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1. Introduction

The spectral properties of second order differential operators with and without Fredholm prop-
erty in cylindrical domains were studied extensively in thepast in connection with the reaction-
diffusion wave propagation phenomena (see e.g. [1], [7], [8], [11]).

In the first part of the present article we simply consider theSchrödinger type operator

La := −∆x −∆y − a, (1.1)

onL2(D) such that the generalized cylinderD = Rd × Ω, d ∈ N anda ≥ 0 is a parameter. The
first Laplacian operator here−∆x is onL2(Rd) and the second one−∆y onL2(Ω), whereΩ ⊂
Rm, m ∈ N is an open domain of finite Lebesgue measure with Dirichlet boundary conditions. It
is well known that such a Dirichlet Laplacian possesses a sequence of eigenvalues0 < λ1 < λ2 <
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λ3 < ... < λn < ... increasing to infinity. The corresponding eigenfunctions satisfy the equation

−∆yϕ
j
n(y) = λnϕ

j
n(y), 1 ≤ j ≤ mn, ϕ

j
n(y)|∂Ω = 0,

wheremn is the multiplicity of the eigenvalueλn, n ∈ N. These eigenfunctions satisfy the orthog-
onality relations

(ϕj
k, ϕ

l
q)L2(Ω) = δk,qδj,l, k, q ∈ N, 1 ≤ j ≤ mk, 1 ≤ l ≤ mq,

whereδk,q, δj,l are the Kronecker symbols and form the complete system inL2(Ω). The inner
product of two functions is being denoted as(f1, f2)L2(A) :=

∫
A
f1(x)f̄2(x)dx, with a slight abuse

of notations when the functions are not square integrable, like for instance the plane waves involved
in the orthogonality conditions of Theorem 1 below. The sphere of radiusr centered at the origin
in the space ofd dimensions is being denoted asSd

r , the unit one asSd and its Lebesgue measure
as|Sd|. By means of the Spectral Theorem we have the representationformula

−∆y =
∞∑

k=1

λkPk, (1.2)

where{Pk}∞k=1 are the projection operators onto the spectral subspaces correspondent to the eigen-
values{λk}∞k=1. The total Laplacian operator onL2(D) here is∆ = ∆x +∆y and the appropriate
functional space is

H2(D) := {u(x, y) : D → C | u(x, y) ∈ L2(D), ∆u(x, y) ∈ L2(D)}.

We investigate the solvability conditions inH2(D) for the nonhomogeneous equation

Lau = f, (1.3)

with a square integrable right sidef(x, y), x = (x1, x2, ..., xd) ∈ Rd, y = (y1, y2, ..., ym) ∈ Ω.
The result will depend upon how the parametera is located on the nonnegative semi-axis compared
to the spectrum{λn}∞n=1 of our Dirichlet Laplacian.

Theorem 1.Let f(x, y) ∈ L2(D). Then
I) When0 ≤ a < λ1, problem (1.3) admits a unique solutionu(x, y) ∈ H2(D).
II) WhenλN < a < λN+1, N ∈ N and |x|α2 f ∈ L2(D) for someα > d + 2 equation (1.3)

possesses a unique solutionu(x, y) ∈ H2(D) if and only if

(
f(x, y),

e±i
√
a−λkx

√
2π

ϕ
j
k(y)

)

L2(D)

= 0, 1 ≤ j ≤ mk, 1 ≤ k ≤ N for d = 1, (1.4)

(
f(x, y),

eipx

(2π)
d
2

ϕ
j
k(y)

)

L2(D)

= 0, p ∈ Sd√
a−λk

a.e., 1 ≤ j ≤ mk, 1 ≤ k ≤ N (1.5)
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for d ≥ 2.
III) Whena = λN , N ∈ N equation (1.3) possesses a unique solutionu(x, y) ∈ H2(D) if and

only if
a) for d = 1 provided|x|α2 f(x, y) ∈ L2(D) with someα > 5

(
f(x, y),

e±i
√
λN−λkx

√
2π

ϕ
j
k(y)

)

L2(D)

= 0, 1 ≤ j ≤ mk, 1 ≤ k ≤ N − 1, (1.6)

(f(x, y), ϕj
N(y))L2(D) = 0, (f(x, y), ϕj

N(y)x)L2(D) = 0, 1 ≤ j ≤ mN . (1.7)

b) for d = 2 provided|x|α2 f(x, y) ∈ L2(D) with someα > 6

(
f(x, y),

eipx

2π
ϕ
j
k(y)

)

L2(D)

= 0, p ∈ S2√
λN−λk

a.e., 1 ≤ j ≤ mk, 1 ≤ k ≤ N − 1, (1.8)

(f(x, y), ϕj
N(y))L2(D) = 0, (f(x, y), ϕj

N(y)xk)L2(D) = 0, 1 ≤ j ≤ mN , k = 1, 2. (1.9)

c) for d = 3, 4 provided|x|α2 f(x, y) ∈ L2(D) with someα > d+ 2

(
f(x, y),

eipx

(2π)
d
2

ϕ
j
k(y)

)

L2(D)

= 0, p ∈ Sd√
λN−λk

a.e., 1 ≤ j ≤ mk, 1 ≤ k ≤ N − 1,

(1.10)
(f(x, y), ϕj

N(y))L2(D) = 0, 1 ≤ j ≤ mN . (1.11)

d) for d ≥ 5 provided|x|α2 f(x, y) ∈ L2(D) with someα > d+ 2

(
f(x, y),

eipx

(2π)
d
2

ϕ
j
k(y)

)

L2(D)

= 0, p ∈ Sd√
λN−λk

a.e., 1 ≤ j ≤ mk, 1 ≤ k ≤ N − 1.

(1.12)
In the second part of the work we incorporate an external shallow, short-range potential in the

original problem whend = 3, such that

Ha := −∆x + V (x)−∆y − a (1.13)

considered onL2(D), with D = R3 × Ω, the Dirichlet Laplacian−∆y is onL2(Ω) as before, the
parametera ≥ 0 and the assumption below is analogous to the one used in [13],[14], [15], [16]
and [17].

Assumption 2.The potential functionV (x) : R3 → R satisfies the estimate

|V (x)| ≤ C

1 + |x|3.5+ε
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with someε > 0 andx = (x1, x2, x3) ∈ R3 a.e. such that

4
1
9
9

8
(4π)−

2
3‖V ‖

1
9

L∞(R3)‖V ‖
8
9

L
4
3 (R3)

< 1 and
√
cHLS‖V ‖

L
3
2 (R3)

< 4π.

Here and belowC denotes a finite positive constant andcHLS given on p.98 of [6] is the constant
in the Hardy-Littlewood-Sobolev inequality

∣∣∣
∫

R3

∫

R3

f1(x)f1(y)

|x− y|2 dxdy
∣∣∣ ≤ cHLS‖f1‖2

L
3
2 (R3)

, f1 ∈ L
3
2 (R3).

Here and further down the norm of a functionf1 ∈ Lp(Rd), 1 ≤ p ≤ ∞, d ∈ N is denoted as
‖f1‖Lp(Rd).

Remark. By means of Lemma 2.3 of [13] under our Assumption 2 the Schrödinger operator
−∆x + V (x) is self- adjoint and unitarily equivalent to−∆x onL2(R3) and therefore, it is non-
negative in the sense of quadratic forms. Its functions of the continuous spectrum satisfying the
Schr̈odinger equation

[−∆x + V (x)]ηq(x) = q2ηq(x), q ∈ R
3,

in the integral form the Lippmann-Schwinger equation (see e.g. [10] p.98)

ηq(x) =
eiqx

(2π)
3
2

− 1

4π

∫

R3

ei|q||x−y|

|x− y| (V ηq)(y)dy,

the orthogonality conditions(ηq(x), ηq1(x))L2(R3) = δ(q − q1), q, q1 ∈ R
3, form the complete

system inL2(R3).

Our goal is to solve the following equation in the Sobolev spaceH2(D)

Hau = f, (1.14)

where the right sidef(x, y) ∈ L2(D) with x = (x1, x2, x3) ∈ R3 andy = (y1, y2, ..., ym) ∈ Ω as
before. Our statement is as follows.

Theorem 3. Let Assumption 2 hold,f(x, y) ∈ L2(D) and |x|α2 f(x, y) ∈ L2(D) for some
α > 5. Then

I) When0 ≤ a < λ1 equation (1.14) admits a unique solutionu(x, y) ∈ H2(D).
II) WhenλN < a < λN+1, N ∈ N problem (1.14) possesses a unique solutionu(x, y) ∈

H2(D) if and only if

(f(x, y), ηq(x)ϕ
j
k(y))L2(D) = 0 for q ∈ S3√

a−λk
a.e. , 1 ≤ j ≤ mk, 1 ≤ k ≤ N. (1.15)

III) Whena = λN , N ∈ N problem (1.14) admits a unique solutionu(x, y) ∈ H2(D) if and
only if

(f(x, y), η0(x)ϕ
j
N(y))L2(D) = 0 for 1 ≤ j ≤ mN , (1.16)

4



(f(x, y), ηq(x)ϕ
j
k(y))L2(D) = 0 for q ∈ S3√

λN−λk
a.e. , 1 ≤ j ≤ mk, 1 ≤ k ≤ N − 1. (1.17)

Note that in the theorems above although solvability conditions are similar to the usual Fred-
holm ones, this similarity is only formal because the operators involved in the left sides of the
nonhomogeneous elliptic problems do not satisfy the Fredholm property and their ranges are not
closed.

We conclude the article with the studies of the following nonlinear problem inRd, 1 ≤ d ≤ 3 :

i
∂ψ

∂t
= −∆ψ + λ

∫

Rd

G(x− y)[F (|ψ(y, t)|2)ψ(y, t) + U(y)ψ(y, t)]dy + h(x)e−iωt. (1.18)

Although we are not aware of particular practical applications of it, (1.18) is of interest to us
due to its resemblance to the forced, nonlocal, Nonlinear Schrödinger (NLS) equation. Here the
parametersλ ∈ R, ω ≥ 0 and the conditions on other terms involved in the problem will be
specified below. We seek a solution of (1.18) in the form of a standing solitary wave

ψs(x, t) = φ(x)e−iωt. (1.19)

Note that the sign under the exponent here is negative, whichcorresponds to the case of so-called
embedded solitons (see e.g. [9]), as distinct from the standard situation (see e.g. [2], [12]). Thus
we arrive at the following nonlocal elliptic problem

−∆φ − ωφ+ λ

∫

Rd

G(x− y)[F (|φ(y)|2)φ(y) + U(y)φ(y)]dy + h(x) = 0. (1.20)

The real valued parameterλ is assumed to be small in the absolute value and the solvability con-
ditions for equation (1.20) whenλ = 0 are derived in the Appendix. The nonlinear problem above
involves the operator−∆ − ω : H2(Rd) → L2(Rd) without Fredholm property. We will be using
the closed unit ball centered at the origin in the Sobolev space with the norm defined in (4.8):

B(H2(Rd)) = {u(x) ∈ H2(Rd) | ‖u‖H2(Rd) ≤ 1}, (1.21)

as distinct from the results obtained in the whole space in [18].

Theorem 4. LetU(x) ∈ L∞(Rd), the functionh(x) ∈ L2(Rd) is nontrivial,F (z) : R+ → R

is continuously differentiable, the kernelG(x) ∈ L1(Rd), 1 ≤ d ≤ 3.
I) When the dimensiond = 1 andω > 0 let xG(x), xh(x) ∈ L1(R), orthogonality conditions

(4.11) hold and (
G(x),

e±i
√
ωx

√
2π

)

L2(R)

= 0. (1.22)

II) When the dimensiond = 1 andω = 0 let x2G(x), x2h(x) ∈ L1(R), orthogonality conditions
(4.12) hold and

(G(x), 1)L2(R) = 0, (G(x), x)L2(R) = 0. (1.23)
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III) When the dimensiond = 2, 3 andω > 0 let xG(x), xh(x) ∈ L1(Rd), orthogonality conditions
(4.15) hold and (

G(x),
eipx

(2π)
d
2

)

L2(Rd)

= 0 for p ∈ Sd√
ω a.e. (1.24)

IV) When the dimensiond = 2, 3 and ω = 0 let x2G(x) ∈ L1(Rd), for d = 2 let x2h(x) ∈
L1(R2) with orthogonality conditions (4.16), ford = 3 assumexh(x) ∈ L1(R3) with orthogonality
conditions (4.17) and

(G(x), 1)L2(Rd) = 0, (G(x), xk)L2(Rd) = 0, 1 ≤ k ≤ d. (1.25)

Then there existsε > 0 such that for allλ ∈ R, |λ| < ε equation (1.20) admits a unique nontrivial
solutionφ(x) ∈ H2(Rd).

We start with proving the solvability conditions in the no potential case.

2. The free problem in the cylindrical domain.

Proof of Theorem 1.Note that it is sufficient to study only the solvability conditions inL2(D) for
problem (1.3) since the existence of a square integrable solutionu(x, y) for this equation with the
square integrable right side will yield∆u(x, y) ∈ L2(D), where∆ = ∆x + ∆y. Let us assume
that there are two functionsu1,2(x, y) ∈ L2(D) which solve equation (1.3). Then their difference
v(x, y) := u1(x, y) − u2(x, y) ∈ L2(D) will satisfy the homogeneous equationLav = 0. Its
projection onto theϕj

n(y), n ∈ N, 1 ≤ j ≤ mn state will be of the formcjn(x)ϕ
j
n(y) with

cjn(x) ∈ L2(Rd), such that it will satisfy the equation

(−∆x + λn − a)cjn(x) = 0.

Since the free negative Laplacian onL2(Rd) has only the essential spectrum filling the nonnegative
semi-axis,cjn(x) vanishes, which shows the uniqueness of a square integrablesolution of problem
(1.3) for an arbitrary nonnegativea.

To prove the statement in case I) we easily establish the lower bound

(Lau, u)L2(D) ≥ ([−∆y − a]u, u)L2(D) ≥ (λ1 − a)‖u‖2L2(D),

such that the bottom of the spectrum of the operatorLa onL2(D) is bounded below by the pos-
itive constant. Hence equation (1.3) in this case admits a solution u(x, y) = L−1

a f(x, y) and

‖u‖L2(D) ≤
1

λ1 − a
‖f‖L2(D) <∞.

To prove the solvability conditions in the situation when the value of the parametera is attained
between two consecutive eigenvaluesλN andλN+1 of the Dirichlet Laplacian, we introduce the
projection operators

PN :=

N∑

k=1

Pk and PN+1 :=

∞∑

k=N+1

Pk, (2.1)
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where{Pk}∞k=1 are used in (1.2) and we have the resolution of the identityI = PN + PN+1 on
L2(Ω). This enables us to relate problem (1.3) to the system of two equations

LN
a uN = fN , (2.2)

LN+1
a uN+1 = fN+1, (2.3)

with the operators restricted to the subspacesLN
a := PN(−∆x − ∆y − a)PN andLN+1

a :=
PN+1(−∆x − ∆y − a)PN+1 acting on functionsuN := PNu anduN+1 := PN+1u respectively,
the right sides of the equations above arefN := PNf andfN+1 := PN+1f . For the quadratic form
of the operator involved in the left side of (2.3) onL2(Rd) ⊗ RanPN+1, where RanPN+1 denotes
the range of the corresponding projection we easily obtain the estimate from below

(LN+1
a u, u)L2(D) ≥ (PN+1(−∆y − a)PN+1u, u)L2(D) ≥ (λN+1 − a)‖u‖2L2(D).

The inverse of this operator acts(LN+1
a )−1 : L2(Rd) ⊗ RanPN+1 → L2(D). Thus equation (2.3)

possesses a solutionuN+1 = (LN+1
a )−1fN+1, such that‖uN+1‖L2(D) ≤

1

λN+1 − a
‖f‖L2(D) <∞.

The remaining equation (2.2) can be trivially related to thefollowing system ofN equations

Lk
auk = fk, 1 ≤ k ≤ N, (2.4)

with uk := PkuN andfk := PkfN . The operator restricted to the spectral subspace isLk
a :=

Pk(−∆x−∆y −a)Pk. Without loss of generality we can assume thatfk(x, y) = vk(x)ϕ
1
k(y), 1 ≤

k ≤ N . Since the free negative Laplacian operator onL2(Rd) has only the essential spectrum, we
haveuk(x, y) = ck(x)ϕ

1
k(y), which yields the equation

−∆xck(x)− (a− λk)ck(x) = vk(x), 1 ≤ k ≤ N. (2.5)

The right side of (2.5) is square integrable. Indeed,‖vk‖2L2(Rd) = ‖fk‖2L2(D) ≤ ‖f‖2
L2(D) <∞. We

have the following estimate by means of the Schwarz inequality

‖xvk(x)‖L1(Rd) =

∫

Rd

|x||(f(x, y), ϕ1
k(y))L2(Ω)|dx ≤

∫

Rd

dx|x|
√∫

Ω

dy|f(x, y)|2.

This expression can be bounded above via the Schwarz inequality by
√∫

Rd

dx
|x|2

1 + |x|α

√∫

Rd

dz(1 + |z|α)
∫

Ω

dy|f(z, y)|2 =

=

√∫ ∞

0

d|x| |S
d||x|d+1

1 + |x|α
√

‖f‖2
L2(D) + ‖|x|α2 f‖2

L2(D) <∞,

such thatxvk(x) ∈ L1(Rd). Thus when dimensiond = 1 by means of Lemma 5 of the Appendix
equation (2.5) admits a unique square integrable solution if and only if

(
vk(x),

e±i
√
a−λkx

√
2π

)

L2(R)

= 0, 1 ≤ k ≤ N,
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which yields orthogonality relations (1.4). When dimension d ≥ 2 due to Lemma 6 equation (2.5)
possesses a unique solution belonging toL2(Rd) if and only if

(
vk(x),

eipx

(2π)
d
2

)

L2(Rd)

= 0, p ∈ Sd√
a−λk

a.e., 1 ≤ k ≤ N,

which implies orthogonality conditions (1.5).
Finally we consider case III) of the theorem, when the parameter a coincides with one of the

eigenvalues of the negative Dirichlet Laplacian. Let us usethe resolution of identity onL2(Ω),
namelyI = PN−1 + P 0 + PN+1, with PN+1 defined in (2.1),P 0 := PN andPN−1 :=

∑N−1
k=1 Pk.

By applying these projection operators to equation (1.3) werelate it to the equivalent system of
three equations

LN+1
a uN+1 = fN+1, (2.6)

L0
au0 = f0, (2.7)

LN−1
a uN−1 = fN−1, (2.8)

with the operators restricted to the spectral subspaces

LN−1
a := PN−1(−∆x −∆y − a)PN−1, L0

a := P 0(−∆x −∆y − a)P 0.

These operators act onuN−1 := PN−1u and u0 := P 0u respectively. The right sides of the
equations above arefN−1 := PN−1f andf0 := P 0f . Note that the operatorLN+1

a along with
functionsuN+1 andfN+1 are defined in the proof of part II) of the theorem. For the quadratic form
of the operatorLN+1

a onL2(Rd)⊗ RanPN+1 we have the lower bound

(LN+1
a u, u)L2(D) ≥ (PN+1(−∆y − a)PN+1u, u)L2(D) ≥ (λN+1 − λN)‖u‖2L2(D),

such that equation (2.6) admits a solutionuN+1 = (LN+1
a )−1fN+1 with the operator(LN+1

a )−1 :

L2(Rd)⊗ RanPN+1 → L2(D) and‖uN+1‖L2(D) ≤
1

λN+1 − λN
‖f‖L2(D) <∞.

To study the solvability conditions for equation (2.8) we relate it to the system of equivalent
equations

Lk
auk = fk, 1 ≤ k ≤ N − 1

with uk = Pku andfk = Pkf . This system can be treated analogously to the one studied incase
II), which yields orthogonality conditions (1.6), (1.8), (1.10) and (1.12) dependent upon the value
of the dimensiond.

Finally, we turn our attention to equation (2.7), which is obviously equivalent to

P 0(−∆x)P
0u0 = f0.

Without loss of generality we can assume thatf0(x, y) = vN(x)ϕ
1
N(y). Since the free Laplacian

onL2(Rd) has no nontrivial square integrable zero modes, we haveu0(x, y) = cN(x)ϕ
1
N(y), such

that
−∆xcN(x) = vN(x). (2.9)
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The right side of the equation above is square integrable since

‖vN‖2L2(Rd) = ‖f0‖2L2(D) ≤ ‖f‖2L2(D) <∞.

Let us first consider the situation when dimensiond = 1. Then via the Schwarz inequality

‖x2vN(x)‖L1(R) =

∫ ∞

−∞
dxx2|(f(x, y), ϕ1

N(y))L2(Ω)| ≤
∫ ∞

−∞
dxx2

√∫

Ω

|f(x, y)|2dy, (2.10)

which can be bounded above by applying again the Schwarz inequality by
√∫ ∞

−∞
dx

x4

1 + |x|α

√∫ ∞

−∞
dz(1 + |z|α)

∫

Ω

|f(z, y)|2dy =

=

√∫ ∞

−∞
dx

x4

1 + |x|α
√

‖f‖2
L2(D) + ‖|z|α2 f(z, y)‖2

L2(D) <∞

sinceα > 5 and|z|α2 f(z, y) ∈ L2(D). Hencex2vN(x) ∈ L1(R). By means of Lemma 5 applied
to the Poisson equation (2.9) we obtain othogonality relations (1.7).

When dimensiond = 2 we perform the estimate analogous to (2.10) and then via the Schwarz
inequality obtain the upper bound for it as

√∫

R2

dx
|x|4

1 + |x|α

√∫

R2

dz(1 + |z|α)
∫

Ω

|f(z, y)|2dy =

=

√∫ ∞

0

d|x| 2π|x|
5

1 + |x|α
√

‖f‖2
L2(D) + ‖|z|α2 f(z, y)‖2

L2(D) <∞

due to the fact thatα > 6 and|z|α2 f(z, y) ∈ L2(D). Therefore,|x|2vN(x) ∈ L1(R2). Via Lemma
6 we arrive at orthogonality conditions (1.9).

For dimensionsd = 3, 4 we estimate the norm via the Schwarz inequality

‖|x|vN(x)‖L1(Rd) =

∫

Rd

dx|x||(f(x, y), ϕ1
N(y))L2(Ω)| ≤

∫

Rd

dx|x|
√∫

Ω

|f(x, y)|2dy

and by applying the Schwarz inequality again obtain the upper bound for it
√∫

Rd

dx
|x|2

1 + |x|α

√∫

Rd

dz(1 + |z|α)
∫

Ω

|f(z, y)|2dy =

=

√∫ ∞

0

d|x| |S
d||x|d+1

1 + |x|α
√

‖f‖2
L2(D) + ‖|z|α2 f(z, y)‖2

L2(D) <∞

becauseα > d + 2 and |z|α2 f(z, y) ∈ L2(D). Hence|x|vN(x) ∈ L1(Rd), d = 3, 4. Lemma 6
implies orthogonality condition (1.11).

In dimensionsd ≥ 5 by the same reasoning as above it can be shown that|x|vN(x) ∈ L1(Rd)
sinceα > d+2 and|x|α2 f(x, y) ∈ L2(D). No further orthogonality conditions are needed in such
high dimensions by means of Lemma 6.
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3. The problem with an external potential.

Proof of Theorem 3.Note that due to the boundedness of the potential functionV (x) it is sufficient
to study the solvability conditions for our problem inL2(D). First we show the uniqueness of a
square integrable solution for equation (1.14). Indeed, ifthere wereu1,2(x, y) ∈ L2(D) satisfying
(1.14), their differencew(x, y) = u1(x, y)−u2(x, y) ∈ L2(D) would be solving the homogeneous
problemHaw = 0. Let us project it onto the stateϕj

n(y), n ∈ N, 1 ≤ j ≤ mn. Hence the
projection ofw(x, y) will be of the formcjn(x)ϕ

j
n(y), wherecjn(x) ∈ L2(R3). We easily obtain

(−∆x + V (x) + λn − a)cjn(x) = 0.

The equation above does not have any nontrivial square integrable solutions (see the Remark after
Assumption 2), which impliescjn(x) = 0 in R3 a.e. andw(x, y) vanishes inD a.e.

Let us first suppose that the parameter0 ≤ a < λ1. Then we have the lower bound

(Hau, u)L2(D) ≥ ((−∆y − a)u, u)L2(D) ≥ (λ1 − a)‖u‖2L2(D).

Thus the operatorHa ≥ λ1 − a > 0 in the sense of quadratic forms, such that equation (1.14)

admits a solutionu = H−1
a f and‖u‖L2(D) ≤

1

λ1 − a
‖f‖L2(D) <∞.

Then we consider the situation ofλN < a < λN+1, N ∈ N. As in the proof of Theorem 1,
by using the projection operators (2.1) we relate problem (1.14) to the equivalent system of two
equations

HN
a uN = fN , HN+1

a uN+1 = fN+1, (3.1)

where the restricted operators areHN
a := PNHaP

N andHN+1
a := PN+1HaP

N+1. The functions
involved in the right sides of the equations of the system above arefN = PNf, fN+1 = PN+1f

and in the left sides areuN = PNu, uN+1 = PN+1u. We estimate from below

(HN+1
a u, u)L2(D) ≥ (PN+1(−∆y − a)PN+1u, u)L2(D) ≥ (λN+1 − a)‖u‖2L2(D).

Hence the operatorHN+1
a ≥ λN+1 − a > 0. We easily obtain a solution for the second equation

in system (3.1):uN+1 = (HN+1
a )−1fN+1, where(HN+1

a )−1 : L2(R3) ⊗ RanPN+1 → L2(D) and

‖uN+1‖L2(D) ≤
1

λN+1 − a
‖f‖L2(D) <∞. Thus it remains to study the first equation in system

(3.1), which can be easily related to the equivalent system of N equations using the projections
(1.2):

Hk
auk = fk, 1 ≤ k ≤ N, (3.2)

where the restricted operators areHk
a = PkHaPk, the functions involed arefk = Pkf anduk =

Pku. From (3.2) we easily deduce

(−∆x + V (x) + λk − a)uk = fk, 1 ≤ k ≤ N.

Without loss of generality we can assume that

fk(x, y) = vk(x)ϕ
1
k(y), 1 ≤ k ≤ N.
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Seeking a solution of the equation above in the form ofuk(x, y) =
∑mk

j=1 c
j
k(x)ϕ

j
k(y), 1 ≤ k ≤ N ,

we easily arrive at

(−∆x + V (x))cjk(x) = (a− λk)c
j
k(x), 2 ≤ j ≤ mk.

Since the Schrödinger operator−∆x + V (x) is unitarily equivalent to−∆x on L2(R3) (see the
Remark after Assumption 2), it does not have any nontrivial square integrable bound states. There-
fore, cjk(x) = 0 for x ∈ R3 a.e.,2 ≤ j ≤ mk anduk(x, y) = ck(x)ϕ

1
k(y), 1 ≤ k ≤ N , which

yields
(−∆x + V (x) + λk − a)ck(x) = vk(x), 1 ≤ k ≤ N. (3.3)

Clearly, the right side of (3.3) is square integrable, since‖vk(x)‖2L2(R3) = ‖fk(x, y)‖2L2(D) ≤
‖f(x, y)‖2

L2(D) <∞ by our assumption. We estimate the norm‖xvk(x)‖L1(R3) using the argument
analogous to the one of Chapter 2 when the dimensiond = 3 and show that‖xvk(x)‖L1(R3) < ∞
providedf(x, y) ∈ L2(D) and|x|α2 f(x, y) ∈ L2(D) with someα > 5. Thus by means of Theorem
1.2 of [13] equation (3.3) admits a solutionck(x) ∈ L2(R3) if and only if (vk(x), ηq(x))L2(R3) = 0
for q ∈ S3√

a−λk
a.e.,1 ≤ k ≤ N , which yields orthogonality conditions (1.15).

We complete the proof of the theorem covering the case ofa = λN , N ∈ N. Analogously to
the free problem studied in Chapter 2 we relate equation (1.14) to the equivalent system of three
equations

HN−1
a uN−1 = fN−1, H

0
au0 = f0 and H

N+1
a uN+1 = fN+1, (3.4)

with the restricted operators

HN−1
a = PN−1HaP

N−1, H0
a = P 0HaP

0 and HN+1
a = PN+1HaP

N+1,

the right sides
fN−1 = PN−1f, f0 = P 0f and fN+1 = PN+1f,

the functions involved in the left sides of (3.4)

uN−1 = PN−1u, u0 = P 0u and uN+1 = PN+1u.

Let us first analyze the third equation in (3.4). We have a lower bound in the sense of quadratic
forms

(HN+1
a u, u)L2(D) ≥ (PN+1(−∆y − a)PN+1u, u)L2(D) ≥ (λN+1 − λN)‖u‖2L2(D).

ThusHN+1
a ≥ λN+1 − λN > 0, such that the last equation in (3.4) admits a solution

uN+1 = (HN+1
a )−1fN+1,

with the operator(HN+1
a )−1 : L2(R3)⊗RanPN+1 → L2(D). Thus for the solution above we have

a bound

‖uN+1‖L2(D) ≤
1

λN+1 − λN
‖f‖L2(D) <∞
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by the assumption of the theorem. Then we turn our attention to the second equation in (3.4),
assuming without loss of generality that its right sidef0(x, y) = vN(x)ϕ

1
N(y) and looking for a

solution in the formu0(x, y) =
∑mN

j=1 c
j
N(x)ϕ

j
N(y). This yields(−∆x + V (x))cjN(x) = 0, j =

2, ..., mN . Since the Schrödinger operator involved in this equationdoes not have any nontrivial
square integrable zero modes (see the Remark after Assumption 2), we havecjN(x) = 0 for x ∈ R3

a.e. andj = 2, ..., mN and therefore,u0(x, y) = cN(x)ϕ
1
N(y), such that

(−∆x + V (x))cN(x) = vN(x). (3.5)

Clearly,‖f0‖2L2(D) = ‖vN‖2L2(R3) ≤ ‖f‖2
L2(D) < ∞ by the assumption of the theorem. The norm

‖xvN (x)‖L1(R3) < ∞, which can be shown using the argument analogous to that of Chapter 2 in
three dimensions providedf ∈ L2(D) and |x|α2 f(x, y) ∈ L2(D) for someα > 5. Therefore,
by means of Theorem 1.2 of [13] equation (3.5) possesses a solution in L2(R3) if and only if
(vN(x), η0(x))L2(R3) = 0, which implies relations (1.16).

Finally, we study the first equation in (3.4), which can be easily related to the system of equa-
tions

Hk
auk = fk, 1 ≤ k ≤ N − 1, (3.6)

with the restricted operatorsHk
a = PkHaPk, the right sidesfk = Pkf and functions involved in the

left sidesuk = Pku. Without loss of generality we can assume thatfk(x, y) = vk(x)ϕ
1
k(y), 1 ≤

k ≤ N − 1. Let us seek a solution of (3.6) in the formuk(x, y) =
∑mk

j=1 c
j
k(x)ϕ

j
k(y). We easily

arrive at(−∆x + V (x))cjk(x) = (λN − λk)c
j
k(x), j = 2, ..., mk. Since the Schrödinger operator

does not have nontrivial square integrable bound states (see the Remark after Assumption 2), we
havecjk(x) = 0 for x ∈ R3 a.e. andj = 2, ..., mk. Therefore,uk(x, y) = ck(x)ϕ

1
k(y), which yields

the nonhomogeneous equation

(−∆x + V (x) + λk − λN)ck(x) = vk(x), 1 ≤ k ≤ N − 1. (3.7)

Its right side is square integrable since‖fk‖2L2(D) = ‖vk‖2L2(R3) ≤ ‖f‖2
L2(D) < ∞. The norm

‖xvk‖L1(R3) < ∞, which can be shown via the argument analogous to the one usedin Chapter
2 in three dimensions providedf(x, y) ∈ L2(D) and |x|α2 f(x, y) ∈ L2(D) for someα > 5.
Therefore, by means of Theorem 1.2 of [13] equation (3.7) is solvable inL2(R3) if and only if
(vk(x), ηq(x))L2(R3) = 0 for q ∈ S3√

λN−λk
a.e., 1 ≤ k ≤ N − 1, which implies orthogonality

relations (1.17).

4. Standing waves of the nonlocal, forced equation

Proof of Theorem 4.Let φ0(x) ∈ H2(Rd), 1 ≤ d ≤ 3 be the unique solution of problem (4.9)
under the conditions of the theorem, using the results of Lemmas 5 and 6. When the parameterλ

is nontrivial, we seek the solution of problem (1.20) in the form φ(x) = φ0(x) + η(x) and using
(4.9) arrive at

−∆η−ωη+λ
∫

Rd

G(x−y)[F (|φ0(y)+η(y)|2)(φ0(y)+η(y))+U(y)(φ0(y)+η(y))]dy = 0. (4.1)
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Let us introduce the auxiliary equation

∆ξ + ωξ = λ

∫

Rd

G(x− y)[F (|φ0(y) + η(y)|2)(φ0(y) + η(y)) + U(y)(φ0(y) + η(y))]dy. (4.2)

Our goal is to show that for small|λ| (4.2) defines a mapT : B(H2(Rd)) → B(H2(Rd)). Let us
first suppose that for someη(x) ∈ B(H2(Rd)) there are two solutionsξ1,2(x) ∈ B(H2(Rd)) of
problem (4.2). Then the functionξ(x) := ξ1(x) − ξ2(x) ∈ H2(Rd) satisfies the equation−∆ξ =
ωξ. Since the free Laplacian does not possess any nontrivial square integrable eigenfunctions, we
arrive atξ(x) = 0 a.e. inRd.

Hence consider an arbitraryη(x) ∈ B(H2(Rd)). By means of the Sobolev embedding theorem
we haveφ0(x), η(x) ∈ L∞(Rd), 1 ≤ d ≤ 3, which along with the assumptions of the theorem
enables us to estimate the terms of equation (4.2) as

|U(φ0 + η)| ≤ ‖U‖L∞(Rd)(|φ0|+ |η|) ∈ L2(Rd) (4.3)

and

|F (|φ0(x) + η(x)|2)(φ0(x) + η(x))| ≤ sup|F (z)|z∈[0, (‖φ0‖L∞(Rd)
+‖η‖

L∞(Rd)
)2](|φ0(x)|+ |η(x)|),

(4.4)
which belongs toL2(Rd) as well. By applying the standard Fourier transform to equation (4.2) we
obtain

ξ̂(p) = λ(2π)
d
2
Ĝ(p)

ω − p2
{F(p) + G(p)}, (4.5)

whereF(p) andG(p) are the transforms ofF (|φ0 + η|2)(φ0 + η) andU(φ0 + η) respectively. By
means of (4.3) and (4.4)F(p), G(p) ∈ L2(Rd). Clearly

p2ξ̂(p) = λ(2π)
d
2
p2Ĝ(p)

ω − p2
{F(p) + G(p)}. (4.6)

Let us introduce the following quantity

Nω, d := max

{∥∥∥∥∥
Ĝ(p)

ω − p2

∥∥∥∥∥
L∞(Rd)

,

∥∥∥∥∥
p2Ĝ(p)

ω − p2

∥∥∥∥∥
L∞(Rd)

}
, ω ≥ 0, 1 ≤ d ≤ 3. (4.7)

By means of orthogonality conditions (1.22)-(1.25) via Lemmas A1 and A2 of [18] we have
Nω, d <∞. Therefore,

|ξ̂(p)| ≤ |λ|(2π) d
2Nω, d{|F|(p) + |G|(p)} ∈ L2(Rd),

|p2ξ̂(p)| ≤ |λ|(2π) d
2Nω, d{|F|(p) + |G|(p)} ∈ L2(Rd),

such thatξ ∈ B(H2(Rd)) when the value of the parameter|λ| is small enough andTη = ξ. Hence
it remains to prove that the mapT : B(H2(Rd)) → B(H2(Rd)) is a strict contraction. For that
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purpose we choose arbitraryη1(x), η2(x) ∈ B(H2(Rd)) such thatTη1,2 = ξ1,2 ∈ B(H2(Rd)) via
equation (4.2) for|λ| small enough. Clearly, we have

ξ̂1(p)− ξ̂2(p) = λ(2π)
d
2
Ĝ(p)

ω − p2
{F1(p)− F2(p) + G1(p)− G2(p)},

whereF1,2(p) andG1,2(p) are the Fourier images ofF (|φ0 + η1,2|2)(φ0 + η1,2) andU(φ0 + η1,2)
respectively. Hence

p2ξ̂1(p)− p2ξ̂2(p) = λ(2π)
d
2
p2Ĝ(p)

ω − p2
{F1(p)− F2(p) + G1(p)− G2(p)},

such that

‖ξ1(x)−ξ2(x)‖L2(Rd) ≤ |λ|(2π) d
2Nω, d{‖F (|φ0+η1|2)(φ0+η1)−F (|φ0+η2|2)(φ0+η2)‖L2(Rd)+

+‖Uη1 − Uη2‖L2(Rd)}
and the analogous upper bound holds for‖∆ξ1(x)−∆ξ2(x)‖L2(Rd). We easily estimate

‖U(η1 − η2)‖L2(Rd) ≤ ‖U‖L∞(Rd)‖η1 − η2‖L2(Rd).

Let us write

F (|φ0 + η1|2)(φ0 + η1)− F (|φ0 + η2|2)(φ0 + η2) = (F (|φ0 + η1|2)− F (|φ0 + η2|2))(φ0 + η2)+

+F (|φ0 + η1|2)(η1 − η2).

By means of the Sobolev embedding theorem‖η‖L∞(Rd) ≤ ce‖η‖H2(Rd), 1 ≤ d ≤ 3 we have

|φ0 + η1,2| ≤ ce(1 + ‖φ0‖H2(Rd)),

wherece is the constant of the embedding. Therefore,

‖F (|φ0 + η1|2)(η1 − η2)‖L2(Rd) ≤ sup|F (z)|0≤z≤c2e(1+‖φ0‖H2(Rd)
)2‖η1 − η2‖L2(Rd).

We will make use of the representation formula

F (|φ0 + η1|2)− F (|φ0 + η2|2) =
∫ |φ0+η1|2

|φ0+η2|2
F ′(z)dz,

which by means of the trivial inequality

||φ0 + η1|2 − |φ0 + η2|2| ≤ 2ce(1 + ‖φ0‖H2(Rd))|η1 − η2|

yields
|(F (|φ0 + η1|2)− F (|φ0 + η2|2))(φ0 + η2)| ≤ 2c2e(1 + ‖φ0‖H2(Rd))

2×
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×sup|F ′(s)|0≤s≤c2e(1+‖φ0‖H2(Rd)
)2 |η1 − η2|.

Hence, we arrive at

‖(F (|φ0 + η1|2)− F (|φ0 + η2|2))(φ0 + η2)‖L2(Rd) ≤ 2c2e(1 + ‖φ0‖H2(Rd))
2×

×sup|F ′(s)|0≤s≤c2e(1+‖φ0‖H2(Rd)
)2‖η1 − η2‖L2(Rd).

As a consequence of the estimates above we easily obtain

‖Tη1 − Tη2‖H2(Rd) ≤
√
2(2π)

d
2 |λ|Nω, d{‖U‖L∞(Rd) + sup|F (z)|0≤z≤c2e(1+‖φ0‖H2(Rd)

)2+

+2c2e(1 + ‖φ0‖H2(Rd))
2sup|F ′(z)|0≤z≤c2e(1+‖φ0‖H2(Rd)

)2}‖η1 − η2‖H2(Rd).

Thus, when|λ| is small enough, the mapT : B(H2(Rd)) → B(H2(Rd)) is a strict contraction,
and therefore, it has a unique fixed pointη ∈ B(H2(Rd)). The solution of problem (1.20) does not
vanish inRd providedh(x) is nontrivial.

Appendix

We investigate solvability conditions inH2(Rd), d ∈ N equipped with the norm

‖u‖2H2(Rd) := ‖u‖2L2(Rd) + ‖∆u‖2L2(Rd) (4.8)

of the linear equation
−∆φ − ωφ = −h(x), ω ≥ 0 (4.9)

with a square integrable right side. Apparently, the uniqueness of solutions for this problem comes
from the fact that the free Laplacian operator in the whole space does not have nontrivial square
integrable eigenfunctions. Obviously,

φ̂(p) = − ĥ(p)

p2 − ω
, p ∈ R

d (4.10)

with the hat symbol standing for the standard Fourier transform such that

ĥ(p) :=
1

(2π)
d
2

∫

Rd

h(x)e−ipxdx.

We have the following statement in one dimension.

Lemma 5. Leth(x) ∈ L2(R).
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a) Whenω > 0 andxh(x) ∈ L1(R) problem (4.9) admits a unique solution inH2(R) if and
only if (

h(x),
e±i

√
ωx

√
2π

)

L2(R)

= 0. (4.11)

b) Whenω = 0 andx2h(x) ∈ L1(R) problem (4.9) admits a unique solution inH2(R) if and
only if

(h(x), 1)L2(R) = 0, (h(x), x)L2(R) = 0. (4.12)

Proof. Let us start with case a) and introduce the auxiliary set in the Fourier space

Aδ := [−
√
ω − δ, −

√
ω + δ] ∪ [

√
ω − δ,

√
ω + δ] := A−

δ ∪A+
δ ,

with 0 < δ <
√
ω, such that

φ̂(p) = − ĥ(p)

p2 − ω
χAδ

− ĥ(p)

p2 − ω
χAc

δ
. (4.13)

Here and belowχA stands for the characteristic function of a setA andAc for its complement.
The second term in the right side of (4.13) is not singular andcan be easily estimated above in the

absolute value by
|ĥ(p)|
δ2

∈ L2(R). To study the behavior of the first term in the right side of (4.13)

onA+
δ we use the representation formula

ĥ(p) = ĥ(
√
ω) +

∫ p

√
ω

dĥ(s)

ds
ds

and

∣∣∣∣∣
dĥ(p)

dp

∣∣∣∣∣ ≤
1√
2π

‖xh‖L1(R), p ∈ R, which yields

∣∣∣∣∣

∫ p√
ω

dĥ(s)
ds
ds

p2 − ω
χA+

δ

∣∣∣∣∣ ≤ C
χA+

δ

2
√
ω − δ

∈ L2(R).

Similarly near the negative singularity

ĥ(p) = ĥ(−
√
ω) +

∫ p

−√
ω

dĥ(s)

ds
ds,

such that ∣∣∣∣∣

∫ p

−√
ω

dĥ(s)
ds

ds

p2 − ω
χA−

δ

∣∣∣∣∣ ≤ C
χA−

δ

2
√
ω − δ

∈ L2(R).

Therefore, it remains to investigate the square integrability of the sum of the two terms

ĥ(
√
ω)

p2 − ω
χA+

δ
+
ĥ(−√

ω)

p2 − ω
χA−

δ
,
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for which the square of theL2(R) norm can be easily bounded below by

1

(2
√
ω + δ)

2

[∫ −√
ω+δ

−√
ω−δ

|ĥ(−√
ω)|2

(p+
√
ω)2

dp+

∫ √
ω+δ

√
ω−δ

|ĥ(√ω)|2
(p−√

ω)2
dp

]
.

The expression above is finite if and only ifĥ(±√
ω) vanish which is equivalent to orthogonality

relations (4.11). Then using formula (4.10) we easily obtain

p2φ̂(p) = −ĥ(p) + ωφ̂(p) ∈ L2(R)

under the conditions of the lemma such thatφ(x) ∈ H2(R). In the case when parameterω vanishes
we write

φ̂(p) = − ĥ(p)
p2

χ{p∈R: |p|≤1} −
ĥ(p)

p2
χ{p∈R: |p|>1}. (4.14)

The second term in the right side of (4.14) can be bounded above in the absolute value by|ĥ(p)| ∈
L2, which will be true in higher dimensions studied in the following lemma as well. Let us expand
the Fourier transform

ĥ(p) = ĥ(0) +
dĥ

dp
(0)p+

∫ p

0

(∫ s

0

d2ĥ(q)

dq2
dq

)
ds

with the second derivative

∣∣∣∣∣
d2ĥ(q)

dq2

∣∣∣∣∣ ≤
1√
2π

‖x2h‖L1(R) <∞, q ∈ R. Hence we estimate

∣∣∣∣∣

∫ p

0

(
∫ s

0
d2ĥ(q)
dq2

dq

)
ds

p2
χ{p∈R: |p|≤1}

∣∣∣∣∣ ≤ Cχ{p∈R: |p|≤1} ∈ L2(R).

The remaining sum of the two terms

ĥ(0)

p2
χ{p∈R: |p|≤1} +

dĥ
dp
(0)

p
χ{p∈R: |p|≤1}

is square integrable if and only if botĥh(0) and
dĥ

dp
(0) vanish which yields orthogonality relations

(4.12). Clearlyp2φ̂(p) = −ĥ(p) ∈ L2(R) which completes the proof of the lemma in case b).

Remark. The proof of the fact that∆φ is square integrable,ω ≥ 0 given above is independent
of the dimension and therefore, will be omitted in the proof of Lemma 6 below.

Then we turn our attention to the solvability conditions forequation (4.9) in higher dimensions.
Note that the orthogonality relations derived below will bedependent upon the value ofd ≥ 2.
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Lemma 6. Leth(x) ∈ L2(Rd), d ≥ 2.
a) Whenω > 0 andxh(x) ∈ L1(Rd) problem (4.9) admits a unique solution inH2(Rd) if and

only if (
h(x),

eipx

(2π)
d
2

)

L2(Rd)

= 0, p ∈ Sd√
ω a.e., d ≥ 2. (4.15)

b) Whenω = 0 and |x|2h(x) ∈ L1(R2) problem (4.9) admits a unique solution inH2(R2) if and
only if

(h(x), 1)L2(R2) = 0, (h(x), xk)L2(R2) = 0, 1 ≤ k ≤ 2. (4.16)

c) Whenω = 0 and|x|h(x) ∈ L1(Rd), d = 3, 4 problem (4.9) admits a unique solution inH2(Rd)
if and only if

(h(x), 1)L2(Rd) = 0, d = 3, 4. (4.17)

d) Whenω = 0 and |x|h(x) ∈ L1(Rd), d ≥ 5 problem (4.9) possesses a unique solution in
H2(Rd).

Proof. We start with the case ofω > 0 and introduce the spherical layer set in the space ofd

dimensions
Bδ := {p ∈ R

d |
√
ω − δ ≤ |p| ≤

√
ω + δ}, 0 < δ <

√
ω.

Thus

φ̂(p) = − ĥ(p)

p2 − ω
χBδ

− ĥ(p)

p2 − ω
χBc

δ
. (4.18)

The second term in the right side of (4.18) can be easily estimated above in the absolute value by
|ĥ(p)|
δ
√
ω

∈ L2(Rd). To study the singular part of the expression above we will use the representation

formula

ĥ(p) = ĥ(
√
ω, σ) +

∫ |p|

√
ω

∂ĥ(|s|, σ)
∂|s| d|s|,

whereσ denotes the variables on the sphere. Clearly,

∣∣∣∣∣
∂ĥ

∂|p|

∣∣∣∣∣ ≤
1

(2π)
d
2

‖xh(x)‖L1(Rd) <∞ by the

assumption of the lemma. This yields

∣∣∣∣∣

∫ |p|√
ω

∂ĥ
∂|s|(|s|, σ)d|s|
p2 − ω

χBδ

∣∣∣∣∣ ≤
C

|p|+√
ω
χBδ

∈ L2(Rd).

Thus it remains to estimate the norm
∥∥∥∥∥
ĥ(
√
ω, σ)

p2 − ω
χBδ

∥∥∥∥∥

2

L2(Rd)

=

∫

Sd

dσ

∫ √
ω+δ

√
ω−δ

|ĥ(√ω, σ)|2
(p2 − ω)2

|p|d−1d|p| ≥

18



≥ (
√
ω − δ)d−1

(2
√
ω + δ)2

∫ √
ω+δ

√
ω−δ

d|p|
(|p| − √

ω)2

∫

Sd

dσ|ĥ(
√
ω, σ)|2,

which is finite if and only if the Fourier imagêh(p) vanishes a.e. on the sphereSd√
ω
. This is

equivalent to orthogonality relations (4.15).
Whenω vanishes and the problem is in two dimensions we use the formula analogous to (4.14)

in which our primary concern will be the first term in the rightside. In the polar coordinates
x = (|x|, θx) andp = (|p|, θp). We will make use of the expansion

ĥ(p) = ĥ(0) + |p| ∂ĥ
∂|p|(0, θp) +

∫ |p|

0

(∫ s

0

∂2

∂|q|2 ĥ(|q|, θp)d|q|
)
ds

with

ĥ(p) =
1

2π

∫

R2

h(x)e−i|p||x|cosθdx, (4.19)

whereθ here and below stands for the angle between vectorsx andp in R2. Thus for the derivatives

we have
∂ĥ

∂|p|(0, θp) = − i

2π

∫

R2

h(x)|x|cosθdx and

∣∣∣∣∣
∂2

∂|p|2 ĥ(p)
∣∣∣∣∣ ≤

1

2π
‖x2h(x)‖L1(R2) <∞ by the

assumption of the lemma. Clearly

∣∣∣∣∣

∫ |p|
0

(
∫ s

0
∂2

∂|q|2 ĥ(|q|, θp)d|q|
)
ds

p2
χ{p∈R2:|p|≤1}

∣∣∣∣∣ ≤ Cχ{p∈R2:|p|≤1} ∈ L2(R2)

and it remains to estimate the terms

− ĥ(0)
p2

χ{p∈R2:|p|≤1} +
i
∫
R2 |x|h(x)cos(θp − θx)dx

2π|p| χ{p∈R2:|p|≤1},

which can be written as

− ĥ(0)
p2

χ{p∈R2:|p|≤1} +
i

2π

√
R2

1 +R2
2cos(θp − β)

|p| χ{p∈R2:|p|≤1},

whereRk :=
∫
R2 xkh(x)dx, k = 1, 2 andtanβ :=

R2

R1
. Note that the case ofR1 = 0 andR2 6= 0

corresponds to the situation when the argumentβ =
π

2
or −π

2
. Evaluation of the square of theL2

norm of the sum above yields

2π|ĥ(0)|2
∫ 1

0

d|p|
|p|3 +

R2
1 +R2

2

4π2

∫ 1

0

d|p|
|p|

∫ 2π

0

dθpcos
2(θp − β),

which is finite if and only if̂h(0) along withR1,2 vanish. This is equivalent to relations (4.16).
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Whenω = 0 and the equation is studied inR3 we will use the formula

ĥ(p) = ĥ(0) +

∫ |p|

0

∂ĥ

∂|s|(|s|, σ)d|s|. (4.20)

Let us investigate the square integrability of the sum

ĥ(0)

p2
χ{p∈R3: |p|≤1} +

∫ |p|
0

∂ĥ
∂|s|(|s|, σ)d|s|

p2
χ{p∈R3: |p|≤1}.

Using the three dimensional analog of (4.19) we obtain

∣∣∣∣∣
∂ĥ

∂|p|(p)
∣∣∣∣∣ ≤

1

(2π)
3
2

‖|x|h(x)‖L1(R3) <∞

by the assumption of the lemma. Hence
∣∣∣∣∣

∫ |p|
0

∂ĥ
∂|s|(|s|, σ)d|s|

p2
χ{p∈R3: |p|≤1}

∣∣∣∣∣ ≤
C

|p|χ{p∈R3: |p|≤1} ∈ L2(R3). (4.21)

The square of theL2 norm of the remaining term will be given by4π|ĥ(0)|2
∫ 1

0

d|p|
|p|2 <∞ if and

only if ĥ(0) = 0, which is equivalent to relation (4.17) in three dimensions. Forω = 0 in R4 the
argument will be similar to the three dimensional one.

When the parameterω vanishes andd ≥ 5 we will make use of the representation formula
analogous to (4.20) and the upper bound similar to (4.21). Thus the square of theL2 norm which
remains to estimate will be equal to

∫ 1

0

|ĥ(0)|2
|p|4 |Sd||p|d−1d|p| = |Sd||ĥ(0)|2

∫ 1

0

|p|d−5d|p| <∞,

which proves that whenω = 0 the orthogonality conditions in dimensions five and higher are not
needed for solving equation (4.9).

The final proposition of the article is another, even simplerway to look at the solvability con-
ditions for equation (4.9) in higher dimensions.

Lemma 7. Letω = 0 andh(x) ∈ L1(Rd) ∩ L2(Rd) with d ≥ 5. Then problem (4.9) admits a
unique solution inH2(Rd).

Proof. Obviously,

|ĥ(p)| ≤ 1

(2π)
d
2

‖h(x)‖L1(Rd) <∞, p ∈ R
d.

It is sufficient to consider the first term in the right side of the higher dimensional analog of formula
(4.14). For it we have the upper bound in the absolute value as

C

p2
χ{p∈Rd: |p|≤1} ∈ L2(Rd), d ≥ 5,
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which completes the proof of the lemma.
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