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Abstract

In dimensiond > 3 a variational principle for the size of the pure point
spectrum, thus taking embedded eigenvalues into accoiigroddinger
operatorsH (¢, V') on the lattice is proven. The dispersion relatienare
assumed to be Morse functions and the poteniidls) to decay faster than
|| ~2(4+3) | but are not necessarily of definite sign. The proof is based o
resolvent estimates fdi (e, V'), for smallV’, combined with positivity ar-
guments.

1 Introduction

LetI' = Z¢ be thed-dimensional hypercubic lattice. Given a potenfial
¢>(I',R), the discrete Schrodinger operator correspondifig i®

_AF + V(l‘), (1)

whereV acts as a multiplication operator aig is the discrete Laplacian defined
by
[Argl(z) = Y {olx+v) —p(x)}. (2)

[v]=1



More generally, we assume to be given a functiore C?(I'*,R) on thed-
dimensional torus (Brillouin zond)* = (R/27Z)" = [—=, )¢, the dual group of
I'. We refer toe as adispersion relatioror simply adispersion We then consider
the self-adjoint operator

H(e,V) = h(e) + V(x), (3)

on ¢*(T"), whereh(e) € B[¢*(T)| is the hopping matrix (convolution operator)
corresponding to the dispersion relatign.e.,

Fr(h(e)p)](p) = e(p) [F (9)](p), (4)

for all ¢ € ¢2(T"). Here,

Fro A1) = LX), [F(o)lp) = > e Ppx), (5)

zel

is the usual discrete Fourier transformation with inverse

Fo AT — (D), Vwmwz/awwmmwx 6)

=

w* is the (normalized) Haar measure on the totys|(p) = (gig’d. Put differently,

h(e) = FeF* is the Fourier multiplier corresponding ¢éo
For eachr € T, letp, € ¢*(T") be the norm-one vector

©p(Y) = sy, (7)

whered, , is the Kronecker delta. For a dispersion relattcend a pair(z, y) €
"2, define the hopping amplitude

h(e)ay = <me| h(e)¢y> . (8)

We say that(¢) hasfinite rangef, for someR < oo and all(z, y) € T'?, [z —y| >
R impliesh(e),, = 0. The smallest numbeR(e) > 0 with this property is the
rangeof the hopping matrix.(e).

We assume w.l.0.g. that the minimumeas 0, so

e(I) = [0, emax(e)]. 9)



We will further assume that the dispersion relatiasatisfies the following condi-

tion:
d

(M) eand|Ve|>:= > |J,.¢* are Morse functions. (10)
k=1
Note that—Ar = h(eprap) andmin e, (I'*) = 0, with

d
eLapl (P Z (1 — cos(py)) 11

fulfilling (M).

To consider more general dispersions thap, is important, for instance, for
the analysis of many-body problems on the latlice even in the situation where
the dispersion relation for the one-body sector is chosdretq,.,;: Lete be a
dispersion relation. For eadki € I'* define the non-negative functied) : I' —
Ry by

e"(p) = e(p) +e(K —p) — B, (12)

where
K . / !
Eé ):——]J/Irélrrl{e(p)Jre(K—p)}. (13)

Dispersions of the form (12) come about in the analysis aksys of two particles
on the latticd” both having the same dispersioand interacting by a (translation
invariant) potential/ (x; — x2). Indeed, the two-particle Hamiltonian is unitarily
equivalent to the direct integral

[ vy 4 B 4 ), (14)

The functione™) is viewed as the (effective) dispersion of a pair of particle
travelling through the lattice with total quasi-momentdme T'*. Clearly, ¢(*)
fulfills (M) — at least in a neighborhood &f = 0 —, if ¢ does. As soon a&™ # 0,
however,e(Lifr))1 is not proportional ta,,,;. Similar facts hold true for théV-body
problem,N > 2.

Our goal in this paper is to give bounds on the sizg[e, V] of the pure point

spectrum ofH (e, V),
Nyyle, V] = dimspan {x | = eigenvector of{ (e, V)}, (15)

in dimensions! > 3.



Denote the essential and pure point spectid @f, V') by o.ss[e, V] ando,, [e, V],
respectively. Let further

Temple, V] 1= 0ess[e, V] Nopple, V] (16)

be the set of eigenvalues Hf(e, 1) embedded in its essential spectrumgsge, V|
is the disjoint union 0 giscc[¢, V] = opple, V]\Temble, V] @andoems[e, V]. Then

Npp[e7 V] = Ndiscr[ea V] + Nemb[ea V], (17)

where Ngiser[¢, V] and Ny e, V] denote the size of the discrete and embedded
pure point spectrum aoff (e, V'):

Naiser[e, V] = dimspan{z| H(e,V)z = Az, XA € 0qisee[¢, V]}, (18)
Nemple, V] = dimspan{z| H(e,V)x = Az, A € oempe, V]}.  (19)

Note that for the class of operatdie, V') considered here.,[¢, V] # 0, in
general. In fact, it can be easily shown — through simpleiex@xamples — that
there exist potential® and dispersion relationsfulfilling the assumption(M)
for which o [e, V] # 0, see (31)—(41) below.

In Theorem 4.4, we show that the following variational prohe holds:

Naiserle, V], #opple, V] < min {#fsupp V' [ ©5(V = V') < c(e) }.  (20)

Here,c(e) > 0 is a constant depending only on a few derivatives aihd, for any
m > 0 and any functioV : I' — R,

2

(V)= |3 V(@) |2 (|2] + 1) (21)

zel

The proof of (20) uses resolvent bounds (Theoreni3.2or H (e, V —V"), where
V' is chosen such that
Oy (V — V') < c(e), (22)

see Theorem 4.4. Note that the variational principle (2@)sisful only if V'(x)
is of sufficiently rapid decay, d3| — oc. Indeed, if®,,(V) < oo thenV (z) =
O((|e| + 1)20m+D),

In [BASPL10] we proved a similar (and stronger) variatigohciple for the
size Ngiser[¢, V] Of the discrete spectrum @f (¢, V') in any dimensionl > 1 and
for potentialsl” with a definite sign by using the Birman-Schwinger princigter
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the Schrodinger operators considered in this paper, henvévat method is not
directly applicable — not even for the study of the discrgcsrum. In particular
we do not assumg to have a definite sign.

Assume, for simplicity, that the hopping matrixe) has finite range, i.e.,
R(e) < oco. We can also give bounds on the multiplicity of the embeddgdre
values. Let, for any\ € R,

my :=dim{z| H(e,V)x = \z}. (23)

Define the symmetric operater = A(¢) on C>°(I'*,C) ¢ L*(I'™*,C) by
A d 1
Aply) =3 {RuclOneo) + 020l ). @9

We further denote byl = A(e) the (inverse) Fourier transform of, i.e., the op-
eratorA = F A F* with Dom(A) = F(C>(I'*,C)). Note thati[V, A] uniquely
extends to a bounded self-adjoint operator @) (also denoted by[V, A])
wheneverl” ande are of finite range. Densely defined bounded operators will
be always identified with their closures in the sequel. Wegtaw that, for any
A€ opple, V],

my < min{dim Ran(i[V', A]) | ®3(V — V') < (e), V'of finite range (25)
my < min{dimRan(V") | ®o(V — V') < ¢(e), V' of finiterangg .  (26)
Here,d (¢) is some finite constant depending only on a few derivativesafic(e)
is the same constant as in (20). Combining this with the b§R@on#c,,,[e, V],

we get a bound oV, [e, V]]. The bound (25) follows from resolvent estimates
(Theorem 3.2ii)) for

h(|Ve?) +i[V — V', A], provided®s(V — V') < {(e), (27)

combined with positivity arguments in the form of a viriakthrem (Lemma 2.3)
for H(e,V'), see Corollary 4.1. The bound (26) follows from resolvetinestes
(Theorem 3.2)) for

H(e,V — V"), provided®,(V — V') < c(e), (28)

and basic facts about eigenspaces of self-adjoint opsrétemma 4.2), see The-
orem4.4.



Observe that the bound (25) am, is tighter than the bound (26), in general.
Consider, for instance, the potenti&g(z) := 1[|z| < R], R € (0,00). Then

dim Ran(Vy) = O(R%), (29)

whereas
dim Ran (i[Vg, A(e)]) = O(R*™). (30)

Moreover, note that the bounds in (25)—(26) also hold forexyg@neral dispersions
¢ € C?(I'*, R) including dispersions with infinite range.

Observe that, by a theorem due to von Neumann and Weyl (seiastance,
[Kato, Chapter X, Theorem 2.1]), for any self-adjoint ogera{, on a separable
Hilbert spaceH and any prescribed upper bouad> 0, there is another self-
adjoint operatoir{; with a pure point spectrum (i.e., the space of eigenvectors o
H, is dense inH) and (H, — Hy) smaller thare in the Hilbert-Schmidt norm.
Thus, even arbitrarily small perturbations can drastycallange the point spec-
trum of a self-adjoint operator drastically.

It is well-known [NaYa92] thatH (e, V') has no embedded eigenvalues if
d = 1andV(z) = O(|z|'**) for somes > 0. This result strongly depends on
the particular choice of dimension and dispersion relagiod is false, in general,
(even in one dimension) for more genef&-dispersion relations, as can be seen
from the following simple examples:

For anyd > 1 definey € (*(T") ande € C*(T*, R),

B 1 , x,=0forsomek =1,...,d, 1
v(z) = e el otherwise, (31)
12 d
d
e(p) = JI[1—2cos(px)+ cos(2p)], (32)
k=1

wherex = (z1,...24) € T'andp = (p1,...ps) € I'*. From straightforward
calculations, one easily obtains

1
@91 @) = O s ) @3)
Define a potentia|7 by
V(x) = —% (34)



and observe thdt is real valued and

~ 1

)= () .
By construction, _

[h(e)Y] (z) = =V (z)¢(z). (36)

In particular, asnfe¢(I'") < 0 < supe(I™*), we have
0 € 0es[8, V] NopplE, V1], (37)

i.e., in any dimensiod > 1, 0 is an embedded eigenvalue Biz,V) with V (z)
decaying faster thain/|z|>~¢, for anye > 0, as|z| — oco. Observe further that
the dispersion relatioadefined in (32) satisfie@M) if d = 1, 2.

In higher dimensions there are even simpler examples a¢daBchrodinger
operators having embedded eigenvalues with dispersiatiors satisfyingdM)
and even for potentials with finite support, thus decayifmgtearily fast: Let

- 1 -1
V() = =0, / du*(p } , 38
@)= ~dso | [ i )
whered,, , is the Kronecker delta. Fat > 5, definey € ¢(*(T") by

eip~a: .
v = [ Esaw) (39

i.e. ¢ is the inverse Fourier transform @I;pl (which is an element of*(T™*)).
Then clearly,

[(eLap)¥] (@) = =V (2} (). (40)
In particular,

0 = inf eLapl(F*) c Uess[eLapla ‘7] N app[eLapl, ‘7] (41)
Note thate;,,;, satisfiegM) in any dimensiorn/ > 1.

This paper is organized as follows:

e In Section 2 we discuss a few general facts about the spedfuie, V')
and prove a virial theorem fd# (e, V') as Lemma 2.3.
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e In Section 3 we derive resolvent estimates féfe, 1V — V’), assuming
Dy (V—V") < c(e), and forh(|Ve|?)+i[V -V, A], assumingbs(V — V') <
c(e), respectively. An important technical problem we are fgdimthese
estimates arises from singularities of the type

1
PiA D =D — D)

appearing in integrands. Such singularities are callech ‘dave singu-
larities” in condensed matter physics and have importagsighl conse-
guences. They cannot be handled by simple “power countaryd,rather
sign cancellations have to be exploited in the bounds. Huisrtical aspect
is discussed in Appendix 5.3.

e Bound (20) on#o,,[e, V] is proven in Section 4, formulated in Theorem
4.4,

e Bounds (25) and (26) on the multiplicity, of eigenvalues\ are proven in
Section 4 as Corollary 4.1 and Theorem 4.4, respectively.

2 The Spectrum of H(e, V') — Generalities
We require thal” decays at infinity,

V e ((I,R) = {V:F—>R

‘ l‘im V(z) = 0}, (42)
or sometimes even th&t has bounded support. Note thate /5°(I", R) is com-
pact as a multiplication operator ¢4(T") and by a theorem of Weyl,

UeSS[H(e7 V)] - UeSS[H(e7 0)] - [07 emax]a (43)

wheree, . = emax(e).
Lete €C?*(I'*,R) be a Morse function. AB* is compactg has at most finitely
many critical points. We denote the set of all critical psiate by

Crit(e) :={p eI | Ve(p) = 0}. (44)
The critical values o¢, collected in the set

Thr(e) := ¢ (Crit(e)), (45)

8



are called othreshold=f e.
Observe that, for alp € C>(I'*, C),

ile, Alp(p) = [Ve@)P@(p) == _[0p.e(p)*@(p)- (46)

i=1

In particular,i[e, A] andi[h(e), A] extend to positive bounded operatorsigiil™*; C)
and¢2(T'; C), which we also denote a hije, A] andi[h(e), A], respectively. See
(24) and sentence thereafter for the definition of the opesat = A(e) and
A= A(e).

Note that|Ve(p)|? is a Morse function provided satisfies Assumptio(M).
As already mentioned above, one example of a dispersiotaelsatisfying(M)
IS erap defined by (11). The conditiofM) is stable under small perturbations in
theC3-sense, i.e., ifle — e[l o3 () Is sufficiently small and satisfiegM), then so
doese.

Furthermore, we observe that a dispersion relatiaGrC?(I'*,R) has finite
range if, and only if, it is a trigonometric polynomial of tfam

N .
e(p) = > cpe?o 47)
n=1
for suitablec;,...,cy € Candzy,...,zy € Z% But thenVe has finite range,
too, and
R(Ve) < R(e). (48)

Using the Fourier transformation one easily sees the{(if)|z| is summable
in I" then AV andV A define bounded operators. In particular, it follows imme-
diately from this that ift/(x)|z|? is summable for somg > 1 then AV andV A
define compact operators. For such potentials we have tlosvio estimate for
the commutatof[H (e, V), AJ:

Lemma 2.1 (Mourre Estimate for H(e, V)) If ¢ € C*(*,R) is a dispersion
relation thenA(e) uniquely extends to a self-adjoint operator (also denoted b
Ae)). If V . T — R is such thati[V, A] defines a compact operator, then,
for any continuous functiony : R — R of compact support and satisfying
dist(Thr(e), suppyx) > 0, there is a compact operatdk, € B[¢*(T',C)] and

a constant,, > 0 such that

X [H(e, V)] i[H (e, V), Al x [H(e, V)] = e’ [H(e, V)] + K. (49)

9



Observe that ifA C R is a compact subset withist(Thr(e), A) > 0, then
there is a continuous functiop : R — R with compact support such that
dist(Thr(e),suppyx) > 0, andx(A) = {1}. Let EA be the spectral projection
of H(e,V) associated wittA. ThenyEr = xEar = Ea and by multiplying
equation (49) withE» from the left and from the right it follows that, for some
ca > 0 and some compact operati,

EAi[H(e,V),A]EA > caFBEn + Ka. (50)

Again using the Fourier transformation, one easily chebks if ®»(V) < oo
thenAAV, AV A andV AA define bounded operators. By (46)¢iE C3(I'™, R),
[[h(e), A], A] extends to a bounded operator. In particula®ifV’) < oo and
e € C3(I',R), then[[H (e, V), A], A] extends to a bounded operator@iI’).

The following corollary is a consequence of the last two nks@nd the fact
that H (e, V') is bounded, see [CFKS, Theorems 4.7 and 4.9].

Corollary 2.2 Lete € C*(T'*, R) be a dispersion relation and 1t be a potential
with ®,(V) < co. ThenH (e, V') has no singular continuous spectrum and its
eigenvalues can only accumulate in pointgf-(¢).

Lemma 2.3 (Virial Theorem for H(e,V)) Lete € C*(T*,R) be a dispersion
relation and letV;, V, be potentials such thafl;, A(e)] and [V, A(e)] define
bounded operators. If is an eigenvector off (e, V; + V5), then

(pli[Va, Alp) = —(p [i[H (e, V1), Alp). (51)

Note that the restriction € C*(I'*,R) is only relevant for Corollary 2.2 and
Lemma 2.3 above.

The proofs of Lemmata 2.1 and 2.3 use adaptations for thiedatase of
known methods used for the continuum and are given in the Agiges.1- 5.2
for completeness. See also [CFKS, Chapter 4] and [GSch97].

The following upper bound on the multiplicity of embeddedezivalues of
H(e, V), in the case that’ andh(e) have finite range, is an immediate conse-
guence of the virial theorem (Lemma 2.3) above:

Corollary 2.4 (Upper Bound onm,, Finite Range Case)Letd > 1, A € R,V
be a potential of finite range, andoe a dispersion relation of finite range. Let

S(e, V) := dim Ran (i[V;, A(¢)]) (52)
Thenm, < Z(e, V)

10



Proof. dim Ran (:[V, A)]) is finite ande € C>°(I'*,R). We assume w.l.0.g. that
A is an eigenvalue ofi (e, V). Otherwise, the boundh), < (e, V) is trivial.
Observe that by (46)[h(e), A] is positive and has purely absolutely continuous
spectrum. Thus, for alp € ¢2(T')\{0}, (¢][h(e), Alp) > 0. Settingl; = 0
andV, = V it follows from Lemma 2.3 that, for any normalized eigenwect of
H(e, V), we have

(plilV, Alp) = —(F* () | | Ve[?F*(¢)) < 0. (53)

Hence, denoting by any finite dimensional subspace{of| H(e, V)z = Az}
we obtain, by compactness of thespheren = dimFE — 1, the estimate

max {(p [i[V, Alp) [ ¢ € E, [l¢ll, =1} <O. (54)

By the min-max principle, the dimension &f cannot exceed the number of neg-
ative eigenvalues of the self-adjoint operatdf, A| which, in turn, cannot exceed
the rank ofi[V, A]. Hence,
my < 3(e, V). (55)
O

In dimensiond > 3 the upper bound om, given in the corollary above can
be improved in the following sense:

o If &3(V) is small enough the (e, V') has no bound states cf. Corollary
3.3(),i.e.,my =0forall A € R.

o If V = V) 4+ V5 with V; of finite range andb;(V5) small enough (but’
not necessarily of finite range), them, < X(e¢,V}), i.e., the bound on the
multiplicitiesm, of eigenvalues\ of H (¢, V') in the corollary above is true
with V' replaced by, cf. Corollary 4.1.

3 Resolvent Estimates

Let ¢”(p) be the Hessian matrix of the dispersion relattoa C*(I'*,R) atp €
Crit(e). Define theminimal curvature of atp € Crit(e) by:

K(e,p) := min {\Aﬁ : \eigenvalue Ofe"(p)} : (56)
Define also theninimal (critical) curvature ot by

K(e) := min{K(e,p) | p € Crit(e)}. (57)

11



Note thatK (¢) > 0 and K (|Ve|?) > 0 under Assumptio(M).
For any functiore € C™(I'*,C) andm € N, define theC"™-norms as usual
by

lellgm = IﬂneaNfg{ T

[n|=m

dye(p)l. (58)

Lemma 3.1 Let ¢ be any dispersion relation fror@®(I'*,R). Let K > 0 and
C' < oo be constants witl((e) > K, and||¢||,s < C. Then there is a constant
c3.1 < oo depending only o’ and C' such that

Vi = neepvs w1 2(V) (59)
V2(z— h(e)) LAV )
VEAGE=h()TVE LS e ®a(V), (60)
V2A(z — h(e)) LAV 2 -
[(ul (2 = B "0, )| < a1+ [2])2(1+ [y])? (61)
[V = ne) || < ean (04 [al@a(v), (62)
[v3ac = nen e, < cs 0+ lalPas(v)2, (63)

for all potentialsV : I' — R, all z € C\R, and allz,y € . Here,V2 denotes
an arbitrary functionV’ : T' — C with (V2 (z))2 = V(z).

Proof. We freely use the equalit§(V'2)*)> = (V2)? = V in the sequel without
further mentioning. We write

(pulle = ) o) = (ot o204 2 [ P2, (64

with
etp-(z—=y)

(14 |2)2(1 + [y])*’

Fa:y (p) = (65)

12



and note thasup{|| [, || .- | #,y € '} < co. Hence, it follows from Lemma 5.1
that there is a constanénst < oo, such that

{2l (z = h(e) "', )| < comst(L + [z[)*(L + |y])*

forall z € C\R and allz,y € T".
LetV : I' — R be a potential witfRan(V'2) C dom(A). For allp € ¢4(T),
we define the following functions o,

Fip) = FroVi(p)p) =) e ™ Vi), (66)
d .
Fivip) = Y il0,e)l0, FY(0) + 51 Ve’ Few).  (67)

Then, for allx € T,

(e=he) Viglp) = [ TP Caee). e

(e netaviple) = [ a0 69
We note ‘ _

FEp)e™™ = (14 [o))? | (1 + o) 2FE()e ), (70)

where# denotes’ or AV, and observe that th&?-norms of the functions

p L+ [2)PF(p)e™™™, pe (L+ |2)) P Efy (p)e™"

are bounded byonst ®,(V)2 andconst 5(V)2, const < oo, respectively, uni-
formly inz € T'andy € ¢3(T), ||¢l|, < 1. It follows from Lemma 5.1 that, for
some constantonst < oo, allz € T, all z € C\R, and allp € ¢*(T), |¢|, < 1,

V(2= h(e) Yo, lla < const (14 |2])2@a(V)2,  (71)

IVEA(z — h(e)) o, lls < const (1+ |z]) 2@s(V)2,  (72)

ST = h(e) ViR | V)P < const? By(V)?, (73)

STz = h(e) TAVEQ [ VEp,)? < const? (V) Dy (V) (74)
xel’

< const® ®5(V)2. (75)
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Thus,

V2 (2 = h(e) 'V ||lsery < const V), (76)
V5 = he) " AVE gy < const By(V), )

for someconst < oo, all z € C\R and allz € I'. By taking adjoints, we further
obtain ) )
[VZA(z — h(e)) ™" V2 || gz < const ®3(V). (78)

Similarly, it follows, for a suitable constanbnst < oo, all z € C\R, allz € T,
and allp € (2(T), ||¢ll, < 1, that

> (2 = h(e) TAVEp | AVEg,)[? < const® @5(V)?. (79)
zel
Thus, ) )
IVZA(z — h(e)) " AV 2| g2 (ry < const @3(V) (80)
forall z € C\Rand allx € T". O

Theorem 3.2 (Resolvent Estimates in Dimensiod > 3) Letd > 3 ande €
C3(I'*,R) be a dispersion relation satisfyir{iy!).

(i) If 31 P2(V) < 1 then there exists a constant, < oo such that, for all
ze C\Randallz,y €T,

[{al(z = H(e,V)) ) < esa(1+ |2)*(1+ [y])™ (81)

(ii) If 2¢31 ®3(V) < 1 then there exists a constarif, < oo such that, for all
zeC\Randallzx €T,

[{al(z = ilH (e, V), A) "', )| < 551+ [2)* (1 +[y])*.  (82)

Proof. Forn € Nandz € C\R let

On(2) == [V(z = h(¢)) 71" = VEO,(2)VE(2 — h(¢)) !, (83)
where -
On(2) = [v%(z — i e))’IV%] (84)



Assume that; ; ®5(V) < 1. Then, by (59)]|0,.(z)|| < a"!, for some0 < a <
1. Thus we can define the operators

O(z) ==Y _Oul2).

It follows that, for each: € C\R, ||O(z)||B(gz(p)) < (1—a)"tandthatz—h(e)—
V') has a bounded inverse given by

(z—h(e) = V)™ = (2= h(e))™" [1 +V2I0()V2(z—h(e)'|.  (85)

This, (61), and (62) imply (81).
To prove (i), we temporarily ignore questions of convergeand write

(z—i[H(e, V), A) ™" =" Ro(i[V, AlRo)", (86)

n=0

whereR, := (z — i[h(¢), A])”". Observe that

iV,A] = iV3(VIA) +i(—AV?)V? (87)
= i) (—1)7(ATVE)(VEAT),
o=0
Hence,
(z—i[H(e,V), A" = Ry (88)

Now, due to Lemma 3.1, we have that

HVéAURo%c ) < e (14 z?) maX{CDQ(V)%, @3(1/)%} (89)

e C3.1<1 + ‘x|2)®3(v)%7 (90)

HVéA”RoAnV% B{e2(T)] < czamax{®(V), @3(V)} (1)
= c3.1P3(V). (©2)
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forallz € I'ando,n € {0,1}. By assumption2c; 1$3(V) < 1, and the Neu-
mann series evaluated on the vectprsandyp,, converges. Namely,

(ol (z —i[H (e, V), A )|
< G L+ 2P+ Y)Y (2051 25(V (93)
n=0

_ () A+ yP)
- ) 1— 203_1<I>3(V) . (94)

O

Corollary 3.3 Letd > 3 ande €C3(I'*,R) be a dispersion relation satisfying

(M).

(i) If c31 Po(V) < 1thenH (e, V') has purely absolutely continuous spectrum
and
Tac(H(e,V)) = [0, emax)- (95)

(i) If 2¢31 3(V) < 1theni[H (e, V), A] is positive and has purely absolutely
continuous spectrum.

Proof. Assume that; ; ®»(V) < 1. From Theorem 3@2), for all = € C\R and
all vectorsy € span{p, | x € I'}, i.e. ¢ of finite support, we have that

[{ol(z — H(eV)""9)| < clp) < o0 (96)

with ¢(y) depending only orp. Asspan{p, |z € I'} is dense in/*(T", C), (96)
implies the absolute continuity of the spectrum féfe, V); see, for instance,
[CFKS, Proposition 4.1]. Analogously, by Theorem 3:2, i[H (¢, V), A] has
only absolutely continuous spectrum whene¥es ; $3(1V) < 1. If $5(V) < o0
thenV andi[V, A] define trace class operators. By the Kato-Rosenblum theorem

Tac H(e,V)) = 0ac( h(e) ) = [0, emax] aNd 0uc(i[H (e, V), A]) C RE.  (97)

OJ
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4 Bounds on the Size of e, V]

Corollary 3.3 yields useful upper bounds on the multipjieit, of eigenvalues of
H(e, V') for d > 3 without assuming’ to be of finite range:

Corollary 4.1 (Upper Bound onm,, Infinite Range Cased > 3) Letd > 3, )\ €
R, and lete be a dispersion relation front(T'*, R) satisfying(M). Let V' :
' — R be a potential withd;(1") < oo and choosd/;, V, : I' — R such that
2¢31 P3(V1) < 1 andV; has finite support. Them, < (e, V5), wherem, and
Y.(e, V3) are defined in (23) and (52), respectively.

Proof. If 2¢5, ®3(V1) < 1, then by Corollary 3.8:), i[H (e, V), A] > 0 and has
purely absolutely continuous spectrum. Thus, by Lemmaif3js an eigenvec-
tor of H(e, V') then(y|i[Va, Alp) < 0 and hencen, < dim Ran(i[V;, A]). See
the proof of Corollary 2.4 for more details. O

Lemma 4.2 (Bound on the Point Spectrum at Finite Rank Perturlations) Let
H, be a bounded self-adjoint operator on a Hilbert sp&¢éor whicho,,[H,| =
(), i.e. Hy has no eigenvalue. L&Y be another bounded self-adjoint operator on
H. Then

#opp|Ho + W] < dim Ran (W). (98)

Moreover, ifA € op,,[Hy + W] then
dimker(Hy + W — A) < dim Ran(WV). (99)

Proof. We assume w.l.0.g. th&t" has finite rank. Lek € o,,[H, + W]. Then,
for somey € H\{0},
(Ho — A = =W, (100)

By assumptiorr,,,[Ho] = (), hence
Wi = —(Ho — M)y #0. (101)

This implies thatPy ¢ # 0, wherePy is the orthogonal projection onto the range
of W. Let H)Y := Py H,. Then, adV has finite rank,

N
Hy o= kZ:Il (Hotpy| ) ¥y, (102)
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where{¢, }_, is an ONB ofRan(WW). Let P be the orthogonal projection on the
finite dimensional subspace

span {Ran(W) U Ran(H,W)} C H. (103)
From the eigenvalue equation it follows that
Pw[Hy — A+ W]y = 0. (104)
Hence, ifA € o,,[H + W] then, for somep € ran(P)\{0},
[Hy — APy + Wlp =0, (105)
sincelW = W Py,. This implies that
D(X) :=det (P[H)" — APw + W]P) =0 (106)

whenever\ € o,,[Hy + W]. Observe thaiD()\) is a polynomial of degree at
mostdim Ran (W) and has thus at modtm Ran (W) zeros. This proves the first
assertion.

Let )y, v, € ker(Hy + W — X) for somel € o,,[Hy + W]. Then

(Ho = M) = 13) = =W (1hy — 1) (107)

Thus, aso,,[Ho] = 0, ¢y = v, iff W(¢; —1,) = 0. In other words, |V :
ker(Hy + W — X) — Ran (V) is injective and thus

my = dimker(Hy + W — \) < dim Ran (W). (108)

O
Observe that the bound (98) above takes embedded eigesvataeaccount
but disregards multiplicities. If we only consider the dete spectrum off (e, V')
itis easy to see, by using the min-max principle, that a sinibund, but counting
multiplicities instead, holds true. A proof of this fact ivgn below for complete-
ness:

Lemma 4.3 (Bound onNg;[¢, V]) LetV; € (°(T") be any potential such that
oaser[H (e, V1)] = (0. For any potentialiy,

Ndiscr[ea ‘/1 + VVQ] S #Supp ‘/2 (109)
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Proof. We assume thatsupp V5> < oo, otherwise there is nothing to prove. Let

Ni.le,Vi+ Vo] andNg . [e, Vi + V5] be the size of the discrete spectrum above
and below zero, respectively. Then

Niiserle, Vi + Vo] < #supp Vy, (110)
wherel,” := =V, 1[V, < 0] is the negative part dfy: As

H(e,Vi+ Vi) > H(e,Vi — Vy), (111)

it suffices to prove thatf (e, V) — V) has at most/ := #supp V,,~ eigenvalues
below zero (counting multiplicities). Assume thus tiiate, V; — V") has at least
M+1 eigenvalues below zero. Then, by the min-max principlegisea subspace
X c 3T, dim X = M + 1, for which

sup (] H(e, Vi — V3 ) < 0. (112)
PeX, [[4llp=1
Hence
sup (Y |H(e,Vi=Vy)v) = sup (¢ |H(e,V1)v) <0. (113)
peXnker(V, ), heXNker(Vy ),
[lllo=1 [lllo=1
AS 0ess[H (e, V1)] = [0, emax], @gain by the min-max principle, this would then

imply thato gise. [ H (e, )] is not empty. But, by assumptiongs..[H (e, V1)] = 0.
LetV," := V5 1[V, > 0]. Note that

N+

discr

[e ‘/1_'_‘/2] Ndlscr[emax_e7 _‘/1_‘/2] < Ndlscr[emax_e7 _‘/1_‘/2+] (114)

and thav ;s [H (¢, V1)] = 0 impliesogise: [H (emax — ¢, — V1] = 0. Thus, similarly,

Nierle, Vi + V5] < #fsupp V' (115)
and hence
Naiser[6, Vi + Vo] = Ngle,Vi+ Vo] + Ni e, Vi+ V5] (116)
< #suppVy + #supp V' (117)
= #fsupp Va. (118)
O

Combining Corollary 3.3 with Lemmata 4.2 and 4.3 we finaliy.arat Bounds
(20) and (26):
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Theorem 4.4 (Bound on the Size of,,(e,V')) Letd > 3 and assume that the
dispersion relatior satisfiegM). Then there exists a constatit) > 0 depending

only on three derivatives of the dispersion relatiosuch that, for all potentials
VT — Rwith ®5(V) < oo, we have

Naiser[e, V], #opple, V] < min {#supp V' | Do(V — V') < c(e) }, (119)

my < min{dim Ran(V") | ®o(V — V') < ¢(e), V' of finite rangg (120)
and, for all potentials/ : I" — R, with ®3(V") < oo, we further have

my < min {dim Ran(:[V', A]) | ®3(V — V') < ¢(e), V' of finite rangé . (121)

5 Appendix

5.1 Proofof Lemma?2.1

Let N be the unique self-adjoint extension of the operafatefined orC>(I'*, C)
L*(T*) by
d

Ne(p) =Y (1 —-32)e(p)- (122)

=1

Observe that for somenst < oo and allp, ¢ € C>*(I'*, C),
(¢"| Ap)| < comst || ¢ [zl N2, [l2< const || N2¢" [l2f| N2, |2 (123)

Forallp € C>(I'*,C),

d

(NA=AN)p(p) = i S {2108,y ) 0y, 0(0)] + 3105, 25, )l (p)
+2(0p, 8pk,/ e(p)][0p, 8pk,/ ©(p)] } (124)

An integration of the terms with second derivatives.dy parts yields, for some
0 < const < oo and allp, ¢' € C>(I'*, C), that

[(N¢' | Ap) = (A" [ Ng)| < const || N2y [l2| N2, |2 - (125)
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Thus, by Nelson’s commutator theorem (see [RS2, Theorer8]X.8 is essen-
tially self-adjoint onC>°(I"™*, C).
Clearly, asy is continuous and has compact support,

X(H(e,V)) = x(H(e,0)) 2 2(126)
= 173?01\/%_77 i X (1) [exp (—(H(e,:) —?) ) — exp (_(H(e’n()) —t) )]dt

in norm sense. Observe that

_n /OOO () [exp (_(H<e’ V) - t)Z) —exp (_<H<e’n0) — t>2)} at (127)

n
_ /O 1 { /O T ) exp (_S(H (6777 V)= t)g) (Vh(e) + h(e)V + V2 — 2tV
—(1— s)(H(e,0) — t)*
exp ( ” ) dt] ds.
As V is a compact operator, it follows from (127) thatH (e, V) — x(H(e,0))
IS compact.

The difference
i[H(e,V), Al —i[H(e,0), A] = i[V, A] (128)

is also a compact operator, by assumption. To finish the ppbsérve that, as
i[H (e, 0), A] is unitarily equivalent to the multiplication operat®re|?, there is a
constant > 0 such that

X(H (e,0))i[H (e, 0), A]x(H(e,0)) = cyx*(H (e, 0)). (129)
UJ

5.2 Proof of Lemma 2.3

Let ¢ be an eigenvector off (¢, V; + 1;) and define, for each € Z\{0}, the
vector »
L (0
it AT
Sincei[H (e, V1), A] andi[V;, A] are bounded operators, by assumption, we have
that

(130)

lim (o, [i[H (e, V1), Alp,) = (@ [ilH (e, V1), Al), (131)
lim (p_, [i[Va, Ale,) = (p|i[Va, Alp). (132)

n—oo
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Note that

(_p [i[H (e, V1 +V3), Alp,,)
= (p_, |i[H(e,V1), Alp,,) + (po_,, [V, Alp,). (133)

Hence it suffices to prove, for all € N, that

(o_, [i[H (e, V1 + V), Alp,) = 0. (134)
For alln € N,
(o_n | i[H (e, V1 + Vo), Alp,) (135)
A
= <90 i [H(e,%+%),i;n+14} so> = 0.

5.3 Proof of Lemma 3.1

In order to prove Lemma 3.1 we need the following estimate:

Lemma 5.1 Assume thaf > 3 and lete be a dispersion relation witlk (¢) > 0
and [|e||s < oo. Suppose that € C*(T*,R). Then there exists a constant
cs1 < oo depending only o (e), |l¢]| s and||x|| .. such that

x(p) .
| 2 <p>‘ < e (136)

forall z € C\R.
Proof. We assume w.l.0.g. thatis bounded byz| < e,..x+1, say. We further note

thate has only finitely many critical point$(Q < oo, abbreviatingy := Crit(e),
sincel™ is compact and is a Morse function. The latter is also the reason that,

for eachg € Q, there exist an index:, € {0, ..., d} and aC?-coordinate chart
&, € C*(By—m X By;U,), for
B, := Bgpn(0,7) ={z € R" : |z| <71}, >0, (137)

denoting the Euclidean open ball k" of radiusr andl{, C I'* being an open
neighborhood of such that, for all € B;_,,,, y € B,,,

cp < |det Jac §, (z,y)| < ez, (138)
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€O£q(lC, y) = Q(Q) + l,2 - y27 (139)
Z/{q 2 BF* (Q7 5)7 (140)

for suitable constantg,é > 0, r € (0,1) ande, < co. § > 0 can be chosen such
that away from the critical points we can find a finite set

QSN :={qeT"|e(q) = Re{z}} (141)

and, for eachy € Q, aC2—coordinate chariq e C*((—r,r) x Bd_l;ﬁq), with
Zjiq C I'™* being an open neighborhoodgfsuch that, foralk € (—r,7),y € By_1,

c1 < |det Jac gq(:c,y)| < ¢, (142)
eof,(x,y) = e(q) + x, (143)
Uty 2{pel™ : |e(q) — 2| < 4, dist(p, Q) > }. (144)
q€Q
Let
N = {p eT* : le(p) — 2| > g} (145)

Then{\'} U {Uy}geq U {Hq}qeé is a finite open covering df* and there exists a
subordinate partition of unity,

{n} U{ngteeq U, },eq € CF (7 [0,1]), (146)
such that R B
supp) C N, supp), C Uy, suppj, C Uy, (147)
forq € QU@, and
ﬁ+znq+2ﬁqzl. (148)
qeQ qeé
It follows that
X(p) * 7 T
——=dw(p) =1+ 3 I,+ > I, (149)
- 2 —¢(p) 9€Q 7€0
where
P [ LB, (150)
r- 2 —¢(p)
I, = / ddly/ dpLe®:Y) (151)
By, _T b —x
_ fa(z,y)
o= d=mq my 4 152
q /Bd—qu x/qud yaq+ib—$2+y2’ (152)
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whereb := Im{z}, a, := Re{z} — ¢(q), and
Jo = (@08 (x 0 &)l det JacE,|, (153)
fq = ( g )(X © fq)‘ det JaC £q| (154)
Note thatf, € C2((—r,7) x By 1;R) and f, € C2(By_m, X Bm,;R), due to

(147). Moreoverﬂf;HCz, | fqllc2 < oo. The asserted estimate (136) now follows
from Lemmata 5.2-5.4 and the trivial estimate

125 [ o) (155)

Observe that the constantsy, ¢;, ¢, and#Q, #Q only depend ok (e) , le]l s
and||x|| .. U

Lemma 5.2 Assume thad > 1 and0 < r < 1. There is aconstar@l < oo such
that, forall f € C'((—r,7) x B4_1;R) and allb € R\ {0},

By ., ib—u

Proof. For allz € (—r,r) and ally € B,_,, the fundamental theorem of calculus

gives
e

zb—:c

Cill fllen - (156)

Sl < Wle s

and thus

T T d
/Bdl dd_ly/r dxfzf””_?j} < 2Bar|[fllen (1 - '/ Z.bfx') . (158)

The assertion follows then from
/ /1 bdx
ib—ax| = | ) 4 b®+2?

Lemma 5.3 Assume thad > 3 and0 < r < 1. There is aconstar@ < oo such
that, for all f € C}(B4R), alla € Rand allb € R\{0},

B, a+ib—x

= 2arctan(]b]) < . (159)

OJ

Co | fllen (14 a® +07). (160)




Proof. Introducing spherical coordinates, we observe that

J = Ld% - /r Mds (161)
0

B, @ +ib— 2?2 a+ib—s2

whereg € C'([0,1]; R) is the spherical average ¢f ||g|| .. < || /||, defined by

g(s) == f(s9) A o (V). (162)

gd-1

An integration by parts gives

Re{J}

I P et AP

_ /0 o) (163)
I o ( d 22 | 12

- _Z/o g(s)s?™ (gln [(a—s) +b])ds (164)
1

=1 /0 (¢'(5)s"* + (d = 2)g(s)s" ") In [(a — 5")* + ] ds. (165)

We used above thatr) = 0. Now, use the elementary estimate

1

1 < —(\*+ X 166
(V)] < - (A + A7), (166)

which holds true for ali, « > 0. Choosingx := % (166) yields

d—1 ! 2\2 2
[Re{TH <= == l9llen In [(a — s*)> + b?]| ds (167)
0

2 | p2y\L bods

< Clgllen |(T+a™+07)s + | ———= (168)
0 |a—s?|1

< Clglles 1+ a® +0°), (169)

for some universal constant§ C’ < oo. Similarly,

r d—1
/ g(s)s s
o 1+b72(a—s?)?
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= % /Org(s)sd_2 (% arctan [a |_b|82}> ds (a71)
= % /0 (g’(s)sd_2 + (d — 2)g(s)sd_3) arctan {a |—b|s } ds| (172)
< Cllgles - (173)

[

Lemma 5A.4 Assumethat > 3,0 <r < 1,andl < m < d—1. Thereis a
constantC < oo such that, for allf € C3(Bs_,, x B,;R), all a € R and all
b € R\{0},

d=mg qm
/,Bdm/ma+zb—x2+y vy

Proof. As in Lemma 5.3, we introduce spherical coordinatesn,,, and B,,
and defingy € ([0, 1] x [0, 1J;R), With [[g[|c: < [|f ]|, by

<yl fllen (1 +a®+0%).  (174)

gay) = [ F(0,yx) Ao (9) 4o (k),  (175)
Sd m—1 m—1
so that

dd=mg 4™ 176

/l;d /ma+zb—x2+y Z ) ( )

d m— 1ym 1
dz dy. 177
// a—l—zb—x2+y v (77)

We perform yet another smooth coordinate change byC>((0,r)x(—1, 1); (0, 2r) x
(0,2r)),

r=0¢.(s,u) :=s(14+u), y=oys,u):=s(l—mu), (178)
|det Jac ¢(s, u)| = 2s, (179)
gls,u) = (1+ )™ (1 —w)" g (s(1+u),s(1 —u)), (180)

from which we obtain

K =2 . 181
//_1a+zb— 25)? dudr (181)
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Note thatg(s, u) = 0 whenevers(1 + «) > r. Following a similar strategy as in
the proof of Lemma 5.3, we first observe that

Re{K}
— 9 /0 T / 11 SOl - (;8()222);U+  du ds (182)
- /O e { / 115;(5,@ <% In [(a—(25)2u)2+62]> du] ds(183)
- —i/orsd_?’g(s,l)ln [(a — (25)%)* + b%] ds (184)
+1 | 5 D (o + 297 + 7] ds (185)

% /0 g3 { / (03,0 In [(a — (25)20)? + 1] du} ds. (186)

-1

We use (166) again to bound
In [(a — (25)%u)? + ] < 8(8 + 24 + )5 + 8|(25)?|ul — [al| 5 (187)

foru = +£1 andu € [—1, 1], respectively, and hence

2 ds
|RG{IC}| S CHf”Cl (1+a2+b2+/0 m (188)

2 1 d
+/ /721 : ds)
o |Jo |s?u—lallx

for a suitable constant < co. Since

2 dS 2
/ ﬁ:/ 1,1 _/ T 1L (189)
o [s2—lal[s Jo (s+]a|? ) \S—IG\ E |s—\a| |2
and
/ / ds du / / ds < 8, (190)
[s2u—lal|t Jo s2 Iu—"|4

we obtain that

Re{KC}| < 2*C || fllca (1 +a® + 7). (191)
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Similarly,

Im{KC
:{ }2 / / G, u) — I g, (192)
0 (@ — (25)%u)? + b?
= % ' sd- [/ g(s <— arctan [%S)QU]) du] ds (193)
0

1 — (2s)°

= 5/0 573G (s, 1) arctan[ ) ] ds (194)
1 a+ (2s)?
5/ 4=37(s, —1) arctan {T} ds (195)

and| arctan(y)| < 7 immediately implies that
[T { 3 < C[ fl (197)

for a suitable constant < oo.
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