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Abstract. We prove a Beale-Kato-Majda criterion for the loss of regularity

for solutions of the incompressible Euler equations in Hs(R3), for s > 5
2

.

Instead of double exponential estimates of Beale-Kato-Majda type, we obtain

a single exponential bound on ‖u(t)‖Hs involving the dimensionless parameter
introduced by P. Constantin in [2]. In particular, we derive lower bounds on

the blowup rate of such solutions.

1. Introduction

In this paper, we revisit the Beale-Kato-Majda criterion for the breakdown of
smooth solutions to the 3D Euler equations.

More precisely, we consider the incompressible Euler equations

∂tu+ (u · ∇)u+∇p = 0 (1.1)

∇ · u = 0 (1.2)

u(x, 0) = u0 (1.3)

for an unknown velocity vector u(x, t) = (ui(x, t))1≤i≤3 ∈ R3 and pressure p =
p(x, t) ∈ R, for position x ∈ R3 and time t ∈ [0,∞).

Existence and uniqueness of local in time solutions to (1.1) – (1.3) in the space

C([0, T ], Hs) ∩ C1([0, T ];Hs−1) , (1.4)

has long been known for s > 5
2 , see for instance [6]. However, it is an open prob-

lem to determine whether such solutions can lose their regularity in finite time.
An important result that addresses the question of a possible loss of regularity of
solutions to Euler equations (1.1) – (1.3) is the criterion formulated by Beale-Kato-
Majda [1] in terms of the L∞ norm of the vorticity ω = ∇ ∧ u. More precisely,
Beale-Kato-Majda in [1] proved the following theorem:

Theorem 1.1. Let u be a solution to (1.1) – (1.3) in the class (1.4) for s ≥
3 integer. Suppose that there exists a time T ∗ such that the solution cannot be
continued in the class (1.4) to T = T ∗. If T ∗ is the first such time, then∫ T∗

0

‖ω(·, t)‖L∞ dt =∞. (1.5)
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The theorem is proved with a contradiction argument. Under the assumption∫ T∗

0

‖ω(·, t)‖L∞ dt <∞ ,

the authors of [1] show that ‖u(·, t)‖Hs ≤ C0, for all t < T ∗ contradicting the
hypothesis that T ∗ is the first time such that the solution cannot be continued to
T = T ∗. In particular, Beale-Kato-Majda obtain a double exponential bound for
‖u(·, t)‖Hs , which follows from the following estimates:

Step 1 An energy-type bound on ‖u‖Hs in terms of ‖Du‖L∞ , where Du = [∂iuj ]ij
is a 3×3-matrix valued function. More specifically, one applies the operator
Dα to equations (1.1)-(1.2), where α is an integer-valued multi-index with
|α| ≤ s and uses a certain commutator estimate to derive

d

dt
‖u(·, t‖2Hs ≤ 2C‖Du‖L∞‖u(·, t)‖2Hs , (1.6)

which via Gronwall’s inequality gives the bound:

‖u(·, t)‖Hs ≤ ‖u0‖Hs exp

(
C

∫ t

0

‖Du(·, τ)‖L∞ dτ
)
. (1.7)

Step 2 An estimate on ‖Du(·, t)‖L∞ based on the quantities ‖ω(·, t)‖L∞ , ‖ω(·, t)‖L2 ,
and log+ ‖u(·, t)‖H3 , given by

‖Du(·, t)‖L∞ ≤ C
{

1 +
(

1 + log+ ‖u(·, t)‖H3

)
‖ω(·, t)‖L∞ + ‖ω(·, t)‖L2

}
, (1.8)

where C is a universal constant.

Step 3 The bound on ‖ω(·, t)‖L2 in terms of ‖ω(·, t)‖L∞ given by

d

dt
‖ω(·, t)‖2L2 ≤ 2D ‖ω(·, t)‖L∞ ‖ω(·, t)‖2L2 ,

which follows from taking the L2(R3)-inner product of ω with the equation
for vorticity. Then, Gronwall’s inequality yields

‖ω(·, t)‖L2 ≤ ‖ω(·, 0)‖L2 exp

(
D

∫ t

0

‖ω( · , τ)‖L∞ dτ
)
. (1.9)

Consequently, one obtains the double exponential bound

‖u(·, t)‖Hs ≤ ‖u0‖Hs exp

(
exp

(
C

∫ t

0

‖ω( · , τ)‖L∞ dτ
))

. (1.10)

from combining (1.7), (1.8) and (1.9).

It is an open question whether (1.10) is sharp1. While we do not attempt to
answer that question itself in this paper, we obtain a single exponential bound on
the Hs-norm of solution to Euler equations (1.1) - (1.3) in terms of the quantity

`δ(t) = min
{
L ,

(‖ω(t)‖Cδ
‖u0‖L2

)− 2
2δ+5

}
, (1.11)

1Single exponential bounds have been obtained in other solution spaces than those displayed
above, see for instance [7] for such a result in BMO.
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where

‖ω‖Cδ = sup
|x−y|<L

|ω(x)− ω(y)|
|x− y|δ

(1.12)

denotes the δ-Holder seminorm, for L > 0 fixed, and δ > 0. More precisely, we
prove the following theorem:

Theorem 1.2. Let u be a solution to (1.1) - (1.3) in the class (1.4), for s = 5
2 + δ.

Assume that `δ(t) is defined as above, and that∫ T

0

(`δ(τ))
− 5

2 dτ < ∞ . (1.13)

Then, there exists a finite positive constant Cδ = O(δ−1) independent of u and t
such that

‖u(·, t)‖Hs ≤ ‖u0‖Hs exp
[
Cδ ‖u0‖L2

∫ t

0

(`δ(τ))
− 5

2 dτ
]

holds for 0 ≤ t ≤ T .

The quantity `δ(t) has the dimension of length, and was introduced by Con-
stantin in [2] (see also the work of Constantin, Fefferman and Majda [4] where a
criterion for loss of regularity in terms of the direction of vorticity was obtained),
where it was observed that ∫ T

0

(`δ(t))
− 5

2 dt = ∞ (1.14)

is a necessary and sufficient condition for blow-up of Euler equations. In particular,
the necessity of the condition follows from the inequality obtained in [2]

‖ω(·, t)‖L∞ ≤ ‖u(·, t)‖L2 (`δ(t))
− 5

2 , (1.15)

and Theorem 1.1 of Beale-Kato-Majda. This is so because Theorem 1.1 implies that

if the solution cannot be continued to some time T , then
∫ T

0
‖ω(·, t)‖L∞ dt = ∞.

As a consequence of (1.15), and conservation of energy

‖u(·, t)‖L2 = ‖u0‖L2 , (1.16)

this in turn implies (1.14). However, by invoking the result of Beale-Kato-Majda
in this argument, one again obtains a double exponential bound on ‖u(·, t)‖Hs in

terms of
∫ T

0
(`δ(t))

− 5
2 dt. We refer to [3, 5] for recent developments in this and

related areas.

In this paper, we observe that one can actually obtain a single exponential bound

on the Hs-norm of the solution u(t) in terms of
∫ T

0
(`δ(t))

− 5
2 dt, as stated in Theo-

rem 1.2. This is achieved by avoiding the use of the logarithmic inequality (1.8) from
[1]. More precisely, we combine the energy bound (1.6) with a Calderon-Zygmund
type bound on the symmetric and antisymmetric parts of Du.

Also, we obtain a lower bound on the blowup rate of solutions in H
5
2 +δ. Specif-

ically, we prove:
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Theorem 1.3. Let u be a solution to (1.1) – (1.3) in the class

C([0, T ];H
5
2 +δ) ∩ C1([0, T ];H

3
2 +δ). (1.17)

Suppose that there exists a time T ∗ such that the solution cannot be continued in
the class (1.17) to T = T ∗. If T ∗ is the first such time then there exists a finite,
positive constant C(δ, ‖u0‖L2) such that

‖u(·, t)‖
H

5
2
+δ ≥ C(δ, ‖u0‖L2)

( 1

T ∗ − t

)1+ 2
5 δ

, (1.18)

under the condition that t is sufficiently close to T ∗ (see the conditions (3.22) and
(3.23) below, with t0 = t).

The proof of Theorem 1.3 can be outlined as follows. We assume that u is a
solution in the class (1.17) that cannot be continued to T = T ∗, and that T ∗ is
the first such time. Invoking the local in time existence result, we derive a lower
bound Tloc,t1 > 0 on the time of existence of solutions to Euler equations in (1.17)

for initial data u(t1) ∈ H 5
2 +δ at an arbitrary time t1 < T ∗. By definition of T ∗, we

thus have

t1 + Tloc,t1 < T ∗ . (1.19)

Based on an energy bound on the H
5
2 +δ-norm of the solution, we obtain in Section

3 an expression for Tloc,t1 of the form 1
C‖u(·,t1)‖

H
5
2
+δ

, which together with (1.19)

implies that

‖u(·, t1)‖
H

5
2
+δ >

1

C(T ∗ − t1)
, (1.20)

for all t1 < T ∗. This is an “a priori” lower bound on the blowup rate. Subsequently,
we improve (1.20) by a recursion argument in Theorem 1.3 for times t close to T ∗,
to yield the stronger bound (1.18).

2. Proof of theorem 1.2

First we recall that the full gradient of velocity Du can be decomposed into
symmetric and antisymmetric parts,

Du = Du+ + Du− (2.1)

where

Du± =
1

2

(
Du±DuT

)
. (2.2)

Du+ is called the deformation tensor.

In the following lemma we recall important properties of Du+ and Du−. For
the convenience of the reader, we give proofs of those properties, although some of
them are available in the literature, see e.g. [2].

Lemma 2.1. For both the symmetric and antisymmetric parts Du+, Du− of Du,
the L2 bound

‖Du±‖L2 ≤ C‖ω‖L2 . (2.3)

holds.
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The antisymmetric part Du− satisfies

Du−v =
1

2
ω ∧ v (2.4)

for any vector v ∈ R3. The vorticity ω satisfies the identity

ω(ξ) =
1

4π
P.V.

∫
σ(ŷ)ω(x+ y)

dy

|y|3
, (2.5)

(”P.V.” denotes principal value) where σ(ŷ) = 3 ŷ ⊗ ŷ − 1, with ŷ = y
|y| . Notably,∫

S2

σ(ŷ) dµS2(y) = 0 , (2.6)

where dµS2 denotes the standard measure on the sphere S2.

The matrix components of the symmetric part have the form

Du+
ij =

∑
`

T `ij(ω`) =
∑
`

K`ij ∗ ω` , (2.7)

where ω` are the vector components of ω, and where the integral kernels K`ij have
the properties

K`ij(y) = σ`ij(ŷ) |y|−3 (2.8)

‖σ`ij‖C1(S2) ≤ C (2.9)∫
S2

σ`ij(ŷ) dµS2(y) = 0 . (2.10)

Thus in particular, T `ij is a Calderon-Zygmund operator, for every i, j, ` ∈ {1, 2, 3}.

Proof. An explicit calculation shows that the Fourier transform of Du as a function
of ω̂ is given by

D̂u(ξ) = −[(∂i(∆
−1∇∧ ω)j)

̂(ξ)]i,j = Ĝ(ξ) + Ĥ(ξ) (2.11)

where

Ĝ(ξ) :=
1

2|ξ|2

 ξ1ξ2ω̂3 − ξ1ξ3ω̂2 −ξ2ξ3ω̂2 ξ2ξ3ω̂3

ξ1ξ3ω̂1 ξ2ξ3ω̂1 − ξ1ξ2ω̂3 −ξ1ξ3ω̂3

−ξ1ξ2ω̂1 ξ1ξ2ω̂2 ξ1ξ3ω̂2 − ξ2ξ3ω̂1

 (2.12)

and

Ĥ(ξ) :=
1

2|ξ|2

 0 ξ2
2 ω̂3 −ξ2

3 ω̂2

−ξ2
1 ω̂3 0 ξ2

3 ω̂1

ξ2
1 ω̂2 −ξ2

2 ω̂1 0

 , (2.13)

using the notation ω̂j ≡ ω̂j(ξ) for brevity.

Clearly, every component of G is given by a sum of Fourier multiplication op-

erators with symbols of the form
ξiξj
|ξ|2 , i 6= j, applied to a component of ω. For

instance,

G21(x) = const. P.V.

∫
ŷ1ŷ3 ω1(x+ y)

dy

|y|3
(2.14)

corresponds to the component G21. It is easy to see that every component Gij
is a sum of Calderon-Zygmund operators applied to components of ω, with kernel
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satisfying the asserted properties (2.8) ∼ (2.10). The same is true for the symmetric
part, G+ = 1

2 (G+GT ).

The symmetric part of Ĥ(ξ) is given by

Ĥ+(ξ) =
1

2|ξ|2

 0 (ξ2
2 − ξ2

1)ω̂3 (ξ2
1 − ξ2

3)ω̂2

(ξ2
2 − ξ2

1)ω̂3 0 (ξ2
3 − ξ2

2)ω̂1

(ξ2
1 − ξ2

3)ω̂2 (ξ2
3 − ξ2

2)ω̂1 0

 (2.15)

so that each component defines a Fourier multiplication operator with symbol of

the form
ξ2i−ξ

2
j

|ξ|2 , i 6= j, acting on a component of ω (with associated kernel of the

form
x2
i−x

2
j

|x|n+2 ). That is, for instance,

H+
12(x) = const P.V.

∫
(ŷ2

2 − ŷ2
1)ω3(x+ y)

dy

|y|3
. (2.16)

The properties (2.8) ∼ (2.10) follow immediately.

The Fourier transforms of the integral kernels K`ij can be read off from the

components Ĝ+
ij + Ĥ+

ij . In position space, one finds that σ`ij(ŷ) is obtained from a

sum of terms proportional to terms of the form ŷi1 ŷj1 and (ŷ2
i2
− ŷ2

j2
).

For the antisymmetric part Du−, one generally has Du−v = 1
2 (∇∧u)∧v for any

v ∈ R3, and from u = −∆−1∇∧ ω, we get Du−v = 1
2ω ∧ v, using that ∇ · u = 0.

As a side remark, we note that while H− does not by itself exhibit the proper-
ties (2.8) ∼ (2.10), it combines with G− in a suitable manner to yield the stated
properties of Du−, thanks to the condition ∇ · ω = 0. �

Next, Lemma 2.2 below provides an upper bound in terms of the quantity `δ(t)
on singular integral operators applied to ω of the type appearing in (2.7). We
note that similar bounds were used in [2] and [4] for the antisymmetric part Du−.
Here, we observe that they also hold for the symmetric part Du+. As shown in [4]
for Du−, the proof of such a bound follows standard steps based on decomposing
the singular integral into an inner and outer contribution. The inner contribution
can be bounded based on a certain mean zero property, while the outer part is
controlled via integration by parts.

Lemma 2.2. For L > 0 fixed, and δ > 0, let `δ(t) be defined as above. Moreover,
let ω`, ` = 1, 2, 3, denote the components of the vorticity vector ω(t). Then, any
singular integral operator

Tω`(x) =
1

4π
P.V.

∫
σT (ŷ)ω`(x+ y)

dy

|y|3
(2.17)

with ∫
S2

σT (ŷ)dµS2(y) = 0 , ‖σT ‖C1(S2) < C , (2.18)

satisfies

‖Tω`‖L∞ ≤ C(δ) ‖u0‖L2 `δ(t)
− 5

2 (2.19)

for ` ∈ {1, 2, 3}, for a constant C(δ) = O(δ−1) independent of u and t.
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Proof. Let χ1(x) be a smooth cutoff function which is identical to 1 on [0, 1], and
identically 0 for x > 2. Moreover, let χR(x) = χ1(x/R), and χcR = 1− χR.

We consider ∫
|y|>ε

σT (ŷ)ω`(x+ y)
dy

|y|3
= (I) + (II) (2.20)

for ε > 0 arbitrary, where

(I) :=

∫
|y|>ε

σT (ŷ)ω`(x+ y)χ`δ(t)(|y|)
dy

|y|3
(2.21)

and

(II) :=

∫
σT (ŷ)ω`(x+ y)χc`δ(t)(|y|)

dy

|y|3
. (2.22)

From the zero average property (2.18), we find

‖(I)‖L∞ =
∣∣∣ ∫
|y|>ε

σT (ŷ) (ω`(x+ y)− ω`(x))χ`δ(t)(|y|)
dy

|y|3
∣∣∣

≤ ‖ω`‖Cδ
∫
|y|<2`δ(t)

dy

|y|3−δ

≤ C

δ
(`δ(t))

δ ‖ω`‖Cδ

≤ C δ−1 ‖u0‖L2 (`δ(t))
− 5

2 (2.23)

since from the definition of `δ(t),

‖ω`‖Cδ ≤ ‖u0‖L2 (`δ(t))
−δ− 5

2 (2.24)

follows straightforwardly. We can send ε↘ 0, since the estimates are uniform in ε.

On the other hand,

(II) =

∫
σT (ŷ) (∂yiuj − ∂yjui)(x+ y)χc`δ(t)(|y|)

dy

|y|3
. (2.25)

It suffices to consider one of the terms in the difference,∣∣∣ ∫ σT (ŷ) ∂yiuj(x+ y)χc`δ(t)(|y|)
dy

|y|3
∣∣∣

=
∣∣∣ ∫ dy uj(x+ y) ∂yi

(
σT (ŷ)χc`δ(t)(|y|)

1

|y|3
) ∣∣∣

≤ C ‖uj‖L2

∥∥∥ ∂yi(σT (ŷ)χc`δ(t)(|y|)
1

|y|3
)∥∥∥

L2

≤ C ‖u0‖L2 (`δ(t))
− 5

2 (2.26)

where to obtain the last line we used the conservation of energy (1.16) and the
following three bounds:

(i) ∥∥∥(∂yiχcR(|y|)
) σT (ŷ)

|y|3
∥∥∥2

L2
≤ C

1

R2

∫
R<|y|<2R

dy

|y|6

≤ C R−5 , (2.27)
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for R = `δ(t).
(ii) ∥∥∥σT (ŷ)χcR(|y|) ∂yi

1

|y|3
∥∥∥2

L2
≤ C

∫
|y|>R

dy

|y|8

≤ C R−5 . (2.28)

(iii) ∥∥∥χcR(|y|) 1

|y|3
∂yi σT (ŷ)

∥∥∥2

L2
≤ C

∫
|y|>R

1

|y|6
1

|y|2
dy

≤ C R−5 , (2.29)

where we used that∣∣∣∇yσT (ŷ)
∣∣∣ =

∣∣∣ 1

|y|
(∇zσT (z1, z2, z3))

∣∣∣
z=ŷ

∣∣∣
≤ 1

|y|
‖σT ‖C1(S2) (2.30)

holds.

Summarizing, we arrive at

‖Tω`‖L∞ ≤ C(δ) ‖u0‖L2 `δ(t)
− 5

2 (2.31)

for C(δ) = O(δ−1), which is the asserted bound. �

The form of the singular integral operator that appears in the statement of
Lemma 2.2 is suitable for application to Du+ and Du−, as we shall see in the
following corollary.

Corollary 2.3. There exists a finite, positive constant Cδ = O( 1
δ ) independent of

u and t such that the estimate

‖Du+‖L∞ + ‖Du−‖L∞ ≤ Cδ ‖u0‖L2 `δ(t)
− 5

2 (2.32)

holds.

Proof. According to Lemma 2.1, the matrix components of both Du+ and Du−

have the form (2.17).

Accordingly, Lemma 2.2 immediately implies the assertion. �

Now we are ready to give a proof of Theorem 1.2, which is based on combining
an energy estimate for Euler equations with Corollary 2.3.

For s ≥ 3 integer-valued, the energy bound (1.6)

1

2
∂t‖u(t)‖2Hs ≤ ‖Du(t)‖L∞ ‖u(t)‖2Hs (2.33)

was proven in [1]. For fractional s > 5
2 , we recall the definitions of the homogenous

and inhomogenous Besov norms for 1 ≤ p, q ≤ ∞,

‖u‖Ḃsp,q =
(∑
j∈Z

2jqs‖uj‖qLp
) 1
q

, (2.34)
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respectively,

‖u‖Bsp,q =
(
‖u‖qLp + ‖u‖q

Ḃsp,q

) 1
q

, (2.35)

where uj = Pju is the Paley-Littlewood projection of u of scale j. In analogy to
(1.6), we obtain the bound on the Bs2,2 Besov norm of u(t) given by

1

2
∂t‖u(t)‖2Bs2,2 ≤ ‖Du(t)‖L∞ ‖u(t)‖2Bs2,2 , (2.36)

from a straightforward application of estimates obtained in [8]; details are given in
the Appendix. Accordingly, since the left hand side yields

∂t‖u(t)‖2Bs2,2 = 2‖u(t)‖Bs2,2∂t‖u(t)‖Bs2,2 , (2.37)

we get

∂t‖u(t)‖Bs2,2 ≤ ‖Du(t)‖L∞ ‖u(t)‖Bs2,2 . (2.38)

However, Corollary 2.3 implies that

‖Du(t)‖L∞ ≤ ‖Du+(t)‖L∞ + ‖Du−(t)‖L∞
≤ Cδ ‖u0‖L2 (`δ(t))

− 5
2 . (2.39)

Therefore, by combining (2.38) and (2.39) we obtain

∂t‖u(t)‖Bs2,2 ≤ Cδ ‖u0‖L2 (`δ(t))
− 5

2 ‖u(t)‖Bs2,2 ,

which implies that

‖u(t)‖Hs ∼ ‖u(t)‖Bs2,2

≤ ‖u0‖Bs2,2 exp
[
Cδ ‖u0‖L2

∫ t

0

`δ(s)
− 5

2 ds
]

∼ ‖u0‖Hs exp
[
Cδ ‖u0‖L2

∫ t

0

`δ(s)
− 5

2 ds
]
,

for s ≥ 0, where we recall from (2.23) that Cδ = O(δ−1).

This completes the proof of Theorem 1.2. �

3. Lower bounds on the blowup rate

In this section, we prove Theorem 1.3.

Recalling the energy bound (2.38),

∂t‖u(t)‖Bs2,2 ≤ ‖Du(t)‖L∞ ‖u(t)‖Bs2,2 , (3.1)

we invoke the Sobolev embedding

‖Du‖L∞ ≤ ‖D̂u‖L1

≤
(∫

dξ 〈ξ〉−3−2δ
) 1

2 ‖Du‖
H

3
2
+δ

≤ Cδ ‖u‖
H

5
2
+δ

∼ Cδ ‖u‖
B

5
2
+δ

2,2

, (3.2)
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with Cδ = O(δ−
1
2 ), to get, for s = 5

2 + δ,

∂t‖u(t)‖Bs2,2 ≤ Cδ (‖u(t)‖Bs2,2)2 . (3.3)

Straightforward integration implies

−
( 1

‖u(t)‖Bs2,2
− 1

‖u(t0)‖Bs2,2

)
≤ Cδ(t− t0) . (3.4)

Hence,

‖u(t)‖Hs ∼ ‖u(t)‖Bs2,2

≤
‖u(t0)‖Bs2,2

1− (t− t0)Cδ‖u(t0)‖Bs2,2

∼ ‖u(t0)‖Hs
1− (t− t0)Cδ‖u(t0)‖Hs

, (3.5)

where a possible trivial modification of Cδ is implicit in passing to the last line.
This implies that the solution u(t) is locally well-posed in Hs, with s = 5

2 + δ, for

t0 ≤ t < t0 +
1

Cδ‖u(t0)‖Hs
. (3.6)

In particular, this infers that if T ∗ is the first time beyond which the solution u
cannot be continued, one necessarily has that

T ∗ > t0 +
1

Cδ‖u(t0)‖Hs
. (3.7)

This in turn implies an a priori lower bound on the blowup rate given by

‖u(t)‖Hs >
1

Cδ (T ∗ − t)
(3.8)

for all 0 ≤ t < T ∗. The lower bound on the blowup rate stated in Theorem 1.3 is
stronger than this estimate, and we shall prove it in the sequel.

To begin with, we note that

‖ω(t)‖Cδ ≤ Cδ‖ω(t)‖
H

3
2
+δ

≤ Cδ‖u(t)‖
H

5
2
+δ

≤
Cδ‖u(t0)‖

H
5
2
+δ

1− (t− t0)Cδ‖u(t0)‖
H

5
2
+δ

. (3.9)

That is, local well-posedness of u in H
5
2 +δ implies δ-Holder continuity of the vor-

ticity.

The parameter L in the definition (1.11) of `δ(t) is arbitrary. Thus, in view of
(3.9), we may now let L→∞ for convenience. Then,

`δ(t)
− 5

2 =
(‖ω(t)‖Cδ
‖u0‖L2

) 2
2δ+5 ·

5
2

≤
(Cδ ‖u(t)‖

H
5
2
+δ

‖u0‖L2

)1−δ̃

≤
( Cδ
‖u0‖L2

)1−δ̃( ‖u(t0)‖Hs
1− (t− t0)Cδ‖u(t0)‖Hs

)1−δ̃
, (3.10)
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where

δ̃ :=
2δ

5 + 2δ
and s =

5

2
+ δ . (3.11)

We note that while the right hand side of (3.10) diverges as t approaches

t1 := t0 +
1

Cδ‖u(t0)‖Hs
, (3.12)

the integral∫ t1

t0

`δ(t)
− 5

2 dt ≤
( Cδ
‖u0‖L2

)1−δ̃ ∫ t1

t0

( ‖u(t0)‖Hs
1− (t− t0)Cδ‖u(t0)‖Hs

)1−δ̃
dt

=: B0(δ) (3.13)

converges for δ > 0 (⇔ δ̃ > 0). This implies that the solution u(t) for t ∈ [t0, t1)
can be extended to t > t1.

In particular, we obtain that

‖u(t1)‖
H

5
2
+δ ≤ ‖u(t0)‖

H
5
2
+δ exp

(
Cδ ‖u0‖L2

∫ t1

t0

(`δ(t))
− 5

2 dt
)

≤ ‖u(t0)‖
H

5
2
+δ exp

(
Cδ ‖u0‖L2B0(δ)

)
(3.14)

from Theorem 1.2.

We may now repeat the above estimates with initial data u(t1) in H
5
2 +δ, thus

obtaining a local well-posedness interval [t1, t2]. Accordingly, we may set t2 to be
given by

t2 := t1 +
1

Cδ‖u(t1)‖Hs
. (3.15)

More generally, we define the discrete times tj by

tj+1 := tj +
1

Cδ‖u(tj)‖Hs
. (3.16)

We then have

‖u(tj+1)‖Hs ≤ exp
(
Cδ‖u0‖L2 Bj(δ)

)
‖u(tj)‖Hs , (3.17)

where Bj(δ) is defined by

Cδ‖u0‖L2Bj(δ)

:= Cδ‖u0‖L2

( Cδ
‖u0‖L2

)1−δ̃ ∫ tj+1

tj

( ‖u(tj)‖Hs
1− (t− tj)Cδ‖u(tj)‖Hs

)1−δ̃
dt

=
1

δ̃
C1−δ̃
δ

( ‖u0‖L2

‖u(tj)‖Hs

)δ̃
=: bδ

( ‖u0‖L2

‖u(tj)‖Hs

)δ̃
. (3.18)

Letting

ρj := exp
(
bδ

( ‖u0‖L2

‖u(tj)‖Hs

)δ̃)
, (3.19)
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we have

‖u(tj)‖Hs ≤ ρj−1 ‖u(tj−1)‖Hs , (3.20)

and we remark that (ρj)j satisfy the recursive estimates

ρj ≥ exp
(
bδ

( ‖u0‖L2

ρj−1‖u(tj−1)‖Hs

)δ̃)
= ( ρj−1 )ρ

−δ̃
j−1

= exp
(
ρ−δ̃j−1 ln ρj−1

)
. (3.21)

We note that from its definition, ρj > 1 for all j.

We shall now assume that T ∗ > 0 is the first time beyond which the solution
u(t) cannot be continued. Thus, by choosing t0 close enough to T ∗, (3.8) implies
that ‖u(t0)‖Hs can be made sufficiently large that the following hold:

(1) The quantity

bδ

( ‖u0‖L2

‖u(t0)‖Hs

)δ̃
� 1 (3.22)

is small.

(2) There is a positive, finite constant C̃ independent of j such that

‖u(tj)‖Hs ≥ C̃ ‖u(t0)‖Hs (3.23)

holds for all j ∈ N. Without any loss of generality (by a redefinition of the

constant bδ if necessary), we can assume that C̃ = 1.

Accordingly, (3.23) with C̃ = 1 implies that ρj ≤ ρ0 for all j. Then, for any
N ∈ N,

T ∗ − t0 ≥
N∑
j=0

(tj+1 − tj)

=
1

Cδ

( 1

‖u(t0)‖Hs
+ · · ·+ 1

‖u(tN )‖Hs

)
=

1

Cδ‖u(t0)‖Hs

(
1 +

‖u(t0)‖Hs
‖u(t1)‖Hs

+ · · ·+ ‖u(t0)‖Hs
‖u(tN )‖Hs

)
≥ 1

Cδ‖u(t0)‖Hs

(
1 +

1

ρ0
+ · · ·+ 1

ρ0 · · · ρN

)
≥ 1

Cδ‖u(t0)‖Hs

(
1 +

1

ρ0
+ · · ·+ 1

ρN0

)
(3.24)

from 1
ρj
≥ 1

ρ0
for all j, and the fact that ρ0 > 1 since the argument in the exponent

(3.19) is positive.
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Then, letting N →∞, we obtain

1

T ∗ − t0
≤ Cδ‖u(t0)‖Hs

(
1− 1

ρ0

)
= Cδ‖u(t0)‖Hs

(
1− exp

(
− bδ

( ‖u0‖L2

‖u(t0)‖Hs

)δ̃))
. (3.25)

Next, we deduce a lower bound on the blowup rate.

Invoking (3.22), we obtain

1

T ∗ − t0
≤ Cδ‖u(t0)‖Hs

(
1− exp

(
− bδ

( ‖u0‖L2

‖u(t0)‖Hs

)δ̃))
≈ Cδ‖u(t0)‖Hsbδ

( ‖u0‖L2

‖u(t0)‖Hs

)δ̃
= Cδ bδ‖u0‖δ̃L2‖u(t0)‖1−δ̃Hs . (3.26)

This implies a lower bound on the blowup rate of the form

‖u(t0)‖
H

5
2
+δ ≥ C(δ, ‖u0‖L2)

( 1

T ∗ − t0

) 1
1−δ̃

= C(δ, ‖u0‖L2)
( 1

T ∗ − t0

) 2δ+5
5

, (3.27)

under the condition that (3.22) and (3.23) hold.

This concludes our proof of Theorem 1.3. �

Appendix A. Proof of inequality (2.38) for s > 5
2

In this Appendix, we prove (2.38) which follows from (2.36),

1

2
∂t‖u(t)‖2Bs2,2 . ‖Du(t)‖L∞ ‖u(t)‖2Bs2,2 , (A.1)

for s > 5
2 . We invoke Eq. (26) in the work [8] of F. Planchon, which is valid for

s > 1 + n
2 in n dimensions (thus, s > 5

2 in our case of n = 3), for parameter values
p = q = 2 in the notation of that paper. It yields

1

2
∂t2

2js‖uj‖2L2 . 22js
∑
k∼j

‖Sj+1Du‖L∞ ‖uk‖L2 ‖uj‖L2

+ 22js
∑

j.k∼k′
‖uk‖L2 ‖uk′‖L2 ‖Duj‖L∞ (A.2)

where uk = Pku is the Paley-Littlewood projection of u at scale k, and Sj =∑
j′≤j Pj′ is the Paley-Littlewood projection to scales ≤ j.
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Summing over j,

1

2
∂t
∑
j

22js‖uj‖2L2 . sup
j
‖Sj+1Du‖L∞

(∑
j

22js
∑
k∼j

‖uk‖L2 ‖uj‖L2

+
∑
j

∑
k∼k′&j

22s(j−k)2ks ‖uk‖L2 2k
′s ‖uk′‖L2

)
. ‖Du‖L∞

(∑
j

22js‖uj‖2L2

+
∑
k

(∑
j.k

22s(j−k)
)

2ks ‖uk‖2L2

)
. ‖Du‖L∞

∑
j

22js‖uj‖2L2 . (A.3)

To pass to the second inequality, we used that

‖Sj+1Du‖L∞ = ‖mj+1 ∗Du‖L∞ . ‖Du‖L∞ ‖mj+1‖L1 , (A.4)

where m̂j is the symbol of the Fourier multiplication operator Sj , and the fact that
‖mj‖L1 ∼ 1 uniformly in j. Accordingly, we get

1

2
∂t‖u(t)‖2

Ḃs2,2
. ‖Du(t)‖L∞ ‖u(t)‖2

Ḃs2,2
. (A.5)

From

‖u(t)‖2Bs2,2 = ‖u(t)‖2L2 + ‖u(t)‖2
Ḃs2,2

, (A.6)

and energy conservation, ∂t‖u(t)‖2L2 = 0, we obtain

1

2
∂t‖u(t)‖2Bs2,2 =

1

2
∂t‖u(t)‖2

Ḃs2,2

. ‖Du(t)‖L∞ ‖u(t)‖2
Ḃs2,2

. ‖Du(t)‖L∞ ‖u(t)‖2Bs2,2 . (A.7)

This proves (A.1). �
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