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Abstract

In this paper we consider the Anderson type model and show that

the density of states is analytic in an interval for large disorder. The

examples we have allow for the single site distributions to have some

singular components. We also allow non-nearest neighbour hopping

terms.

1 Introduction

The Anderson tight binding model describes a quantum mechanical particle

such as an electron moving in a random potential. The model is defined by

(the N = 1 case of the) operator

Hω
λ = H0 + λV ω on ℓ2(Zd), (1) OP

with H0 and V ω given as follows.

∗Institute of Mathematical Sciences, CIT Campus, Taramani 600 113, Chennai,

INDIA. On leave of absence from Department of Electrical Engineering and Infor-

mation Technology, Tohoku Gakuin University, Tagajo, 985-8537, JAPAN. e-mail:

kaminaga@tjcc.tohoku-gakuin.ac.jp
†Institute of Mathematical Sciences, CIT Campus, Taramani 600 113, Chennai, INDIA.

e-mail: krishna@imsc.res.in

1



Let ej denote the unit vector in the j-th direction in Z
d. Then let

(T±
j u)(n) = u(n ± ej), in ℓ2(Zd). With this notation,

(H0u)(x) =

d
∑

j=1

N
∑

k=1

(T k
j + T−k

j u)(x). (2)

The collection {V ω(x)} are i.i.d. random variables with common probability

distribution µ and λ is a real coupling constant. The operator H0 is seen to

be multiplication by the function

d
∑

j=1

N
∑

k=1

2 cos(kθj) =

d
∑

j=1

(

sin((N + 1
2
)θj)

sin(
θj

2
)

− 1

)

, on L2(Td).

Therefore the spectrum of H0 is given by σ(H0) = [E0, 2Nd] with

−2Nd ≤ E0 ≤







0, if N is even,

−2d, if N is odd.
(3) eqn1

Hence we see that H0 is a bounded self-adjoint operator with ‖H0‖ = 2Nd.

In general it is not clear how to determine E0 for any given N (except for

the case N = 1).

Then, Hω
λ are self-adjoint operators. If Γ is a finite box of Zd, we will

denote by Hω
λ,Γ the operator Hω

λ restricted to ℓ2(Γ) with Dirichlet boundary

conditions. The integrated density of states(IDS for short), N (E), is defined

by

N (E) = lim
Γ→Zd

1

#Γ
#{eigenvalues of Hω

λ,Γ ≤ E}.

It is a consequence of ergodic theorem for almost every ω the limit exists for

all E ∈ R and is independent of ω. Moreover supp(dN ) = σ(Hω
λ ) a.e. ω. The

basic facts about the density of states is found in any of the standard books

in the area for example Cycon-Froese-Kirsch-Simon [4], Carmona-Lacroix [3]

and Figotin-Pastur [7]. It is a result of Pastur [11] that N (E) is always

continuous. The IDS N (E) is positive, non-decreasing and bounded (by

1) function satisfying N (∞) = 1. So it is the distribution function of a
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probability measure. In the case when this measure is absolutely continuous,

the density n(E) of this measure is called the “the density of states”. One

of the questions of interest is the degree of smoothness of the function n,

which is also often referred to as the smoothness of IDS, which we do in the

following.

There are many results on the smoothness of IDS for one-dimensional

case. For example, N (E) is differentiable, even infinitely differentiable under

some regularity assumptions on µ (Companino-Klein [5] and Simon-Taylor

[12]). Moreover the smoothness of IDS in the Anderson model on a strip

are considered, for example, Klein-Speis[9], Klein-Lacroix-Speis[8], Glaffig[6]

and Klein-Speis[10].

On the other hand, there are very few results on the smoothness of IDS for

multi-dimentional case. Using Molchanov formula (of expressing the matrix

elements of e−itHω
λ in terms of a random walk on the lattice), Carmona showed

(see section VI.3 [3] ) that for the Cauchy distribution the IDS is C∞.

Among the most important other results in the multi-dimensional case are

Bovier-Campanino-Klein-Perez [1] and Constantinescu-Fröhlich-Spencer[2] and

all the available results require that the disorder parameter λ is large or the

region of energy considered is away from the middle of the spectrum.

A typical result in Bovier-Companino-Klein-Perez [1] is that N (E) is

(n+1)-times continuously differentiable under the condition that the Fourier

transform h(t) of dµ satisfies (1 + t)d+nh(t) ∈ L1. On the other hand

Constantinescu-Fröhlich-Spencer [2] show that N (E) is real analytic in E,

for |ℜE| large enough if the density of µ is analytic in the strip {V : |ℑV | <

2(d + ǫ)} for arbitrarily small, but positive ǫ.

We consider the question of smoothness of the IDS for the operators given

in equation (1). Our main theorem is the following.

maintheorem Theorem 1. Consider Hω
λ and let (a, b) be an interval (a, b) ⊂ Σ = σ(Hω

λ )

a.e. ω such that

Bµ(z) =

∫ ∞

−∞

dµ(x)

x − z
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is analytic in z ∈ (a, b) so that for some interval (c, d) ⊂ (a, b),

sup
ℜz∈(c,d)

∣

∣

∣

∣

∫ ∞

−∞

dµ(x)

(x − z)k

∣

∣

∣

∣

1/k
(2Nd)

λ
:= α < 1, (4) hyp

holds for every k ≥ 1. Then, for each λ > λ0 := (2Nd)/(b − a) there

exists an interval (E−(λ), E+(λ)) ⊂ σ(Hω
λ ) such that n(E) is analytic in

(E−(λ), E+(λ)).

Example 1. Let (a, b) be an interval and let P be a polynomial which is

positive in (a, b) and let
∫ b

a
P (x)dx = IP . Let (c, d) ⊂ (a, b) and consider the

measure

dµ = αdν +
β

IP
χ(a,b)P (x)dx

where ν is an arbitrary probability measure such that suppν∩(c, d) = ∅. Then

our theorem is valid for this collection of probability measures. We note that

in the case when P = 1 and α = 0, we get the uniform measure.

Our theorem is valid for this class of measures, if they further satisfy the

hypothesis (4). Clearly ν being arbitrary it can have any component.

It is simple to see that Bµ(z) is analytic for ℜz ∈ (a, b) (we do an inte-

gration by parts for the absolutely continuous part of µ to get this).

Remark 1. 1. It is easy to show that Σ = σ(H0) + suppµ, with the proof

following the N = 1 case. This together with equation 3 shows that our

theorem is non-trivial.

2. Our method of proof involves using a Neumann series expansion and

controlling the terms, a method in some sense similar to that employed

by Constantinescu-Fröhlich-Spencer [2].

However, our assumptions on ν allow for singular (even atomic com-

ponents) in contrast to the theorems in [2] and [1]. Both these works

require the measures ν to be absolutely continuous.

We show in our proofs that we can localize the analysis using Neumann

series expressions.
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2 Proof of Theorem

We begin with stating several well-known properties on Borel transforms,

where given a real-valued probability measure σ we denote Bσ(z) =
∫∞

−∞

1
x−z

dσ(x).

1. Bσ(x + i0) = limǫ→0 Bσ(x + iǫ) exists for Lebesge-a.e. x ∈ R.

2. The absolutely continuous part σac of the measure σ has the derivative

given by
dσac

dx
=

1

π
ℑBσ(x + i0). (5) IDS1

3. The singular part σsing of the measure σ is supported by the set {E ∈

R : limǫ→0 ℑBσ(x + iǫ) = ∞}.

Note that the density of states n(E) is given as the following by using

Borel transform BN of N .

n(E) =
1

π
ℑBN (E + i0) =

1

π
lim
ǫ→0

E(ℑ〈δ0, (H
ω
λ − E − iǫ)−1δ0〉). (6) IDS2

Proof of Theorem

We first consider the Neumann series expansion of E〈δ0, (H
ω
λ − z)−1δ0〉.

E〈δ0, (H
ω
λ − z)−1δ0〉

= E

[

∞
∑

m=0

〈δ0, (λV ω − z)−1H0)
m(λV ω − z)−1δ0〉

]

=

∞
∑

m=0

E〈δ0, (λV ω − z)−1H0)
m(λV ω − z)−1δ0〉 (7)

=

∞
∑

m=0

γm(z). (8)

which converges for |ℑz| > ‖H0‖. We used Fubini’s theorem in the last

equality.
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Let

ΛN(n) =
d
⋃

j=1

{k ∈ Z
d : 1 ≤ |(n − k)j| ≤ N, (n − k)j′ = 0, j 6= j′},

Sm = {(0, n1, n2, . . . , nm, 0) ∈ (Zd)m+2, n1 ∈ ΛN(0),

n2 ∈ ΛN(n1), . . . , nm−1 ∈ ΛN(nm−2), nm ∈ ΛN(nm−1) ∩ ΛN(0)}.

(9)

It is then clear that the cardinality of ΛN(n) is equal to 2Nd for any n ∈ Z
d

and therefore the cardinarity of Sm satisfies the bound #Sm ≤ (2Nd)m. We

will denote below points of Sm by ~n and the matrix elements H0(k, l) =

〈δk, H0δl〉, k, l ∈ Z
d.

Now to see the convergence of the series in equation (7), we will start by

looking at a typical summand, namely γm(z) and expand it explicitly as,

γm(z)

= E〈δ0, ((λV ω − z)−1H0)
m(λV ω − z)−1δ0〉

= E
∑

~n∈Sm

〈δ0,

[

m
∏

j=1

(λV ω(nj) − z)−1H0(nj , nj+1)

]

(λV ω(0) − z)−1δ0〉

=
∑

~n∈Sm

E〈δ0,

[

m
∏

j=1

(λV ω(nj) − z)−1

]

(λV ω(0) − z)−1δ0〉

=
∑

~n∈Sm

Im(~n, z).

In the penultimate equality was obtained using the fact that H0(nj , nj+1) = 1

for ~n = (0, n2, n3, · · · , nm, 0) ∈ Sm.

We next consider each of the terms Im(~n, z) in the sum above.

Im(~n, z) = E〈δ0,

[

m
∏

j=1

(λV ω(nj) − z)−1

]

(λV ω(0) − z)−1δ0〉,

where ~n = (0, n2, n3, · · · , nm, 0) ∈ Sm. Using the independence of the random

variables V ω(nj) for distinct nj ’s and the fact that in the above term some
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of the nj ’s may coincide, we see that the expectations are of the form

Im(~n, z) =

l
∏

i=1

∫ ∞

−∞

dµ(x)

(λx − z)ki
=

1

λm+1

l
∏

i=1

∫ ∞

−∞

dµ(x)

(x − z/λ)ki
, (10) g_func

for some collection of numbers (k1, k2, · · · , kl) satisfying
∑l

i=1 ki = m+1, 1 ≤

ki ∀ 1 ≤ i ≤ l, where the index l is at least one but does not exceed m. The

exact value of l is not easy to get and we do not need this information in

what we do below.

Let (E−(λ), E+(λ)) = (λc, λd), where (c, d) is given in the assumption on

µ given before equation (4). Then, by the assumption on µ, we see that each

of the factors occuring in equation (10), for Im(~n, z) is analytic in z in the

region ℜz ∈ I(λ) = (E−(λ), E+(λ)) and we have

sup
ℜz∈I(λ)

|Im(~n, z)| ≤ sup
ℜz∈I(λ)

1

λm+1

l
∏

i=1

(

∣

∣

∣

∣

∫ ∞

−∞

dµ(x)

(x − z
λ
)ki

∣

∣

∣

∣

1/ki

)ki

≤
1

λm+1

l
∏

i=1

(

sup
ℜz∈I(λ)

∣

∣

∣

∣

∫ ∞

−∞

dµ(x)

(x − z
λ
)ki

∣

∣

∣

∣

1/ki

)ki

≤
1

λm+1

l
∏

i=1

(

αλ

2Nd

)ki

≤
1

λm+1

(

αλ

2Nd

)m+1

=
( α

2Nd

)m+1

.

Therefore it follows that,

sup
ℜz∈I(λ)

|γm(z)| ≤
∑

~n∈Sm

sup
ℜz∈I(λ)

|Im(~n, z)|

≤ (#Sm)
( α

2Nd

)m+1

≤ (2Nd)m αm+1

(2Nd)(m+1)

=
αm+1

2Nd
.

Hence, the series in equation (7) converges uniformly in any compact subset of

{z : ℜz ∈ (E−(λ), E+(λ))}. The assumption on µ shows that the functions
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∫

1
(x−z)k dµ(x) are analytic in ℜz ∈ (a, b) for any k, these being constant

multiples of the k-th derivatives of the function Bµ(z) which is analytic there.

Therefore finite products of such functions are also analytic in the same

region. Hence each of the terms Im(~n, z) and hence also γm(z) are analytic

in ℜz ∈ (E−(λ), E+(λ)), thus showing the analyticity of the left hand side

there.
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