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1. Introduction

In the article we consider the following system ofN (N ∈ N is fixed) nonlocal nonlinear equations
in Rd with 1 ≤ d ≤ 3, the parameterλ ∈ R, the oscillation frequenciesωk ≥ 0 and1 ≤ k ≤ N :

i
∂ψk

∂t
= −∆ψk+λ

∫

Rd

Gk(x−y)
[
Fk

( N∑

s=1

|ψs(y, t)|2
)
ψk(y, t)+Uk(y)ψk(y, t)

]
dy+hk(x)e

−iωkt.

(1.1)
Our primary interest in (1.1) is not based on any particular practical applications of this system,
but is due to its resemblance to the system of forced, nonlocal, Nonlinear Schrödinger (NLS)
equations. Precise conditions on other terms involved in (1.1) will be specified further down. Let
us look for a solution of the system above in the form of theN component standing solitary wave

ψk(x, t) = φk(x)e
−iωkt, 1 ≤ k ≤ N. (1.2)

The sign under the exponent in (1.2) is negative, which occurs in the case of so-called embedded
solitons (see e.g. [5]), as distinct from the standard situation (see e.g. [1], [7]). We substitute (1.2)
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into (1.1) and easily obtain the following system of nonlocal elliptic equations with1 ≤ k ≤ N

−∆φk − ωkφk + λ

∫

Rd

Gk(x− y)
[
Fk

( N∑

s=1

|φs(y)|2
)
φk(y) +Uk(y)φk(y)

]
dy+ hk(x) = 0. (1.3)

The absolute value|λ| here is assumed to be small enough and the solvability conditions for the
system of equations (1.3) whenλ vanishes are given by Lemmas 5 and 6 of [15]. Let us re-
call that a linear operator acting from a Banach spaceE into another Banach spaceF is said to
possess the Fredholm property if its image is closed, the dimension of its kernel and the codi-
mension of its image are finite. In our case system (1.3) involves the non Fredholm operators
−∆ − ωk : H2(Rd) → L2(Rd). When these operators are considered onL2(Rd) their essential
spectraσess(−∆ − ωk) = [−ωk,∞), 1 ≤ k ≤ N contain the origin. Solvability conditions for
nonhomogeneous elliptic problems with operators of that kind were studied extensively in recent
years. While linear equations with and without external scalar potentials were covered in the num-
ber of works (see e.g. [6], [8]– [12], [14], [15]), nonlinearnon Fredholm problems were treated
in a few examples as well (see e.g. [2]– [4], [13], [15], [16]). The results for the single equation
analogous to system (1.1) were obtained in [15]. Let us denote the inner product of two functions
as

(f1(x), f2(x))L2(Rd) :=

∫

Rd

f1(x)f̄2(x)dx,

with a slight abuse of notations when these functions are notsquare integrable, like those involved
in the orthogonality conditions of Theorem 1 below. Indeed,whenf1(x) ∈ L1(Rd) andf2(x) is
bounded, the integral in the right side of the formula above makes sense. The sphere of radius
r > 0 in Rd centered at the origin will be designated asSd

r . The functional space used in the article
will be equipped with the norms

‖u‖2H2(Rd,CN ) :=
N∑

k=1

‖uk‖2H2(Rd) =
N∑

k=1

{‖uk‖2L2(Rd) + ‖∆uk‖2L2(Rd)},

‖u‖2L2(Rd,CN ) :=

N∑

k=1

‖uk‖2L2(Rd)

for a vector functionu(x) := (u1(x), u2(x), ..., uN(x)) ∈ H2(Rd,CN). We will use the closed unit
ball centered at the origin in the Sobolev space of vector functions with the norm defined above:

B(H2(Rd,CN)) := {u(x) ∈ H2(Rd,CN) | ‖u‖H2(Rd,CN ) ≤ 1}. (1.4)

The norm of a complex-valued vector ofN components will be denoted as

|u|2
CN :=

N∑

k=1

|uk|2.

Our main result is as follows.
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Theorem 1.Let for1 ≤ k ≤ N the following properties hold:Uk(x) ∈ L∞(Rd), the functions
hk(x) ∈ L2(Rd) and are nontrivial for at least one value ofk, Fk(z) : R

+ → R are continuously
differentiable, the kernelsGk(x) ∈ L1(Rd), 1 ≤ d ≤ 3. Let the oscillation frequenciesωk > 0 for
1 ≤ k ≤ M andωk = 0 for M + 1 ≤ k ≤ N with a given1 ≤M ≤ N − 1, M ∈ N.

I) When the dimensiond = 1 and1 ≤ k ≤M , letxGk(x), xhk(x) ∈ L1(R) and
(
Gk(x),

e±i
√
ωkx

√
2π

)

L2(R)

= 0,

(
hk(x),

e±i
√
ωkx

√
2π

)

L2(R)

= 0. (1.5)

For M + 1 ≤ k ≤ N , letx2Gk(x), x
2hk(x) ∈ L1(R) and

(Gk(x), 1)L2(R) = 0, (Gk(x), x)L2(R) = 0, (hk(x), 1)L2(R) = 0, (hk(x), x)L2(R) = 0. (1.6)

II) When the dimensiond = 2, 3 and1 ≤ k ≤M , letxGk(x), xhk(x) ∈ L1(Rd) and
(
Gk(x),

eipx

(2π)
d
2

)

L2(Rd)

= 0,

(
hk(x),

eipx

(2π)
d
2

)

L2(Rd)

= 0 for p ∈ Sd√
ωk

a.e. (1.7)

ForM + 1 ≤ k ≤ N , letx2hk(x) ∈ L1(R2) whend = 2 and

(hk(x), 1)L2(R2) = 0, (hk(x), xs)L2(R2) = 0, 1 ≤ s ≤ 2. (1.8)

WhenM + 1 ≤ k ≤ N andd = 3 assumexhk(x) ∈ L1(R3) and

(hk(x), 1)L2(R3) = 0. (1.9)

Moreover, let us assume that forM + 1 ≤ k ≤ N andd = 2, 3 thatx2Gk(x) ∈ L1(Rd) and

(Gk(x), 1)L2(Rd) = 0, (Gk(x), xs)L2(Rd) = 0, 1 ≤ s ≤ d. (1.10)

Then there existsε > 0 such that for allλ ∈ R, |λ| < ε the system of equations (1.3) possesses a
unique nontrivial solutionφ(x) ∈ H2(Rd,CN).

2. Standing waves of the system of nonlocal, forced equations

Proof of Theorem 1.Under the assumptions of the theorem stated above by means ofthe results
of Lemmas 5 and 6 of [15] system (1.3) with the vanishing parameterλ admits a unique solution
φ0(x) = (φ0,1(x), φ0,2(x), ..., φ0,N(x)) ∈ H2(Rd,CN), 1 ≤ d ≤ 3, such that

−∆φ0,k − ωkφ0,k = −hk, 1 ≤ k ≤ N.

Let us look for the solution of the system of equations (1.3) in the formφ(x) = φ0(x) + η(x) in
the case whenλ 6= 0. For1 ≤ k ≤ N we easily obtain

−∆ηk − ωkηk + λ

∫

Rd

Gk(x− y)
[
Fk

( N∑

s=1

|φ0,s(y) + ηs(y)|2
)
(φ0,k(y) + ηk(y))+
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+Uk(y)(φ0,k(y) + ηk(y))
]
dy = 0.

For technical purposes we will be using the auxiliary systemof equations with1 ≤ k ≤ N

∆ξk + ωkξk = λ

∫

Rd

Gk(x− y)
[
Fk

( N∑

s=1

|φ0,s(y) + ηs(y)|2
)
(φ0,k(y) + ηk(y))+ (2.1)

+Uk(y)(φ0,k(y) + ηk(y))
]
dy.

Below we will prove that for small enough values of|λ| the system of equations (2.1) defines
a mapT : B(H2(Rd,CN)) → B(H2(Rd,CN)). Let us first assume that for a certainη(x) ∈
B(H2(Rd,CN)) there exist two solutionsξ(1),(2)(x) ∈ B(H2(Rd,CN)) of system (2.1). Clearly,
the difference vector functionξ(x) := ξ(1)(x) − ξ(2)(x) ∈ H2(Rd,CN) solves the system of
equations

−∆ξk = ωkξk, 1 ≤ k ≤ N.

But the negative Laplacian considered in the whole space does not have any nontrivial square
integrable eigenfunctions. Therefore,ξ(x) = 0 a.e. inRd.

Let us choose arbitrarily a vector functionη(x) ∈ B(H2(Rd,CN)). Evidently, via the Sobolev
embedding theoremφ0,k(x), ηk(x) ∈ L∞(Rd), 1 ≤ d ≤ 3 for 1 ≤ k ≤ N . Therefore, using the
assumptions of the theorem as well, we obtain the bounds on the terms of the system of equations
(2.1), such that

|Uk(φ0,k + ηk)| ≤ ‖Uk‖L∞(Rd)(|φ0,k|+ |ηk|) ∈ L2(Rd) (2.2)

and ∣∣∣Fk

( N∑

s=1

|φ0,s(y) + ηs(y)|2
)
(φ0,k(y) + ηk(y))

∣∣∣ ≤ (2.3)

≤ sup|Fk(z)|z∈[0, ∑N
s=1(‖φ0,s‖L∞(Rd)

+‖ηs‖L∞(Rd)
)2](|φ0,k(y)|+ |ηk(y)|) ∈ L2(Rd)

as well. We apply the standard Fourier transform (denoted bythe “hat” symbol) to the system of
equations (2.1) and for1 ≤ k ≤ N arrive at

ξ̂k(p) = λ(2π)
d
2
Ĝk(p)

ωk − p2
{Fk(p) + Gk(p)}, (2.4)

withFk(p) andGk(p) denoting the transforms ofFk

(∑N

s=1 |φ0,s(y)+ηs(y)|2
)
(φ0,k(y)+ηk(y)) and

Uk(y)(φ0,k(y) + ηk(y)) respectively. Estimates (2.2) and (2.3) imply thatFk(p), Gk(p) ∈ L2(Rd).
Obviously

p2ξ̂k(p) = λ(2π)
d
2
p2Ĝk(p)

ωk − p2
{Fk(p) + Gk(p)}. (2.5)

For technical purposes we will be using the following quantities for1 ≤ k ≤ N , namely

Nωk,d := max

{∥∥∥∥∥
Ĝk(p)

ωk − p2

∥∥∥∥∥
L∞(Rd)

,

∥∥∥∥∥
p2Ĝk(p)

ωk − p2

∥∥∥∥∥
L∞(Rd)

}
, ωk ≥ 0, 1 ≤ d ≤ 3. (2.6)
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Orthogonality conditions (1.5), (1.6), (1.7) and (1.10) along with Lemmas A1 and A2 of [13]
imply that for1 ≤ k ≤ N we haveNωk,d <∞. Hence,

|ξ̂k(p)| ≤ |λ|(2π) d
2Nωk,d{|Fk(p)|+ |Gk(p)|} ∈ L2(Rd),

|p2ξ̂k(p)| ≤ |λ|(2π) d
2Nωk,d{|Fk(p)|+ |Gk(p)|} ∈ L2(Rd).

Therefore, we easily obtain the upper bound on the norm

‖ξ‖2H2(Rd,CN ) =
N∑

k=1

{‖ξ̂k(p)‖2L2(Rd) + ‖p2ξ̂k(p)‖2L2(Rd)} ≤

≤ 2λ2(2π)d
N∑

k=1

N2
ωk,d

‖|Fk(p)|+ |Gk(p)|‖2L2(Rd).

Thus ξ ∈ B(H2(Rd,CN)) for all the values of the parameter|λ| sufficiently small andTη =
ξ. Finally, we need to show that the mapT : B(H2(Rd,CN)) → B(H2(Rd,CN)) defined by
system (2.1) is a strict contraction. To achieve this goal, let us choose arbitrarilyη1(x), η2(x) ∈
B(H2(Rd,CN)). EvidentlyTη1,2 = ξ1,2 ∈ B(H2(Rd,CN)) via the system of equations (2.1)
when|λ| is small enough. Obviously for1 ≤ k ≤ N

ξ̂1,k(p)− ξ̂2,k(p) = λ(2π)
d
2
Ĝk(p)

ωk − p2
{F1,k(p)−F2,k(p) + G1,k(p)− G2,k(p)}.

HereFj,k(p) andGj,k(p) denote the Fourier images of expressions

Fk

( N∑

s=1

|φ0,s(x) + ηj,s(x)|2
)
(φ0,k(x) + ηj,k(x)) and Uk(x)(φ0,k(x) + ηj,k(x))

respectively withj = 1, 2. Thus

p2ξ̂1,k(p)− p2ξ̂2,k(p) = λ(2π)
d
2
p2Ĝk(p)

ωk − p2
{F1,k(p)−F2,k(p) + G1,k(p)− G2,k(p)}.

We easily arrive at the upper bound for‖ξ1,k(x)− ξ2,k(x)‖L2(Rd) as

|λ|(2π) d
2Nωk,d

{∥∥∥Fk

( N∑

s=1

|φ0,s+η1,s|2
)
(φ0,k+η1,k)−Fk

( N∑

s=1

|φ0,s+η2,s|2
)
(φ0,k+η2,k)

∥∥∥
L2(Rd)

+

+‖Uk(η1,k − η2,k)‖L2(Rd)

}
.

The analogical estimate from above is valid for‖∆ξ1,k(x)−∆ξ2,k(x)‖L2(Rd). Obviously

‖Uk(η1,k − η2,k)‖L2(Rd) ≤ ‖Uk‖L∞(Rd)‖η1,k − η2,k‖L2(Rd).
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We express

Fk

( N∑

s=1

|φ0,s + η1,s|2
)
(φ0,k + η1,k)− Fk

( N∑

s=1

|φ0,s + η2,s|2
)
(φ0,k + η2,k) =

=
{
Fk

( N∑

s=1

|φ0,s + η1,s|2
)
− Fk

( N∑

s=1

|φ0,s + η2,s|2
)}

(φ0,k + η2,k)+

+Fk

( N∑

s=1

|φ0,s + η1,s|2
)
(η1,k − η2,k).

The Sobolev embedding theorem applied inRd with 1 ≤ d ≤ 3 yields

|φ0,s + ηj,s| ≤ ce(‖φ0,s‖H2(Rd) + ‖ηj,s‖H2(Rd)),

wherece denotes the constant of the embedding,1 ≤ s ≤ N andj = 1, 2. Hence, we arrive at

N∑

s=1

|φ0,s + ηj,s|2 ≤ 2c2e(1 + ‖φ0‖2H2(Rd,CN )), j = 1, 2,

such that

∥∥∥Fk

( N∑

s=1

|φ0,s+η1,s|2
)
(η1,k−η2,k)

∥∥∥
L2(Rd)

≤ sup|Fk(z)|z∈[0, 2c2e(1+‖φ0‖2
H2(Rd,CN )

)]‖η1,k−η2,k‖L2(Rd).

Let us make use of the identity

Fk

( N∑

s=1

|φ0,s + η1,s|2
)
− Fk

( N∑

s=1

|φ0,s + η2,s|2
)
=

∫ ∑N
s=1 |φ0,s+η1,s|2

∑N
s=1 |φ0,s+η2,s|2

F ′
k(z)dz.

For technical purposes via the Sobolev embedding theorem weestimate

∣∣∣
N∑

s=1

|φ0,s + η1,s|2 −
N∑

s=1

|φ0,s + η2,s|2
∣∣∣ ≤ 2ce

N∑

s=1

|η1,s − η2,s|(1 + ‖φ0,s‖H2(Rd)) ≤

≤ 2ce

√√√√
N∑

s=1

|η1,s − η2,s|2
√√√√

N∑

l=1

(1 + ‖φ0,l‖H2(Rd))2 ≤ 2
√
2ce|η1 − η2|CN

√
N + ‖φ0‖2H2(Rd,CN )

,

which enables us to obtain

∣∣∣
{
Fk

( N∑

s=1

|φ0,s+η1,s|2
)
−Fk

( N∑

s=1

|φ0,s+η2,s|2
)}

(φ0,k+η2,k)
∣∣∣ ≤ 2

√
2c2e

√
N + ‖φ0‖2H2(Rd,CN )

×
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×sup|F ′
k(z)|z∈[0, 2c2e(1+‖φ0‖2

H2(Rd,CN )
)](‖φ0,k‖H2(Rd) + ‖η2,k‖H2(Rd))|η1 − η2|CN .

Therefore, we manage to derive the upper bound

∥∥∥
{
Fk

( N∑

s=1

|φ0,s + η1,s|2
)
− Fk

( N∑

s=1

|φ0,s + η2,s|2
)}

(φ0,k + η2,k)
∥∥∥
L2(Rd)

≤

≤ 2
√
2c2e

√
N + ‖φ0‖2H2(Rd,CN )

sup|F ′
k(z)|z∈[0,2c2e(1+‖φ0‖2

H2(Rd,CN )
)]×

×(‖φ0,k‖H2(Rd) + ‖η2,k‖H2(Rd))‖η1 − η2‖L2(Rd,CN ).

Collecting the estimates obtained above we arrive at

‖ξ1,k − ξ2,k‖L2(Rd) ≤ |λ|(2π) d
2Nωk,d{‖Uk‖L∞(Rd) + sup|Fk(z)|z∈[0,2c2e(1+‖φ0‖2

H2(Rd,CN )
)] + 2

√
2c2e×

×
√
N + ‖φ0‖2H2(Rd,CN )

(1 + ‖φ0‖H2(Rd,CN ))sup|F ′
k(z)|z∈[0,2c2e(1+‖φ0‖2

H2(Rd,CN )
)]}‖η1 − η2‖L2(Rd,CN ).

Finally, we have

‖Tη1−Tη2‖H2(Rd,CN ) ≤
√
2(2π)

d
2 |λ|

[ N∑

k=1

N2
ωk,d

{‖Uk‖L∞(Rd)+sup|Fk(z)|z∈[0,2c2e(1+‖φ0‖2
H2(Rd,CN )

)]+

+2
√
2c2e

√
N + ‖φ0‖2H2(Rd,CN )

(1 + ‖φ0‖H2(Rd,CN ))sup|F ′
k(z)|z∈[0,2c2e(1+‖φ0‖2

H2(Rd,CN )
)]}2
] 1

2×

×‖η1 − η2‖H2(Rd,CN ).

Therefore, for all the values of the parameter|λ| sufficiently small, the mapT : B(H2(Rd,CN)) →
B(H2(Rd,CN)) generated by system (2.1) is a strict contraction, such thatit possesses a unique
fixed pointη ∈ B(H2(Rd,CN)). The unique solution of system (1.3) belonging toH2(Rd,CN) is
nontrivial by means of our assumption that for at least one value of1 ≤ k ≤ N the functionhk(x)
does not vanish inRd.
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