity above holds for d = 1. Then suppose (11) is true for

some d ∈ N, such that

Γ

(
d+ 1

2

)
=

√
π

Γ(d)

Γ(d
2
)2d−1

. (12)

A trivial calculation shows that when the dimension becomes d+1, both the left and the right

sides of (12) will be equal to
d

2
Γ

(
d

2

)
.

Armed with the technical lemma above we proceed to prove our Lieb-Thirring type bound.

Proof of Theorem 3. Step I. Let us first establish the following auxiliary inequality

Tr

(
e−t(

√
−∆+V (x))

)
≤ Γ

(
d+ 1

2

)
π− d+1

2

1

td

∫

Rd

e−tV (x)dx, t > 0. (13)

We will make use of the Green’s function for the equation

∂u

∂t
= −

√
−∆u,

which is given by

G(x− y, t) = e−t
√
−∆(x− y, t) := Γ

(
d+ 1

2

)
π− d+1

2

t

{t2 + |x− y|2} d+1

2

, t > 0, x, y ∈ R
d, (14)

see e.g. p.169 of [8]. Using the method developed in [3] to prove the Lieb-Thirring bound

in the nonrelativistic case, we apply the Trotter’s formula, according to which the operator

e−t(
√
−∆+V ) is obtained as the strong limit of

(
e−

t
n

√
−∆e−

t
n
V

)n

as n → ∞. Let us compute the trace of the quantity above as

∫

(Rd)n
dxdx1dx2...dxn−1G

(
x−x1,

t

n

)
e−

t
n
V (x1)G

(
x1−x2,

t

n

)
e−

t
n
V (x2)...G

(
xn−1−x,

t

n

)
e−

t
n
V (x).

Using the notation x = x0 = xn we write the expression above as

∫

(Rd)n
dx0dx1dx2...dxn−1

n−1∏

j=0

G

(
xj − xj+1,

t

n

)
e−

t
n

∑n−1

k=0
V (xk).
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Since s → e−s, s ∈ R is a convex function, we have

e−
t
n

∑n−1

k=0
V (xk) ≤ 1

n

n−1∑

k=0

e−tV (xk).

This yields

Tr

(
e−

t
n

√
−∆e−

t
n
V

)n

≤ 1

n

n−1∑

k=0

∫

(Rd)n
dx0dx1dx2...dxn−1

n−1∏

j=0

G

(
xj − xj+1,

t

n

)
e−tV (xk),

which equals to Γ

(
d+ 1

2

)
π− d+1

2

1

td

∫

Rd

e−tV (x)dx by means of the formula

∫

(Rd)n−1

dx0dx1dx2...dxk−1dxk+1...dxn−1

n−1∏

j=0

G

(
xj − xj+1,

t

n

)
= G(xk − xk, t) =

= Γ

(
d+ 1

2

)
π− d+1

2

1

td
,

using (14).

Step II. By means of the definition of the Γ function, for any µ > 0 and γ > 0,

µ−γ =
1

Γ(γ)

∫ ∞

0

e−tµtγ−1dt.

Therefore, via the spectral calculus under the assumptions of the theorem

Tr(
√
−∆+ V (x))−γ =

1

Γ(γ)

∫ ∞

0

Tr

(
e−t(

√
−∆+V (x))

)
tγ−1dt.

The right side of this identity can be estimated from above by means of (13) as

Γ

(
d+ 1

2

)
π− d+1

2

1

Γ(γ)

∫ ∞

0

tγ−d−1

(∫

Rd

e−tV (x)dx

)
dt.

We complete the proof of the desired inequality (6) by using the change of variables tV (x) = u

and the definition of the gamma function.

Step III. Let us consider the following example illustrating the optimality of the constant

in bound (6). Define the domain Ωε := (0, ε−1π)d ⊂ R
d and the potential function Vε(x)

identically equal to 1, x ∈ Ωε and +∞, x ∈ Ωc
ε, for which, like in the example for the
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analogous Lieb-Thirring bound established in the nonrelativistic case in [3], we have the

approximation by the sequence of smooth potentials V n
ε (x), which are equal to 1 in domain

Ωε as well and limn→∞V n
ε (x) = +∞ for any x ∈ Ωc

ε. The eigenvalues of
√
−∆+ Vε on L2(Rd)

coincide with the ones of
√
−∆+ Vε on L2(Ωε) with Dirichlet boundary conditions on ∂Ωε:

1 + ε

(√√√√
d∑

j=1

n2
j

)
, n1, n2, ..., nd ∈ N.

Therefore,

Tr(
√
−∆+ Vε)

−γ =
∑

n1,n2,...,nd∈N

(
1 + ε

{√√√√
d∑

j=1

n2
j

})−γ

.

When ε → 0 this expression behaves asymptotically as

1

(2ε)d

∫

Rd

dx

(1 + |x|)γ =
|Sd−1|
(2ε)d

∫ ∞

0

rd−1(1 + r)−γdr.

By using the argument analogous to the one of Lemma 6 we easily obtain that this expression

is equal to

|Sd−1|
(2ε)d

Γ(d)Γ(γ − d)

Γ(γ)
=

π
d−1

2

εd

Γ

(
d+1
2

)
Γ(γ − d)

Γ(γ)
.

On the other hand, we have

∫

Rd

Vε(x)
−γ+ddx =

(
π

ε

)d

, such that the right side of the estimate

(6) in this case is given by

C(γ)

(
π

ε

)d

=
π

d−1

2

εd

Γ

(
d+1
2

)
Γ(γ − d)

Γ(γ)

as well.
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