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Introduction
The most studies on functional connectivity have been done by 
analyzing the brain s hemodynamic response to a stimulation. On ’

the other hand, the low-frequency spontaneous fluctuations in the 
blood oxygen level dependent (BOLD) signals of functional MRI 
have been observed in the resting state. However, the BOLD 
signals in resting state are significantly corrupted by huge noises 
arising from cardiac pulsation, respiration, subject motion, 
scanner, and so forth. Especially, the noise compounds are 
stronger in the rat brain than in the human brain. To overcome 
such an artifact, we assumed that fractal behavior in BOLD 
signals reflects low frequency neural activity, and applied the 
theorem such that the wavelet correlation spectrum between long 
memory processes is scale-invariant over low frequency scales. 
Here, we report an experiment that shows special correlation 
patterns not only in correlation of scaling coefficients in very low-
frequency band (less than 0.0078Hz) but also in asymptotic 
wavelet correlation. In addition, we show the distribution of the 
Hurst exponents in the rat brain.

Methods
The asymptotic wavelet correlation has been usually estimated 
with the bivariate least mean squares estimator of the Hurst 
exponent. However, when a time series has more than one pair 
for correlation analysis, it can also have different values of its 
Hurst exponent. To avoid this conflict, we exploited an univariate 
estimator to get the Hurst exponent individually at each region, 
and afterward compute the asymptotic wavelet correlation as 
illustrated at Fig. 1.

As illustrated at Fig. 2(a), the periodogram-based estimator of the 
Hurst exponent was applied since it is especially appropriate to 
analyze time series which have significant long memory property 
near zero frequency. 

The asymptotic wavelet correlation between time series X1 and X2 
can be computed by the least mean squares estimator that finds 
out the best scale range which satisfies the scale-invariance of 
the wavelet correlation. Let us assume that we have long memory 
parameters which satisfy the following linearity in the scale range
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where wavelet variances and covariance      ,      , and            are 
given respectively in each scale. Then, the asymptotic wavelet 
correlation can be simply calculated by the following equation. 

Also, we computed the correlation of scaling coefficients which 
reflects transient change in very low-frequency range.
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Figure 1. The asymptotic wavelet correlation analysis. 

Fig. 3 shows that the Hurst exponent is 
higher in subcortical regions especially –

hippocampus– than in cortical regions. 

Results
Figure 2. (a) The 
periodogram-based 
estimation of the 
Hurst exponent, 
and (b) the least 
mean square 
estimation of the 
covariance 
parameter.

Figure 3. The distribution of Hurst exponentsFigure 4. The histograms of (a) correlations 
of scaling coefficients and (b) asymptotic 
wavelet correlation.

We found two special groups of voxels which have Y-type or O-type 
patterns in correlation of scaling coefficients. The Y-type in positive 
correlation is always followed by the O-type in negative correlation, and vice 
versa as shown at Fig. 5. Moreover, the voxels with the positive Y-type 
pattern are distributed like the O-type, and vice versa as shwon at Fig. 5(c). 
Likewise, the Y-type pattern had been observed even in the asymptotic 
wavelet correlation, as shown at Fig. 5(d).

In Fig. 4, correlation coefficients of scaling coefficients are symmetrically but 
not normally distributed with short tails while the histogram of asymptotic 
wavelet correlations resembles a left-skewed gamma distribution.

Figure 5. (a) (top-left) Y-type pattern in positive correlation and its corresponding O-type 
pattern in negative correlation, (b) (bottom-left) O-type pattern in positive correlation and 
its corresponding Y-type pattern in negative correlation. (c) (middle) The distributions of 
voxels with positive Y-type pattern and positive O-type pattern. (d) (right) Y-type pattern in 
the asymptotic wavelet correlation and the distribution of such voxels.

Discussion
The special patterns, both in correlation of scaling coefficients and the 
asymptotic wavelet correlation, need to be validated by other quantitative 
and neuroscientific ways. To avoid noise effect, modeling system and 
physiological noises will be instrumental to elaborately extract the 
endogenous signals by estimating noise parameters. Our future works 
include developing a robust method to distinguish the physiological noise 
with scale-invariant property from the endogenous signals.
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