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Abstract. This paper concerns the propagation of particles through
a quenched random medium. In the one- and two-dimensional
models considered, the local dynamics is given by expanding cir-
cle maps and hyperbolic toral automorphisms, respectively. The
particle motion in both models is chaotic and found to fluctuate
about a linear drift. In the proper scaling limit, the cumulative dis-
tribution function of the fluctuations converges to a Gaussian one
with system dependent variance while the density function shows
no convergence to any function. We have verified our analytical
results using extreme precision numerical computations.

1. Introduction

Variants of a mechanical model now widely known as the Lorentz gas
have occupied the minds of scientists for more than a century. Initially
proposed by Lorentz [Lo] in 1905 to describe the motion of an electron
in a metallic crystal, the model consists of fixed, dispersing, scatterers
in Rd and a free point particle that bounces elastically off the scatterers
upon collisions.

If the lattice of scatterers is periodic, the model is also referred to as
Sinai Billiards after Sinai, who proved [Si] that the system (with d = 2)
is ergodic if the free path of the particle is bounded. In the latter case
it was also proved that, in a suitable scaling limit, the motion of the
particle is Brownian [BuSi]. Sinai’s work can be considered the first
rigorous proof of Boltzmann’s Ergodic Hypothesis in a system that
resembles a real-world physical system.

The Lorentz gas exhibits a great deal of complexity. One example
is the lack of smoothness of the dynamics caused by tangential colli-
sions of the particle with the scatterers. Another one, the presence of
recollisions, is a source of serious statistical difficulties that have not
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Figure 1. Schematic diagram illustrating the qualita-
tive features of our two-dimensional model. The medium
is composed of two different types of square cells sepa-
rated by walls which allow particles to pass only in the
direction of the arrowheads. The zig-zag line shows a
path of a particle through the medium.

been overcome in the study of the aperiodic Lorentz gas. For more
background, see [Ta, Sz, ChMa, ChDo] and the references therein.

Our study concerns an idealization of the aperiodic Lorentz gas with
semipermeable walls illustrated in Figure 1. In each cell, there is a con-
figuration of scatterers drawn independently from the same probability
distribution. In our case, the distribution is Bernoulli, so that there
are two possible configurations to choose from inside each cell. As an
important aspect, the environment thus obtained is quenched; once the
scatterer configurations have been randomly chosen, they are frozen for
good, and the only randomness that remains is in the initial data of
the particle. Between the cells are semipermeable walls that allow the
particle to pass through from left to right and from bottom to top,
as shown by the arrowheads, but not in the opposite directions. This
model may be thought of as describing the propagation of particles in
an anisotropic medium.

Notice that, as a significant simplification, there is no recurrence;
once a particle leaves a cell, it never returns to the same cell again.
Yet a particle can occupy a single cell for an arbitrarily long time
before moving on to a neighboring one—albeit a long occupation time
has a small probability. Moreover, where, when, and in which direction
the particle exits a cell depends heavily on the scatterer configuration
inside the cell, in addition to the position and direction of the particle
at entry. Inside each cell, the dynamics is chaotic and hyperbolic.
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In our one- and two-dimensional idealizations, the billiard dynamics
is replaced by discrete dynamical systems acting in each cell. In other
words, acting on the particle’s current position by a map associated
to the current cell gives its position one time unit later. In dimension
one the maps associated to the cells are smooth, uniformly expanding,
maps while in dimension two they are smooth, uniformly hyperbolic,
maps with one expanding and one contracting dimension. Such maps
retain the chaotic and hyperbolic nature of the problem. A closely
related model has been studied in [AySt, AyLiSt].

Our objective is to understand certain statistical properties of the
motion. More precisely, we are interested in how the particle dis-
tribution evolves with time when the initial distribution is uniform
and supported on one initial cell. We make several analytical proposi-
tions, which we verify numerically. We show that, on the average, the
particles follow a linear drift and that, after taking a suitable scaling
limit, the cumulative distribution of the fluctuations about the mean is
Gaussian. Moreover, the drift and variance are the same for (almost)
all environments drawn from the same distribution. Nevertheless, the
particle distribution shows rapid oscillations due to the quenched en-
vironment. In particular, the density function does not converge to
that of a normal distribution. In fact, it does not converge at all in the
aforementioned scaling limit.

Acknowledgements. We are indebted to Arvind Ayyer and Joel
Lebowitz for stimulating discussions. Tapio Simula is supported by
the Japan Society for the Promotion of Science Postdoctoral Fellow-
ship for Foreign Researchers. Mikko Stenlund is partially supported by
a fellowship from the Academy of Finland.

2. One-dimensional model: expanding maps on the circle

2.1. Preliminaries. Imagine tiling the nonnegative half line [0,∞)
so that each interval—or tile—Ik = [k, k + 1) with k ∈ N carries a
label ω(k) that equals either 0 or 1. Such a tiling can be realized by
flipping a coin for each k and encoding the outcomes in a sequence ω =
(ω(0), ω(1), . . . ) ∈ {0, 1}N called the environment. The coin could be
balanced but the tosses are independent, with Prob(ω(k) = i) = pi for
all k. In the following, Pp0 will stand for the corresponding probability
measure on the space of Bernoulli sequences ω. In each experiment we
freeze the environment—meaning that we work with one fixed sequence
ω at a time.

The dynamics in our model is generated by the following defini-
tions. Let vn be the position of the particle and xn its decimal value.
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Furthermore, suppose A0, A1 ∈ {2, 3, . . . } and define the circle maps
Ti(x) = Aix mod 1. An experiment comprises iterating the map on
R+×S1 given by (vn+1, xn+1) = (vn+Aω([vn])xn−xn, Tω([vn])(xn)), where
[vn] is the integer part of vn and ω([vn]) is the corresponding component
of ω. Our initial condition is (v0, x0) = (x, x), with x ∈ [0, 1). Let P de-
note the Lebesgue measure (i.e., the uniform probability distribution)
on the circle S1 and E the corresponding expectation.

The model thus describes the deterministic motion of a particle in
a randomly chosen, but fixed, environment. In probability jargon, the
particle performs a deterministic walk in a quenched random environ-
ment. The map determining vn+1 depends on the tile I[vn] the particle
is in through the label ω([vn]) of the tile. That is, the motion of the
particle is guided by the a priori chosen environment.

The maps we have chosen are of the simplest kind, which helps nu-
merical and analytical computations. This is not to say that the re-
sulting dynamics is exceptional among more general expanding maps.
On the contrary, the qualitative features of the dynamics should be
universal within the classes of maps mentioned in the introduction.

Example 1. A concrete example is obtained by choosing A0 = 2, A1 =
3, and p0 = p1 = 1

2
.

For each x (and ω) we have to compute which map the symbol Aω([v1])

stands for. Each vn (n ≥ 2) is generically a piecewise affine function
of x and the number of discontinuities grows exponentially with n. We
anticipate that, for large values of n, vn behaves statistically (in the
weak sense) as

vn ≈ N (nD, nσ2), (1)

where D is a deterministic number called the drift and N (nD, nσ2)
stands for a real-valued, normally distributed, random variable with
mean nD and variance nσ2. In principle, D and σ2 could depend on the
environment ω, but remarkably it turns out that they do not, as long
as the environment is typical. By typicality we mean that ω belongs
to a set whose Pp0-probability is one and whose elements enjoy good
statistical properties such as the convergence of 1

n
#{k < n |ω(k) = 0}

to the limit p0.
It is reasonable to expect that the limit

lim
n→∞

vn(x)

n
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exists and has the same value for almost all x 1. Thus, we are led to
conclude that

D = E

(
lim
n→∞

vn(x)

n

)
= lim

n→∞

1

n
E(vn(x)) .

The final equality follows from the bounded convergence theorem.
If the initial condition x ∈ [0, 1) is chosen uniformly at random, vn

can be regarded as a random variable. Let us consider the (asymptot-
ically) centered random variable

Xn = vn − nD,
which measures the fluctuations of vn relative to the linear drift. Pro-
vided (1) is true, Xn is approximately Gaussian with variance nσ2.
More precisely, we would like to know if 1√

n
Xn converges in distribu-

tion to N (0, σ2). By definition, this means that, for any fixed y ∈ R,

lim
n→∞

P

(
1√
n
Xn ≤ y

)
=

1√
2πσ

∫ y

−∞
e−s

2/2σ2

ds.

2.2. Markov partition. We next reduce the deterministic walk in a
random environment to a random walk in a random (still quenched)
environment which is easier to treat. This can be done using a Markov
property of the tiling that allows us, in the statistical sense, to ignore
the exact position of the particle and only keep track of the tile it is
occupying.

Let [ · ] denote the integer part of a number. If we define

Vn = [vn] and xn = vn − [vn], (2)

then the earlier dynamics with the initial condition (v0, x0) = (x, x) is
equivalent to

Vn+1 = Vn +
[
Aω(Vn)xn

]
xn+1 = Aω(Vn)xn −

[
Aω(Vn)xn

]
.

(3)

Recall our convention [0,∞) =
⋃∞
k=0 Ik, where Ik = [k, k + 1) is

called a tile. Suppose now that vn ∈ Ik. This is equivalent to Vn = k.
As before, we are interested in the probability distribution of vn when
x is chosen at random, but this time only at the level of tiles. Notice
that vn = [vn] + {vn}, where 0 ≤ {vn} < 1. Therefore, vn/

√
n and

[vn]/
√
n differ by at most 1/

√
n, so their asymptotic distributions are

the same (and in fact very close to each other even for moderate values
of n). More precisely, we wish to know the probability distribution

1This cannot hold for all x. For instance, if x = 1
kAω(0)

, then 1 = vk = vk+1 = . . .

and the process stops.
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of Vn. This is the probability vector ρ(n) = (ρ
(n)
0 , ρ

(n)
1 , . . . ) where the

numbers

ρ
(n)
k = P(Vn = k)

are such that
∑∞

k=0 ρ
(n)
k = 1.

We now consider the dynamical system being initialized with the
condition (v0, x0) = (x, x), where x ∈ [0, 1) is a uniformly distributed
random variable. Since each AiIk is exactly the union of a few of the
intervals Ik′

2, the collection {Ik} is a simultaneous Markov partition
for the two maps. We then obtain the Markov property

P(Vn = kn |Vn−1 = kn−1, . . . , V0 = k0) ≡ P(Vn = kn |Vn−1 = kn−1)

for admissible histories (in particular k0 = 0). Thus, the statistics of
Vn is precisely described by a time-homogeneous Markov chain on the
countably infinite state space N with the transition probabilities

γk→k+l =

{
P(vn+1 ∈ Ik+l | vn ∈ Ik) = 1

Aω(k)
if l ∈ {0, 1, . . . , Aω(k) − 1},

0 otherwise

and initial distribution

ρ(0) = (1, 0, 0, . . . ).

Notice that the above holds for any environment, ω, but the resulting
Markov chain does depend on the choice of ω.

Defining the transition matrix Γ = (γk→k′)k,k′ , ρ
(n) = ρ(n−1)Γ. Thus,

ρ(n) = ρ(0)Γn (4)

for an arbitrary initial distribution. In principle, (4) provides us with
complete statistical understanding of the dynamics. For instance, the
drift can be expressed as

D = lim
n→∞

1

n
E(vn) = lim

n→∞

1

n
E(Vn) = lim

n→∞

1

n

∞∑
k=0

kρ
(n)
k .

In practice, calculating Γn for large values of n is difficult.

2.3. Drift and variance. For each (i, j) ∈ {0, 1}2 the transition prob-
ability at time n from a tile labeled i to a tile labeled j is

αij(n) = P(ω(Vn+1) = j |ω(Vn) = i).

The analysis of this quantity is subtle, because it depends on the tiling.
For instance, if ω = (0, 0, . . . ), then P(ω(Vn+1) = 0 |ω(Vn) = 0) = 1.

2Ai maps
[
k + l

Ai
, k + l+1

Ai

)
affinely onto [k + l, k + l + 1).
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The conditional probability P× Pp0(ω(V1) = j |ω(V0) = i) equals

α∗ij = δij

(
1

Ai
+

(
1− 1

Ai

)
pi

)
+ (1− δij)

(
1− 1

Ai

)
pj,

because the elements ω(k) of the tiling are independent. Here pi is the
Bernoulli probability of getting an i in the tiling. We think of α∗ij as
an effective transition probability which only depends on the statistical
properties of the tiling.

As n increases, the position of the particle at time n depends on the
tiling on an increasing subinterval of [0,∞) and should therefore reflect
increasingly the statistics of the tiling instead of its local details. We
therefore expect the actual transition probability αij(n) to converge to
the effective value α∗ij with increasing time,

lim
n→∞

αij(n) = α∗ij.

Despite this is not a rigorous statement we will build our analysis on
it and show that it leads to precise predictions about the process.

Moreover,

lim
n→∞

(α∗)n =

(
p 1− p
p 1− p

)
(5)

for a p ∈ (0, 1) that can be found by diagonalizing α∗ or by solving the
equilibrium equation (p, 1− p)α∗ = (p, 1− p):

p =
p0

(
1− 1

A1

)
1− p1

1
A0
− p0

1
A1

=
p0A0(A1 − 1)

A0A1 − p1A1 − p0A0

.

For instance, in the case of Example 1 we obtain p = 4
7
.

Notice that, for any probability vector (q, 1− q),
(q, 1− q) lim

n→∞
(α∗)n = (p, 1− p).

The probability vector

(q, 1− q)
k∏

n=0

α(n) = (q(k), 1− q(k))

will converge to some (q∗, 1− q∗), because α(n)→ α∗. In fact,

lim
N→∞

(q, 1− q)
2N∏
n=0

α(n) = lim
N→∞

(q(N), 1− q(N))
2N∏

n=N+1

α(n)

= (q∗, 1− q∗) lim
N→∞

(α∗)N = (p, 1− p),
as N →∞.
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We interpret the result above so that P(ω(Vn) = 0) → p and
P(ω(Vn) = 1) → 1 − p as n → ∞. That is, along a given (typi-
cal) trajectory, the fraction of time the particle spends in a tile labeled
0 is p:

lim
n→∞

#{k < n |ω(Vk) = 0}
n

= p. (6)

Notice that p does not depend on the (typical) tiling.

2.3.1. Drift. Define the jumps ξi = Vi − Vi−1 (i ≥ 1). Then Vn =∑n
i=1 ξi. We also denote ξ(j) a random variable that takes values in

{0, . . . , Aj − 1} with uniform distribution. For a (typical) tiling,

D = lim
n→∞

E(Vn)

n
= lim

n→∞

∑n
i=1 E(ξi)

n
= pE(ξ(0)) + (1− p)E(ξ(1))

= p
A0 − 1

2
+ (1− p)A1 − 1

2
=
pA0 + (1− p)A1 − 1

2
.

Numerical results such as shown in Figure 2 lead us to conclude that
limn→∞

Vn

n
= D also for individual trajectories. In the case of Exam-

ple 1, D = 5
7
.

2.3.2. Variance. The variance is

σ2 = lim
n→∞

Var

(
Xn√
n

)
= lim

n→∞

Var(Vn)

n
.

Let us assume A0 ≤ A1 and study the process Wn =
∑n

i=1 ζi having
the i.i.d. increments ζi whose distribution is Prob(ζ1 = k) = p

A0
+ 1−p

A1

if 0 ≤ k < A0 and Prob(ζ1 = k) = 1−p
A1

if A0 ≤ k < A1. The increments
have been chosen so that Wn mimics Vn as closely as possible. For
instance, staying in the same tile (ζ1 = 0) has probability p

A0
+ 1−p

A1
,

where p is the probability of being in a tile labeled 0 and 1
A0

is the prob-
ability of staying in that tile, while the second term accounts similarly
for the case of label 1. Then Mean(Wn) = nMean(ζ1) = nD. Setting
K(m) =

∑m−1
k=0 k

2 = 1
3
(m − 1)3 + 1

2
(m − 1)2 + 1

6
(m − 1), the variance

of Wn is

Var(Wn) = nVar(ζ1) = n

(
p

A0

K(A0) +
1− p
A1

K(A1)−D2

)
.

Comparing this formula with our numerical experiments provides over-
whelming evidence for the relationship Var(Wn) = Var(Vn). Using the
values p = 4

7
and D = 5

7
obtained from Example 1, the formula above

gives 1
n

Var(Wn) = 24
49

.
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2.4. Sensitivity on the initial condition. Let us next consider the
Lyapunov exponent

λ = lim
n→∞

1

n
ln
dvn
dx

= lim
n→∞

1

n

n∑
k=1

ln
dvk
dvk−1

which measures the exponential rate at which two nearby initial points
drift apart under the dynamics. Above, the chain rule has been used.
Recall the notation introduced in (2) and that v0 = x0 = x. As vk =
vk−1 +

(
Aω(Vk−1) − 1

)
xk−1,

dvk
dvk−1

= 1 +
dAω(Vk−1)

dvk−1

xk−1 +
(
Aω(Vk−1) − 1

) dxk−1

dvk−1

.

With probability zero vk−1 is an integer, in which case vk−1 = Vk−1,
xk−1 = 0, and the process stops. We assume that vk−1 is not an integer.

Then
dAω(Vk−1)

dvk−1
= 0, dxk−1

dvk−1
= 1, and dvk

dvk−1
= Aω(Vk−1), such that, by (6),

λ = lim
n→∞

1

n

n∑
k=1

lnAω(Vk−1) = p lnA0 + (1− p) lnA1

and is positive. Roughly speaking, the distance between two very
nearby trajectories thus grows like eλn =

(
Ap0A

1−p
1

)n
, which is tan-

tamount to chaos.

2.5. Numerical study. The following numerical results are presented
in the context of Example 1. However, we have checked that the con-
clusions also hold for other values of the parameters. In order to study
the model introduced above numerically we first create the random
tiling (or environment) ω of length 2n + 1 where n is the number of
jumps to be performed in a single trajectory. This guarantees that
every possible path fits inside the tiling although some computational
effort could be saved by choosing the number of tiles closer to [nD].
Notice also that while in principle new tiles could be added dynami-
cally to the end of the tiling as required, it is computationally far more
efficient to construct the tiling as a static entity in the beginning of the
computation.

In practice, the tiling is generated by producing a vector of pseudo-
random numbers distributed uniformly on the interval (0, 1) using the
Mersenne Twister algorithm. The label of the tile ω(k) is then obtained
by rounding the number on each tile k to the nearest integer. The
computational tiling ω̂ is finalized by the operation ω̂(k) = ω(k)(A1 −
A0) + A0 yielding a vector whose each element is either A0 or A1.
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Figure 2. Integer part of the position of a particle, Vn,
divided by the number of jumps, n, taken for a single
typical trajectory. The horizontal line denotes the exact
value for the drift D = 5/7. The inset shows a blow-up
of a part of the main figure.

Each ensemble member (particle trajectory) is initialized by generat-
ing a pseudo-random number to determine the starting point x0 ∈ (0, 1)
of the trajectory. The subsequent particle positions are determined by
the underlying tiling. The jumping process could be performed deter-
ministically by keeping track of the exact position vn of the particle.
However, the Markov property of the process provides us a superior way
of obtaining the desired statistics stochastically. In this algorithm, be-
fore every jump, we sample a new pseudo-random number d from the
interval (0, ω̂(k)) depending on the current tile k. Then a jump to the
tile k + [d] is made and the whole procedure is repeated n times to
produce a single trajectory.

Figure 2 shows a typical trajectory of n = 106 jumps obtained using
the above prescription. The integer part of the position of a particle,
Vn, divided by the number of jumps, n, taken is clearly seen to saturate
to the analytical value for the drift D = 5/7, plotted as a straight line
in the figure. The inset shows the late-time evolution of the drift of
the particle.

Figure 3 displays the computed probability density function for the
random variable (Vn−nD)/

√
n obtained using 107 trajectories of length

n = 105. The solid curve is a normalized Gaussian function with zero
mean and variance of σ2 = 24/49. Each point in the figure corresponds
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to a unique Vn and indicates the relative frequency that a trajectory
ends in the corresponding tile after n steps. Joining neighboring points
(determined by their abscissae) with lines reveals rapid oscillations in
the probability density function. Such lines have been omitted from
Figure 3 for the sake of clarity. In the left- and right-hand side in-
sets only trajectories ending in tiles labeled by 0 and 1, respectively,
are considered. If the graph in the right-hand side inset is vertically
stretched by the factor p

1−p , it becomes practically overlapping with

the one in the left-hand side inset. This is a consequence of the fact
that the fraction of time the particle spends in tiles labeled 0 and 1 is
p and 1− p, respectively. In the figure one can discern several Gauss-
ian shapes, all of which are very well approximated by the analytical
Gaussian after normalization with a suitable constant. These “shadow”
Gaussians are caused by the quenched environment and they collapse
to a single curve if a non-quenched model is used in which Ai is chosen
randomly before every jump. The full multi-Gaussian structure of the
probability density function is not currently well understood.

Figure 4 shows two cumulative distribution functions, obtained by
integrating the numerical and analytical probability densities shown in
Figure 3. They match to a great accuracy and we are lead to believe
that the random variable Xn/

√
n = (vn−nD)/

√
n is, indeed, normally

distributed with zero mean and variance σ2. We have also analyzed
the characteristic function which leads to the same conclusion.

To conclude, our numerical data strongly supports the theoretical
analysis presented earlier. Within the numerical accuracy, the distri-
bution is Gaussian with the drift and variance predicted by our ana-
lytical calculations. We have performed these numerical experiments
using different (fixed) tilings and filling probabilities, pi, and have al-
ways arrived at the same conclusion.

3. Two-dimensional model: hyperbolic toral
automorphisms

3.1. Preliminaries. We begin by tiling the first quadrant of the plane
by unit squares, attaching the label 0 or 1 to each tile. That is, corre-
sponding to each vector k = (k1, k2) ∈ N2 the tile [k1, k1+1)×[k2, k2+1)
carries a label ω(k) ∈ {0, 1}. The fixed tiling ω = (ω(k))k∈N2 is our
environment and Pp0 stands for the Bernoulli probability measure on
the space of such tilings.

The process vn takes place on the plane and each Ai (i = 0, 1) is a
matrix with positive integer entries and determinant 1. Such a matrix
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Figure 3. Probability density of the random variable
(Vn − nD)/

√
n. The solid curve is the Gaussian with

zero mean and variance σ2 = 24/49. The insets in the
left- and right-hand sides show the probability densities
for the subsets of trajectories ending to a tile labeled by
0 and 1, respectively. The horizontal lines at levels 0.4,
0.8, 0.3 and 0.6 in the insets are plotted to guide the eye.
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Figure 4. Cumulative distribution function corre-
sponding to the data shown in Figure 3. The two curves
shown (computational and analytical) are overlapping.
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is hyperbolic, with two eigenvalues, λ > 1 and λ−1, and the eigen-
vector corresponding to λ points into the first quadrant. The formula
Tix = Aix mod 1 defines a hyperbolic toral automorphism. A precise
description of the dynamics is given by the map on R2

+×T2 defined by
(vn+1, xn+1) = (vn +Aω([vn])xn− xn, Tω([vn])(xn)), where [vn] is the inte-
ger part of vn. The initial condition is (v0, x0) = (x, x), with x ∈ [0, 1)2.
Let P denote the Lebesgue measure (i.e., the uniform probability dis-
tribution) on the torus T2 and E the corresponding expectation.

Example 2. A concrete example is obtained by choosing A0 = ( 2 1
1 1 ),

A1 = ( 3 1
2 1 ), and p0 = p1 = 1

2
.

We claim that the limit

D = E

(
lim
n→∞

vn(x)

n

)
= lim

n→∞

1

n
E(vn(x)) ,

called the drift, exists and that the (asymptotically) centered random
vector

Zn = (Xn, Yn) = vn − nD,
which measures the fluctuations of vn relative to the linear drift, is
approximately Gaussian with covariance matrix nσ2. More precisely,
1√
n
Zn converges in distribution to N (0, σ2), where σ2 is given by

limn→∞Cov
(

1√
n
Zn,

1√
n
Zn

)
: denoting Ez = (−∞, z1] × (−∞, z2] for

any fixed z = (z1, z2) ∈ R2,

lim
n→∞

P

(
1√
n
Xn ≤ z1,

1√
n
Yn ≤ z2

)
=

1

2π
√

detσ2

∫
Ez

e−
1
2
s·(σ2)−1s d2s.

In contrast with the one-dimensional case, the tiling is not a Markov
partition for the maps, which considerably complicates the analysis of
the model.

3.2. Drift. Let us continue to denote Vn = [vn]. We conjecture that
the drift vector D =

(
d1
d2

)
is given by

D = pD0 + (1− p)D1,

where Di = E(Aix − x) = (Ai − 1)
(

1
2
1
2

)
equals the average jump

under the action of the matrix Ai and p is as in (6). The value of
p is obtained, as above (5), from an effective transition matrix α∗.
Its general element α∗ij is the conditional probability P× Pp0(ω(V1) =
j |ω(V0) = i) = P× Pp0(ω([Aix]) = j |ω(0, 0) = i)—the probability of
jumping to a tile labeled j when the initial tile is labeled i and when
the choice of the tiling is being averaged out.
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In practice, α∗ij is computed as follows. We assume that the initial tile
is labeled i, i.e., ω(0, 0) = i. The image of the unit square under Ai is a
parallelogram of area one that overlaps with various tiles. The area of
intersection of the parallelogram with a tile represents the probability
of jumping to that tile. α∗ij can then be computed recalling that each
tile is labeled 0 with probability p0 independently of the others. In

the case of Example 2, we obtain D0 =
(

1
1
2

)
, D1 =

(
3
2
1

)
, and α∗ =(

1
4
+ 3

4
1
2

3
4

1
2

5
6

1
2

1
6
+ 5

6
1
2

)
=
(

5
8

3
8

5
12

7
12

)
, which results in p = 10

19
and D =

(
47
38
14
19

)
.

3.3. Numerical study. As mentioned earlier, the Markov property
deployed in the numerical study of the one-dimensional problem where
we used a stochastic jumping algorithm does not, unfortunately, apply
in the two-dimensional case. Instead, we are forced to compute the
particle trajectories fully deterministically which renders the numeri-
cal problem difficult. Due to the chaotic nature of the process, the
position vn of the particle must now be represented with an accuracy
to approximately 2n decimal places in order to keep the accumulation
of the numerical rounding errors bounded. This must be done using a
software implementation since the double precision float native to the
hardware only contains 15 decimal places.

We first create the tiling ω as in the one-dimensional case with the
exception that it is now a two-dimensional object. We then choose
randomly the initial position of the particle within the unit square.
The label ω(0, 0) of the initial tile is then read and the new position
of the particle is computed by applying the corresponding map Tω([v]).
This jumping procedure is repeated n times. The time to compute
a single trajectory increases dramatically as the path length n is in-
creased due to the corresponding increase in the required accuracy of
the representation of the position of the particle.

Figure 5 shows the convergence of the drifts Di and that of the
covariance matrix elements σ2

ij. The values in descending order at

n = 103 are d1, d2 , σ2
11, σ

2
12 = σ2

21, and σ2
22. The straight lines indicate

the analytical values for the drift components. Each data point is
composed using 104 trajectories.

In Figure 6 (a)–(c) we have plotted the particle positions in the plane
after n = 1, 2, 3, and 2000 jumps, respectively. The trajectories were
initiated randomly from the unit square. The straight diagonal lines
indicate the direction of the drift and the cross in frame (d) denotes
the directions of the eigenvectors of the covariance matrix. Since the
initial tile in our environment had the label ω(0, 0) = 1, the frame
(a) simply shows how A1 maps the unit square. The subsequent jumps



DETERMINISTIC WALKS IN QUENCHED RANDOM ENVIRONMENTS... 15

100 101 102 103
0

0.2

0.4

0.6

0.8

1

1.2

n

Figure 5. Values for the x and y components of the
drift and the covariance matrix elements σ2

11, σ
2
12 = σ2

21,
and σ2

22 as a function of n, respectively, in descending
order at n = 1000. The straight lines indicate the ana-
lytical values of drift components d1 and d1.

shred the distribution, as illustrated by the frames (b) and (c), because
particles in different tiles undergo different transformations. Figure 7
shows a contour plot of the particle distribution after n = 100 jumps
and reveals prominent stripes, due to the shredding, which are roughly
aligned with the direction of the drift vector.

Figure 8 shows the probability density of 1√
n
Zn obtained after n =

2000 jumps. Embedded is also a two-dimensional Gaussian probability
density which has the same covariance matrix as the numerical data.
Despite of the fact that the density function itself does not converge
to any function, the corresponding cumulative distribution function
shown in Figure 9 is smooth and matches that of the corresponding
Gaussian distribution. The maximum absolute difference between the
numerical and analytical functions is 0.017, most of which is due to the
highest peak in Figure 8.

4. Conclusions

We have investigated the statistical properties of a deterministic walk
in a quenched one-dimensional random environment of expanding cir-
cle maps and have analytically found the drift and variance for the
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Figure 6. End points vn of 104 trajectories in the plane
after n = 1 (a), n = 2 (b), n = 3 (c), and n = 2000 (d)
jumps. The straight diagonal lines trace the drift vector
and the cross in frame (d) shows the eigendirections of
the covariance matrix. Each frame comprises 10000 data
points.
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Figure 7. Contour plot of the particle distribution in
the plane after n = 100 jumps. The straight line shows
the direction of the drift vector.
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Figure 8. Probability density function for the random
variable Zn/

√
n. The spikes are an inherent feature of

the distribution and the density does not converge to any
function. Embedded is the analytical Gaussian function.

Figure 9. Cumulative distribution function corre-
sponding to the data shown in Figure 8.

resulting Gaussian probability distribution. Using numerical experi-
ments we have been able to verify our analytical predictions. We have
further studied a two-dimensional model similar to the one-dimensional
system where hyperbolic toral automorphisms take the place of the cir-
cle maps. Again the probability distribution turns out to be Gaussian
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with certain linear drift and covariance. The key feature and compli-
cating factor in both the one- and two-dimensional cases is the fixed
random environment. A direct consequence of this is that, even after
the proper scaling, the probability density does not converge to any
function—a result which persists both in our one- and two-dimensional
models. The implementation of recurrence to this model will be left
for future work.
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