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1. Introduction

The spectral properties of second order differential apesavith and without Fredholm prop-
erty in cylindrical domains were studied extensively in ffgst in connection with the reaction-
diffusion wave propagation phenomena (see e.g. [1], [7], [B1]).

In the first part of the present article we simply considerSbhrodinger type operator

L, :=-A, — A, —a, (1.1)

on L?(D) such that the generalized cylindbr= R¢ x Q, d € Nanda > 0 is a parameter. The
first Laplacian operator hereA, is on L?(R%) and the second oneA, on L?(2), whereQ) C
R™, m € Nis an open domain of finite Lebesgue measure with Dirichlemnidary conditions. It
is well known that such a Dirichlet Laplacian possesses aesarg of eigenvalugs< \; < \; <



A3 < ... < A\, < ...Increasing to infinity. The corresponding eigenfunctioatss$y the equation

— Ayl (Y) = Ml (y), 1 < 5 <m0 (y)|on = 0,

wherem,, is the multiplicity of the eigenvalug,, n € N. These eigenfunctions satisfy the orthog-
onality relations

(0h Pl 2) = Okglins kg €N, 1< <my, 1 <1< m,,

wheredy ,, d;, are the Kronecker symbols and form the complete systei¥if). The inner
product of two functions is being denoted(d@s, f2)12(4) == [, f1 (z) f2(z)dz, with a slight abuse
of notations when the functions are not square integrakkefdr instance the plane waves involved
in the orthogonality conditions of Theorem 1 below. The spha radius- centered at the origin
in the space ofl dimensions is being denoted 4%, the unit one as® and its Lebesgue measure
as|S4|. By means of the Spectral Theorem we have the representationla

Ay =Y NP, (1.2)
k=1

where{ P, }?2, are the projection operators onto the spectral subspacespondent to the eigen-
values{\, };2,. The total Laplacian operator di¥(D) here isA = A, + A, and the appropriate
functional space is

H2(D) := {u(x,y) : D = C | u(z,y) € L*(D), Au(x,y) € L*(D)}.
We investigate the solvability conditions ii*( D) for the nonhomogeneous equation
Lau = f7 (13)

with a square integrable right sidéx>,y), z = (1, 22,...,74) € RY vy = (y1, Y2, s Ym) € Q.
The result will depend upon how the parametés located on the nonnegative semi-axis compared
to the spectrumd A\, }°2 , of our Dirichlet Laplacian.

Theorem 1.Let f(z,y) € L*(D). Then

1) When0 < a < A;, problem (1.3) admits a unique solutiafiz, y) € H?(D).

) When\y < a < Ayi1, N € Nand|z|2f € L?(D) for somea > d + 2 equation (1.3)
possesses a unique solutiofx, y) € H?(D) if and only if

ptivaTNir
f(%y),TSDi(y) =0, 1<j<my, 1<kE<N for d=1, (1.4)
m £2(D)

] =0, pes? ae, 1<j<m,, 1<k<N (15
g%%(?/))LQ(D) p Va—rr S ]S my SRS (1.5)
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ford > 2.

1) Whena = \y, N € N equation (1.3) possesses a unique solution y) € H?(D) if and
only if

a) for d =1 provided|z|2 f(x,y) € L*(D) with somex > 5

AT
f(%y),TSOi(y) =0, 1<5j<my,, 1<E<N-1, (1.6)
T 12(D)
(F@y), @)z =0, (f(2,9), &% ¥)T) 120y =0, 1< 5 < my. (1.7)

b) for d = 2 provided|z|z f(x,y) € L*(D) with somen > 6
etrr .
L2(D)

(f(l‘, y), (p%(y))L2(D) =0, (f(l‘, y)v (pg\f(y)xk)L%D) =0, 1<j<my, k=12 (1.9)
c) for d= 3,4 provided|z|2 f(z,y) € L?(D) with somex > d + 2

(ﬂ%w,e

J d .
71 (Y) =0, peSy.— ae, 1<j<my, 1<E<N-1,
: ) L2(D) o

(2m)
| (1.10)
(f(z,9), on®) 2y =0, 1< j<my. (1.11)
d) for d > 5 provided|z|® f(z,y) € L?(D) with somex > d + 2
ipx )
(f(:z:,y), ‘ dgpi(y)) =0, pe Sfl/m ae, 1<j<my, 1<kE<N-—I1.
et ")

(1.12)
In the second part of the work we incorporate an external@lathort-range potential in the
original problem wherl = 3, such that

H, =—-A,+V(z)—Ay—a (1.13)

considered ori.?(D), with D = R? x (, the Dirichlet Laplacian-A, is on L?((2) as before, the
parameter. > 0 and the assumption below is analogous to the one used in [138], [15], [16]
and [17].

Assumption 2. The potential functio’ (z) : R* — R satisfies the estimate

C

V(r)] £ ——+=
V)l < e



with somes > 0 andz = (1, 22, 3) € R3 a.e. such that
8
<1 and ‘/CHLS”V”L%(RS)

19 -2 ;
4 Um) IV e VI
Here and below’ denotes a finite positive constant ang s given on p.98 of [6] is the constant

in the Hardy-Littlewood-Sobolev inequality
() 3

e drdy| < e L2(R
‘ /]1%3 R3 |£17 — y|2 Y CHLSHle 2(R3)’ h (R%)

Here and further down the norm of a functign € LP(R%), 1 < p < oo, d € N is denoted as

Remark. By means of Lemma 2.3 of [13] under our Assumption 2 thedslamger operator

1 f1ll e ey
A, + V(z) is self- adjoint and unitarily equivalent te A, on L*(R?) and therefore, it is non-
negative in the sense of quadratic forms. Its functions efctbntinuous spectrum satisfying the

[—As + V(@) (7) = ¢*ng(2), q € R

Schibdinger equation
in the integral form the Lippmann-Schwinger equation (sge §.0] p.98)
pilallz—y|
Vng) (y)dy,

elar 1 /
(2m)2 47 Jes |z — |
5(qg — q1), ¢,q1 € R3, form the complete

Nq()

the orthogonality conditionsn, (), 7g, (7)) L2rs)
system in?(R?).
Our goal is to solve the following equation in the Sobolevegpd* (D)
Hou = f, (1.14)
,Ym) € 2 as

where the right sidg (z,y) € L?(D) with z = (z1, 29, 73) € R* andy = (y1, yo,
before. Our statement is as follows

Theorem 3. Let Assumption 2 holdf(z,y) € L*(D) and|z|> f(z,y) € L*(D) for some

. 60, )

a > 5. Then
I) When0 < a < A; equation (1.14) admits a unique solutiefw, y) € H*(D)

I) When\y < a < Ayy1, N € N problem (1.14) possesses a unique solution, y)
1<j<my, 1<k<N. (1.15)

2(D) if and only if
(f(2,9), 1g(2)94 (W) p2(p) = 0 for g € S ae
) Whena = Ay, N € N problem (1.14) admits a unique solutiafz, y) € H*(D) if and
=0 forl<j<my, (1.16)

(f(z, ), mo(2)eh (1)) 12

only if
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(f(x,y),nq(x)wi(y))m(m =0 forqe S?/m ae ,1<j<mg, 1<kE<N-1. (1.17)

Note that in the theorems above although solvability coowlst are similar to the usual Fred-
holm ones, this similarity is only formal because the opeminvolved in the left sides of the
nonhomogeneous elliptic problems do not satisfy the Frimallpooperty and their ranges are not
closed.

We conclude the article with the studies of the following ino@ar problemirR?, 1 < d < 3 :

aw — W
iy = A+ A / Gl = 9)F (. D)y, 1) + U (y, Ody + hz)e ™. (1.18)

R
Although we are not aware of particular practical applmasi of it, (1.18) is of interest to us
due to its resemblance to the forced, nonlocal, Nonlinear&tinger (NLS) equation. Here the
parameters\ € R, w > 0 and the conditions on other terms involved in the problen el
specified below. We seek a solution of (1.18) in the form oading solitary wave

1) = dla)e ™, (1.19)

Note that the sign under the exponent here is negative, vduickesponds to the case of so-called
embedded solitons (see e.g. [9]), as distinct from the stahsituation (see e.g. [2], [12]). Thus
we arrive at the following nonlocal elliptic problem

~0—wot A [ Gl =P + Uoldy +hie) = 0. (1:20)

The real valued paramet@ris assumed to be small in the absolute value and the solyatin-
ditions for equation (1.20) whekh = 0 are derived in the Appendix. The nonlinear problem above
involves the operator A — w : H?(R%) — L?(R¢) without Fredholm property. We will be using
the closed unit ball centered at the origin in the Soboleespéth the norm defined in (4.8):

B(H*(R?)) = {u(x) € H*R) | ||ul| g2(ea) < 1}, (1.21)
as distinct from the results obtained in the whole space 8. [1

Theorem 4. LetU(x) € L>(R?), the functiomh(z) € L*(R?) is nontrivial, F(z) : RT — R
is continuously differentiable, the kern@lz) € L'(R%), 1 < d < 3.
I) When the dimensiah= 1 andw > 0 letzG(z), zh(x) € L*(R), orthogonality conditions

(4.11) hold and
e:l:i\/am
<G(x), ) =0. (1.22)
L2(R)

V2r

I1) When the dimensio# = 1 andw = 0 let 2°G(z), 2*h(x) € L*(R), orthogonality conditions
(4.12) hold and
(G(l‘), ]-)LQ(R) =0, (G(l‘), x)LQ(R) = 0. (123)



lI) When the dimensiah= 2, 3 andw > 0 letzG(x), zh(x) € L*(R?), orthogonality conditions
(4.15) hold and

1pT

<G(az), ¢ d) =0 forpe€ Sfl/a a.e. (1.24)
(2m)2 ) 12 gy

IV) When the dimensiod = 2,3 andw = 0 let 22G(x) € L'(RY), for d = 2 let 2®h(z) €

L*(IR?) with orthogonality conditions (4.16), fat = 3 assume:h(z) € L'(R?) with orthogonality

conditions (4.17) and

(G(@), Di2way =0, (G(2),2k)2e) =0, 1 <k < d. (1.25)

Then there exists > 0 such that for all\ € R, |\| < ¢ equation (1.20) admits a unique nontrivial
solutiong(z) € H*(R?).

We start with proving the solvability conditions in the naig@atial case.

2. The free problem in the cylindrical domain.

Proof of Theorem 1Note that it is sufficient to study only the solvability cotidns in L?(D) for
problem (1.3) since the existence of a square integrablgisnh.(z, y) for this equation with the
square integrable right side will yieldu(z,y) € L*(D), whereA = A, + A,. Let us assume
that there are two functions 5(x,y) € L*(D) which solve equation (1.3). Then their difference
v(z,y) = ui(z,y) — us(w,y) € L*(D) will satisfy the homogeneous equatidnuv = 0. Its
projection onto they/ (y), n € N, 1 < j < m, state will be of the forme/ (z)¢? (y) with

¢l (x) € L*(RY), such that it will satisfy the equation

(—Ay + Ay — a)dd () = 0.

n

Since the free negative Laplacian bf(R¢) has only the essential spectrum filling the nonnegative
semi-axis¢ (x) vanishes, which shows the uniqueness of a square integralbigon of problem
(1.3) for an arbitrary nonnegative

To prove the statement in case |) we easily establish therlbaend

(Lot )2y = ([=Ay — alu, u)r2p) = (M — a)|ull72 (),

such that the bottom of the spectrum of the operdtpon L?(D) is bounded below by the pos-
itive constant. Hence equation (1.3) in this case admitslatien u(z,y) = L;'f(z,y) and
lullz2) < 5 1_a||f||L2<D> < 0.

To prove the solvability conditions in the situation whea tlalue of the parameteris attained
between two consecutive eigenvalues and Ay ; of the Dirichlet Laplacian, we introduce the
projection operators

N o]
PN.=3"P and PV:= )" B, (2.1)
k=1 k=N+1



where{P,}2° , are used in (1.2) and we have the resolution of the idedtity PV + PY*1 on
L?(Q). This enables us to relate problem (1.3) to the system of twatons

LiVuN - fN7 (22)

LiVHUNH = fN11, (2.3)
with the operators restricted to the subspatfs:= PY(—-A, — A, — a)PY and LY =
PNH(=A, — A, — a)PN*t! acting on functionsy := PYu anduy,, := P11 respectively,
the right sides of the equations above ge= PV f andfy,, := PN *'f. For the quadratic form
of the operator involved in the left side of (2.3) @A(RY) ® RanPV*!, where Rai¥*! denotes
the range of the corresponding projection we easily obtarestimate from below

(L, w) 2p) > (PY =4y = a) PY ) 20y > (Avia — a)lull7z(p)

The inverse of this operator adts’ 1)1 : L2(RY) ® RanPV*! — L2(D). Thus equation (2.3)

possesses a solution,; = (L2')~! fy1, such that|uni1 || r2(p) < )\ Hf”Lz
The remaining equation (2.2) can be trivially related toftiiewing system ofN equations
LFu, = fi, 1 <k <N, (2.4)

with u; = Pyuy and f; := P,fy. The operator restricted to the spectral subspade’ is=
Py(=A, — A, —a)P.. Without loss of generality we can assume that:, y) = vx(z)pi(y), 1 <

k < N. Since the free negative Laplacian operator3tiR¢) has only the essential spectrum, we
haveuy(z,y) = cx(z)e4(y), which yields the equation

—Azcr(x) — (a— Mp)eg(x) = vp(z), 1 <k < N. (2.5)

The right side of (2.5) is square integrable. Inddb@“LZ(Rd | frll3e ) < ||f||L2(D) < 00. We
have the following estimate by means of the Schwarz metwall

feon@ln = [ lell(7z, ), b lds < [ d:c\:c|\/ R

This expression can be bounded above via the Schwarz inggual

|| / /
d dz(1 o d 2 _
\// e\ L B L) [ ()
S —
\// el T VI By + 1121 F1220) < o0

such thatru, (z) € L'(R?). Thus when dimensioid = 1 by means of Lemma 5 of the Appendix
equation (2.5) admlts a unique square integrable solutiand only if

eii\/a——Ak,a:
op(2), ——— =0, 1<k<N
L2(R)

V21

7



which yields orthogonality relations (1.4). When dimemsio> 2 due to Lemma 6 equation (2.5)
possesses a unique solution belongingtaR?) if and only if

(27)

which implies orthogonality conditions (1.5).

Finally we consider case IlIl) of the theorem, when the patamecoincides with one of the
eigenvalues of the negative Dirichlet Laplacian. Let us thgeresolution of identity ori.?(12),
namelyl = PN=! 4 PO 4 PN+1 with PN*! defined in (2.1)P° := Py andPN~! .= S0 ! B,
By applying these projection operators to equation (1.3ye&late it to the equivalent system of
three equations

ipx
<vk(:1:), ¢ d) =0, pESfl/a_—/\k a.e., 1<k<N,
/) 2ma

L(JIVHUNH = fN+1, (2-6)
Lguo - an (27)
LY un_y = fn-a, (2.8)

with the operators restricted to the spectral subspaces
LYt =PV -A, - A, —a)P"' L) =P (~A, - A, —a)P"

These operators act any_; := PV 'u andu, := P respectively. The right sides of the
equations above argy_; := PV !f andf, := P°f. Note that the operatat’ ™! along with
functionsuy ., andfy ., are defined in the proof of part Il) of the theorem. For the gqatdform
of the operato. Y ! on L?(R%) @ RanP"*! we have the lower bound

(La u,u)p2py > (PYTH=Ay — @) P u,u) 2y > (A — )‘N)H“H%Q(D)’

such that equation (2.6) admits a solution,; = (LY~ fy; with the operatof LY 1)1
L?(R%) ® RanPN*! — L2(D) and|lun1 || z2(py < S | fll2(py < o0.
N+1 — AN
To study the solvability conditions for equation (2.8) wéate it to the system of equivalent

equations
L’;uk:fk, 1§k3§N—1

with v, = Pyu and f,, = P, f. This system can be treated analogously to the one studiegsm
I), which yields orthogonality conditions (1.6), (1.8},.40) and (1.12) dependent upon the value
of the dimension.

Finally, we turn our attention to equation (2.7), which ivausly equivalent to

PO(—Am)POUO = fo.

Without loss of generality we can assume tffigte, y) = vy (z)ek (y). Since the free Laplacian
on L?(R%) has no nontrivial square integrable zero modes, we hge ) = cy(z)¢k (v), such
that

—Azen(x) = un (). (2.9)

8



The right side of the equation above is square integrabteesin

lon 122 gay = [ follZ2(py < Nl ZF20m) < 00

Let us first consider the situation when dimensioa 1. Then via the Schwarz inequality

Joton @)l = [ doa|(F @) b))zl < [ d:c:ﬂ\/ [ \rekan. @a0)
which can be bounded above by applying again the Schwarzatiggby

A

o0 l‘4 .
_ 5 . 2
_ \//_OO o |x|a%||f||L2(D) 11215 £ (2 )22y < 00

sincea > 5 and|z|2 f(z,y) € L*(D). Hencez?vy(z) € L'(R). By means of Lemma 5 applied
to the Poisson equation (2.9) we obtain othogonality refesti(1.7).

When dimensior = 2 we perform the estimate analogous to (2.10) and then viache/&z
inequality obtain the upper bound for it as

|IL’|4 a 2 =
\//R T Ix\“\//ﬂgz AL+l )/Q|f(z’y>| =
- o 27|x|?
- \// el 1o, + IR TGy < 6

due to the fact that > 6 and|z|% f(z,y) € L*(D). 2un(x) € LY(R?). Via Lemma
6 we arrive at orthogonality conditions (1.9).
For dimensiong = 3, 4 we estimate the norm via the Schwarz inequality

lleton (e = [ delal(F ) oho)em] < | ddx|as|\/ IR

and by applying the Schwarz inequality again obtain the uppand for it

\// R \/ s 1el) [ 1 Gakay -

< 1Sl —
| ‘ 1+| ‘a ”fHLQ(D)_'_|HZ|2f(Z7y>HL2(D)<OO

becausex > d + 2 and|z\ f(z,y) € L*(D). Hencelz|vy(x) € LY(R?), d = 3,4. Lemma 6
implies orthogonality condition (1.11).

In dimensions! > 5 by the same reasoning as above it can be showrjithat(z) € L'(R?)
sincea > d+ 2 and|z|® f(z,y) € L?*(D). No further orthogonality conditions are needed in such
high dimensions by means of Lemma 6. [ |

d=(1 + |2]2) / 1z y)ldy =




3. The problem with an external potential.

Proof of Theorem 3Note that due to the boundedness of the potential fundfiar) it is sufficient

to study the solvability conditions for our problem ¥ (D). First we show the uniqueness of a
square integrable solution for equation (1.14). Indeethefe wereu, »(x,y) € L*(D) satisfying
(1.14), their differencev(x, y) = u1 (2, y) —uz(z,y) € L*(D) would be solving the homogeneous
problem H,w = 0. Let us project it onto the state’ (y), n € N, 1 < 5 < m,. Hence the
projection ofw(z, y) will be of the formc (z)¢? (y), wherec! (x) € L?(R3). We easily obtain

(A, +V(z)+ N\ — a)d (x) = 0.

The equation above does not have any nontrivial squareratitgsolutions (see the Remark after
Assumption 2), which implieg/ (x) = 0 in R?® a.e. andv(z, y) vanishes inD a.e.
Let us first suppose that the paramétet « < ;. Then we have the lower bound

(HaU,U)B(D) > ((-A, — a)u,u)L2(D) > (A1 — a)HuH%Q(D)

Thus the operatof{, > A\ — a > 0 in the sense of quadratic forms, such that equation (1.14)
admits a solutiom = H; ' f and||u|| .2(p) <

Then we consider the situation afy < a < Ayy1, N € N. As in the proof of Theorem 1,
by using the projection operators (2.1) we relate problerb4()lto the equivalent system of two
equations

HYuy = fx, Hy uni = [y, (3.1)

where the restricted operators @€’ := PYH,PY andHN*! := PN*1H,PN*1 The functions
involved in the right sides of the equations of the systenval@efy = PN f, fyi1 = PYtLf
and in the left sides arey = PNu, uy,1 = PV lu. We estimate from below

(HY M, u) papy > (PYPH(=Ay — a) PY o u) 2y > (Anat — a)lull32 ).

Hence the operataf ¥ ! > Ay, — a > 0. We easily obtain a solution for the second equation
in system (3.1):uN+1 = (HN*H7 fy i, where(HY )~ 2 [2(R?) @ RanP¥*! — L?(D) and

1
luns1ll2py < )\ ||f||L2 < oco. Thus it remains to study the first equation in system

(3.1), which can be eaS|Iy related to the equivalent systemN @equations using the projections
(1.2):
H*up = f, 1<k <N, (3.2)

where the restricted operators di¢ = P, H, P, the functions involed ar¢, = P, f andu,, =
P.u. From (3.2) we easily deduce

Without loss of generality we can assume that

fe(z,y) = ve(@)p(y), 1 <k < N.

10



Seeking a solution of the equation above in the form,dfr, y) = > 7™ cl(z)gl(y), 1 <k < N,
we easily arrive at

(—As + V(@) () = (a — M) (x), 2 < j < m.

Since the Schrodinger operatetA, + V() is unitarily equivalent to-A, on L?*(R?) (see the
Remark after Assumption 2), it does not have any nontrivjabse integrable bound states. There-
fore, cj(z) = 0 forz € R® a.e.,2 < j < my, andug(z,y) = cx(2)pi(y), 1 < k < N, which
yields

(=Az +V(z) + A — a)ep(z) = vp(x), L <k < N. (3.3)

Clearly, the right side of (3.3) is square integrable, sifieg(z)||72gs) = el Y)lI72p) <

| f(z,y) H%Q(D) < oo by our assumption. We estimate the ndfmy, ()| .1 (rs) using the argument
analogous to the one of Chapter 2 when the dimengien3 and show thalj zvy, ()| 11 gs) < oo
providedf(z,y) € L*(D)and|z|2 f(z,y) € L*(D) with somen > 5. Thus by means of Theorem
1.2 of [13] equation (3.3) admits a solutiop(x) € L*(R?) if and only if (vg(z), 1g(2)) 2y = 0
forq € S?/m a.e.,1 < k < N, which yields orthogonality conditions (1.15).

We compfete the proof of the theorem covering the case6f\y, N € N. Analogously to
the free problem studied in Chapter 2 we relate equatiortj1dlthe equivalent system of three
equations

Hév_luN_l = fN—17 HCOLUO = fo and HC]LV+1UN+1 = fN+1, (34)

with the restricted operators
HN—l _ PN_lHaPN_l HO _ POHaPO a,nd HN+1 — PN+1HQPN+1

the right sides
fol = PN_1f7 fO = Pof and fN+1 = PN+1f7
the functions involved in the left sides of (3.4)

un_1 = PV, ug = P'uand UNy] = PN+,

Let us first analyze the third equation in (3.4). We have a tdvaeind in the sense of quadratic
forms

(Hy " u,u) 20y = (PY =2y — a) PY u,u) 20y > (Avgn — Aw)[[ull 720
ThusHN 1 > Ay — Ay > 0, such that the last equation in (3.4) admits a solution
unt1 = (HY ™) g,

with the operatof ¥ +1)~1 : [2(R3) ® RanPN ! — L2(D). Thus for the solution above we have
a bound

1
luntillz2p) £ ———— I fllr2p) < o0
AN41 — AN
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by the assumption of the theorem. Then we turn our attentidihé second equation in (3.4),
assuming without loss of generality that its right sifiér, y) = vn(x)pk (y) and looking for a
solution in the formug(z, y) = Y7 iy ()¢l (y). This yields(—A, + V(z))cy(z) = 0, j =
2,...,my. Since the Schrodinger operator involved in this equatioes not have any nontrivial
square integrable zero modes (see the Remark after Assam#)tiwe have{\,(:c) =0 forz ¢ R3
a.e. and = 2, ..., my and thereforey(z, y) = ey ()X (y), such that

(=As + V(z))en(z) = vn (@), (3.5)

Clearly, || foll22(p) = lvnllZ2msy < [1f1172(py < oo by the assumption of the theorem. The norm
|zvn ()] 21 rsy < oo, which can be shown using the argument analogous to that @pt€h2 in
three dimensions providefl € L?(D) and |z|> f(z,y) € L*(D) for somea > 5. Therefore,
by means of Theorem 1.2 of [13] equation (3.5) possessesutisoin L?(R3) if and only if
(vn(x),m0()) r2sy = 0, which implies relations (1.16).

Finally, we study the first equation in (3.4), which can bealgaslated to the system of equa-
tions

HFup = fr, 1<k <N -1, (3.6)

with the restricted operatoi$* = P, H, P, the right sidey;, = P, f and functions involved in the
left sidesu;, = Pyu. Without loss of generality we can assume tffidtr, y) = vi(2)pi(y), 1 <

k < N — 1. Let us seek a solution of (3.6) in the form(z,y) = 37" ¢].(x)¢],(y). We easily
arrive at(—A, + V(z))ch(z) = Ay — M)ch(z), j = 2,...,my. Since the Schrodinger operator
does not have nontrivial square integrable bound statestlfigeRemark after Assumption 2), we
havec)(z) = 0 for € R® a.e. andj = 2, ..., my. Thereforeu,(z,y) = cx(2x)ek(y), which yields
the nonhomogeneous equation

(A, +V(z)+ M — Anv)ep(x) = vp(z), 1 <k < N-—1. (3.7)

Its right side is square integrable singé[|7- ) = [[vell72@s) < [Ifl72p) < oo. The norm
|zvk||z1msy < oo, which can be shown via the argument analogous to the oneingedapter
2 in three dimensions providef{z,y) € L*(D) and |z|2 f(z,y) € L?*(D) for somea > 5.
Therefore, by means of Theorem 1.2 of [13] equation (3.7plgable in L2(R?) if and only if
(vk(x_),nq(x))Lz(Rs) = 0 forq € Sf’/m ae., 1 <k < N — 1, which implies orthogonality
relations (1.17). [ |

4. Standing waves of the nonlocal, forced equation

Proof of Theorem 4Let ¢y(z) € H*(R?Y), 1 < d < 3 be the unique solution of problem (4.9)
under the conditions of the theorem, using the results ofrham5 and 6. When the parameker
is nontrivial, we seek the solution of problem (1.20) in tbeni ¢(z) = ¢o(z) + n(z) and using
(4.9) arrive at

—An—wnH/ G(z—y)[F(|oo(y)+n(w) ") (¢o(y) +n(y))+U () (do(y)+n(y))ldy = 0. (4.1)

Rd
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Let us introduce the auxiliary equation

AL+ wf = A /Rd G(z —y)[F(loo(y) +n(y)*)(@o(y) +n(y) + Uly)(do(y) +n(y))]dy. (4.2)
Our goal is to show that for smdlk| (4.2) defines a map : B(H?*(R?)) — B(H?(R?)). Let us
first suppose that for somgx) € B(H?*(R?)) there are two solutions, »(z) € B(H?*(R?)) of
problem (4.2). Then the functiof(z) := &, (z) — &(x) € H?(RY) satisfies the equation A& =
wé. Since the free Laplacian does not possess any nontriviaredgntegrable eigenfunctions, we
arrive at¢(r) = 0 a.e. inR?,

Hence consider an arbitranyz) € B(H?(R?)). By means of the Sobolev embedding theorem
we havegy(x), n(x) € L*(R?), 1 < d < 3, which along with the assumptions of the theorem
enables us to estimate the terms of equation (4.2) as

U (0 +m)] < U]l oe gy (|60] + [n) € L*(RY) (4.3)
and
[F(|éo(x) +n(2)[*) (¢o(x) +0(2))] < SUBE(2) :e(0, (60l oo )+l 00 2] ([P0 (2)] + [1(2)]),
(4.4)
which belongs td ?(R%) as well. By applying the standard Fourier transform to eigu&.2) we
obtain R
~ a G
) = At )+ 6, 5
whereF (p) andg(p) are the transforms of (|, + 7|*) (o + ) andU (¢ + 1) respectively. By
means of (4.3) and (4.45(p), G(p) € L*(R?). Clearly
- . p*G
PE0) = A0 A R + 60 (4.6)

Let us introduce the following quantity

G(p)

w — p?

p*G(p)
w— p?

)

Loo(RY)

Ny a:= max{

},wzo,lgdga (4.7)
Loo(R4)

By means of orthogonality conditions (1.22)-(1.25) via leas A1 and A2 of [18] we have
N, 4 < co. Therefore,

€| < IN(27)2 N, o{ IF1(p) +1G1(p)} € L2(RY),

P€()] < [M(27)2 No, o{ | F|(p) + 1G1(p)} € L*(RY),

such that € B(H?*(R?)) when the value of the parametet is small enough and'; = £. Hence
it remains to prove that the map : B(H%(RY)) — B(H?*(R?)) is a strict contraction. For that

13



purpose we choose arbitrany(z), ns(x) € B(H*(R?)) such thatl'n, » = & 5 € B(H?*(RY)) via
equation (4.2) for\| small enough. Clearly, we have

E0) — Ep) = A2m)? EP

{Fi(p) — Fa(p) + Gi(p) — G2(p)},

w — p?

where F »(p) andG; »(p) are the Fourier images df (|¢o + 171.2|?) (¢ + n1.2) andU(¢o + 71.2)
respectively. Hence

P& 760 =2 LD (R ) - F) +61(0) - G0}

such that
[€1(7) — & (@) || 2ray < |)‘|(27T)%Nw, d{IIF (g0 +m[*)(do+m) — F(|go +m2]*) (G0 +n2) | L2ey+
+Um — Una|| L2 ay }
and the analogous upper bound holds|fag; (v) — A& ()| .2 re). We easily estimate
1T — m)llz2@ey < U oo @ayllm — nallz2@ay-
Let us write

F(|go +ml*) (o +m) — F(|¢o + m2l*)(d0 + n2) = (F(ldo + m|?) — F(|¢o + n21?)) (o + 12)+

+F (|0 +m|*) (m — ).
By means of the Sobolev embedding theotBi, «re) < col[n]| p2ray, 1 < d < 3 we have

[0 + 2| < ce(1+ ||doll m2may),

wherec, is the constant of the embedding. Therefore,

1 (I¢o + mal*) (m = )l 12 geay < SUBF(2)lo<<c2(-4 160l 2 a2 I = M2l 280
We will make use of the representation formula
[po+m|?

Fwwn$w4w%+mﬁ:/ F(2)dz,

Bo+n2|?

which by means of the trivial inequality

160 +ml* = 1o + ml*| < 2ce(1+ [|@oll r2(ray) [ — 2l

yields
[(F(I¢o + m[?) — F(|¢o +m20) (b0 + n2)| < 2¢2(1 + [|doll rr2ray)* X

14



XSURF" () o<s<c2(1+ 100 a2 1M1 — T2

Hence, we arrive at
[(F(|¢o + m|*) = F(|go + 12]*)) (¢ + m2) || 2ray < 262 (1 + ||dol| mrzqray) X

XSUPF(8)lo<a<ez1+100 20?1 — 2l 2R

As a consequence of the estimates above we easily obtain
d
[T — Ta || 2 may < V2(2m)> [ ANw, d{ 10| oo rey + SuqF<Z)‘OSZSCg(lJFHd)OHHZ(Rd))Q+
+2¢2 (1 + |90l 2re))*SURE" (2)lo<z<e2 160l y2,ga)2 I — 12l (o)
is small enough, the map : B(H?(R?)) — B(H?*(R%)) is a strict contraction,
and therefore, it has a unique fixed paint B(H?(R?)). The solution of problem (1.20) does not
|

Thus, when A
vanish inR? providedh(x) is nontrivial.

Appendix
We investigate solvability conditions iH?(R?), d € N equipped with the norm
(4.8)

”u”?r{?(Rd) = HuH%Q(Rd) + ”AUH%Z(M)
of the linear equation
—Ap —wop=—h(z), w>0 (4.9)
with a square integrable right side. Apparently, the unigss of solutions for this problem comes
from the fact that the free Laplacian operator in the whokecspdoes not have nontrivial square
(4.10)

integrable eigenfunctions. Obviously,
h

with the hat symbol standing for the standard Fourier tramsfsuch that

~ 1 )
h(p) := h(z)e " dzx.
0= [ o)

We have the following statement in one dimension.

Lemma 5. Leth(z) € L*(R).
15



a) Whenw > 0 andzh(z) € L'(R) problem (4.9) admits a unique solution i#*(R) if and

only if
e:l:i\/am
h(zx), = 0. (4.11)
L2(R)

V2r

b) Whenw = 0 andz?h(z) € L'(R) problem (4.9) admits a unique solution i#*(R) if and
only if
(h([[’), 1)L2(R) =0, (h(x)ax)L2(R) = 0. (412)
Proof. Let us start with case a) and introduce the auxiliary set@Rburier space
As = [—vVw =9, —vw+ 0 U[Vw -3, Vw+ 4] := A5 UAS,
with 0 < 0 < y/w, such that

o(p) = —@m - #XA; (4.13)
p w p w

Here and belowy 4, stands for the characteristic function of a seand A€ for its complement.
The second term in the right side of (4.13) is not singular@dbe easily estimated above in the

2(p)|

absolute value by5T € L*(R). To study the behavior of the first term in the right side o18).
on A} we use the representation formula

~ ~  dh(s
i) =i+ [ g
V& S
and dh( ) \/_||xh||L1(R), p € R, which yields
fp dh(s XA+
e ds < € L*(R
P2 —w A 02\/(,_0—5 (R).
Similarly near the negative singularity
~ ~ P dh(s
i) =iy + [ D
—w S
such that R
P dh(s)
Sy T ds <o 4 € LX(R).
P2 —w A5 | = 2\/_—5

Therefore, it remains to investigate the square integtalof the sum of the two terms

o~

I )
p2_wXA;F p2_w Ag7
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for which the square of thé?(R) norm can be easily bounded below by

1 /f (V@) /f (V@) dp],

(2y/w +4)°

The expression above is finite if and onIyiAszi\/J) vanish which is equivalent to orthogonality
relations (4.11). Then using formula (4.10) we easily abtai

P*o(p) = —h(p) +wo(p) € L*(R)

under the conditions of the lemma such that) € H?(R). In the case when parametewanishes
we write

vis 0V T ) s =)

~ h(p h(p
30) = =22\ e et — 22 et o (4.14)

The second term in the right side of (4.14) can be boundedeainate absolute value H/Xi(p)| €
L?, which will be true in higher dimensions studied in the fallog lemma as well. Let us expand
the Fourier transform

i) =h0) + 0+ [ ( | def;(Qq)dq) s

o
with the second derivativ%d dh(QQ)
q

< o0, ¢ € R. Hence we estimate

1
< \/ﬁ”xzhHLl(R)

s d2h
fOp< 0 dng)dq ds

D2 < OXfper: pi<1y € L*(R).

X{peR: |p|<1}

The remaining sum of the two terms

7(0) 2(0)
7 XdpeRs <1} T T T X{peRs pl<1)

~

is square integrable if and only if boﬁﬂio) andfl—Z(O) vanish which yields orthogonality relations

(4.12). Clearlyp?4(p) = —h(p) € L*(R) which completes the proof of the lemma in case i

Remark. The proof of the fact thah¢ is square integrable, > 0 given above is independent
of the dimension and therefore, will be omitted in the prddfemma 6 below.

Then we turn our attention to the solvability conditionséguation (4.9) in higher dimensions.
Note that the orthogonality relations derived below willdependent upon the value &> 2.
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Lemma 6. Leth(z) € L*(R?), d > 2.
a) Whenw > 0 andzh(z) € L*(RY) problem (4.9) admits a unique solution #¥(R¢) if and
only if

ipT
(h(x), ¢ ) =0, pe S ae., d>2. (4.15)
27T)2 L2(R4)

~~

b) Whenw = 0 and |z|*h(x) € L'(R?) problem (4.9) admits a unique solution #¥(R?) if and
only if

(h(ZC), 1)L2(R2) = 0, (h(SL’),.Tk)LQ(Rz) = 0, 1 S k S 2. (416)
c) Whenw = 0 and|z|h(z) € L'(R?), d = 3, 4 problem (4.9) admits a unique solution ¥ (R¢)
if and only if

(h(x), ].)LZ(Rd) == 0, d - 3, 4. (417)

d) Whenw = 0 and|z|h(z) € L'Y(R?), d > 5 problem (4.9) possesses a unique solution in
H?(RY).

Proof. We start with the case of > 0 and introduce the spherical layer set in the spacé of
dimensions

Bs:={peR|Vwu—6<|p <Vw+6}, 0<6< V.
Thus

(p) I—;@ XBs — h(f) X5 (4.18)

The second term in the right side of (4.18) can be easily eséichabove in the absolute value by

@) _ s
L

L

formula

(R%). To study the singular part of the expression above we willths representation

N N Pl (sl o
hp) = h(v,0) + /f %d\s\,

. h
whereo denotes the variables on the sphere. Cle+§ﬁ < Y. |zh(z)|| 11 (rey < o0 by the
p )2
assumption of the lemma. This yields
\p\ ah
o)d|s| C
\/_ ls| | 2 (md
< — e L°(R?).
Pow P T e ()

Thus it remains to estimate the norm

ﬁ(\/c_u o)

p—w

g L
[dea I

18




(Vo — @)t Y dlpl e s
SRONCREE /f il Rl

which is finite if and only if the Fourier imagﬁ(p) vanishes a.e. on the sphe‘j’s’%. This is
equivalent to orthogonality relations (4.15).

Whenw vanishes and the problem is in two dimensions we use the faramalogous to (4.14)
in which our primary concern will be the first term in the righide. In the polar coordinates
x = (|z|,6,) andp = (|p|, 6,). We will make use of the expansion

~ ~ 7 Pl s 92
) = B0)+ pl5(0.0,)+ [ ( aiﬂzhuquep)dmods

with .
ﬁ(p) = — / h(x)e IPllzlcost g (4.19)
27T R2
wheref here and below stands for the angle between vegtarslp in R%. Thus for the derivatives

2

92 ~
h
B ()

we have—h(O 6,) = L/ h(z)|z|cosfdz and
8| | 2m R2

assumption of the lemma. Clearly

I (

and it remains to estimate the terms

1(0) i [ [2|h(2)cos (8, — 0,)dx
_?X{péwtlplﬁl} +

1
< §||x2h(x)||L1(Rz) < oo by the

Jo s2mh(lal, 0,)dlql ) ds

2 X{peR2:[p|<1}

» < OX{perz:jp|<1} € L2<R2)

27T|p‘ X{pERzi‘p‘ﬁl}a

which can be written as

1(0) i /R?+ R2cos(6, — 3)

_ ) + —
P2 X{peR2:|p|<1} o ‘p|

X{peR2:|p|<1}>

R
whereR;, = fRz xph(x)dz, k= 1,2 andtanf = ﬁ Note that the case dt; = 0 andR, # 0
1

corresponds to the situation when the argumfemg or —g. Evaluation of the square of the
norm of the sum above yields

A ' dlp| | Ri+ R3 ' d|p| o
27Th02/ + 2/ df,cos*(6, — B3),
| ( )| 0 | |3 4 2 0 | | 0 p (p )

which is finite if and only ifﬁ(o) along with Rz, , vanish. This is equivalent to relations (4.16).
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Whenw = 0 and the equation is studied R* we will use the formula

N . |p| a}z
h(p) = h(0) + = ([s],o)d|s]. (4.20)
0 8|5|
Let us investigate the square integrability of the sum
h(0) 2L (|s], o)d] s
?X{peﬂ@: Ip|<1} 2 X{peR3: |p|<1}-
. . . oh 1
Using the three dimensional analog of (4.19) we ob %—rk(p) < = |||:E|h(x)||L1(R3) < 00
| (2m)2
by the assumption of the lemma. Hence
lp| on
s ([sl, o)d|s| C
o P2 X{peRrs: |p|<1}| < HX{pGRS: Ipl<1} € Lz(R?’). (4.21)
1
. . ) ~ d .
The square of thé&? norm of the remaining term will be given mﬁ\h(())\?/ % < oo if and
0

only if ﬁ(o) = 0, which is equivalent to relation (4.17) in three dimensioRsrw = 0 in R* the
argument will be similar to the three dimensional one.

When the parametes vanishes and > 5 we will make use of the representation formula
analogous to (4.20) and the upper bound similar to (4.21usThe square of the? norm which
remains to estimate will be equal to

117 2 1
7(0) ) " )
/0 1St dlpl = |SUROF [l < .

p
which proves that when = 0 the orthogonality conditions in dimensions five and higlrerraot
needed for solving equation (4.9). [ |

The final proposition of the article is another, even simplay to look at the solvability con-
ditions for equation (4.9) in higher dimensions.

Lemma 7. Letw = 0 andh(x) € L*(RY) N L2(R?) with d > 5. Then problem (4.9) admits a
unique solution inf72(R%).
Proof. Obviously,

1
(2m)?
It is sufficient to consider the first term in the right sidelwd higher dimensional analog of formula
(4.14). For it we have the upper bound in the absolute value as

C
3 Xtpere: i<} € L*(R7), d > 5,

h(p)| <

1P ()| 11 ety < 00, p € R

20



which completes the proof of the lemma. [ |
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