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Abstract

This paper investigates the connectivity in one-dimensional ad hoc wireless

networks with a forbidden zone. We derive the probability of the wireless

networks which are composed of exactly m clusters by means of the methods

of combinatorics and probability. The probability of connectivity, i.e. m = 1,

can be obtained as a special case. Further, we explain how the transmission

range of node affects the connectivity of the wireless network.
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1 Introduction

In recent years, ad hoc wireless networks have been extensively investigated due to

their wide applications in computer communication and engineering. A fundamental

and important issue is the connectivity of ad hoc network which was introduced in

[2, 9]. Many rigorous results on the asymptotic critical transmission radius and

asymptotic critical neighbors for the connectivity of network in a bounded area

have been obtained to date [1, 2, 4, 10]. More recently, the one-dimensional version

which is also called the random interval graph has been studied distinguishingly in

the literature [11, 12]. However, these ad hoc wireless networks are usually assumed

in a regular graph, which contradict with the practical applications. We always

need to consider the case of an irregular graph. For example, in the researches on

monitoring the ocean temperature for an accurate weather prediction, detecting the

1Email: xdhu@mspil.edu.cn
2Email: grechnikov@gmail.com



forest fires occurring in remote area and rapid propagation of traffic information

from vehicle to vehicle, we need to deal with the connectivity of ad hoc networks in

an irregular region [7]. As each node in the ad hoc networks has a limit transmis-

sion power and the networks have to communicate in the way of multihop, we can

not keep the ad hoc networks connected in general. This will lead to the difference

of connectivity between the ad hoc network in a regular graph and an irregular

one. Based on the purpose, we introduce a new one-dimensional ad hoc wireless

network model with a forbidden zone and study its connectivity. We not only in-

tend to investigate the effect that the transmission radius of nodes and the feature

of irregular graph make, but also to make those engineers and theoretical computer

scientists pay attention to the interesting topic.

The probability that a one-dimensional wireless ad hoc network which is com-

posed of at most m clusters is presented in [4]. As a special case, the probability

of network connectivity, i.e. m = 1 is also derived. In this paper, we obtain several

generic formulas for the probability that a one-dimensional ad hoc network with

a forbidden zone is composed of exactly m clusters. As some applications of the

theorems, we analyze and confirm these results by plotting some figures. These

results developed in this paper may be useful for the design and engineering of

random wireless access networks in the future.

2. Main results and proofs

In order to state our main results, we first introduce some definitions. Let

G[a,b](n, L + b − a) denote the one-dimensional ad hoc wireless network with n

nodes and a forbidden zone [a, b], such that 0 ≤ a < b ≤ L. In general, assume

that all nodes in the ad hoc networks are independently and identically distributed

(i.i.d.) in the two-closed interval [0, a] ∪ [b, L + b − a], and a pair of nodes can

directly communicate if and only if the distance between them is not larger than

their transmission radius r (0 < r < L). Obviously, the case of a = 0 or b = L is

equivalent to the classical one-dimensional wireless ad hoc. So we always assume

that 0 < a < L
2

in virtue of symmetry. Let G(n, L) denote the one-dimensional ad

hoc network without a forbidden zone and with n nodes which are i.i.d. in [0, L].

The model is also called random interval graph which was investigated in [5] and

[8]. Further, if there exists another fixed node at the point x ∈ [0, L] (i.e. there are

n+1 nodes in the interval [0, L]), denote the model by Gx(n, L). In particular, when

x = 0, we simply denote G0(n, L). From [11], the exact probability of connectivity
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in Gx(n, L) has been derived. For simplicity, we also use Pm(·) to express the

probability that the above wireless network is composed of at most m clusters and

Qm(·) for exactly m clusters. Easily see that P1(·) ≡ Q1(·). The following results

are known to us and will be needed later.

Lemma A. (see [3,6].)

Q1

(
G(n, L)

)
=

k1∑
i=0

(−1)iCi
n−1(1−

ir

L
)n (1)

and

Q1

(
G0(n, L)

)
=

k2∑
i=0

(−1)iCi
n(1− ir

L
)n, (2)

where k1 = min{n−1, bL
r
c}, k2 = min{n, bL

r
c} and bxc denotes the greatest integer

which is not bigger than x. In general, the following theorem also holds.

Lemma B. (see [11].) For any x ∈ [0.L], then

Q1

(
Gx(n, L)

)
=

n∑
i=0

Ci
n(

x

L
)i(1− x

L
)n−iQ1

(
G0(i, x)

)
Q1

(
G0(n− x, L− x)

)
, (3)

where Q1

(
G0(i, x)

)
is the expression of (2).

Lemma C. (see [4].) Let m be any natural number, then

Pm

(
G(n, L)

)
= 1−

k1∑
i=m

(−1)i−mCm−1
i−1 Ci

n−1(1−
ir

L
)n, (4)

where k1 = min{n− 1, bL
r
c}.

Now let’s consider the connectivity of one-dimensional ad hoc networks with a

single access point and a forbidden zone, respectively. The following four theorems

are our main results.

Theorem 1. Let m be any natural number, then

Qm

(
G(n, L)

)
=

k1∑
i=m−1

(−1)i−m+1Cm−1
i Ci

n−1(1−
ir

L
)n (5)

and

Qm

(
G0(n, L)

)
=

k2∑
i=m−1

(−1)i−m+1Cm−1
i Ci

n(1− ir

L
)n, (6)

where k1 = min{n− 1, bL
r
c}, k2 = min{n, bL

r
c} and

∑k
i=m(·) := 0 for k < m.

Proof. First we come to consider (6). The proof comes from [4]. In order to

avoid boring the reader, we shall not prove it in detail and only give the different

part.
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Let {vi}n
i=0 represent respectively the positions of n + 1 nodes, where v0 = 0.

From the definition of the model, {vi}n
i=1 are i.i.d.. Order these random variables,

we easily obtain 0 = v(0) ≤ v(1) ≤ . . . ≤ v(n) ≤ L. Define ∆i−1 = v(i)−v(i−1), v0 = 0.

we have

0 ≤ ∆(0) ≤ ∆(1) ≤ . . . ≤ ∆(n−1),

where {∆(i)}0≤i≤n−1 denote the order statistics of random variables {∆i}0≤i≤n−1.

For any k constants ci ≥ 0, i = 0, 1, . . . , k − 1, satisfying
∑k−1

i=0 ci ≤ L, applying

the properties of order statistics, we have

P
(
∆0 > c0, . . . , ∆k−1 > ck−1

)
=

(L− c0 − . . .− ck−1)
n

Ln
.

Note that the probability that the network is composed of at most m clusters is

P (∆(n−m) ≤ r) and the joint distribution for any k of the ∆i (k = 0, · · · , n− 1) is

the same as that of the first k. We further have

P (∆(n−m) > r) =
n∑

i=m

(−1)i−mCm−1
i−1 Ci

nP (∆0 > r, . . . , ∆m−1 > r)

=

k2∑
i=m

(−1)i−mCm−1
i−1 Ci

n(1− ir

L
)n,

where k2 = min{n, bL
r
c}.

Thus, Pm(G0(n, L)) = 1−∑k2

i=m(−1)i−mCm−1
i−1 Ci

n(1− ir
L
)n and

Qm(G0(n, L)) = Pm(G0(n, L))− Pm−1(G0(n, L))

=

k2∑
i=m−1

(−1)i−m+1Cm−2
i−1 Ci

n(1− ir

L
)n −

k2∑
i=m

(−1)i−mCm−1
i−1 Ci

n(1− ir

L
)n

=

k2∑
i=m−1

(−1)i−m+1Cm−1
i Ci

n(1− ir

L
)n.

On the other hand, we can obtain (5) by using the same method, i.e.

Qm(G(n, L)) = Pm(G(n, L))− Pm−1(G(n, L))

=

k1∑
i=m−1

(−1)i−m+1Cm−2
i−1 Ci

n−1(1−
ir

L
)n −

k1∑
i=m

(−1)i−mCm−1
i−1 Ci

n−1(1−
ir

L
)n

=

k1∑
i=m−1

(−1)i−m+1Cm−1
i Ci

n−1(1−
ir

L
)n.

4



Remark 1. Let m = 1, we obtain the exact probability that the wireless network

with a single access node at point 0 is connected, i.e.

P1

(
G0(n, L)

)
= Q1

(
G0(n, L)

)
=

k2∑
i=0

(−1)iCi
n(1− ir

L
)n.

This is exactly the expression of (2).

If the single access point is not placed at the point 0 or L, then we have the

following theorem.

Theorem 2. Let m be any natural number and x ∈ (0, L), then

Qm

(
Gx(n, L)

)
= Qm

(
G0(n, x)

)
(
x

L
)n + Qm

(
G0(n, L− x)

)
(
L− x

L
)n

+
n−1∑
i=1

k4∑

j=k3

Ci
nQj

(
G0(i, x)

)
Qm+1−j

(
G0(n− i, L− x)

)
(
x

L
)i(

L− x

L
)n−i, (6)

where k3 = max{1,m + i− n}, k4 = min{i + 1,m}.
Proof. Applying the total probability formula, we have

Qm

(
Gx(n, L)

)
=

n∑
i=0

Qm

(
Gx(n, L)

∣∣i nodes in [0, x]
)
P

(
i nodes in [0, x]

)
. (7)

Further,

P
(
i nodes in [0, x]

)
= Ci

n(
x

L
)i(

L− x

L
)n−i

and

Qm

(
Gx(n, L)

∣∣i nodes in [0, x]
)

=

k4∑

j=k3

Qj

(
G0(i, x)

)
Qm+1−j

(
G0(n− i, L− x)

)

+Qm

(
G0(i, x)

)
+ Qm

(
G0(n− i, L− x)

)
, (8)

where k3 = max{1, (m + i− n)} and k4 = min{i + 1,m}.
Indeed, if there are i + 1 nodes, including the fixed node at x, placed in [0, x],

the event that there are only m clusters in this wireless network is equivalent to

the collection of events that j clusters in [0, x] and m + 1 − j clusters in [x, L].

According to the model, the restrictions on j are

1 ≤ j ≤ i + 1, j ≤ m and 1 ≤ m + 1− j ≤ n + 1− i.

That is

max{1,m + i− n} ≤ j ≤ {i + 1,m}.
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Figure 1

So we obtain (8). Finally, from (7), we have

Qm

(
Gx(n, L)

)
= Qm

(
G0(n, x)

)
(
x

L
)n + Qm

(
G0(n, L− x)

)
(
L− x

L
)n

+
n−1∑
i=1

k4∑

j=k3

Ci
n(

x

L
)i(

L− x

L
)n−iQj

(
G0(i, x)

)
Qm+1−j

(
G0(n− i, L− x)

)

=
n∑

i=0

k4∑

j=k3

Ci
n(

x

L
)i(

L− x

L
)n−iQj

(
G0(i, x)

)
Qm+1−j

(
G0(n− i, L− x)

)
,

where k3 = max{1, (m + i− n)}, k4 = min{i + 1,m} and Qk

(
G0(0, l)

)
:= 1 for any

l and natural number k.

In particular, m = 1,

Q1

(
Gx(n, L)

)
=

n∑
i=0

Ci
n(

x

L
)i(

L− x

L
)n−iQ1

(
G0(i, x)

)
Q1

(
G0(n− i, L− x)

)
. (9)

The proof is completed.

Next, we shall analyze the exact probability that a one-dimensional ad hoc net-

work with a forbidden zone [a, b] is composed of exactly m clusters. As a special

case, the connectivity is also considered.

We still assume that the n nodes can be placed on the intervals [0, a] or [b, L +

b − a], but not in (a, b). A clear intuition shows that the network consists of two

parts under the condition b − a > r. (See FIGURE 1) From the knowledge on

probability, we can see that the probability that only two nodes in the network

placed respectively at the points a and b is zero. So we have the following result.

Theorem 3. If b− a ≥ r, then for any natural number m ≥ 2,

Qm((G[a,b](n, L)) =
n−1∑
i=1

k6∑

j=k5

Ci
n(

a

L
)i(

L− a

L
)n−iQj(G(i, a))Qm−j(G(n− i, L− a))

+(
a

L
)nQm(G(n, a)) + (

L− a

L
)nQm(G(n, L− a)), (10)

where k5 = max{m + i− n, 1} and k6 = min{i,m− 1}.
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In particular, m = 2,

Q2

(
G[a,b](n, L)

)
= (

a

L
)nQ2

(
G(n, a)

)
+ (

L− a

L
)nQ2

(
G(n, L− a)

)

+
n−1∑
i=1

Ci
nQ1

(
G(i, a)

)
Q1

(
G(n− i, L− a)

)
(
a

L
)i(

L− a

L
)n−i. (11)

Proof. Applying the total probability formula, we have

Qm(G[a,b](n, L)) =
n∑

i=0

Qm

(
G[a,b](n, L)

∣∣i nodes in [0, a]
)
P (i nodes in [0, a]). (12)

Further,

P (i nodes in [0, a]) = Ci
n(

a

L
)i(

L− a

L
)n−i (13)

and for i ≥ 1,

Qm

(
G[a,b](n, L)

∣∣i nodes in [0, a]
)

=

k6∑

j=k5

Qj(G(i, a))Qm+1−j(G(n− i, L− a)). (14)

where k5 = max{m + i− n, 1} and k6 = min{i,m− 1}.
Replace (12) by (13) and (14), we easily obtain (10).

When b− a < r, the generic formula for the probability that a wireless network

with a forbidden zone [a, b] consists of exactly m clusters is complicated.

Theorem 4. If b− a < r, then for any natural number m ≥ 1,

Qm(G[a,b](n, L)) = (
a

L
)nQm(G(n, a)) + (

L− a

L
)nQm(G(n, L− a))

+
n(n− 1)

Ln

n−2∑
i=0

k8∑

j=k7

∫ a

0

[ ∫ L+b−a

A1

Ci
n−2x

i(L + b− a− y)n−2−i

×Qj(G0(i, x))Qm−j(G0(n− 2− i, L + b− a− y))dy
]
dx

+
n(n− 1)

Ln

n−2∑
i=0

k10∑

j=k9

∫ a

A2

[ ∫ A3

b

Ci
n−2x

i(L + b− a− y)n−2−i

×Qj(G0(i, x))Qm+1−j(G0(n− 2− i, L + b− a− y))dy
]
dx,

where k7 = max{1,m+1+i−n}, k8 = min{m−1, i+1}, k9 = max{1,m+i+2−n},
k10 = min{m, i + 1}, A1 = min{L + b− a, max{x + r, b}}, A2 = max{0, b− r} and

A3 = min{L + b− a, x + r}.
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In particular, if m = 1, a ≤ L
2

and b− a < r < b,

Q1(G
[a,b](n, L)) = (

a

L
)nQ1(G(n, a)) + (

L− a

L
)nQ1(G(n, L− a))

+
n(n− 1)

Ln

n−2∑
i=0

Ci
n−2

∫ a

b−r

[ ∫ x+r

b

xi(L + b− a− y)n−2−i

×Q1(G0(i, x))Q1(G0(n− 2− i, L + b− a− y))dy
]
dx. (15)

Proof. First consider the case of m = 1. To keep the wireless network connected,

only three possibilities of events should be considered. The former two possibilities

are that n nodes consisting of one cluster are uniformly placed in [0, a] or [b, L+b−a].

Obviously, the sum of the two probabilities is

(
a

L
)nP1(G(n, a)) + (

L− a

L
)nP1(G(n, L− a)). (16)

The third event is that i (1 ≤ i ≤ n) nodes are placed in [0, a], n − i nodes in

[b, L + b − a] and the whole nodes consists of exactly one cluster. To compute its

probability, we choose any two nodes from n nodes of the network and then place

them respectively at x, y, where x ∈ [0, a] and y ∈ [b, L + b − a]. We assume that

there are no other nodes between x and y, i.e. the left n − 2 nodes are placed in

[0, x] and [y, L + b − a]. Let the n nodes consist of one cluster. Easily find the

number of total choices is n(n− 1) and the restrictive conditions for x and y are

0 ≤ x ≤ b− r and b ≤ y ≤ x + r.

So the probability of the third event is equivalent to

Ci
n−2

n(n− 1)

Ln

n−2∑
i=0

∫ a

b−r

[ ∫ x+r

b

xi(L + b− a− y)n−2−i

×Q1

(
G0(i, x)

)
Q1

(
G0(n− 2− i, L + b− a− y)

)
dy

]
dx, (17)

by applying total probability formula. From (16) and (17), (15) can be proved at

once.

The following step is to prove the former part of Theorem 4.

Using the same method as the case of m = 1, we still have three possible events

that the wireless network is composed of exactly m (m ≥ 2) clusters. The sum of

the former two probabilities is

(
a

L
)nQm(G(n, a)) + (

L− a

L
)nQm(G(n, L− a)). (18)

Now come to the third event. The computation is more complex. We still use the

former method. Choose any two nodes from n nodes of the network and place them
8



respectively at the points x, y. According to the model and noting that m ≥ 2,

we need to consider the two cases of |x− y| ≤ r or |x− y| > r, i.e. the two nodes

are connected or not. For each case, we also have n(n− 1) ways to choose. When

|x− y| ≤ r, we need to assume that

b− r ≤ x ≤ a and b ≤ y ≤ x + r.

Furthermore, these nodes in [0, x] consist of only j (j = 1, · · · ,m− 1) clusters and

those in [y, L+ b−a], m+1− j clusters. By the total probability formula, we have

P (the third event) =
n(n− 1)

Ln

n−2∑
i=0

k10∑

j=k9

∫ a

A2

[ ∫ A3

b

Ci
n−2x

i(L + b− a− y)n−2−i

×Qj(G0(i, x))Qm+1−j(G0(n− 2− i, L + b− a− y))dy
]
dx, (19)

where k9 = max{1,m + i + 2 − n} and k10 = min{m, i + 1}, A2 = max{0, b − r}
and A3 = min{L + b− a, x + r}.

When |x− y| > r, we need to assume that

0 ≤ x ≤ a and max{b, x + r} ≤ y ≤ L + b− a.

Then there are only j clusters in [0, x] and m− j in [y, l + b− a]. So we similarly

have

P (the third event) =
n(n− 1)

Ln

n−2∑
i=0

k8∑

j=k7

∫ a

0

[ ∫ L+b−a

A1

Ci
n−2x

i(L + b− a− y)n−2−i

×Qj(G0(i, x))Qm−j(G0(n− 2− i, L + b− a− y))dy
]
dx, (20)

where k7 = max{1,m + 1 + i − n}, k8 = min{m − 1, i + 1} and A1 = min{L +

b− a, max{x + r, b}}. From (18), (19) and (20), we easily obtain the expression of

Pm(G[a,b](n, L)).

3. Discussion

In FIGURE 2, we plot Qm(Gx(n, L)) as a function of the normalized range r
L

for

different values of m,n and x. From (a) and (b), we can observe that the networks

almost can’t be composed of exactly m (m ≥ 2) clusters once the value of r
L

becomes

smaller than 0.05 or larger than 0.2. The maximum value for Qm(G0(n, L)) becomes

much bigger as n becomes smaller at the fixed point x = 0, but becomes smaller as

m becomes bigger. In virtue of (c), we can see that the properties of Qm(Gx(n, L))

is similar to ones of Qm(G0(n, L)) for each m and n. We avidly guess that the
9
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maximum value of Pm(Gx(n, L)) is no more than 0.5. In fact, we can prove the

result with the help of mathematical software such as Maple 6.0.

In FIGURE 3, we plot Pm(G[a,b](n, L)) as a function of normalized range r
L

for

different values of a, b which satisfy b − a > r. From (d), we also observe that

the value of Pm(G[a,b](n, L)) becomes more large as r
L

increases for a = 0.2 and

b = 0.6. When r
L
≤ 0.05, the network can not be composed of only two clusters.

Once increase n, the network becomes more connected under fixed a and b. An

interesting problem is what conditions can guarantee that Pm(G[a,b](n, L)) can take

its maximum for each forbidden zone as the length b− a is fixed. Finally, we have

not a good method to deal with the results of Theorem 4 at present. Especially, we
10



want to know how much effect the transmission range r makes for the network. We

believe the problems can be solved by approximation methods. This is our future

work.
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