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Abstract. We consider nonholonomic systems with elastic collisions
and propose a concept of generalised solutions to Lagrange-d’Alembert
equations. In the light of this concept we describe dynamics of the
collisions. Several applications have been investigated.

1. The Description of the Problem

Let us start from the following model example. There is a solid ball B of
radius r and of massm and let its centre of mass coincide with the geometric
centre S. The moment of inertia relative to any axis passing trough the point
S is equal to J .

Give an informal description of the problem. Being undergone with some
potential forces the ball rolls on the floor and sometimes it collides with a
vertical wall. After the collision it jumps aside the wall. The wall and the
floor are rough: the ball can not slide on the floor and along the wall.

We wish to construct a theory of such a motion in the Lagrangian frame.
Particularly, we wish to give sense to the term ”elastic collision” in nonholo-
nomic context.

In physical space introduce a Cartesian coordinate system Oxyz. Let
(xS , yS , zS) be the coordinates of the point S.

Suppose that the plane Oxy is a solid and rough floor and the plane Ozy
is a solid and rough wall. For all the time t ≥ 0 we have zS = r, xS ≥ r.

By C ∈ B denote the contact point of the ball and the floor. The ball
can not slide on the floor:

vC = vS + [ω, SC] = 0, (1.1)

here vC is the velocity of the point C, and ω is the angle velocity of the ball.
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When the ball reaches the wall (say by its point G ∈ B) then we also
have

vG = vS + [ω, SG] = 0, (1.2)

The configuration manifold of the system is M = R2 × SO(3), where
(xS , yS) ∈ R2 and an element of SO(3) determines the orientation of the
ball. We use the Euler angles for the local coordinates in SO(3) .

Consequently the position of the ball is determined by the vector

x = (xS , yS ,−φ, θ, ψ)T .
Why do we write φ with negative sign will be clear below.

The wall is a 4-dimensional manifold N = {xS = r} ⊂M .
Thus the general construction is as follows. We have a configuration space

M, dimM = m and a submanifold N ⊂ M, dimN = m− 1 (the wall).
The manifolds M and N carry the distributions.

In the example under consideration the manifold M carries the nonholo-
nomic constraint given by (1.1) and the manifoldN carries the nonholonomic
constraint given by (1.1) and (1.2).

Let

x = (x1, . . . , xm)T ∈M

be local coordinates in M .
To determine the distribution at each point x ∈ M introduce a linear

operator

A(x) : TxM → Rm−l, dim imA(x) = m− l, x ∈M

and the mapping x 7→ A(x) is smooth. The subspaces kerA(x) ⊆ TxM
define an l−dimensional distribution in M .

To define an s−dimensional distribution in N introduce a linear operator

B(x) : TxM → Rm−s, dim imA(x) = m− s, x ∈ N.

The distribution on N consists of the subspaces kerB(x) ⊆ TxN .
The operators A,B are not uniquely defined: the same distributions can

be generated by the different operators A,B but we use them because they
naturally arise in the applications.

Assume also that

kerB(x) ⊆ kerA(x), kerA(x) * TxN (1.3)

for each x ∈ N .
The dynamics of the system is described by the smooth Lagrangian L(x, ẋ).
From the configuration manifold’s geometry viewpoint the collisions of

the rigid bodies was considered in [2].
One of the results of this article is as follows. The manifoldM is endowed

with the Riemann metric generated by the kinetic energy of the system. The
evolution of the system is expressed by the function x(t) ∈ M . When the
point with coordinates x(t) collides with the submanifold N i.e. x(τ) ∈ N it
then jumps aside obeying the law ”the angle of incidence is equal to the angle
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of reflection”. The authors obtained this law from a system with non-solid
consraint (wall) by means of some natural limit process.

These results have been obtained in the absence of nonholonomic con-
straints. We generalize them to the nonholonomic case.

2. The Lagrange-d’Alembert Principle

2.1. The Generalized Solutions to the Lagrange-d’Alembert Equa-
tion. In the absence of one-sided constraint N the standard nonholonomic
Lagrange-d’Alembert principle [1],[3] is read as follows.

Theorem 2.1. The smooth function x(t) ∈ M, t ∈ [t1, t2] is a solution
to the system of Lagrange-d’Alembert equations and the equations of con-
straints:(∂L

∂x
(x(t), ẋ(t))− d

dt

∂L

∂ẋ
(x(t), ẋ(t))

)
u = 0, ẋ(t), u ∈ kerA(x(t))

if and only if for any smooth function δx(t),

δx(ti) = 0, δx(t) ∈ kerA(x(t)), i = 1, 2, t ∈ [t1, t2]

the following equations hold

d

dϵ

∣∣∣
ϵ=0

∫ t2

t1

L
(
x(t)+ ϵδx(t), ẋ(t)+ ϵδẋ(t)

)
dt = 0, ẋ(t) ∈ kerA(x(t)). (2.1)

The idea is as follows. If the motion x(t) contains collisions it is point-wise
differentiable: at the moment of collision its first derivative is not continuous
and the second one does not exist.

Equations (2.1) demand the function x(t) to be piecewise differentiable.
These equations do not contain the second derivative of x(t). Therefore
formulas (2.1) fit to be a definition of generalized solution to the system of
the Lagrange-d’Alembert equations.

Our main hypothesis is as follows. The collision is described by such a
generalised solution.

Let us turn to the details.
Consider a solution x(t) that collides the wall at the moment τ ∈ (t1, t2)

i.e. x(τ) ∈ N . Since we expect that the ball jumps aside the wall it is
reasonable to assume that the points x(ti) = x̃i, i = 1, 2 are situated from
the same side of the manifold N .

We suppose that x(t) ∈ C[t1, t2] and

x(t) =

{
x−(t), t ∈ [t1, τ ],

x+(t), t ∈ [τ, t2]

and x−(t) ∈ C2[t1, τ ], x+(t) ∈ C2[τ, t2].
The solution x(t) must obey nonholonomic constraint that is

ẋ±(t) ∈ kerA(x±(t)).
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Fix such a solution x(t) and consider various families of functions

xϵ(t) =

{
x−ϵ (t), t ∈ [t1, τϵ],

x+ϵ (t), t ∈ [τϵ, t2]
, ϵ ∈ (−a, a), τϵ ∈ (t1, t2)

such that x(t) = x0(t), τ = τ0. For any t ∈ [t1, t2] the function xϵ(t) is
differentiable in ϵ, ϵ ∈ (−a, a), and

xϵ(t),
∂xϵ(t)

∂ϵ
∈ C([t1, t2]× (−a, a)).

For any ϵ ∈ (−a, a) the functions x±ϵ (t) are smooth in t on the corresponding
intervals. The function τϵ is smooth in (−a, a).

Moreover, for all admissible t, ϵ one has

xϵ(ti) = x̃i, i = 1, 2, xϵ(τϵ) ∈ N

and
∂xϵ
∂ϵ

(τϵ) ∈ kerB(xϵ(τϵ)),
∂xϵ
∂ϵ

(t) ∈ kerA(xϵ(t)). (2.2)

The collided solution x(t) satisfies to the following Lagrange-d’Alembert
principle:

d

dϵ

∣∣∣
ϵ=0

(∫ τϵ

t1

L(x−ϵ (t), ẋ
−
ϵ (t))dt+

∫ t2

τϵ

L(x+ϵ (t), ẋ
+
ϵ (t))dt

)
= 0. (2.3)

This equality holds for any family {xϵ} described above.

2.2. Lemma from Vector Algebra. The following lemma is mainly used
in Section 3. But we put it here because it provides a good introduction to
the geometry of the next Section.

Lemma 1. Let L = Rm be a Euclidean vector space with scalar product
given by its Gramian matrix G. And let B be the matrix of a linear operator
(we denote operators and their matrices by the same letters)

B : L→ Rm−s, rangB = m− s.

Let

L = kerB ⊕W, W ⊥ kerB

be the orthogonal decomposition of the space.
Then the square matrix of orthogonal projector P : L → L, P (L) = W

is

P = G−1BT
(
BG−1BT

)−1
B. (2.4)

If an operator

A : L→ Rm−l

is such that kerB ⊆ kerA then one has

AP = A. (2.5)

Particularly, this implies that P (kerA) ⊆ kerA.
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Proof. To obtain formula (2.4) fix an arbitrary vector x ∈ L and introduce
a linear function f(ξ) = (Px)TGξ. It is clear

kerB ⊆ ker f.

This implies that there is an operator λ : Rm−s → R such that (Px)TG = λB
and Px = G−1BTλT . It remains to find λT from the equation B(x−Px) = 0.

To obtain formula (2.5) note that there exists an operator

γ : Rm−s → Rm−l

such that A = γB. Consequently, formula (2.5) follows from (2.4).
The Lemma is proved.

2.3. The Equations of Collision. Introduce the notation

v± = ẋ±(τ) ∈ kerA(x(τ)).

By integrating by parts the left side of formula (2.3) equals(
L(x(τ), v−)− L(x(τ), v+)

)dτϵ
dϵ

∣∣∣
ϵ=0

+

∫ τ

t1

(∂L
∂x

(x−(t), ẋ−(t))− d

dt

∂L

∂ẋ
(x−(t), ẋ−(t))

)∂x−ϵ (t)
∂ϵ

∣∣∣
ϵ=0

dt

+

∫ t2

τ

(∂L
∂x

(x+(t), ẋ+(t))− d

dt

∂L

∂ẋ
(x+(t), ẋ+(t))

)∂x+ϵ (t)
∂ϵ

∣∣∣
ϵ=0

dt

+
(∂L
∂ẋ

(x(τ), v+)− ∂L

∂ẋ
(x(τ), v−)

)∂xϵ(τ)
∂ϵ

∣∣∣
ϵ=0

.

Recall that this formula holds for any family {xϵ} with described above
properties. Thus by the standard argument we obtain

L(x(τ), v−)− L(x(τ), v+) = 0, (2.6)∫ τ

t1

(∂L
∂x

(x(t), ẋ(t))− d

dt

∂L

∂ẋ
(x(t), ẋ(t))

)∂xϵ(t)
∂ϵ

∣∣∣
ϵ=0

dt = 0, (2.7)∫ t2

τ

(∂L
∂x

(x(t), ẋ(t))− d

dt

∂L

∂ẋ
(x(t), ẋ(t))

)∂xϵ(t)
∂ϵ

∣∣∣
ϵ=0

dt = 0, (2.8)(∂L
∂ẋ

(x(τ), v+)− ∂L

∂ẋ
(x(τ), v−)

)∂xϵ(τ)
∂ϵ

∣∣∣
ϵ=0

= 0. (2.9)

Equations (2.7), (2.8) express that the functions x±(t) satisfy to the Lagrange-
d’Alembert equations. By the assumption they also satisfy the equations of
constraint: ẋ±(t) ∈ kerA(x±(t)). That is before and after the collision the
system obeys to the Lagrange-d’Alembert equations and the equations of
constraint.

Particularly, if the system is holonomic outside N (i.e. A(x) = 0) then in
their domains the functions x±(t) satisfy the Lagrange equations

∂L

∂x
(x±(t), ẋ±(t))− d

dt

∂L

∂ẋ
(x±(t), ẋ±(t)) = 0.
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Equations (2.6) and (2.9) describe the behaviour of the system at the
moment of collision. These equations are of main importance for us.

To proceed with our analysis put

L = T (x, ẋ, ẋ)− V (x).

The form

T (x, ξ, η) =
1

2
ξTG(x)η, ξ = (ξ1, . . . , ξm)T , η = (η1, . . . , ηm)T

is the kinetic energy of the system, the matrix G(x) ≡ GT (x) is positive
definite. It defines a Riemann metric in M . The potential energy V is a
smooth function in M .

Equation (2.6) takes the form

T (x(τ), v−, v−) = T (x(τ), v+, v+). (2.10)

This means that the norm of the velocity after and before the collision is
the same.

By (2.2) equation (2.9) is reduced to

T (x(τ), v+ − v−, u) = 0, u ∈ kerB(x(τ)). (2.11)

From formula (2.11) it follows that the difference v+ − v− is perpendicular
to kerB(x(τ)).

It is reasonable to consider the following decomposition

Tx(τ)M = kerB(x(τ))⊕W (x(τ)),

here W (x(τ)) is the orthogonal complement for kerB(x(τ)), and let

P : Tx(τ)M →W (x(τ))

is the orthogonal projection.
Introduce notations Pv = v⊥, (I − P )v = v∥ and the norm |ξ|2 =

T (x(τ), ξ, ξ). Then write
v± = v±⊥ + v±∥ .

Actually we deal with vectors v ∈ kerA(x(τ)) only. By Lemma 1 one has
P (kerA(x(τ)) ⊆ kerA(x(τ)). Observe also that the inclusion v−⊥ ∈ Tx(τ)N

implies v−⊥ = 0.

Since the difference v+ − v− = (v+∥ − v−∥ ) + (v+⊥ − v−⊥) is perpendicular

to kerB(x(τ)) we have v+∥ = v−∥ and by formula (2.10) this implies that

|v+⊥| = |v−⊥|.
Consequently one has

v+ = Qv−⊥ + v−∥ ,

here

Q : F (x(τ)) → F (x(τ)), F (x(τ)) =W (x(τ))
∩

kerA(x(τ))

is an isometric mapping.
Formulas (1.3) imply

F (x(τ)) * Tx(τ)N. (2.12)
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Assume that Q is a linear operator that depends only on the point

x(τ) ∈ N.

Then since the whole trajectory x(t) is situated from the one side of the
manifold N and by (2.12) it follows that

Qv−⊥ = −v−⊥, v+ = −v−⊥ + v−∥ .

In terms of the matrix P the same is written as

v+ = −Pv− + (I − P )v− = (I − 2P )v−. (2.13)

We have got the law ”the angle of incidence is equal to the angle of reflec-
tion”. Particularly, the energy before the collision is equal to energy after
the collision.

3. Applications

Introduce the following notations J ′ = J + r2m, J̃ = J + r2m/2.

3.1. The Ball Rolls on the Floor and Meets the Wall. In this section
we solve the problem we started with.

Let v±S , ω± stand for velocity of the point S and for the ball’s angu-
lar velocity respectively. Superscripts + and − mark the states after the
collision and before the collision respectively.

In the coordinates Oxyz one has :

v±S = v±1 ex + v±2 ey, ω± = ω±
1 ex + ω±

2 ey + ω±
3 ez.

From formula (1.1) one has

v±1 = ω±
2 r, v±2 = −ω±

1 r. (3.1)

Therefore the velocity of any point of the ball is completely defined by
quantities v±1 , v

±
2 , ω

±
3 .

Theorem 3.1. The following formalas hold

v+1 =− v−1 ,

v+2 =
r2m

2J̃
v−2 +

rJ

J̃
ω−
3 ,

ω+
3 =

J ′

rJ̃
v−2 − r2m

2J̃
ω−
3 .

Proof. Introduce the Euler angles so that at the moment of collision one
has φ = ψ = 0, θ = π/2. Then it follows that ω = θ̇ex + ψ̇ez − φ̇ey. Thus
at the moment of collision we have

v± = (v±1 , v
±
2 , ω

±
1 , ω

±
2 , ω

±
3 )

T .

The formula T = 1
2mv

2
S + 1

2Jω
2 implies G = diag(m,m, J, J, J).
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Combining formulas (3.1) and (1.2) we obtain

A =

(
1 0 0 −r 0
0 1 r 0 0

)
, B =


1 0 0 0 0
0 1 0 0 −r
0 0 0 1 0
0 1 r 0 0

 .

The matrix P is calculated with the help of Lemma 1:

P =
1

2J̃


1 0 0 0 0
0 2J Jr 0 −Jr
0 rm J ′ 0 J
0 0 0 1 0
0 −rm J 0 J ′

 .

Now the Theorem follows by direct calculation from formula (2.13).
The Theorem is proved.

3.2. The Ball is Thrown to the Floor. In this section we consider an-
other problem with the ball. Now we have only the floor Oxy and there is
no wall.

Being undergone with some potential forces the ball can move in the
half-space {zS > r} and sometimes it can collide with the floor.

After the ball meets the floor (zS = r) it then jumps aside. The point of
contact C ∈ B has the zero velocity (1.1).

Introduce the configuration manifold of our system as M = R3 × SO(3),
where (xS , yS , zS) ∈ R3 and an element of SO(3) states the orientation of
the ball. As a local coordinates in SO(3) we use the Euler angles. The floor
is a fifth dimensional submanifold N ⊂ M which is given by the equation
zS = r.

Let v+S , ω+ stand for velocity of the point S and for the ball’s angular

velocity before the collision respectively. Let v−S , ω− stand for velocity of
the point S and for the ball’s angular velocity after the collision respectively.

In the coordinates Oxyz one has :

v±S = (v±1 , v
±
2 , v

±
3 ), ω± = (ω±

1 , ω
±
2 , ω

±
3 ).
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Theorem 3.2. The following formulas hold true

v+1 =
mr2 − J

J ′ v−1 +
2Jr

J ′ ω
−
2 ,

v+2 =
mr2 − J

J ′ v−2 − 2Jr

J ′ ω
−
1 ,

v+3 = −v−3 ,

ω+
1 = −2rm

J ′ v
−
2 +

J −mr2

J ′ ω−
1 ,

ω+
2 =

2rm

J ′ v
−
1 +

J −mr2

J ′ ω−
2 ,

ω+
3 = ω−

3 .

Proof. Introduce the Euler angles so that at the moment of collision one
has φ = ψ = 0, θ = π/2. Then it follows that ω = θ̇ex + ψ̇ez − φ̇ey. Thus
at the moment of collision we have

v± = (v±1 , v
±
2 , v

±
3 , ω

±
1 , ω

±
2 , ω

±
3 )

T .

The formula T = 1
2mv

2
S + 1

2Jω
2 implies G = diag(m,m,m, J, J, J). From

formula (1.1) one obtains

A =

1 0 0 0 −r 0
0 1 0 r 0 0
0 0 1 0 0 0

 .

The matrix of the operator P is computed with the help of Lemma 1:

P =
1

J ′


J 0 0 0 −Jr 0
0 J 0 Jr 0 0
0 0 1 0 0 0
0 rm 0 r2m 0 0

−rm 0 0 0 r2m 0
0 0 0 0 0 0

 .

Now Theorem 3.2 follows from formula (2.13).
The Theorem is proved.

3.2.1. Nonholonomic Pendulum. Suppose that the ball moves in the stan-
dard gravity field g = −gez.

Throw our ball to the floor so that

v−S = −vex − uez, ω− =
rmv

J
ey, u, v > 0.

From Theorem 3.2 it follows that

v+S = −v−S , ω+ = −ω−.

Thus after the ball jumped up from the floor its centre S moves along the
same parabola just in the opposite direction. Since the angle velocity also
changes its direction the periodic motion begins. The ball knocks the floor
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jumps up and go down along the parabola, knocks the floor at another point
then flies along the same parabola to the initial point and so on.
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