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Abstract. We consider the cubic and quintic Gross-Pitaevskii (GP) hierar-
chies in d ≥ 1 dimensions, for focusing and defocusing interactions. We present

a new proof of existence of solutions that does not require the a priori bound

on the spacetime norm, which was introduced in the work of Klainerman and
Machedon, [19], and used in our earlier work, [6].

1. Introduction

In this note, we investigate the existence of solutions to the Gross-Pitaevskii
(GP) hierarchy, with focusing and defocusing interactions. We present a new proof
of existence of solutions that does not require the a priori bound on the spacetime
norm which was introduced in the work of Klainerman and Machedon [19], and
which we used in our earlier work [6].

The GP hierarchy is a system of infinitely many coupled linear PDEs describing
a Bose gas of infinitely many particles, interacting via delta interactions. Some
GP hierarchies (defocusing energy subcritical and focusing L2-subcritical) can be
obtained as limits of BBGKY hierarchies of N -particle Schrödinger systems of iden-
tical bosons, in the limit N → ∞. In the recent literature on this topic, there is
a particular interest in the special class of factorized solutions to GP hierarchies,
which are parametrized by solutions of a nonlinear Schrödinger (NLS) equation. In
this context, the NLS is interpreted as the mean field limit of an infinite system of
interacting bosons in the so-called Gross-Pitaevskii limit. We refer to [10, 11, 12, 20,
19, 24] and the references therein, and also to [1, 3, 5, 9, 13, 14, 15, 17, 16, 18, 26].
For recent mathematical developments focusing on the related problem of Bose-
Einstein condensation, we refer to [2, 21, 22, 23] and the references therein.

In a landmark series of works, Erdös, Schlein, and Yau [10, 11, 12] provided the
derivation of the cubic NLS as a dynamical mean field limit of an interacting Bose
gas for a very general class of systems. The construction requires two main steps:

(i) Derivation of the GP hierarchy as the N → ∞ limit of the BBGKY hier-
archy of density matrices associated to an N -body Schrödinger equation.
The latter is defined for a scaling where the particle interaction potential
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tends to a delta distribution, and where total kinetic and total interaction
energy have the same order of magnitude in powers of N .

(ii) Proof of the uniqueness of solutions for the GP hierarchy. It is subsequently
verified that for factorized initial data, the solutions of the GP hierarchy
are determined by a cubic NLS, for systems with 2-body interactions.

The proof of the uniqueness of solutions of the GP hierarchy is the most difficult
part of this program, and it is obtained in [10, 11, 12] by use of highly sophisticated
Feynman graph expansion methods inspired by quantum field theory.

In [19], Klainerman and Machedon presented a different method to prove the
uniqueness of solutions for the cubic GP hierarchy in d = 3, in a different space of
solutions than in [10, 11]. Their approach uses Strichartz-type spacetime bounds on
marginal density matrices, and a sophisticated combinatorial result, obtained via a
certain “boardgame argument” (which is a reformulation of a method developed in
[10, 11]). The analysis of Klainerman and Machedon requires the assumption of an
a priori spacetime bound which is not proven in [19]. In [20], Kirkpatrick, Schlein,
and Staffilani proved that this a priori spacetime bound is satisfied, locally in time,
for the cubic GP hierarchy in d = 2, by exploiting the conservation of energy in the
BBGKY hierarchy, in the limit as N →∞. In [5], we proved that the analogous a
priori spacetime bound holds for the quintic GP hierarchy in d = 1, 2.

In [6], we prove the existence and uniqueness of solutions in the spaces used
by Klainerman and Machedon in [19], and provide an estimate that gives a precise
meaning to their a priori assumption. For the proof, we introduce a natural topology
on the space of sequences of k-particle marginal density matrices

G = {Γ = ( γ(k)(x1, . . . , xk;x′1, . . . , x
′
k) )k∈N |Trγ(k) < ∞}

and invoke a contraction mapping argument. Accordingly, we prove in [6] local
well-posedness for the cubic and quintic GP hierarchies, in various dimensions.

In [6], we use the Klainerman-Machedon a priori assumption on the boundedness
of a certain spacetime norm for both the uniqueness and the existence parts of the
proof (which are obtained in the same step, via the contraction mapping argument).

In this paper, we give a new proof of the existence of solutions for focusing and
defocusing p-GP hierarchies, without assuming any priori spacetime bounds. How-
ever, we prove as an a posteriori result that the Klainerman-Machedon spacetime
bound is indeed satisfied by this solution.

Organization of the paper. In Section 2 we introduce the GP hierarchy and the
spaces that we use to analyze the hierarchy. In Section 3 we state the main result
of this paper, Theorem 3.1, and we present a proof of this theorem. The proof uses
a free Strichartz estimate, as well as an iterated version of the Strichartz estimate,
both of which are presented in Appendix A. The existence of solutions of p-GP
hierarchies with truncated initial data is addressed in Appendix B.
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2. The model

In this section, we introduce the mathematical model analyzed in this paper.
We will mostly adopt the notations and definitions from [6], and we refer to [6] for
motivations and more details.

2.1. The spaces. We introduce the space

G :=

∞⊕
k=1

L2(Rdk × Rdk)

of sequences of density matrices

Γ := ( γ(k) )k∈N

where γ(k) ≥ 0, Trγ(k) = 1, and where every γ(k)(xk, x
′
k) is symmetric in all

components of xk, and in all components of x′k, respectively, i.e.

γ(k)(xπ(1), ..., xπ(k);x
′
π′(1), ..., x

′
π′(k)) = γ(k)(x1, ..., xk;x′1, ..., x

′
k) (2.1)

holds for all π, π′ ∈ Sk.

For brevity, we will denote the vector (x1, · · · , xk) by xk and similarly the vector
(x′1, · · · , x′k) by x′k.

The k-particle marginals are assumed to be hermitean,

γ(k)(xk;x′k) = γ(k)(x′k;xk). (2.2)

We call Γ = (γ(k))k∈N admissible if γ(k) = Trk+1γ
(k+1), that is,

γ(k)(xk;x′k) =

∫
dxk+1 γ

(k+1)(xk, xk+1;x′k, xk+1)

for all k ∈ N.

Let 0 < ξ < 1. We define

Hαξ :=
{

Γ ∈ G
∣∣∣ ‖Γ‖Hαξ < ∞} (2.3)

where

‖Γ‖Hαξ =

∞∑
k=1

ξk‖ γ(k) ‖Hαk (Rdk×Rdk) ,

with

‖γ(k)‖Hαk =
( ∫

dxk dx
′
k′

∣∣S(k,α)γ(k)(xk;x′k′)
∣∣2 ) 1

2

(2.4)

where S(k,α) :=
∏k
j=1

〈
∇xj

〉α〈∇x′j〉α.
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2.2. The GP hierarchy. We introduce cubic, quintic, focusing, and defocusing
GP hierarchies, using notations and definitions from [6].

Let p ∈ {2, 4}. The p-GP (Gross-Pitaevskii) hierarchy is given by

i∂tγ
(k) =

k∑
j=1

[−∆xj , γ
(k)] + µBk+ p

2
γ(k+ p

2 ) (2.5)

in d dimensions, for k ∈ N. Here,

Bk+ p
2
γ(k+ p

2 ) = B+
k+ p

2
γ(k+ p

2 ) −B−
k+ p

2
γ(k+ p

2 ) , (2.6)

where

B+
k+ p

2
γ(k+ p

2 ) =

k∑
j=1

B+
j;k+1,...,k+ p

2
γ(k+ p

2 ),

and

B−
k+ p

2
γ(k+ p

2 ) =

k∑
j=1

B−
j;k+1,...,k+ p

2
γ(k+ p

2 ),

with (
B+
j;k+1,...,k+ p

2
γ(k+ p

2 )
)

(t, x1, . . . , xk;x′1, . . . , x
′
k)

=

∫
dxk+1 · · · dxk+ p

2
dx′k+1 · · · dx′k+ p

2

k+ p
2∏

`=k+1

δ(xj − x`)δ(xj − x′`)γ(k+ p
2 )(t, x1, . . . , xk+ p

2
;x′1, . . . , x

′
k+ p

2
),

and (
B−
j;k+1,...,k+ p

2
γ(k+ p

2 )
)

(t, x1, . . . , xk;x′1, . . . , x
′
k)

=

∫
dxk+1 · · · dxk+ p

2
dx′k+1 · · · dx′k+ p

2

k+ p
2∏

`=k+1

δ(x′j − x`)δ(x′j − x′`)γ(k+ p
2 )(t, x1, . . . , xk+ p

2
;x′1, . . . , x

′
k+ p

2
).

The operator Bk+ p
2
γ(k+ p

2 ) accounts for p
2 + 1-body interactions between the Bose

particles. We remark that for factorized solutions

γ(k)(t, x1, . . . , xk;x′1, . . . , x
′
k) =

k∏
j=1

φ(t, xj) φ̄(t, x′j), (2.7)

the corresponding 1-particle wave function satisfies the p-NLS

i∂tφ = −∆φ+ µ|φ|pφ

which is focusing if µ = −1, and defocusing if µ = +1.

As in [6, 7], we refer to (2.5) as the cubic GP hierarchy if p = 2, and as the
quintic GP hierarchy if p = 4. For µ = 1 or µ = −1 we refer to the corresponding
GP hierarchies as being defocusing or focusing, respectively.
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The p-GP hierarchy can be rewritten in the following compact manner:

i∂tΓ + ∆̂±Γ = µB̂Γ

Γ(0) = Γ0 , (2.8)

where

∆̂±Γ := ( ∆
(k)
± γ(k) )k∈N , with ∆

(k)
± =

k∑
j=1

(
∆xj −∆x′j

)
,

and

B̂Γ := (Bk+ p
2
γ(k+ p

2 ) )k∈N . (2.9)

Also in this paper we will use the notation

B̂+Γ := (B+
k+ p

2
γ(k+ p

2 ) )k∈N,

B̂−Γ := (B−
k+ p

2
γ(k+ p

2 ) )k∈N .

We refer to [6] for more detailed explanations.

3. Statement and proof or the main Theorem

In our earlier work [6], we proved local existence and uniqueness of solutions to
the p-GP hierarchy in the space of solutions

Wα
ξ (I) :=

{
Γ
∣∣∣Γ ∈ L∞t∈IHαξ , B̂+Γ , B̂−Γ ∈ L2

t∈IHαξ
}

(3.1)

where I := [0, T ]. The requirement on the spacetime norm of B̂±Γ corresponds to
the Klainerman-Machedon a priori condition used in [19]. For our proof, we used
a contraction mapping argument, based on which both existence and uniqueness
were obtained in the same process. However, the question remained whether the

condition that B̂Γ ∈ L2
t∈IHαξ for some ξ is necessary for both the existence and

uniqueness of solutions. In the present paper, we prove that for the existence part,
this a priori assumption is not required. However, as an a posteriori result, we show

that the solution obtained in this paper has the property that B̂Γ ∈ L2
t∈IHαξ .

We remark that for regularity α > d
2 , the result of this paper follows in an easier

way by employing the estimate

‖B̂Γ‖Hαξ ≤ C‖Γ‖Hαξ (3.2)

instead of Strichartz estimates, which do not need to be invoked. The bound (3.2)
for quintic GP was proved in our earlier work [5] (see Theorem 4.3), and was
employed to give a short proof of uniqueness for the quintic GP hierarchy (see
Theorem 6.1 in [5]). A bound of the type (3.2) for the cubic GP was proved in a
recent paper of Chen and Liu [8], and was used to prove local well-posedness for
the GP hierarchy in the case when α > d

2 .

Theorem 3.1. Let α ∈ A(d, p) where

A(d, p) :=


( 1

2 ,∞) if d = 1
(d2 −

1
2(p−1) ,∞) if d ≥ 2 and (d, p) 6= (3, 2)[
1,∞) if (d, p) = (3, 2) ,

(3.3)
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and let U(t) denote the free evolution U(t) = eit∆̂± . Assume that Γ0 ∈ Hαξ′ . Then,
there exists a solution of the p-GP hierarchy Γ ∈ L∞t∈IHαξ satisfying

Γ(t) = U(t)Γ0 + i µ

∫ t

0

U(t− s)B̂Γ(s) ds , (3.4)

for 0 < ξ < ξ′ sufficiently small (it is sufficient that ξ < η2ξ′ where the constant η
is specified in Lemma A.4 below).

In particular, this solution has the property that B̂Γ ∈ L2
t∈IHαξ .

Remark 3.2. We note that the presence of two different energy scales ξ, ξ′ has the
following interpretation on the level of the NLS. Let R0 := (ξ′)−1/2 and R1 := ξ−1/2.
Then, the existence result in Theorem 3.1, applied to factorized initial data Γ0 = Γφ0

and the associated solution Γ(t) = Γφ(t) (of the form (2.7)), is equivalent to the
following statement: For ‖φ0‖H1(Rn) < R0, there exists a solution ‖φ‖L∞t∈IH1(Rn) <

R1, with R1 > R0, in the space

{φ ∈ L∞t∈IH1(Rn) | ‖|φ|pφ‖L2
tH

1 <∞} .

This statement, specified for balls BR0(0), BR1(0) ⊂ H1(Rn), contains the usual
less specific formulation where only finiteness is required, that is, ‖φ0‖H1(Rn) <∞
and ‖φ‖L∞t∈IH1(Rn) <∞.

Proof. The p-GP hierarchy is given by

i∂tγ
(n) =

n∑
j=1

[−∆xj , γ
(n)] + µBn+ p

2
γ(n+ p

2 ) (3.5)

for all n ∈ N.

We observe that (3.5) determines a closed, infinite sub-hierarchy, for initial data

γ
(n)
N (0) = 0, for n > N , which has the trivial solution

γ
(n)
N (t) = 0 , t ∈ I = [0, T ] , n > N . (3.6)

Without invoking uniqueness, it is not possible to conclude that this is the unique
solution of the sub-hierarchy for n > N with zero initial data.

However, for the construction of a solution of (3.5) (without any statement on

uniqueness), we are free to choose γ
(n)
N (t) = 0 for n > N . In particular, it then

follows that for n ≥ N − p
2 + 1,

i∂tγ
(n)
N (t;xN ;x′N ) =

k∑
j=1

[−∆xj , γ
(n)
N ](t;xN ;x′N ) (3.7)

solves the free evolution equation, since Bn+ p
2
γ(n+ p

2 ) = 0. Thus,

γ
(n)
N (t) = U (n)(t) γ

(n)
N (0) for n ≥ N − p

2
+ 1 . (3.8)

On the other hand, for n ≤ N − p
2 , γ

(n)
N (t) satisfies the p-GP hierarchy in the full

form (3.5).
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From now on, for a fixed N , we consider solutions of (3.5) of the above type

which we denote by ΓN = ( γ
(n)
N ). More precisely, let P≤N denote the projection

operator

P≤N : G → G

Γ = (γ(1), γ(2), . . . ) 7→ (γ(1), . . . , γ(N), 0, 0, . . . ) , (3.9)

and P>N = 1− P≤N . We consider solutions ΓN (t) of the p-GP hierarchy,

i∂tΓN = ∆̂±ΓN + µB̂ΓN , (3.10)

for the truncated initial data

ΓN (0) = P≤NΓ0 = (γ
(1)
0 , . . . , γ

(N)
0 , 0, 0, . . . ) (3.11)

for an arbitrary, large, fixed N ∈ N, and where component Γ
(m)
N (t) = 0 for the m-th

component, for all m > N . By Duhamel’s formula, the solution of (3.10) is given
by

ΓN (t) = U(t)ΓN (0) + i µ

∫ t

0

U(t− s) B̂ΓN (s) ds (3.12)

for initial data ΓN (0) = P≤NΓ0.

We introduce three parameters ξ, ξ′′, ξ′ satisfying

ξ < η ξ′′ < η2 ξ′ , (3.13)

where the constant 0 < η < 1 is specified in Lemma A.4 below.

It is shown in Appendix B that it is sufficient to iterate the Duhamel formula
(3.12) for ΓN only finitely many times, in order to obtain a fully explicit solution
to (3.10) for fixed N that satisfies

‖ΓN ‖L∞t∈IHαξ′′ , ‖ B̂ΓN ‖L2
t∈IHαξ′′

≤ C(T, ξ′, ξ′′) ‖Γ0‖Hα
ξ′
. (3.14)

Moreover, it follows from Lemma A.4 below that the sequence (B̂ΓN )N∈N is Cauchy
in L2

t∈IHαξ′′ . That is, for any ε > 0, there exists N(ε) ∈ N such that

‖B̂(ΓN1 − ΓN2)‖L2
t∈IHαξ′′

≤ C(T, ξ′, ξ′′) ‖P>N1Γ0‖Hα
ξ′

(3.15)

< ε (3.16)

holds for all N1, N2 > N(ε). This is because by assumption, ‖Γ0‖Hα
ξ′
< ∞, which

is a power series in ξ′ > 0 with non-negative coefficients. Hence,

‖P>N1
Γ0‖Hα

ξ′
=
∑
k>N1

(ξ′)k‖γ(k)(0)‖Hα → 0 (3.17)

as N1 →∞, so that (3.16) follows.

Accordingly, there exists a strong limit

Θ = lim
N→∞

B̂ΓN ∈ L2
t∈IHαξ′′ . (3.18)

We claim that

Θ(t) = B̂U(t)Γ(0) + i µ

∫ t

0

B̂U(t− s)Θ(s)ds . (3.19)
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In order to prove this claim, we observe that∥∥∥Θ(t)− B̂U(t)Γ(0)− i µ
∫ t

0

B̂U(t− s)Θ(s)
∥∥∥
L2
t∈IHαξ

≤
∥∥∥Θ(t)− B̂ΓN (t)

∥∥∥
L2
t∈IHαξ

(3.20)

+
∥∥∥B̂U(t)(Γ(0)− ΓN (0))

∥∥∥
L2
t∈IHαξ

(3.21)

+
∥∥∥∫ t

0

ds B̂U(t− s)(Θ(s)− B̂ΓN (s))
∥∥∥
L2
t∈IHαξ

(3.22)

+
∥∥∥B̂ΓN (t)− B̂U(t)ΓN (0)− i

∫ t

0

B̂U(t− s)B̂ΓN (s)ds
∥∥∥
L2
t∈IHαξ

. (3.23)

First, we notice that (3.23) is identically zero because ΓN is a solution of the p-GP
hierarchy, (3.5). Since ξ < ξ′′ we can estimate the term (3.20) as follows∥∥∥Θ(t)− B̂ΓN (t)

∥∥∥
L2
t∈IHαξ

≤ ‖Θ(t)− B̂ΓN (t)
∥∥∥
L2
t∈IHαξ′′

= oN (1), (3.24)

where the last line follows from (3.18). For (3.21), since ξ < η ξ′′ we can use the
free Strichartz estimate (A.1) as follows:∥∥∥B̂U(t) (Γ(0)− ΓN (0))

∥∥∥
L2
t∈IHαξ

≤ ‖Γ(0)− ΓN (0)‖Hα
ξ′′

≤ ‖Γ(0)− ΓN (0)‖Hα
ξ′

= ‖P>NΓ(0)‖Hα
ξ′
. (3.25)

For the term (3.22), we have∥∥∥∫ t

0

ds B̂U(t− s)(Θ(s)− B̂ΓN (s))
∥∥∥
L2
t∈IHαξ

≤
∥∥∥∫ t

0

ds
∥∥∥B̂U(t− s)(Θ(s)− B̂ΓN (s))

∥∥∥
Hαξ

∥∥∥
L2
t∈I

≤
∫ T

0

ds
∥∥∥B̂U(t− s)(Θ(s)− B̂ΓN (s))

∥∥∥
L2
t∈IHαξ

≤ C(T, ξ, ξ′′)

∫ T

0

ds
∥∥∥Θ(s)− B̂ΓN (s)

∥∥∥
Hα
ξ′′

(3.26)

≤ C(T, ξ, ξ′′)T 1/2
∥∥∥Θ(s)− B̂ΓN (s)

∥∥∥
L2
t∈IHαξ′′

(3.27)

= oN (1) . (3.28)

Here, to obtain (3.26) we use the free Strichartz estimate (A.1) in a manner similar
to the T −T ∗ argument for the Schrödinger equation. To obtain (3.27) we used the
Hölder inequality, and to get the last line (3.28), we used (3.18). In conclusion,∥∥∥Θ(t)− B̂U(t)Γ(0)− i µ

∫ t

0

ds B̂U(t− s)Θ(s)
∥∥∥
L2
t∈IHαξ

≤ oN (1) + C(T, ξ) ‖P>NΓ(0)‖Hα
ξ′
→ 0 (N →∞) . (3.29)
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Therefore, taking the limit N →∞, we find that Θ satisfies

Θ(t) = B̂U(t)Γ(0) + i µ

∫ t

0

B̂U(t− s)Θ(s)ds (3.30)

as claimed.

Moreover, we observe that for t ∈ I = [0, T ] we have:

‖ΓN1
(t)− ΓN2

(t)‖Hαξ

≤ ‖U(t)(ΓN1
(0)− ΓN2

(0))‖Hαξ + ‖
∫ t

0

dsU(t− s)B̂(ΓN1
(s)− ΓN2

(s))‖Hαξ

≤ ‖ΓN1
(0)− ΓN2

(0)‖Hαξ +

∫ T

0

ds‖B̂(ΓN1
(s)− ΓN2

(s))‖Hαξ

≤ ‖ΓN1(0)− ΓN2(0)‖Hα
ξ′

+

∫ T

0

ds‖B̂(ΓN1(s)− ΓN2(s))‖Hα
ξ′′

(3.31)

≤ ‖ΓN1(0)− ΓN2(0)‖Hα
ξ′

+ T
1
2 ‖B̂(ΓN1(s)− ΓN2(s))‖L2

s∈IHαξ′′

≤ C(T, ξ′, ξ′′) ‖P>N1Γ0‖Hα
ξ′
,

using the relation ξ < ηξ′′ < η2ξ′ to obtain (3.31), and (3.15) to pass to the last
line. Thus, similarly as in (3.16), there exists for every ε > 0 a number N(ε) ∈ N
such that

‖ΓN1(t)− ΓN2(t)‖Hαξ < ε , (3.32)

for all N1, N2 > N(ε). This implies that (ΓN )N∈N is a Cauchy sequence in L∞t∈IHαξ ,
thus we obtain the strong limit

Γ = lim
N→∞

ΓN ∈ L∞t∈IHαξ , (3.33)

given the initial data Γ0 ∈ Hαξ′ .

Next, we claim that Γ satisfies

Γ(t) = U(t)Γ0 + i µ

∫ t

0

U(t− s)Θ(s) ds . (3.34)

Indeed, we have for t ∈ I that∥∥∥Γ(t) − U(t)Γ0 − i µ

∫ t

0

U(t− s)Θ(s) ds
∥∥∥
Hαξ

≤ ‖Γ(t)− ΓN (t)‖Hαξ (3.35)

+ ‖U(t)(Γ0 − ΓN (0))‖Hαξ (3.36)

+
∥∥∥∫ t

0

U(t− s)(Θ(s)− B̂ΓN (s)) ds
∥∥∥
Hαξ

(3.37)

+
∥∥∥ΓN (t) − U(t)ΓN (0) − i µ

∫ t

0

U(t− s)B̂ΓN (s) ds
∥∥∥
Hαξ

. (3.38)
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Here, we note that (3.38) is identically zero because ΓN (t) is a solution of the p-GP
hierarchy, (3.5). Moreover, we have

(3.37) ≤
∫ T

0

ds
∥∥∥Θ(s)− B̂ΓN (s)

∥∥∥
Hαξ

≤ T
1
2

∥∥∥Θ− B̂ΓN

∥∥∥
L2
t∈IHαξ

≤ T
1
2

∥∥∥Θ− B̂ΓN

∥∥∥
L2
t∈IHαξ′′

. (3.39)

Therefore,∥∥∥Γ(t) − U(t)Γ0 − i µ

∫ t

0

U(t− s)Θ(s) ds
∥∥∥
L∞t∈IHαξ

≤ ‖Γ− ΓN‖L∞t∈IHαξ + ‖Γ0 − ΓN (0)‖Hαξ + T
1
2

∥∥Θ− B̂ΓN
∥∥
L2
t∈IHαξ′′

, (3.40)

where the right hand side tends to zero as N →∞, due to the convergence (3.33)
and (3.18). This implies (3.34).

Finally, we observe that

B̂Γ(t) = B̂U(t)Γ0 + i µ

∫ t

0

B̂U(t− s)Θ(s) ds (3.41)

while

Θ(t) = B̂U(t)Γ0 + i µ

∫ t

0

B̂U(t− s)Θ(s) ds . (3.42)

Comparing the right hand sides, we infer that B̂Γ = Θ ∈ L2
t∈IHαξ . This concludes

the proof. �

Appendix A. Iterated Duhamel formula and boardgame argument

In this section, our main goal is to prove Lemma A.4 below; it is the main

ingredient for establishing that (B̂ΓN ) is a Cauchy sequence in L2
t∈IHαξ . We first

summarize some results established in [5, 6, 19], which are related to Strichartz
estimates for the GP hierarchy.

We first reformulate the Strichartz estimate for the free evolution U(t) = eit∆̂± =
(U (n)(t))n∈N proven in [6, 19].

Lemma A.1. Let α ∈ A(d, p). Assume that Γ0 ∈ Hαξ′ for some 0 < ξ′ < 1. Then,

for any 0 < ξ < ξ′, there exists a constant C(ξ, ξ′) such that the Strichartz estimate
for the free evolution

‖B̂U(t)Γ0‖L2
t∈RH

α
ξ
≤ C(ξ, ξ′) ‖Γ0‖Hα

ξ′
(A.1)

holds.
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Proof. From Theorem 1.3 in [19] and Proposition A.1 in [6], we have, for α ∈ A(d, p),
that

‖B(k+ p
2 )U (k+ p

2 )(t)γ
(k+ p

2 )
0 ‖L2

t∈RH
α
k

≤ 2

k∑
j=1

‖B+
j;k+1,...,k+ p

2
U (k+ p

2 )(t)γ
(k+ p

2 )
0 ‖L2

t∈RH
α
k

≤ C k ‖ γ(k+ p
2 )

0 ‖Hα
k+

p
2

. (A.2)

Then for any 0 < ξ < ξ′, we have:

‖B̂U(t)Γ0‖L2
t∈RH

α
ξ
≤
∑
k≥1

ξk‖B(k+ p
2 )U (k+ p

2 )(t)γ
(k+ p

2 )
0 ‖L2

t∈RH
α
k

≤ C
∑
k≥1

k ξk ‖γ(k+ p
2 )

0 ‖Hα
k+

p
2

(A.3)

= C (ξ′)−
p
2

∑
k≥1

k

(
ξ

ξ′

)k
(ξ′)(k+ p

2 ) ‖γ(k+ p
2 )

0 ‖Hα
k+

p
2

≤ C (ξ′)−
p
2 sup
k≥1

k

(
ξ

ξ′

)k ∑
k≥1

(ξ′)(k+ p
2 ) ‖γ(k+ p

2 )
0 ‖Hα

k+
p
2

≤ C(ξ, ξ′) ‖Γ0‖Hα
ξ′
,

where to obtain (A.3) we used (A.2). �

Definition A.2. Let Γ̃ = (γ̃(n))n∈N denote a sequence of arbitrary Schwartz class

functions γ̃(n) ∈ S(R×Rnd×Rnd). Then, we define the associated sequence Duhj(Γ̃)
of j-th level iterated Duhamel terms, with n-th component given by

Duhj(Γ̃)(n)(t) (A.4)

:= (−iµ)j
∫ t

0

dt1 · · ·
∫ tj−1

0

dtje
i(t−t1)∆

(n)
± Bn+ p

2
ei(t1−t2)∆

(n+
p
2
)

±

Bn+ 2p
2
· · · · · ·Bn+ jp

2
eitj∆

(n+
jp
2

)

± γ̃(n+ jp
2 )(tj) ,

and Duh0(Γ̃)(n)(t) := U (n)(t)γ̃(n)(t), for j ∈ N0.

As usual, the definition is given for Schwartz class functions, and can be extended

to the spaces in discussion by density arguments. The fact that Duhj(Γ̃)(n) ∈
S(R×Rnd×Rnd) holds under the above conditions, for all n, can be easily verified.
Using the boardgame strategy of [19] (which is a reformulation of a combinatorial
argument developed in [10, 11]), one obtains:

Lemma A.3. Let α ∈ A(d, p) and p ∈ {2, 4}. Then, for Γ̃ = (γ̃(n))n∈N as above,

‖Bn+ p
2
Duhj(Γ̃)(n+ p

2 )(t) ‖L2
t∈IH

α(Rnd×Rnd) (A.5)

≤ nCn0 (c0T )
j
2 ‖B

n+
(j+1)p

2
U (n+

(j+1)p
2 )( · )γ̃(n+

(j+1)p
2 )‖

L2
t∈IH

α(R(n+
jp
2

)d×R(n+
jp
2

)d)
,

where the constants c0, C0 depend only on d, p.
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For the proof in the cubic case, p = 2, we refer to [6, 19], and for the proof in
the quintic case, p = 4, to [5].

We observe that any solution ΓN of (3.5) with initial data ΓN (0) = P≤NΓ0

satisfies the equation

B̂ΓN (t) = B̂U(t)ΓN (0) + i

∫ t

0

B̂U(t− s)B̂ΓN (s)ds (A.6)

(obtained from acting with B̂ on (3.12)), and by recursion,

(B̂ΓN )(n)(t) =

k−1∑
j=0

Bn+ p
2
Duhj(ΓN (0))(n+ p

2 )(t)

+Bn+ p
2
Duhk(B̂ΓN )(n+ p

2 )(t) , (A.7)

obtained from iterating the Duhamel formula k times for the n-th component of

B̂Γ (for the definition of Duhj , see (A.4)). Since Γ
(m)
N (t) = 0 for all m > N , the

remainder term on the last line is zero whenever n+ (k+1)p
2 > N . Thus,

(B̂ΓN )(n)(t) =

d2(N−n)/p−1e∑
j=0

Bn+ p
2
Duhj(ΓN (0))(n+ p

2 )(t) , (A.8)

where each term on the right explicitly depends only on the initial data ΓN (0)
(there is no implicit dependence on the solution ΓN (t)).

Now we are ready to prove the main result of this section:

Lemma A.4. Assume that α ∈ A(d, p) and p ∈ {2, 4}, and that Γ0 ∈ Hαξ′ for

some 0 < ξ′ < 1. Let N1, N2 ∈ N, where N1 < N2. Then, there exists a constant
0 < η = η(d, p) < 1 such that the estimate

‖B̂(ΓN1
− ΓN2

)‖L2
t∈IHαξ ≤ C(T, ξ, ξ′) ‖P>N1

Γ0‖Hα
ξ′

(A.9)

holds whenever ξ < ηξ′ (we note that it suffices to let η < C−1
0 where the constant

C0 = C0(d, p) is specified in Lemma A.3).

Proof. For simplicity of notation, we shall present the explicit arguments for the
(cubic) case p = 2. The (quintic) case p = 4 is completely analogous.

Thanks to (A.8) we have

(B̂(ΓN1 − ΓN2))(n)(t) =

N1−n−1∑
j=0

Bn+1Duhj((ΓN1(0)− ΓN2(0))(n+1)(t)

−
N2−n−1∑
j=N1−n

Bn+1Duhj(ΓN2
(0))(n+1)(t) , (A.10)

using (A.4) and the fact that γ
(n+j+1)
Ni

= 0 for j > Ni − n− 1, with i = 1, 2.

Since γ
(n+j+1)
N1

(0) = γ
(n+j+1)
N2

(0) for 0 ≤ j ≤ N1−n− 1, the first sum on the rhs
of (A.10) is identically zero.
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For the second term on the rhs of (A.10), we have for the summation index that
j ≥ N1 − n. Thus, the components of ΓN2(0) occurring in (A.10) are given by

γ
(n+j+1)
N2

with j ≥ N1 − n, that is, γ
(m)
N2

with m > N1.

Using Lemma A.3 and the free Strichartz estimate (A.2), we therefore find that

‖(B̂(ΓN1 − ΓN2))(n)(t)‖L2
t∈IH

α

≤
N2−n−1∑
j=N1−n

‖Bn+1Duhj(ΓN2(0))(n+1)(t)‖L2
t∈IH

α

≤
N2−n−1∑
j=N1−n

nCn0 (c0T )
j
2 ‖Bn+j+1U

(n+j+1)(t)γ
(n+j+1)
N2

(0)‖L2
t∈IH

α

≤ (c0T )−
1
2 (ξ′)−nn2 Cn0

N2−n−1∑
j=N1−n

(c0T (ξ′)−2)
j+1
2 (ξ′)n+j+1‖γ(n+j+1)

N2
(0)‖Hα

≤ (ξ′)−nn2 Cn0 C1(T, ξ′) ‖P>N1
ΓN2

(0)‖Hα
ξ′
, (A.11)

for T > 0 sufficiently small so that c0T (ξ′)−2 ≤ 1. Hence,∑
n∈N

ξn‖(B̂(ΓN1
− ΓN2

))(n)(t)‖L2
t∈IH

α

≤ C1(T, ξ′)
(∑
n∈N

n2 Cn0 (ξ/ξ′)n
)
‖P>N1ΓN2(0)‖Hα

ξ′

≤ C(T, ξ, ξ′) ‖P>N1ΓN2(0)‖Hα
ξ′
, (A.12)

for ξ < ηξ′ where η < C−1
0 , noting that C0 = C0(d, p).

This proves the claim for the case p = 2. The case p = 4 is completely analogous,
and we shall omit a repetition of arguments. �

Appendix B. Existence of solutions of the truncated hierarchy

Having the additional notation and discussion presented in Appendix A at our
disposal, we now return to discussing the existence of solutions to the p-GP hier-
archy (3.10) with truncated initial data, for fixed N .

We recall that according to (A.8) we have:

(B̂ΓN )(n)(t) =

d2(N−n)/p−1e∑
j=0

Bn+ p
2
Duhj(ΓN (0))(n+ p

2 )(t) , (B.1)

where each term on the right explicitly depends only on the initial data ΓN (0)

Likewise, we find that the n-th component of ΓN (t) = (γ
(n)
N (t))n is given by the

finite sum

γ
(n)
N (t) =

d2(N−n)/pe∑
j=0

Duhj(Γ0)(n)(t) . (B.2)
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This is a fully explicit expression for a solution ΓN (t) of (3.5), obtained from only
finitely many iterations of the Duhamel formula.

We next recall from (3.13) the triple of parameters ξ, ξ′′, ξ′ satisfying ξ < ηξ′′ <
η2ξ′, where the constant 0 < η < 1 is specified in Lemma A.4. Combining Lemma
A.3 with Lemma A.1, and repeating arguments similar to those presented in (A.11),
we obtain that for α ∈ A(d, p) and p ∈ {2, 4}, we have

‖ B̂ΓN ‖L2
t∈IHαξ′′

≤ C(T, ξ′, ξ′′) ‖Γ0‖Hα
ξ′
. (B.3)

We note that this result corresponds to (A.11) for N2 = N and N1 = 0, up to the
zeroth Duhamel term. Likewise, we obtain

‖ΓN ‖L∞t∈IHαξ′′ ≤ C(T, ξ′, ξ′′) ‖Γ0‖Hα
ξ′
. (B.4)

A detailed presentation of the proof of estimates of the type of (B.3) and (B.4)
is given in [6], for the case where the Duhamel series does not terminate (due to
initial data without cutoff).

We summarize that here, as opposed to the case treated in [6], the series (B.2) and
(A.8) are finite, which is due to the truncation controlled by N . As a consequence,

the proof of (B.3) does not require any additional a priori assumption on B̂ΓN ; the
condition Γ0 ∈ Hαξ′ is sufficient.
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