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1. Introduction

Consider the equation
−∆u + V (x)u− au = f, (1.1)

where u ∈ E = H2(Rd) and f ∈ F = L2(Rd), d ∈ N, a is a constant and V (x)
is a function converging to 0 at infinity. If a ≥ 0, then the essential spectrum of the
operator A : E → F corresponding to the left-hand side of equation (1.1) contains
the origin. As a consequence, the operator does not satisfy the Fredholm property.
Its image is not closed, for d > 1 the dimensions of its kernel and the codimension
of its image are not finite. In this work we will study some properties of such
operators. Let us note that elliptic problems involving non-Fredholm operators were
studied extensively in recent years (see [15], [16]– [22], also [5]) along with their
potential applications to the theory of reaction-diffusion equations (see [7], [8]).
In the particular case where a = 0 the operator A satisfies the Fredholm property in
some properly chosen weighted spaces [1], [2], [3], [4], [5]. However, the case with
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a 6= 0 is essentially different and the approach developed in these works cannot be
applied.

One of the important questions about equations with non-Fredholm operators
concerns their solvability. We will study it in the following setting. Let fn be a
sequence of functions in the image of the operator A, such that fn → f in L2(Rd)
as n →∞. Denote by un a sequence of functions from H2(Rd) such that

Aun = fn, n ∈ N.

Since the operator A does not satisfy the Fredholm property, then the sequence
un may not be convergent. We will call a sequence un such that Aun → f a
solution in the sense of sequences of equation Au = f (see [14]). If this sequence
converges to a function u0 in the norm of the space E, then u0 is a solution of this
equation. Solution in the sense of sequences is equivalent in this sense to the usual
solution. However, in the case of non-Fredholm operators this convergence may
not hold or it can occur in some weaker sense. In this case, solution in the sense of
sequences may not imply the existence of the usual solution. In this work we will
find sufficient conditions of equivalence of solutions in the sense of sequences and
the usual solutions. In the other words, the conditions on sequences fn under which
the corresponding sequences un are strongly convergent.

In the first part of the article we consider the equation

−∆u− au = f(x), x ∈ Rd, d ∈ N, (1.2)

where a ≥ 0 is a constant and the right side is square integrable. Note that for
the operator −∆− a on L2(Rd) the essential spectrum fills the semi-axis [−a, ∞)
such that its inverse from L2(Rd) to H2(Rd) is not bounded. Let us write down the
corresponding sequence of equations with n ∈ N as

−∆un − aun = fn(x), x ∈ Rd, d ∈ N, (1.3)

with the right sides convergent to the right side of (1.2) in L2(Rd) as n → ∞. The
inner product of two functions

(f(x), g(x))L2(Rd) :=

∫

Rd

f(x)ḡ(x)dx,

with a slight abuse of notations when these functions are not square integrable. In-
deed, if f(x) ∈ L1(Rd) and g(x) is bounded, then clearly the integral considered
above makes sense, like for instance in the case of functions involved in the orthog-
onality conditions of Theorems 1 and 2 below. In the space of three dimensions for
some A(x) = (A1(x), A2(x), A3(x)), the inner product (f(x), A(x))L2(R3) is the
vector with the coordinates

∫

R3

f(x)Āk(x)dx, k = 1, 2, 3.
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We start with formulating the proposition in one dimension. We will consider the
space H2(Rd) with the norm

‖u‖2
H2(Rd) := ‖u‖2

L2(Rd) + ‖∆u‖2
L2(Rd). (1.4)

Theorem 1. Let n ∈ N and fn(x) ∈ L2(R), such that fn(x) → f(x) in L2(R)
as n →∞.

a) When a > 0 let xfn(x) ∈ L1(R), such that xfn(x) → xf(x) in L1(R) as
n →∞ and the orthogonality conditions

(
fn(x),

e±i
√

ax

√
2π

)

L2(R)

= 0 (1.5)

hold for all n ∈ N. Then equations (1.2) and (1.3) admit unique solutions u(x) ∈
H2(R) and un(x) ∈ H2(R) respectively, such that un(x) → u(x) in H2(R) as
n →∞.

b) When a = 0 let x2fn(x) ∈ L1(R), such that x2fn(x) → x2f(x) in L1(R) as
n →∞ and the orthogonality relations

(fn(x), 1)L2(R) = 0, (fn(x), x)L2(R) = 0 (1.6)

hold for all n ∈ N . Then problems (1.2) and (1.3) possess unique solutions u(x) ∈
H2(R) and un(x) ∈ H2(R) respectively, where un(x) → u(x) in H2(R) as n →
∞.

Then we turn our attention to the issue in dimensions two and higher. The sphere
of radius r > 0 in Rd centered at the origin will be denoted by Sd

r , of radius r = 1
as Sd and its Lebesgue measure by |Sd|. The notation Bd will stand for the unit ball
in the space of d dimensions with the center at the origin and |Bd| for its Lebesgue
measure.

Theorem 2. Let d ≥ 2, n ∈ N and fn(x) ∈ L2(Rd), such that fn(x) → f(x) in
L2(Rd) as n →∞.

a) When a > 0 let |x|fn(x) ∈ L1(Rd), such that |x|fn(x) → |x|f(x) in L1(Rd)
as n →∞ and the orthogonality conditions

(
fn(x),

eipx

(2π)
d
2

)

L2(Rd)

= 0, p ∈ Sd√
a a.e., d ≥ 2 (1.7)

hold for all n ∈ N. Then equations (1.2) and (1.3) admit unique solutions u(x) ∈
H2(Rd) and un(x) ∈ H2(Rd) respectively, such that un(x) → u(x) in H2(Rd) as
n →∞.
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b) When a = 0 and d = 2 let |x|2fn(x) ∈ L1(R2), such that |x|2fn(x) →
|x|2f(x) in L1(R2) as n →∞ and the orthogonality relations

(fn(x), 1)L2(R2) = 0, (fn(x), xm)L2(R2) = 0, m = 1, 2 (1.8)

hold for all n ∈ N. Then problems (1.2) and (1.3) have unique solutions u(x) ∈
H2(R2) and un(x) ∈ H2(R2) respectively, such that un(x) → u(x) in H2(R2) as
n →∞.

c) When a = 0 and d = 3, 4 let |x|fn(x) ∈ L1(Rd), such that |x|fn(x) →
|x|f(x) in L1(Rd) as n →∞ and the orthogonality condition

(fn(x), 1)L2(Rd) = 0, d = 3, 4 (1.9)

holds for all n ∈ N. Then problems (1.2) and (1.3) admit unique solutions u(x) ∈
H2(Rd) and un(x) ∈ H2(Rd) respectively, such that un(x) → u(x) in H2(Rd) as
n →∞.

d) When a = 0 and d ≥ 5 let fn(x) ∈ L1(Rd), such that fn(x) → f(x) in
L1(Rd) as n → ∞. Then equations (1.2) and (1.3) have unique solutions u(x) ∈
H2(Rd) and un(x) ∈ H2(Rd) respectively, such that un(x) → u(x) in H2(Rd) as
n →∞.

Note that when a = 0 and the dimension of the problem is at least five, orthog-
onality conditions in the Theorem above are not required (see e.g. Lemmas 6 and 7
of [22]). We will be using the hat symbol to denote the standard Fourier transform

f̂(p) :=
1

(2π)
d
2

∫

Rd

f(x)e−ipxdx, p ∈ Rd, d ∈ N. (1.10)

In the second part of the work we study the equation

−∆u + V (x)u− au = f(x), x ∈ R3, a ≥ 0, (1.11)

where the right side is square integrable. The correspondent sequence of equations
for n ∈ N will be

−∆un + V (x)un − aun = fn(x), x ∈ R3, a ≥ 0, (1.12)

where the right sides converge to the right side of (1.11) in L2(R3) as n → ∞.
Let us make the following technical assumptions on the scalar potential involved
in equations above. Note that the conditions on V (x), which is shallow and short-
range will be analogous to those stated in Assumption 1.1 of [16] (see also [17],
[18]). The essential spectrum of such a Schrödinger operator fills the nonnegative
semi-axis (see e.g. [9]).

Assumption 3. The potential function V (x) : R3 → R satisfies the estimate

|V (x)| ≤ C

1 + |x|3.5+δ
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with some δ > 0 and x = (x1, x2, x3) ∈ R3 a.e. such that

4
1
9
9

8
(4π)−

2
3‖V ‖

1
9

L∞(R3)‖V ‖
8
9

L
4
3 (R3)

< 1 and
√

cHLS‖V ‖L
3
2 (R3)

< 4π.

Here and further down C stands for a finite positive constant and cHLS given on
p.98 of [11] is the constant in the Hardy-Littlewood-Sobolev inequality

∣∣∣
∫

R3

∫

R3

f1(x)f1(y)

|x− y|2 dxdy
∣∣∣ ≤ cHLS‖f1‖2

L
3
2 (R3)

, f1 ∈ L
3
2 (R3).

According to Lemma 2.3 of [16], under Assumption 3 above on the potential
function, the operator−∆+V (x)−a on L2(R3) is self-adjoint and unitarily equiv-
alent to −∆− a via the wave operators (see [10], [13])

Ω± := s− limt→∓∞eit(−∆+V )eit∆,

where the limit is understood in the strong L2 sense (see e.g. [12] p.34, [6] p.90).
Hence−∆+V (x)−a on L2(R3) has only the essential spectrum σess(−∆+V (x)−
a) = [−a, ∞). By means of the spectral theorem, its functions of the continuous
spectrum satisfying

[−∆ + V (x)]ϕk(x) = k2ϕk(x), k ∈ R3, (1.13)

in the integral formulation the Lippmann-Schwinger equation for the perturbed
plane waves (see e.g. [12] p.98)

ϕk(x) =
eikx

(2π)
3
2

− 1

4π

∫

R3

ei|k||x−y|

|x− y| (V ϕk)(y)dy (1.14)

and the orthogonality relations

(ϕk(x), ϕq(x))L2(R3) = δ(k − q), k, q ∈ R3 (1.15)

form the complete system in L2(R3). In particular, when the vector k = 0, we
have ϕ0(x). Let us denote the generalized Fourier transform with respect to these
functions using the tilde symbol as

f̃(k) := (f(x), ϕk(x))L2(R3), k ∈ R3.

The integral operator involved in (1.14) is being denoted as

(Qϕ)(x) := − 1

4π

∫

R3

ei|k||x−y|

|x− y| (V ϕ)(y)dy, ϕ ∈ L∞(R3).

Let us consider Q : L∞(R3) → L∞(R3). Under Assumption 3, according to
Lemma 2.1 of [16] the operator norm ‖Q‖∞ < 1, in fact it is bounded above by
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a quantity independent of k which is expressed in terms of the appropriate Lp(R3)
norms of the potential function V (x). We have the following statement.

Theorem 4. Let Assumption 3 hold, n ∈ N and fn(x) ∈ L2(R3), such that
fn(x) → f(x) in L2(R3) as n → ∞. Assume also that |x|fn(x) ∈ L1(R3), such
that |x|fn(x) → |x|f(x) in L1(R3) as n →∞.

a) When a > 0 let the orthogonality conditions

(fn(x), ϕk(x))L2(R3) = 0, k ∈ S3√
a a.e. (1.16)

hold for all n ∈ N. Then equations (1.11) and (1.12) admit unique solutions u(x) ∈
H2(R3) and un(x) ∈ H2(R3) respectively, such that un(x) → u(x) in H2(R3) as
n →∞.

b) When a = 0 let the orthogonality relation

(fn(x), ϕ0(x))L2(R3) = 0 (1.17)

hold for all n ∈ N. Then equations (1.11) and (1.12) possess unique solutions
u(x) ∈ H2(R3) and un(x) ∈ H2(R3) respectively, such that un(x) → u(x) in
H2(R3) as n →∞.

2. Proof of the generalization of the solvability in the sense of sequences

Application of the standard Fourier transform (1.10) to both sides of equations (1.2)
and (1.3) for p ∈ Rd, d ∈ N yields

û(p) =
f̂(p)

p2 − a
, ûn(p) =

f̂n(p)

p2 − a
, a ≥ 0, n ∈ N.

When a = 0 we write their difference as

ûn(p)− û(p) =
f̂n(p)− f̂(p)

p2
χ{p∈Rd:|p|≤1} +

f̂n(p)− f̂(p)

p2
χ{p∈Rd:|p|>1}. (2.18)

Here and further down χA will stand for the characteristic function of a set A ⊆ Rd.
The complement of a set will be designated as Ac. Denote the second term in the
right side of (2.18) as ξd, 0

n (p).
When a > 0 and the dimension d = 1 we introduce the following set as the

union of intervals on the real line

Iδ = I−δ ∪ I+
δ := [−√a− δ,−√a + δ] ∪ [

√
a− δ,

√
a + δ], 0 < δ <

√
a,

which enables us to express in this case

ûn(p)− û(p) =
f̂n(p)− f̂(p)

p2 − a
χI−δ

(p)+
f̂n(p)− f̂(p)

p2 − a
χI+

δ
(p)+

f̂n(p)− f̂(p)

p2 − a
χIc

δ
(p).

(2.19)

6



Denote the last term in the right side of (2.19) as ξ1, a
n (p).

For a > 0 and dimensions d ≥ 2 we introduce the following set as the layer in
Rd:

Aσ := {p ∈ Rd | √a− σ ≤ |p| ≤ √
a + σ}, 0 < σ <

√
a

and express

ûn(p)− û(p) =
f̂n(p)− f̂(p)

p2 − a
χAσ +

f̂n(p)− f̂(p)

p2 − a
χAσ

c . (2.20)

Denote the second term in the right side of (2.20) as ξd, a
n (p).

Proof of Theorem 1. a) We express the first term in the right side of (2.19) as

f̂n(−√a)− f̂(−√a) +
∫ p

−√a
d
dq

[f̂n(q)− f̂(q)]dq

p2 − a
χI−δ

(p). (2.21)

Note that by means of orthogonality conditions (1.5) and part a) of Lemma 7 of the

Appendix with w(x) =
e±i

√
ax

√
2π

, we have

(
fn(x),

e±i
√

ax

√
2π

)

L2(R)

= 0, n ∈ N,

(
f(x),

e±i
√

ax

√
2π

)

L2(R)

= 0, (2.22)

such that f̂n(±√a) and f̂(±√a) vanish and via Lemma 5 of [22] equations (1.2)
and (1.3) considered in one dimension with a > 0 admit unique solutions u(x) ∈
H2(R) and un(x) ∈ H2(R) respectively. By using the trivial estimate

∣∣∣∣∣
d

dq
[f̂n(q)− f̂(q)]

∣∣∣∣∣ ≤
1√
2π
‖xfn − xf‖L1(R), q ∈ R, (2.23)

we easily derive the upper bound on the absolute value of (2.21) as

1√
2π

‖xfn − xf‖L1(R)

2
√

a− δ
χI−δ

(p).

Therefore, the L2(R) norm of the first term in the right side of (2.19) can be esti-
mated from above by

√
δ

π

‖xfn − xf‖L1(R)

2
√

a− δ
→ 0, n →∞ (2.24)

according to one of the assumptions of the theorem. Similarly to (2.21) and using
relations (2.22), we write the second term in the right side of (2.19) as

∫ p√
a

d
dq

[f̂n(q)− f̂(q)]dq

p2 − a
χI+

δ
(p), (2.25)
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which can be easily estimated from above in the absolute value by means of (2.23)
by

1√
2π

‖xfn − xf‖L1(R)

2
√

a− δ
χI+

δ
(p).

Hence, the L2(R) norm of the second term in the right side of (2.19) admits the
upper bound (2.24) as well. Thus, via Lemma 6, which guarantees that

limn→∞‖ξ1, a
n (p)‖L2(R) = 0,

we have un(x) → u(x) in L2(R) as n → ∞ and complete the proof of part a) of
the theorem by means of part a) of Lemma 5.

b) By means of orthogonality relations (1.6) for all n ∈ N we have

f̂n(0) = 0,
df̂n

dp
(0) = 0. (2.26)

Then part b) of Lemma 7 yields

(f(x), 1)L2(R) = 0, (f(x), x)L2(R) = 0,

such that

f̂(0) = 0,
df̂

dp
(0) = 0. (2.27)

Via part b) of Lemma 5 of [22] equations (1.2) and (1.3) studied in one dimension
with a = 0 admit unique solutions u(x) ∈ H2(R) and un(x) ∈ H2(R) respectively.
Identities (2.26) and (2.27) yield the representation formula

f̂n(p)− f̂(p) =

∫ p

0

( ∫ s

0

d2

dq2
[f̂n(q)− f̂(q)]dq

)
ds, p ∈ R,

which we are going to use along with the inequality
∣∣∣∣∣

d2

dq2
[f̂n(q)− f̂(q)]

∣∣∣∣∣ ≤
1√
2π
‖x2fn − x2f‖L1(R), q ∈ R.

Thus, for the first term in the right side of (2.18) in one dimension we have the upper
bound in the absolute value as

1

2
√

2π
‖x2fn − x2f‖L1(R)χ{p∈R: |p|≤1}

and in the L2(R) norm as

1

2
√

π
‖x2fn − x2f‖L1(R) → 0, n →∞
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according to one of the assumptions of the theorem. By means of Lemma 6

limn→∞‖ξ1, 0
n (p)‖L2(R) = 0

and we arrive at un(x) → u(x) in L2(R) as n →∞. We complete the proof of the
theorem via part a) of Lemma 5 of the Appendix.

Proof of Theorem 2. a) Orthogonality conditions (1.7) along with part a) of

Lemma 7 with w(x) =
eipx

(2π)
d
2

, p ∈ Sd√
a a.e. imply

(
f(x),

eipx

(2π)
d
2

)

L2(Rd)

= 0, p ∈ Sd√
a a.e., (2.28)

such that by means of part a) of Lemma 6 of [22] equations (1.2) and (1.3) with
a > 0 admit unique solutions u(x) ∈ H2(Rd) and un(x) ∈ H2(Rd) respectively for
d ≥ 2. Due to (1.7) and (2.28), we have

f̂n(
√

a, ω) = 0, f̂(
√

a, ω) = 0 a.e. (2.29)

Here and below ω stands for the angle variables on the sphere centered at the origin
of a given radius. Via identities (2.29) the first term in the right side of (2.20) can
be written as ∫ |p|√

a
∂
∂s

[f̂n(s, ω)− f̂(s, ω)]ds

p2 − a
χAσ . (2.30)

Clearly, for q ∈ Rd, d ≥ 2 we have the inequality
∣∣∣∣∣

∂

∂|q| [f̂n(|q|, ω)− f̂(|q|, ω)]

∣∣∣∣∣ ≤
1

(2π)
d
2

‖|x|fn − |x|f‖L1(Rd), (2.31)

such that expression (2.30) can be estimated from above in the absolute value by

1

(2π)
d
2
√

a
‖|x|fn − |x|f‖L1(Rd)χAσ

and therefore in the L2(Rd) norm by

1

(2π)
d
2
√

a
‖|x|fn − |x|f‖L1(Rd)

√
|Bd|[(√a + σ)d − (

√
a− σ)d] → 0, n →∞

due to one of the assumptions of the theorem. Hence, according to Lemma 6

limn→∞‖ξd, a
n (p)‖L2(Rd) = 0
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and we arrive at un(x) → u(x) in L2(Rd), d ≥ 2 as n → ∞. We complete the
proof of part a) of the theorem via part a) of Lemma 5 of the Appendix.

b) By means of orthogonality conditions (1.8) along with part b) of Lemma 7
we have

(f(x), 1)L2(R2) = 0, (f(x), xm)L2(R2) = 0, m = 1, 2. (2.32)

Thus via part b) of Lemma 6 of [22] equations (1.2) and (1.3) with a = 0 considered
in two dimensions admit unique solutions u(x) ∈ H2(R2) and un(x) ∈ H2(R2)

respectively. Identities (1.8) and (2.32) imply f̂n(0) = 0, n ∈ N and f̂(0) = 0. Let
θ denote the angle between two vectors p = (|p|, θp) and x = (|x|, θx) in R2. Then

∂f̂n

∂|p|(0, θp) = − i

2π

∫

R2

fn(x)|x|cosθdx

can be easily expressed as

− i

2π
{cosθp

∫

R2

fn(x)x1dx + sinθp

∫

R2

fn(x)x2dx} = 0

due to orthogonality relations (1.8). Analogously, we can write
∂f̂

∂|p|(0, θp) as

− i

2π
{cosθp

∫

R2

f(x)x1dx + sinθp

∫

R2

f(x)x2dx} = 0

via orthogonality conditions (2.32). The argument above implies

f̂n(p)− f̂(p) =

∫ |p|

0

(∫ s

0

∂2

∂ξ2
[f̂n(ξ, θp)− f̂(ξ, θp)]dξ

)
ds.

Clearly, for p ∈ R2 we have the inequality
∣∣∣∣∣

∂2

∂|q|2 [f̂n(q)− f̂(q)]

∣∣∣∣∣ ≤
1

2π
‖|x|2fn − |x|2f‖L1(R2),

which yields the upper bound

|f̂n(p)− f̂(p)| ≤ 1

4π
‖|x|2fn − |x|2f‖L1(R2)|p|2, p ∈ R2.

Thus the first term in the right side of (2.18) admits the estimate from above in the
absolute value as

1

4π
‖|x|2fn − |x|2f‖L1(R2)χ{p∈R2:|p|≤1}
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and in the L2(R2) norm as

1

2
√

π
‖|x|2fn − |x|2f‖L1(R2) → 0, n →∞

according to one of the assumptions of the theorem. By means of Lemma 6 we have

limn→∞‖ξ2, 0
n (p)‖L2(R2) = 0

and then via part a) of Lemma 5 we obtain un(x) → u(x) in H2(R2) as n →∞.

c) Orthogonality condition (1.9) and part a) of Lemma 7 with w(x) = 1, x ∈ Rd

yield
(f(x), 1)L2(Rd) = 0, d = 3, 4. (2.33)

Part c) of Lemma 6 of [22] implies that equations (1.2) and (1.3) with a = 0 in
dimensions d = 3, 4 admit unique solutions u(x) ∈ H2(Rd) and un(x) ∈ H2(Rd)

respectively. Due to (1.9) and (2.33), we have f̂n(0) = 0 and f̂(0) = 0. Hence we
can write the first term in the right side of (2.18) as

∫ |p|
0

∂
∂|q| [f̂n(|q|, ω)− f̂(|q|, ω)]d|q|

p2
χ{p∈Rd:|p|≤1}.

By applying inequality (2.31) to the expression above we easily obtain the upper
bound for it in the absolute value as

1

(2π)
d
2

‖|x|fn − |x|f‖L1(Rd)

χ{p∈Rd:|p|≤1}
|p|

and in the L2(Rd) norm as

1

(2π)
d
2

‖|x|fn − |x|f‖L1(Rd)

√∫ 1

0

|Sd||p|d−3d|p| → 0, n →∞, d = 3, 4

due to one of the assumptions of the theorem. By means of Lemma 6 we have

limn→∞‖ξd, 0
n (p)‖L2(Rd) = 0, d = 3, 4.

Part a) of Lemma 5 implies un(x) → u(x) in H2(Rd), d = 3, 4 as n →∞.

d) In dimensions d ≥ 5 equations (1.2) and (1.3) with a = 0 admit unique
solutions u(x) ∈ H2(Rd) and un(x) ∈ H2(Rd) respectively by means of Lemma
7 of [22]. No orthogonality conditions are required in this case. We have the
following trivial inequality

|f̂n(p)− f̂(p)| ≤ 1

(2π)
d
2

‖fn − f‖L1(Rd), p ∈ Rd,

11



which yields the upper bound in the absolute value on the first term in the right side
of (2.18) as

1

(2π)
d
2

‖fn − f‖L1(Rd)

χ{p∈Rd:|p|≤1}
p2

,

such that we obtain the upper bound in the L2(Rd) norm for it as

1

(2π)
d
2

‖fn − f‖L1(Rd)

√∫ 1

0

|Sd||p|d−5d|p| → 0, n →∞, d ≥ 5

due to one of the assumptions of the theorem. By means of Lemma 6 we have

limn→∞‖ξd, 0
n (p)‖L2(Rd) = 0, d ≥ 5.

Part a) of Lemma 5 yields un(x) → u(x) in H2(Rd), d ≥ 5 as n →∞.

Let us apply the generalized Fourier transform with respect to the functions
of the continuous spectrum of the Schrödinger operator to both sides of equations
(1.11) and (1.12), which yields

ũ(k) =
f̃(k)

k2 − a
, ũn(k) =

f̃n(k)

k2 − a
, k ∈ R3, a ≥ 0.

For a = 0 we express the difference of the transforms above as

ũn(k)− ũ(k) =
f̃n(k)− f̃(k)

k2
χ{k∈R3:|k|≤1} +

f̃n(k)− f̃(k)

k2
χ{k∈R3:|k|>1}. (2.34)

Let η0
n(k) stand for the second term in the right side of (2.34).

When a > 0 we introduce the spherical layer in the space of three dimensions
as

Bσ := {k ∈ R3 | √a− σ ≤ |k| ≤ √
a + σ}, 0 < σ <

√
a,

which enables us to write

ũn(k)− ũ(k) =
f̃n(k)− f̃(k)

k2 − a
χBσ +

f̃n(k)− f̃(k)

k2 − a
χBc

σ
. (2.35)

The second term in the right side of (2.35) is being designated as ηa
n(k).

Proof of Theorem 4. a) Orthogonality conditions (1.16) along with Corollary
2.2 of [16] and part a) of Lemma 7 of the Appendix with w(x) = ϕk(x), k ∈ S3√

a

a.e. give us
(f(x), ϕk(x))L2(R3) = 0, k ∈ S3√

a a.e. (2.36)

Then by means of Theorem 1.2 of [16] equations (1.11) and (1.12) with a bounded
potential function V (x) and a > 0 admit unique solutions u(x) ∈ H2(R3) and

12



un(x) ∈ H2(R3) respectively. Via orthogonality relations (1.16) and (2.36) dis-
cussed above we have on S3√

a
a.e.

f̃n(
√

a, ω) = 0, f̃(
√

a, ω) = 0,

which enables us to express the first term in the right side of (2.35) as

∫ |k|√
a

∂
∂|q| [f̃n(|q|, ω)− f̃(|q|, ω)]d|q|

k2 − a
χBσ .

For the expression above we easily obtain the upper bound in the absolute value as

‖∇q(f̃n(q)− f̃(q))‖L∞(R3)

χBσ√
a

and in the L2(R3) norm as

‖∇q(f̃n(q)− f̃(q))‖L∞(R3)√
a

√
4π

3
((
√

a + σ)3 − (
√

a− σ)3) → 0, n →∞

via Lemma 8 of the Appendix. By means of Lemma 6 we have

limn→∞‖ηa
n(k)‖L2(R3) = 0.

Part b) of Lemma 5 yields un(x) → u(x) in H2(R3) as n →∞.

b) Orthogonality relations (1.17), Corollary 2.2 of [16] and part a) of Lemma 7
of the Appendix with w(x) = ϕ0(x) imply

(f(x), ϕ0(x))L2(R3) = 0. (2.37)

We deduce from part b) of Theorem 1.2 of [16] that equations (1.11) and (1.12) with
V (x) satisfying Assumption 3 and a = 0 possess unique solutions u(x) ∈ H2(R3)
and un(x) ∈ H2(R3) respectively. Since orthogonality conditions (1.17) and (2.37)
yield

f̃n(0) = 0, f̃(0) = 0,

we can express the first term in the right side of (2.34) as

∫ |k|
0

∂
∂|q| [f̃n(|q|, ω)− f̃(|q|, ω)]d|q|

k2
χ{k∈R3:|k|≤1}.

Obviously, for the quantity above there is an upper bound in the absolute value as

‖∇q(f̃n(q)− f̃(q))‖L∞(R3)

χ{k∈R3:|k|≤1}
|k|

13



and therefore, in the L2(R3) norm simply as
√

4π‖∇q(f̃n(q)− f̃(q))‖L∞(R3) → 0, n →∞

due to Lemma 8. Lemmas 6 yields

limn→∞‖η0
n(k)‖L2(R3) = 0.

Then by means of part b) of Lemma 5 of the Appendix we arrive at un(x) → u(x)
in H2(R3) as n →∞.

3. Remarks

Denote by F a space of functions which belong to L2(Rd) ∩ L1(Rd) and for which
the norm

‖f‖F = ‖f‖L2(Rd) + ‖|x|f‖L1(Rd)

is bounded. A sequence fn ∈ F such that fn → f in the norm of the space satisfies
conditions of Theorems 1, 2, 4. Hence if we introduce a space E in such a way
that the operator A acts from E into F , then its image is closed. The functionals in
solvability conditions are linear bounded functionals over F .

The space E can be defined as a closure of infinitely differentiable functions
with compact supports in the norm

‖u‖E = ‖u‖H2(Rd) + ‖Au‖F .

The operator A : E → F is semi-Fredholm.
Similar construction can be considered in the case where |x|2f ∈ L1(Rd) (The-

orems 1, b and 2, b).

4. Auxiliary results

The following elementary lemma shows that to conclude the proofs of Theorems 1,
2 and 4 it is sufficient to show the convergence in L2 of the solutions of the studied
equations as n →∞.

Lemma 5. a) Let the conditions of Theorem 1 hold when d = 1, of Theorem 2
when d ≥ 2, such that u(x), un(x) ∈ H2(Rd) are the unique solutions of equations
(1.2) and (1.3) respectively and un(x) → u(x) in L2(Rd) as n →∞. Then un(x) →
u(x) in H2(Rd) as n →∞.

b) Let the conditions of Theorem 4 hold, such that u(x), un(x) ∈ H2(R3) are
the unique solutions of equations (1.11) and (1.12) respectively and un(x) → u(x)
in L2(R3) as n →∞. Then un(x) → u(x) in H2(R3) as n →∞.

14



Proof. a) From equations (1.2) and (1.3) with a ≥ 0 we easily deduce

‖∆un −∆u‖L2(Rd) ≤ a‖un − u‖L2(Rd) + ‖fn − f‖L2(Rd) → 0, n →∞.

By means of definition (1.4) we have un(x) → u(x) in H2(Rd) as n →∞.

b) From equations (1.11) and (1.12) for a ≥ 0 we easily obtain

‖∆un−∆u‖L2(R3) ≤ (a+‖V ‖L∞(R3))‖un−u‖L2(R3)+‖fn−f‖L2(R3) → 0, n →∞.

Therefore, definition (1.4) yields un(x) → u(x) in H2(R3) as n →∞.

The auxiliary statement below will be helpful in establishing the convergence in
L2 of the solutions of the equations discussed above as n →∞.

Lemma 6. Let n ∈ N and fn(x) ∈ L2(Rd), such that fn(x) → f(x) in L2(Rd)
as n → ∞. Then the expressions ξd, 0

n (p), ξ1, a
n (p), ξd, a

n (p), η0
n(k), ηa

n(k) defined
in formulas (2.18), (2.19), (2.20), (2.34) and (2.35) respectively tend to zero in the
corresponding L2(Rd) norms as n →∞.

Proof. Clearly, |ξd, 0
n (p)| ≤ |f̂n(p)− f̂(p)|, p ∈ Rd, such that

‖ξd, 0
n (p)‖L2(Rd) ≤ ‖fn − f‖L2(Rd) → 0, n →∞.

The definition of this expression yields |ξ1, a
n (p)| ≤ |f̂n(p)− f̂(p)|

δ2
, p ∈ R. Hence

‖ξ1, a
n (p)‖L2(R) ≤

‖fn − f‖L2(R)

δ2
→ 0, n →∞.

Finally, in the no potential case |ξd, a
n (p)| ≤ |f̂n(p)− f̂(p)|√

aσ
, p ∈ Rd, d ≥ 2. Thus

‖ξd, a
n (p)‖L2(Rd) ≤

‖fn − f‖L2(Rd)√
aσ

→ 0, n →∞.

We easily estimate
|η0

n(k)| ≤ |f̃n(k)− f̃(k)|, k ∈ R3,

which implies

‖η0
n(k)‖L2(R3) ≤ ‖fn − f‖L2(R3) → 0, n →∞.

The trivial inequality

|ηa
n(k)| ≤ |f̃n(k)− f̃(k)|√

aσ
, k ∈ R3
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yields

‖ηa
n(k)‖L2(R3) ≤

‖fn − f‖L2(R3)√
aσ

→ 0, n →∞,

which completes the proof of the lemma.

The following lemma provides better information on the convergence as n →∞
of the right sides of the nonhomogeneous elliptic problems studied in the article.

Lemma 7. Let n ∈ N and fn(x) ∈ L2(Rd), d ∈ N, such that fn(x) → f(x) in
L2(Rd) as n →∞.

a) If |x|fn(x) ∈ L1(Rd), such that |x|fn(x) → |x|f(x) in L1(Rd) as n → ∞
then fn(x) → f(x) in L1(Rd) as n → ∞. Moreover, if (fn(x), w(x))L2(Rd) =
0, n ∈ N, with some w(x) ∈ L∞(Rd) then (f(x), w(x))L2(Rd) = 0 as well.

b) If |x|2fn(x) ∈ L1(Rd), such that |x|2fn(x) → |x|2f(x) in L1(Rd) as n →∞
then |x|fn(x) → |x|f(x) in L1(Rd) and fn(x) → f(x) in L1(Rd) as n → ∞.
Moreover, if (fn(x), 1)L2(Rd) = 0 and (fn(x), xk)L2(Rd) = 0 for n ∈ N and k =
1, ..., d then (f(x), 1)L2(Rd) = 0 and (f(x), xk)L2(Rd) = 0 for k = 1, ..., d as well.

Proof. a) Note that fn(x) ∈ L1(Rd), n ∈ N via the trivial argument analogous to
the one of Fact 1 of [16]. We easily estimate the norm using the Schwarz inequality
as

‖fn − f‖L1(Rd) ≤
√∫

|x|≤1

|fn − f |2dx

√∫

|x|≤1

dx +

∫

|x|>1

|x||fn − f |dx ≤

≤ ‖fn − f‖L2(Rd)

√
|Bd|+ ‖|x|fn − |x|f‖L1(Rd) → 0, n →∞.

Then for w(x), which is bounded by one of the assumptions of the lemma, we obtain

|(f(x), w(x))L2(Rd)| = |(f(x)− fn(x), w(x))L2(Rd)| ≤
≤ ‖fn − f‖L1(Rd)‖w‖L∞(Rd) → 0, n →∞,

which completes the proof of part a) of the lemma.

b) By means of the argument, which relies on the Schwarz inequality and the
assumptions that fn(x) ∈ L2(Rd) and |x|2fn(x) ∈ L1(Rd), we easily obtain

|x|fn(x) ∈ L1(Rd), n ∈ N.

Let us apply the Schwarz inequality again to arrive at the bound

‖|x|fn − |x|f‖L1(Rd) ≤
∫

|x|≤1

|fn − f |dx +

∫

|x|>1

|x|2|fn − f |dx ≤

≤ ‖fn − f‖L2(Rd)

√
|Bd|+ ‖|x|2fn − |x|2f‖L1(Rd) → 0, n →∞.
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Hence fn(x) → f(x) in L1(Rd) as n → ∞ and (f(x), 1)L2(Rd) = 0 according to
the argument above of part a) of the lemma. Here w(x) = 1, x ∈ Rd. Finally, for
k = 1, ..., d we arrive at

|(f(x), xk)L2(Rd)| = |(f(x)− fn(x), xk)L2(Rd)| ≤ ‖|x|fn − |x|f‖L1(Rd) → 0

as n →∞, which completes the proof of part b) of the lemma.

The L∞(R3) norm studied in the lemma below is finite due to Lemma 2.4 of
[16]. We go further by proving that it tends to zero.

Lemma 8. Let the conditions of Theorem 4 hold. Then we have

‖∇k(f̃n(k)− f̃(k))‖L∞(R3) → 0, n →∞.

Proof. Clearly, we need to estimate the quantity

∇k(f̃n(k)− f̃(k)) = (fn(x)− f(x),∇kϕk(x))L2(R3). (3.38)

It easily follows from the Lippmann-Schwinger equation (1.14) that

∇kϕk(x) =
eikx

(2π)
3
2

ix + (I −Q)−1Q
eikx

(2π)
3
2

ix + (I −Q)−1(∇kQ)(I −Q)−1 eikx

(2π)
3
2

.

Here the operator ∇kQ : L∞(R3) → L∞(R3;C3) possesses the integral kernel

∇kQ(x, y, k) = − i

4π
ei|k||x−y| k

|k|V (y).

Evidently, for the operator norm

‖∇kQ‖∞ ≤ 1

4π
‖V ‖L1(R3) < ∞ (3.39)

due to the rate of decay of the potential function V (x) stated in Assumption 3.
Therefore, in order to prove the convergence to zero as n → ∞ of the L∞(R3)
norm of expression (3.38), we need to estimate the three terms defined below. The
first one is given by

Rn
1 (k) :=

(
fn(x)− f(x),

eikx

(2π)
3
2

ix

)

L2(R3)

, k ∈ R3.

We easily arrive at

‖Rn
1 (k)‖L∞(R3) ≤ 1

(2π)
3
2

‖|x|fn − |x|f‖L1(R3) → 0, n →∞
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according to one of our assumptions. The second term which we need to estimate
is

Rn
2 (k) :=

(
fn(x)− f(x), (I −Q)−1Q

eikx

(2π)
3
2

ix

)

L2(R3)

, k ∈ R3.

Let us use the upper bound

‖Rn
2 (k)‖L∞(R3) ≤ 1

(2π)
3
2

1

1− ‖Q‖∞‖Qeikxx‖L∞(R3)‖fn − f‖L1(R3).

Note that in the proof of Lemma 2.4 of [16] it was established that the norm
‖Qeikxx‖L∞(R3) is bounded above by a finite quantity independent of k. According
to the part a) of Lemma 7 when n →∞, fn → f in L1(R3). Therefore,

‖Rn
2 (k)‖L∞(R3) → 0, n →∞.

Finally, it remains to estimate the expression

Rn
3 (k) :=

(
fn(x)− f(x), (I −Q)−1(∇kQ)(I −Q)−1 eikx

(2π)
3
2

)

L2(R3)

, k ∈ R3.

Using (3.39), we easily deduce the inequality

‖Rn
3 (k)‖L∞(R3) ≤ 1

4π(2π)
3
2

‖V ‖L1(R3)

(1− ‖Q‖∞)2
‖fn − f‖L1(R3) → 0, n →∞

via the statement of the part a) of Lemma 7.
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opérateurs différentiels elliptiques dans Rn. J. Math. Pures Appl., 72 (1993),
105–119.
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