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THERMOACOUSTIC TOMOGRAPHY WITH AN ARBITRARY ELLIPTIC OPERATOR

MICHAEL V. KLIBANOV∗

Abstract. Thermoacoustic tomography is a term for the inverse problem of determining of one of initial conditions of a
hyperbolic equation from boundary measurements. In the past publications both stability estimates and convergent numerical
methods for this problem were obtained only under some restrictive conditions imposed on the principal part of the elliptic
operator. In this paper logarithmic stability estimates are obatined for an arbitrary variable principal part of that operator.
Convergence of the Quasi-Reversibility Method to the exact solution is also established for this case. Both complete and
incomplete data collection cases are considered.
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1. Introduction. The goal of this paper is to show that logarithmic stability estimates as well as
convergent numerical methods for the inverse problem of determining an initial condition in a general hy-
perbolic PDE of the second order can be obtained without any restrictions on its coefficients, except of
some natural ones. In all previous publications on this topic the principal part of the elliptic operator was
subjected to some restrictive conditions. Naturally, our stability estimates imply uniqueness. Both complete
and incomplete data collection cases are considered. We assume here that the data are given on the infinite
time interval t ∈ (0,∞) . Second and third Remarks 2.1 (section 2) justify this assumption. For brevity, we
leave for possible future publications the finest assumptions, like, e.g. the minimal smoothness, etc.

In thermoacoustic tomography (TAT) a short radio frequency pulse is sent in a biological tissue [1, 9].
Some energy is absorbed. It is well known that malignant legions absorb more energy than healthy ones.
Then the tissue expands and radiates a pressure wave which is the solution of the following Cauchy problem

utt = c2 (x) ∆u, x ∈ R3, t > 0, (1.1)

u (x, 0) = f (x) , ut (x, 0) = 0. (1.2)

The function u (x, t) is measured by transducers at certain locations either at the boundary of the medium of
interest or outside of this medium. The function f (x) characterizes the absorption of the medium. Hence, if
one would know the function f (x), then one would know locations of malignant spots. The inverse problem
consists in determining f (x) using those measurements.

Both stability estimates and convergent numerical methods for the problem of determining the initial
condition f in (1.2) are currently known only under some restrictive conditions imposed on the coefficient
c (x) (subsection 1.2). In addition, except of the case c (x) ≡ 1 in [20], those numerical methods are known
only for the case of complete data collection, i.e. when boundary measurements are given at the entire
boundary of the domain of interest.

First, we apply a well known analog of the Laplace transform to obtain a similar inverse problem for
a parabolic PDE. Next, previous results of the author [15, 16] are used. In the complete data case the
logarithmic stability estimate follows from [15]. In the case when the data are given on a hyperplane,
we significantly modify the proof of Theorem 1 of [16]. More precisely, we prove our logarithmic stability
estimate for an integral inequality rather than for the parabolic PDE. We need this generalization to establish
convergence rate of our numerical method. Results of both publications [15, 16] were obtained via Carleman
estimates. In particular, a quite technical non-standard Carleman estimate was derived in [16], see Lemma
2.1 in section 2. We refer to [30] for another logarithmic stability estimate of the initial condition of a
parabolic equation with the self-adjoint operator L in a finite domain. A Carleman estimate was also used
in this reference. An interesting feature of [30] is that observations are performed on an internal subdomain
for times t ∈ (τ , T ) where τ > 0. In addition, a numerical method was developed in [30].
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1.1. Statements of inverse problems. Let Ω ⊂ {x1 > 0} be a bounded domain with the boundary
∂Ω ∈ C3. Let T > 0. Denote

QT = Ω× (0, T ) , ST = ∂Ω× (0, T ) , P = {x1 = 0} , PT = P × (0, T ) .

Let k ≥ 0 be an integer and α ∈ (0, 1). Below Ck+α, C2k+α,k+α/2 are Hölder spaces. Consider the elliptic
operator L of the second order with its principal part L0,

Lu =

n∑
i,j=1

ai,j (x)uxixj +

n∑
j=1

bj (x)uxj + b0 (x)u, x ∈ Rn, (1.3)

L0u =

n∑
i,j=1

ai,j (x)uxixj , (1.4)

ai,j ∈ Ck+α (Rn) ∩ C1 (Rn) , bj , b0 ∈ Ck+α (Rn) , k ≥ 2, α ∈ (0, 1) , (1.5)

µ1 |η|
2 ≤

n∑
i,j=1

ai,j (x) ηiηj ≤ µ2 |η|
2
,∀x, η ∈ Rn;µ1, µ2 = const. > 0. (1.6)

Let the function f (x) be such that

f ∈ Cp (Rn) , p ≥ 3, f (x) = 0, x ∈ Rn�Ω. (1.7)

Consider the following Cauchy problem

utt = Lu, x ∈ Rn, t ∈ (0,∞) , (1.8)

u (x, 0) = f (x) , ut (x, 0) = 0. (1.9)

We use everywhere below the following assumption.
Assumption. We assume that integers k ≥ 2, p ≥ 3 in (1.5), (1.7), coefficients of the operator L and

the initial condition f are such that there exists unique solution u ∈ C3 (Rn × [0, T ]) ,∀T > 0 of the problem
(1.8), (1.9) satisfying

‖u‖C3(Rn×[0,T ]) ≤ Be
dT ,∀T > 0, (1.10)

where the constants B = B (L) > 0, d = d (L) > 0 depend only from the coefficients of the operator L and
an upper estimate B of the norm ‖f‖Cp(Ω) ≤ B.

Note that (1.7) in combination with the finite speed of propagation of the solution of problem (1.8),
(1.9) guarantee that the function u (x, t) has a finite support Ψ (T ) ⊂ Rn,∀t ∈ (0, T ) ,∀T > 0 [24]. Hence,

C3 (Rn × [0, T ]) above is actually the space C3
(

Ψ (T )× [0, T ]
)
. Using the classical tool of energy estimates

[24], one can easily find non-restrictive sufficient conditions imposed on both coefficients of the operator L
and the function f guaranteeing the smoothness u ∈ C3 (Rn × [0, T ]) ,∀T > 0 as well as (1.10). We are not
doing this here for brevity. We consider the following two Inverse Problems.

Inverse Problem 1 (IP1). Suppose that conditions (1.3)-(1.7) and Assumption hold. Let
u ∈ C3 (Rn × [0, T ]) ,∀T > 0 be the solution of the problem (1.8), (1.9). Assume that the function f (x)

is unknown. Determine this function, assuming that the following function ϕ1 (x, t) is known

u |S∞= ϕ1 (x, t) . (1.11)

Inverse Problem 2 (IP2). Suppose that conditions (1.3)-(1.7) are Assumption hold. Let u ∈
C3 (Rn × [0, T ]) ,∀T > 0 be the solution of the problem (1.8), (1.9). Assume that the function f (x) is
unknown. Determine this function, assuming that the following function ϕ2 (x, t) is known

u |x∈P∞= ϕ2 (x, t) . (1.12)

IP1 has complete data collection, since the function ϕ1 is known at the entire boundary of the domain of
interest Ω. On the other hand, IP2 represents a special case of incomplete data collection, since Ω ⊂ {x1 > 0} .
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1.2. Brief overview of published results. TAT has attracted a significant interest in the past several
years. We now provide a brief overview of published mathematical results for TAT. We refer to [19] for a
review paper. Stability estimates and convergent numerical methods for an arbitrary time independent
principal part L0 in (1.4) were not obtained in the past. Explicit formulas for the reconstruction of the
function f (x) for IP1 in the case when in (1.1) c ≡ 1 are given in a number of publications, see, e.g.
[7, 8, 9, 19, 20]. These formulas lead to some stability estimates as well as to numerical methods with good
performances.

Another approach to IP1, IP2 is via analyzing the case when both Dirichlet and Neumann data are
given at ST for IP1 and at PT for IP2. An elementary, well known and stable procedure of deriving the
Neumann condition from the given Dirichlet condition for both IP1 and IP2 is described in subsection 2.1
for the parabolic PDE. A very similar procedure takes place in the hyperbolic case. Consider now IP1. Since
a certain norm of the Neumann boundary condition at ST can be estimated from the above by another
norm of the data ϕ1 (x, t) for (x, t) ∈ ST , then the problem of estimating the initial condition f (x) can be
reformulated in a slightly different setting as the Cauchy problem for equation (1.8) with the lateral Dirichlet
and Neumann data at ST . This problem consists in estimating the function u (x, t) inside of the time cylinder
QT .

We now comment on the Lipschitz stability estimate for that Cauchy problem with lateral data for
the particular case when initial conditions are as in (1.9). Consider the even extension of the function
u (x, t) with respect to t and do not change notations for brevity, u (x,−t) := u (x, t) , t ∈ (0, T ) . Let

Q±T = Ω×(−T, T ) , S±T = ∂Ω×(−T, T ) . Obviously
∥∥∥u |S±T ∥∥∥H1(S±T )

= 2 ‖u |ST ‖H1(ST ) and
∥∥∥∂νu |S±T ∥∥∥L2(S±T )

=

2 ‖∂νu |ST ‖L2(ST ) , where ∂ν means the normal derivative. The Lipschitz stability estimate for the Cauchy
problem with the lateral data is

‖u‖H1(Q±T ) ≤ C
[
‖u |ST ‖H1(ST ) + ‖∂νu |ST ‖L2(ST )

]
(1.13)

with a certain constant C > 0 independent on the function u. Hence, the trace theorem implies the Lipschitz
stability estimate for the function f with a different constant C,

‖u (x, 0)‖L2(Ω) = ‖f‖L2(Ω) ≤ C
[
‖u |ST ‖H1(ST ) + ‖∂νu |ST ‖L2(ST )

]
.

Estimate (1.13) is important in the control theory, since it is used for proofs of exact controllability
theorems. For the first time, estimate (1.13) was proved in 1986 in [31] for equation (1.1) with c ≡ 1 with
the aim of applying to the control theory. However, the method of multipliers, which was proposed in [31],
cannot handle neither variable lower order terms of the operator L nor a variable coefficient c (x) . On the
other hand, Carleman estimates are not sensitive to lower order terms of PDE operators and also can handle
the case of a variable coefficient c (x) .

For the first time, the idea of using Carleman estimates for obtaining (1.13) was realized in [12]. In this
reference (1.13) was proved for the case of the hyperbolic equation (1.8) with L = ∆+ (variable lower order
terms). Next, the result of [12] was extended in [11, 14] to a more general case of the hyperbolic inequality

|utt −∆u| ≤ A [|∇u|+ |ut|+ |u|+ |f |] in QT , (1.14)

where A = const. > 0 and f ∈ L2 (QT ) . Although in publications [11, 12, 14] c ≡ 1, it is clear from them
that the key idea is in applying the Carleman estimate, while a specific form of the principal part of the
hyperbolic operator should be such that the Carleman estimate would be valid. This thought is reflected in
the proof of Theorem 3.4.8 of the book [10]. Thus, the Lipschitz stability estimate (1.13) for the variable
coefficient c (x) was obtained in section 2.4 of the book [17] as well as in [5]. In particular, in [17] the
hyperbolic inequality (1.14) was considered, in which |utt −∆u| was replaced with

∣∣c−2 (x)utt −∆u
∣∣. The

idea of [11] was used in the control theory in, e.g. [26, 27].
In the case of parabolic and elliptic operators, Carleman estimates are known for rather arbitrary variable

principal parts [10, 17, 29]. On the other hand, it is well known that in the hyperbolic case the Carleman
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estimate can be effectively analytically verified for a generic operator ∂2
t − L0 only if L0 = c2 (x) ∆, and a

condition like (
x− x0,∇

(
c−2 (x)

))
≥ 0,∀x ∈ Ω (1.15)

holds. In (1.15) x0 is a certain point and (, ) is the scalar product in Rn. This is the reason why the
above mentioned Lipschitz stability estimates were established only using assumptions like the one in (1.15).
Clearly, (1.15) holds for c ≡ const. 6= 0. See, e.g. Theorem 1.10.2 in [4] for the proof of the Carleman
estimate with condition (1.15). A more general case of condition (1.15) can be found in Theorem 3.4.1
of [10]. The second way of proving Lipschitz stability estimates is via imposing some conditions of the
Riemannian geometry on coefficients of the operator L0 [3, 25, 33, 34, 35]. Publications [25, 33, 34] use
Carleman estimates. In particular, the case of a hyperbolic inequality was considered in [33]. Unlike (1.15),
conditions of the Riemannian geometry cannot be effectively analytically verified for an operator L0 with
generic coefficients, e.g. L0 = c2 (x) ∆. A slight variation of (1.15) guarantees the non-trapping condition,
see formula (3.24) in [32]. Uniqueness theorems for TAT were also obtained in [1, 9, 35] for the case (1.1),
(1.2).

In addition, to the Lipschitz stability, the Quasi-Reversibility Method (QRM) for the above mentioned
Cauchy problem with the lateral data was developed in [12] and numerically tested in [5, 13, 18]. We refer
to [28] for the originating work on QRM. The convergence of the QRM solution to the exact solution was
proven on the basis of the above Lipschitz stability results. Numerical testing has consistently demonstrated
a high degree of robustness. In particular, accurate results were obtained in [18] with up to 50% noise in
the data. Some other numerical methods were proposed in [1, 35]. Convergence of all numerical methods
mentioned in this paragraph was proven only for the complete data collection case of IP1 with L0 = c2 (x) ∆
and under some restrictive conditions imposed on the function c (x).

2. Logarithmic Stability.

2.1. Transformation. First, we consider the following well known Laplace-like transformation [17, 29],
which transforms the hyperbolic Cauchy problem in a similar parabolic Cauchy problem,

Lg = g (t) =
1√
πt

∞∫
0

exp

(
−τ

2

4t

)
g (τ) dτ. (2.1)

The transformation (2.1) is an analog of the Laplace transform, and it is one-to-one. It is valid for, e.g. all
functions g ∈ C [0,∞) which satisfy |g (t)| ≤ Age

kgt, where Ag and kg are positive constants depending on
g. It follows from (1.10) that the solution u (x, t) of the problem (1.8), (1.9) satisfies this condition together
with its derivatives up to the third order. Obviously

∂

∂t

[
1√
πt

exp

(
−τ

2

4t

)]
=

∂2

∂τ2

[
1√
πt

exp

(
−τ

2

4t

)]
.

Hence,

L (g′′) = g′ (t) ,∀g ∈ C2 [0,∞) such that g′ (0) = 0. (2.2)

Changing variables in (2.1) τ ⇔ z, τ/2
√
t := z, we obtain limt→0+ g (t) = g (0) . Denote v := Lu. It follows

from (1.10) and (2.2) that

v ∈ C2+α,1+α/2 (Rn × [0, T ]) ,∀α ∈ (0, 1) ,∀T > 0. (2.3)

By (1.8), (1.9) and (2.3) the function v (x, t) is the solution of the following parabolic Cauchy problem

vt = Lv, x ∈ Rn, t > 0, (2.4)

v (x, 0) = f (x) . (2.5)
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We refer here to the well known uniqueness result for the solution v ∈ C2+α,1+α/2 (Rn × [0, T ]) ,∀T > 0 of
the problem (2.4), (2.5) [23].

Below we work only with the function v. As to this function, we set everywhere below T := 1 for the
sake of definiteness. Denote

Lϕ1 = ϕ1 (x, t) = v |S1 , Lϕ2 = ϕ2 (x, t) = v |P1 . (2.6)

Then

ϕ1 ∈ C2+α,1+α/2
(
S1

)
, ϕ2 ∈ C2+α,1+α/2

(
P 1

)
. (2.7)

Let

ψ1 (x, t) = ∂νv |S1 , ψ2 (x, t) = ∂x1v |P1 . (2.8)

By Theorem 5.2 of Chapter IV of [23], (1.10) and (2.6)-(2.8) there exist numbers C (Ω, L) , C (P,L) > 0
depending only on listed parameters such that∥∥ψ1

∥∥
C1+α,α/2(S1) ≤ C (Ω, L) ‖ϕ1‖C2+α,1+α/2(S1) , (2.9)∥∥ψ2

∥∥
C1+α,α/2(P 1) ≤ C (P,L) ‖ϕ2‖C2+α,1+α/2(P 1) . (2.10)

We now describe an elementary and well known procedure of finding the normal derivative of the function
v either at S1 (in the case of IP1) or at P1 (in the case of IP2). In the case of IP1 we solve the initial
boundary value problem for equation (2.4) for (x, t) ∈ (Rn�Ω) × (0, 1) with the zero initial condition in
Rn�Ω (because of (1.7)) and the Dirichlet boundary condition v |S1= ϕ1. Then we uniquely find the normal
derivative ∂νv |S1

= ψ1. Similarly, in the case of IP2, we uniquely find the Neumann boundary condition
∂x1

v |P1
= ψ2. Estimates (2.9), (2.10) ensure the stability of this procedure.

Therefore, each problem IP1, IP2 is replaced with a problem for the parabolic PDE (2.4) with the lateral
Cauchy data. These data are given at S1 for IP1 and at P1 for IP2. Uniqueness of the solution of each of
these parabolic inverse problems follows from standard theorems about uniqueness of the continuation of
solutions of parabolic PDEs with the data at the lateral surface [10, 17, 29].

In stability estimates one is usually interested to see how the solution varies for a small variation of the
input data. Therefore, following (1.10), (1.11) and (1.12), we assume that in the case of IP1

‖ϕ1‖C3(ST ) ≤ δe
dT ,∀T > 0, (2.11)

and in the case of IP2

‖ϕ2‖C3(PT ) ≤ δe
dT ,∀T > 0, (2.12)

where δ ∈ (0, 1) is a sufficiently small number. Note that it is not necessary that δ = B, where B is the
number from (1.10). Indeed, while the number B in (1.10) is not assumed to be sufficiently small and is
involved in the estimate of the norm ‖u‖C3(Rn×[0,T ]) ,∀T > 0 in the entire space, the number δ is a part of

the estimate of the norm of the boundary data for either of above inverse problems. Using (2.1), (2.2) and
(2.6)-(2.12), we obtain

‖ϕ1‖C2+α,1+α/2(S1) +
∥∥ψ1

∥∥
C1+α,α/2(S1) ≤ C (Ω, L, d) δ, (2.13)

‖ϕ2‖C2+α,1+α/2(P 1) +
∥∥ψ2

∥∥
C1+α,α/2(P 1) ≤ C (P,L, d) δ, (2.14)

where constants C (Ω, L, d) , C (P,L, d) > 0 depend only on listed parameters. It follows from (2.13) that
with a different constant C := C (Ω, L, d) > 0

‖ϕ1‖H1(S1) +
∥∥ψ1

∥∥
L2(S1)

≤ Cδ. (2.15)
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Remarks 2.1.
1. The number δ can be viewed as an upper estimate of the level of error in the data ϕ1, ϕ2. Hence,

Theorems 2.1, 2.2 below address the question of estimating variations of the solution f of either IP1 or IP2
via the upper estimate of the level of error in the data.

2. Since the kernel of the transform L decays rapidly with τ → ∞, then the condition t ∈ (0,∞) in
(1.11), (1.12) is not a serious restriction from the applied standpoint. In addition, if having the data in
(1.11), (1.12) only on a finite time interval t ∈ (0, T ) and knowing an upper estimate of a norm of the
function f in (1.9), one can estimate the error in the integral (2.1) when integrating over τ ∈ (T,∞) . This
error will be small if either T is large or t is small in (2.1), (2.4). Next, this error can be incorporated in the
stability estimates of theorems of this section.

3. Another argument about t ∈ (0,∞) comes from the recent experience of the author of working
with time resolved real data for wave processes [4]. The author has learned that almost all time resolved
experimental data for wave processes in non-attenuating media are highly oscillatory due to some unknown
processes in measurement devices, see graphs of those data in these references. Because of high oscillations,
these data are not governed by a hyperbolic PDE even for the case of the free space, where the wave equation
is supposed to work (see the graphs of experimental data in chapters 5 and 6 of [4]). Therefore, the first step
to make the inverse algorithm work was to preprocess the experimental data via a new data preprocessing
procedure. This procedure uses only a small portion of the real data and immerses it in a specially processed
data for the uniform medium. Since the case of the uniform medium can be solved analytically, then there
is no problem to know the immersed data for all t ∈ (0,∞) . Since accurate imaging results were obtained
in [4] for the case of blind experimental data, then that data preprocessing procedure was unbiased.

2.2. Logarithmic stability estimate for Inverse Problem 1. To prove convergence of the QRM
(Theorem 3.1), it is convenient to consider a parabolic inequality in the integral form, which is more general
than equation (2.4). Consider the function w ∈ C2,1

(
Q1

)
satisfying the following inequality∫

Q1

(wt − Lw)
2
dxdt ≤ K2,K = const. ≥ 0. (2.16)

Theorem 2.1. Let conditions (1.3)-(1.6) be fulfilled. Let the function w ∈ C2,1
(
Q1

)
satisfies inequality

(2.16). Denote

g (x) = w (x, 0) , β0 (x, t) = w |S1
, β1 (x, t) = ∂νw |S1

,

F = ‖β0‖H1(S1) + ‖β1‖L2(S1) +K. (2.17)

Assume that an upper bound C1 = const. > 0 for the norm ‖∇g‖L2(Ω) is known,(
n∑
i=1

‖gxi‖
2
L2(Ω)

)1/2

:= ‖∇g‖L2(Ω) ≤ C1. (2.18)

Then there exist a constant M = M (L,Ω) > 0 and a sufficiently small number δ0 = δ0 (L,Ω, C1) ∈ (0, 1) ,
both dependent only on listed parameters, such that if F ∈ (0, δ0), then the following logarithmic stability
estimate is valid

‖g‖L2(Ω) ≤
MC1√
ln (F−1)

. (2.19)

In particular, in the case of IP1, let Assumption holds and (1.7), (2.11) be valid. Suppose that the number
δ in (2.11) is so small that Cδ ∈ (0, δ0), where C = C (Ω, L, d) > 0 is the number in (2.15). Also, assume
that the upper bound C1 of the norm ‖∇f‖L2(Ω) is given,

‖∇f‖L2(Ω) ≤ C1. (2.20)
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Then

‖f‖L2(Ω) ≤
MC1√

ln
[(
Cδ
)−1
] . (2.21)

Proof. In this proof M = M (L,Ω) > 0 denotes a generic positive constant depending only on L,Ω.
First, we prove (2.19). Let κ ∈ (0, 1) be an arbitrary number. Then it follows from Theorem 2 of [15] that
there exists a constant r = r (L,Ω,κ) ∈ (0, 1) such that

‖g‖L2(Ω) ≤
MC1

κ
√

ln
[
(rF )

−1
] +M

(
1

r

)κ
F 1−κ , (2.22)

as long as F ∈ (0, 1) . We can fix κ via, e.g. setting κ := 1/2. It is clear therefore that there exists a
sufficiently small number δ0 = δ0 (L,Ω, C1) ∈ (0, 1) such that if F ∈ (0, δ0) , then (2.22) implies (2.19).

We now prove (2.21). It follows from (2.4) that (2.16) holds for the function w := v with K = 0. As
it was shown above, (2.15) follows from (2.11). Hence, using (2.15) and (2.17), we obtain F ≤ Cδ. Hence,
(2.21) follows from (2.19). �

Remark 2.2. Estimates (2.19), (2.21) are the so-called “conditional stability estimates”, which is often
the case in ill-posed problems [4, 29, 36]. For another example we refer to Hölder stability estimates for
solutions of some ill-posed problems for PDEs, see, e.g. [10, 17, 29]. The knowledge of the upper bound
C1 for the gradient in (2.18), (2.20) corresponds well with the Tikhonov concept of compact sets as sets
of “admissible” solutions of ill-posed problems [2, 4, 6, 29, 36]. Indeed, since by (1.7) f |∂Ω= 0, then
‖f‖L2(Ω) ≤ R ‖∇f‖L2(Ω) ≤ RC1, where the constant R > 0 depends only on the domain Ω. Thus, in this

case the function f belongs to a compact set in L2 (Ω) , and this set is determined by the constant C1.

2.3. Logarithmic stability estimate for Inverse Problem 2. The logarithmic stability estimate
of the paper [16] in the infinite domain was obtained for the case of the pointwise inequality

|vt − L0v| ≤ A (|∇v|+ |v|) , A = const. > 0, (2.23)

where the operator L0 is defined in (1.4). However, to prove convergence of the numerical method of section
3, we need to estimate the initial condition for the case of the integral inequality, like the one in (2.16). The
Carleman estimate of [16] is not a standard one. Indeed, unlike the standard Carleman estimate for the
parabolic operator [4, 17, 29], the integration domain of [16] is a part of the strip {|t− ε| < τε, τ ∈ (0, 1)} ,
and that Carleman estimate does not break when ε→ 0+.

There are two main differences between Theorem 2.2 (below) and Theorem 1 of [16]. First, we work
now with the integral inequality instead of the pointwise inequality (2.23) of [16]. Second, it is assumed in
[16] that the inequality (2.23) is valid in Θ × (0, T ) , where Θ ⊆ Rn is an unbounded domain. It is also
assumed that the Dirichlet boundary condition v |∂Θ×(0,T )= 0. Unlike this, Theorem 2.2 does not use the
assumption about the knowledge of this Dirichlet boundary condition.

Denote x = (x2, ..., xn) . Below we specify numbers 1/4, 1/2, 3/4 for brevity only. In fact, some other
numbers, respectively η1 < η2 < η3 < 1 from the interval (0, 1) can be used. Changing variables (x′, t′) =
(
√
cx, dt) with an appropriate constant c > 0 and keeping the same notations for new variables for brevity,

we obtain that

Ω ⊂
{
x1 + |x|2 < 1

4
, x1 > 0

}
. (2.24)

Let ε ∈ (0, 1) be a sufficiently small number. Consider the following functions ψ (x, t) , ϕ (x, t) ,

ψ (x, t) = x1 + |x|2 +
(t− ε)2

ε2
+

1

4
, (2.25)

ϕ (x, t) = exp

(
ψ−ν

ε

)
, (2.26)
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where ν > 1 is a large parameter which will be defined later. The function ϕ (x, t) is the Carleman Weight
Function (CWF) in the Carleman estimate of Lemma 3.1. The main difference between ϕ (x, t) in (2.26) and
the standard CWF for the parabolic operator [4, 17, 29] is that the small parameter ε is involved in both
functions ψ (x, t) and ϕ (x, t). Denote

G3/4 =

{
(x, t) : ψ (x, t) <

3

4
, x1 > 0

}
, (2.27)

G1/2 =

{
(x, t) : ψ (x, t) <

1

2
, x1 > 0

}
. (2.28)

Using (2.24)-(2.28), we obtain

G1/2 ⊂ G3/4, ϕ
2 (x, t) ≥ exp

[
2ν+1

ε

]
in G1/2, (2.29)

G3/4 ⊂
{
|t− ε| < ε√

2

}
⊂ {t ∈ (0, 1)} , (2.30)

Ω ⊂ RG1/2 ⊂ RG3/4, (2.31)

∂G3/4 = ∂1G3/4 ∪ ∂2G3/4, ∂1G3/4 = {x1 = 0} ∩G3/4, ∂2G3/4 =

{
ψ (x, t) =

3

4
, x1 > 0

}
. (2.32)

In (2.31) RG1/2 and RG3/4 are orthogonal projections of domain G1/2 and G3/4 respectively on the hyper-
plane {t = 0} . The same notation RH is kept below for the projection of any other domain H ⊂ [Rn × (0, 1)]
on the hyperplane {t = 0} . Denote

Φ =
{

(x, t) : x1 ∈ (0, 1) , (x2, x3, ..., xn) ∈ (−1, 1)
n−1

, t ∈ (0, 1)
}
, (2.33)

∂1Φ = Φ ∩ P =
{

(x, t) : x1 = 0, x ∈ (−1, 1)
n−1

, t ∈ (0, 1)
}
. (2.34)

By (2.27), (2.30) and (2.32)-(2.34)

∂1G3/4 ⊂ ∂1Φ. (2.35)

Recall that (2.12) implies (2.14). Hence, assuming that (2.12) holds and using (2.34), we derive, similarly

with the above derivation of (2.15) from (2.11), (2.13), that there exists a constant C̃ = C̃ (P,L,Φ, b) > 0
such that

‖ϕ2‖H1(∂1Φ) +
∥∥ψ2

∥∥
L2(∂1Φ)

≤ C̃δ. (2.36)

Everywhere below C = C
(
L0, RG3/4

)
> 0 and M1 = M1 (L,Φ) > 0 denote different positive constants

depending only on listed parameters. The following lemma is follows immediately from Theorem 2 of [16]
and (2.32).

Lemma 2.1. Let coefficients of the operator L0 in (1.4) satisfy conditions (1.5), (1.6). Then there exist
a sufficiently large constant ν0 = ν0

(
L0, RG3/4

)
> 1 and a sufficiently small number ε0 = ε0

(
L0, RG3/4

)
∈

(0, 1) , both dependent only on L0 and PG3/4, such that the following Carleman estimate holds

Cν3

ε3
exp

(
2 · 4ν

ε

) ∫
∂1G3/4

(
u2 + |∇u|2 + u2

t

)
dxdt

+
Cν3

ε3

(
4

3

)2ν

exp

[
2

ε

(
4

3

)ν] ∫
∂2G3/4

(
u2 + |∇u|2 + u2

t

)
dσ +

∫
G3/4

(ut − L0u)
2
ϕ2 (x, t) dxdt

≥ C
∫

G3/4

(
ν

ε
|∇u|2 +

ν4

ε3
ψ−2νu2

)
ϕ2 (x, t) dxdt, ∀ν ≥ ν0,∀ε ∈ (0, ε0) ,∀u ∈ C2,1

(
G3/4

)
.
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By (2.30) Lemma 2.1 provides the Carleman estimate in the narrow strip
{
|t− ε| < ε/

√
2
}
. At the same

time, it is also important in numerical studies of the QRM to estimate its solution in a not narrow strip.
This can be done via the standard Carleman estimate. Therefore, we introduce now notations, which are
similar with (2.25)-(2.32), except that a narrow strip with respect to t is not used. Let

θ (x, t) = x1 + |x|2 +

(
t− 1

2

)2

+
1

4
, (2.37)

ξ (x, t) = exp
(
λθ−ν

)
, (2.38)

where λ > 1 is a large parameter which is chosen later. Denote

D3/4 =

{
(x, t) : θ (x, t) <

3

4
, x1 > 0

}
, (2.39)

D1/2 =

{
(x, t) : θ (x, t) <

1

2
, x1 > 0

}
, (2.40)

∂D3/4 = ∂1D3/4 ∪ ∂2D3/4, ∂1D3/4 = {x1 = 0} ∩D3/4, ∂2D3/4 =

{
ψ (x, t) =

3

4
, x1 > 0

}
. (2.41)

Using (2.24), (2.31), (2.34), (2.37) and (2.39)-(2.41), we obtain

Ω ⊂ RD3/4 = RG3/4, (2.42)

D3/4 ⊂
{∣∣∣∣t− 1

2

∣∣∣∣ < 1

2

}
⊂ {t ∈ (0, 1)} , (2.43)

D3/4 ⊂ Φ. (2.44)

Lemma 2.2 follows from the Carleman estimate for the parabolic operator of Lemma 3 of §1 of Chapter 4 of
the book [29] as well as from (2.42).

Lemma 2.2. Let coefficients of the operator L0 in (1.4) satisfy conditions (1.5), (1.6). Then there
exist sufficiently large constants ν0 = ν0

(
L0, RG3/4

)
> 1, λ0 = λ0

(
L0, RG3/4

)
> 1 such that the following

Carleman estimate holds

Cλ3ν3 exp (2λ · 4ν)

∫
∂1D3/4

(
u2 + |∇u|2 + u2

t

)
dxdt

+Cλ3ν3

(
4

3

)2ν

exp

[
2λ

(
4

3

)ν] ∫
∂2D3/4

(
u2 + |∇u|2 + u2

t

)
dσ +

∫
D3/4

(ut − L0u)
2
ξ2 (x, t) dxdt

≥ C
∫

D3/4

(
λν |∇u|2 + λ3ν4ψ−2νu2

)
ξ2 (x, t) dxdt,∀ν ≥ ν0,∀λ ≥ λ0,∀u ∈ C2,1

(
D3/4

)
.

Theorem 2.2. Let conditions (1.3)-(1.6) and (2.24) be valid. Suppose that the function w ∈ C2,1
(
Q
)

satisfies the following integral inequality∫
Q

(wt − Lw)
2
dxdt ≤ K2,K = const. ≥ 0. (2.45)

Let

β0 (x, t) = w |∂1Φ, β1 (x, t) = ∂x1w |∂1Φ, g (x) = w (x, 0) , x ∈ Ω.

Denote

F = ‖β0‖H1(∂1Φ) + ‖β1‖L2(∂1Φ) +K. (2.46)
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Assume that an upper bound C2 = const. > 0 for the norm ‖w‖C1(Q) is known,

‖w‖C1(Φ) ≤ C2. (2.47)

Then there exists a sufficiently small number δ0 = δ0

(
L,RG3/4

)
∈ (0, 1) dependent only on listed parameters,

such that if F ∈ (0, δ0), then the following logarithmic stability estimate is valid

‖g‖L2(Ω) ≤
M1C2√
ln (F−1)

, (2.48)

In particular, in the case of IP2, let Assumption holds and (1.7) be valid. Assume that, in addition to the

above, (2.12) is valid, and the number δ in (2.12) is so small that C̃δ ∈ (0, δ0), where C̃ = C̃ (P,L,Φ, d) > 0
is the number from (2.36). Also, assume that for a certain α ∈ (0, 1) the upper bound C3 of the norm
‖f‖C2+α(Ω) is given, i.e. ‖f‖C2+α(Ω) ≤ C3. Then

‖f‖L2(Ω) ≤
M1C3√

ln

[(
C̃δ
)−1

] . (2.49)

In addition, there exists a number ρ = ρ
(
L0, RG3/4

)
∈ (0, 1/2) such that if F ∈ (0, δ0) , then the following

Hölder stability estimate is valid

‖w‖H1,0(D1/2) ≤M1C2F
ρ. (2.50)

Proof. In this proof ε0 = ε0

(
L,RG3/4

)
∈ (0, 1) denotes different sufficiently small numbers associated

with Lemma 3.1. By (2.24), (2.28), (2.31) and (2.33)

Ω ⊂ RG1/2 ⊂ RΦ. (2.51)

Using (2.25), (2.26) and (2.45), we obtain∫
G3/4

(wt − Lw)
2
ϕ2dxdt ≤ K2 exp

(
2 · 4ν

ε

)
,∀ε ∈ (0, ε0) . (2.52)

On the other hand, using Lemma 3.1, we obtain for all ν ≥ ν0, ε ∈ (0, ε0)∫
G3/4

(wt − Lw)
2
ϕ2dxdt ≥

∫
G3/4

(wt − L0w)
2
ϕ2dxdt−M1

∫
G3/4

(
|w|2 + w2

)
ϕ2dxdt

≥ C
∫

G3/4

(
ν

ε
|∇w|2 +

ν4

ε3
ψ−2νw2

)
ϕ2 (x, t) dxdt−M1

∫
G3/4

(
|w|2 + w2

)
ϕ2dxdt

−Cν
3

ε3
exp

(
2 · 4ν

ε

)(
‖β0‖

2
H1(∂1Φ) + ‖β1‖

2
L2(∂1Φ)

)
(2.53)

−Cν
3

ε3

(
4

3

)2ν

exp

[
2

ε

(
4

3

)ν] ∫
∂2G3/4

(
w2 + |∇w|2 + w2

t

)
dσ.

Fix a number ν ≥ ν0

(
L0, RG3/4

)
> 1 such that(

5

6

)ν
<

1

2
. (2.54)
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If necessary, decrease ε0 = ε0

(
L,RG3/4

)
∈ (0, 1), so that M1 < Cν/ (2ε) ,∀ε ∈ (0, ε0) . Then (2.53) leads to

the following estimate for all ε ∈ (0, ε0)∫
G3/4

(wt − Lw)
2
ϕ2dxdt ≥ C

ε

∫
G3/4

(
|∇w|2 + w2

)
ϕ2 (x, t) dxdt

−C
ε3

exp

(
2 · 4ν

ε

)(
‖β0‖

2
H1(∂1Φ) + ‖β1‖

2
L2(∂1Φ)

)
−C
ε3

exp

[
2

ε

(
4

3

)ν] ∫
∂2G3/4

(
w2 + |∇w|2 + w2

t

)
dσ.

Combining this with (2.46), (2.47) and (2.52) and decreasing ε0, if necessary, we obtain∫
G3/4

(
|∇w|2 + w2

)
ϕ2 (x, t) dxdt ≤ C exp

(
2 · 5ν

ε

)
F 2 + CC2

2 exp

[
2

ε

(
5

3

)ν]
,∀ε ∈ (0, ε0) . (2.55)

On the other hand, by (2.29)∫
G3/4

(
|∇w|2 + w2

)
ϕ2 (x, t) dxdt ≥

∫
G1/2

(
|∇w|2 + w2

)
ϕ2 (x, t) dxdt ≥ exp

[
2ν+1

ε

] ∫
G1/2

(
|∇w|2 + w2

)
dxdt, ∀ε ∈ (0, ε0) .

Combining this with (2.55), we obtain∫
G1/2

(
|∇w|2 + w2

)
dxdt ≤ C exp

(
2 · 5ν

ε

)
F 2 + CC2

2 exp

[
−2ν+1

ε

(
1−

(
5

6

)ν)]
,∀ε ∈ (0, ε0) .

Hence, using (2.54), we obtain∫
G1/2

(
|∇w|2 + w2

)
dxdt ≤ C exp

(
2 · 5ν

ε

)
F 2 + CC2

2 exp

(
−2ν

ε

)
,∀ε ∈ (0, ε0) . (2.56)

By (2.25) and (2.28) G1/2 ⊂ {t ∈ (ε/2, 3ε/2)} . Hence, the mean value theorem, (2.51) and (2.56) imply that
there exists a number t∗ ∈ (ε/2, 3ε/2) such that for all ε ∈ (0, ε0)

‖w (x, t∗)‖2L2(Ω) ≤
1

ε
‖w (x, t∗)‖2H1(RG1/2) ≤ C exp

(
2 · 5ν

ε

)
F 2 + CC2

2 exp

(
−2ν

ε

)
. (2.57)

We have

w (x, t∗) = g (x) +

t∫
0

wt (x, τ) dτ.

Hence, using (2.47), we obtain

‖w (x, t∗)‖2L2(Ω) ≥ ‖g‖
2
L2(Ω) − ε ‖wt‖

2
L2(Φ) ≥ ‖g‖

2
L2(Ω) −M1C

2
2ε.

Combining this with (2.56), we obtain

‖g‖2L2(Ω) ≤M1C
2
2ε+M1 exp

(
2 · 5ν

ε

)
F 2 +M1C

2
2 exp

(
−2ν

ε

)
,∀ε ∈ (0, ε0) . (2.58)
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Choose ε = ε (F ) such that

exp

(
2 · 5ν

ε

)
F 2 = exp

(
−2ν

ε

)
. (2.59)

Hence,

ε =
1

ln
(
F−2/a

) , a = 2 · 5ν + 2ν . (2.60)

To ensure that ε is sufficiently small, i.e. ε ∈ (0, ε0) , we need to choose F so small that

0 < F < exp

(
− 2

ε0

)
.

Hence, we choose δ0 = δ0

(
L,RG3/4

)
= exp (−2/ε0) . Hence, (2.58), (2.59) and lead to

‖g‖2L2(Ω) ≤
M1C

2
2

ln
(
F−2/a

) +M1

(
1 + C2

2

) (
F 2ν+1

)1/a

=
M1C

2
2a

2 ln (F−1)
+M1

(
1 + C2

2

) (
F 2ν+1

)1/a

, (2.61)

as long as F ∈ (0, δ0) . Decreasing, if necessary δ0, we obtain (2.48) from (2.61).
We now prove (2.49). Let the function v ∈ C2+α,1+α/2 (Rn × [0, T ]) ,∀T > 0 be the solution of the

problem (2.4), (2.5). Recall that by (1.7) f (x) = 0 in Rn�Ω. It follows from the formula (14.6) of §14 of
Chapter 4 of the book [23] as well as from (2.33) that

‖v‖C1(Φ) ≤ ‖v‖C2+α,1+α/2(Φ) ≤M1 ‖f‖C2+α(Ω) ≤M1C3. (2.62)

By (2.4) K = 0 in (2.45). Next, since (2.36) follows from (2.12), we obtain for the new number F in (2.46)

F := ‖ϕ2‖H1(∂1Φ) +
∥∥ψ2

∥∥
L2(∂1Φ)

≤ C̃δ. (2.63)

Thus, (2.47) and (2.48) imply that (2.49) follows from (2.62) and (2.63).
Finally, we prove (2.50). Using (2.37)-(2.44) as well as Lemma 2.2, we obtain similarly with (2.56)∫

D1/2

(
|∇w|2 + w2

)
dxdt ≤ C exp (2λ · 5ν)F 2 + CC2

2 exp
(
−2ν+1λ

)
,∀λ ≥ λ1,

where λ1 = λ1

(
L,RG3/4

)
> 1 is a sufficiently large number. Hence, we obtain similarly with (2.59) and

(2.61) ∫
D1/2

(
|∇w|2 + w2

)
dxdt ≤M1C

2
2F

2ρ. �

3. The Quasi-Reversibility Method (QRM). We construct the QRM only for the more difficult
case of IP2. The case of IP1 is similar, and it can be derived from [15]. Also, we work in this section only in
3-d, keeping the same notations as above. The construction in the 2-d case is similar. Since it was described
in subsection 2.1 how to stably obtain the Neumann boundary condition in the parabolic case for both IP1
and IP2, we assume now that we have both Dirichlet and Neumann boundary conditions at ∂1Φ,

v |∂1Φ= ϕ2 (x, t) , ∂x1
v |∂1Φ= ψ2 (x, t) . (3.1)

The QRM means in our case the minimization of the following Tikhonov functional

Jγ (v) = ‖vt − Lv‖2L2(Φ) + γ ‖v‖2H4(Φ) , (3.2)
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subject to the boundary conditions (3.1). In (3.2) γ > 0 is the regularization parameter, which should be
chosen in accordance with the level of the error in the data.

The requirement v ∈ H4 (Φ) is an over-smoothness. This condition is imposed to ensure that v ∈ C1
(
Φ
)
:

because of (2.47) and the embedding theorem. However, the author’s numerical experience with the QRM has
consistently demonstrated that one can significantly relax the required smoothness in practical computation,
see [18, 21, 22] and chapter 6 of [4]. This is likely because one is not using an overly small grid step size
in finite differences when computing via the QRM. Hence, one effectively works with a finite dimensional
space with not too many dimensions. This means that one can rely in this case on the equivalence of all
norms in finite dimensional spaces. Thus, most likely one can replace in real computations γ ‖v‖2H4(Φ) with

γ ‖v‖2H2,1(Φ).

While (3.2) is good for computations, to prove convergence of the QRM, we need to have zero boundary
conditions at ∂1Φ. Assume that both functions ϕ2, ψ2 ∈ H2,1 (∂1Φ) . Denote

r (x, t) = ϕ2 (x, t) + x1ψ2 (x, t) = ϕ2 (x, t) + x1ψ2 (x, t) ,

v̂ (x, t) = v (x, t)− r (x, t) , p (x, t) = − (rt − Lr) (x, t) ,

f̂ (x) = v̂ (x, 0) = f (x)− r (x, 0) .

Using (2.4), (2.5) and (3.1), we obtain

v̂t − Lv̂ = p (x, t) , (x, t) ∈ Φ, (3.3)

v̂ | ∂1Φ = 0, v̂x1 |∂1Φ= 0. (3.4)

Thus, we have obtained Inverse Problem 3.
Inverse Problem 3 (IP3). Find the function f̂ (x) for x ∈ Ω from conditions (3.3), (3.4).
To solve IP3 via the QRM, we minimize the following analog of the functional (3.2)

Ĵγ (v̂) = ‖v̂t − Lv̂ − p‖2L2(Φ) + γ ‖v̂‖2H4(Φ) , v̂ ∈ H
4
0 (Φ) , (3.5)

H4
0 (Φ) : =

{
u ∈ H4 (Φ) : u |∂1Φ= ux1

|∂1Φ= 0
}
.

Let (, ) and [, ] be scalar products in L2 (Φ) and H4 (Φ) respectively. Let the function uγ ∈ H4
0 (Φ) be a

minimizer of the functional (3.5). Then the variational principle implies that

(∂tuγ − Lu, ∂tw − Lw) + γ [u,w] = (p, wt − Lw) ,∀w ∈ H4
0 (Φ) . (3.6)

Lemma 3.1 follows immediately from the Riesz theorem and (3.6).
Lemma 3.1. For every function p ∈ L2 (Φ) and every γ > 0 there exists unique minimizer uγ =

uγ (p) ∈ H4
0 (Φ) of the functional (3.5). Furthermore the following estimate holds

‖uγ‖H4(Φ) ≤
M1√
γ
‖p‖L2(Φ) .

The idea now is that if uγ (x, t) ∈ H4
0 (Φ) is the minimizer mentioned in Lemma 3.1, then the approximate

solution of IP3 is

f̂γ (x) = uγ (x, 0) . (3.7)

The question of convergence of minimizers of Ĵγ to the exact solution is more difficult than the existence
question of Lemma 3.1. To address the question of convergence, we need to introduce the exact solution as
well as the error in the data, just as this is always done in the regularization theory [2, 4, 36]. We assume
that there exists an “ideal” noiseless data p∗ ∈ L2 (Φ). We also assume that there exists the ideal noiseless
solution v̂∗ ∈ H4

0 (Φ) of the following problem

v̂∗t − Lv̂∗ = p∗ (x, t) , (x, t) ∈ Φ, (3.8)

v̂∗ | ∂1Φ = 0, v̂∗x1
|∂1Φ= 0. (3.9)
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Let ω ∈ (0, 1) be a small number, which we regard as the level of the error in the data. We assume that

‖p− p∗‖L2(Φ) ≤ ω. (3.10)

Remark 3.1. For brevity, we work in this section with the parabolic IP3. Still, Theorem 3.1 can
be easily linked with the original hyperbolic IP2. Indeed, to ensure that p ∈ L2 (Φ) ,we need ϕ2, ψ2 ∈
H2,1 (∂1Φ) . While Assumption implies (2.7), which, in turn guarantees that ϕ2 ∈ H2,1 (∂1Φ) , there is
no guarantee that ψ2 ∈ H2,1 (∂1Φ) (see (2.10)). To ensure the latter, we should replace in Assumption
C3 (Rn × [0, T ]) with C5 (Rn × [0, T ]) . In this case (2.10) would be replaced with

∥∥ψ2

∥∥
C2+α,1+α/2(P 1) ≤

C (P,L) ‖ϕ2‖C4+α,2+α/2(P 1) . The latter means, in turn that the comparison of the functions p with the exact

function p∗ in (3.10) would be replaced with the comparison of the approximate and exact data ϕ2 and ϕ∗2
of IP2. This can be done via a routine procedure by replacing (2.12) with ‖ϕ2 − ϕ∗2‖C5(PT ) ≤ δe

bT ,∀T > 0.

In this case we would have in (3.10) ω = ω (δ) .
Theorem 3.1 establishes the convergence rate of the QRM. Note that an upper estimate of the exact

solution is often assumed to be known in the regularization theory, also see Remark 2.2.
Theorem 3.1. Let conditions (2.24), (3.3), (3.4) and (3.10) be satisfied and the regularization parameter

γ in (3.5) is chosen such that γ = γ (ω) = ω ∈ (0, 1). Let the function uγ ∈ H4
0 (Φ) be the unique minimizer

of the functional (3.5), which is guaranteed by Lemma 3.1. Let the upper estimate Y = const. > 0 for
the exact solution v̂∗ ∈ H4

0 (Φ) be known, ‖v̂∗‖H4(Φ) ≤ Y. Then there exists a sufficiently small number

ω0 = ω0 (L,Φ) ∈ (0, 1) such that if ω is so small that ω
√

(Y 2 + 1) ∈ (0, ω0) , then the following logarithmic
convergence rate takes place ∥∥∥f̂∗ − fγ(ω)

∥∥∥
L2(Ω)

≤ M1Y√
ln (ω−1)

, (3.11)

where the function fγ(η) (x) is defined in (3.7) and f̂∗ (x) = v̂∗ (x, 0) . In addition, for every ω ∈ (0, ω0)
there exists a number ρ = ρ (L,Φ) ∈ (0, 1/2) such that the following convergence rate takes place∥∥v̂∗ − uγ(η)

∥∥
H1,0(D1/2)

≤M1Y ω
ρ. (3.12)

Proof. It follows from (3.8) and (3.9) that the function v̂∗ satisfies the following analog of (3.6)

(v̂∗t − Lv̂∗, wt − Lw) + γ [v̂∗, w] = (p, wt − Lw) + γ [v̂∗, w] ,∀w ∈ H4
0 (Φ) . (3.13)

Let ṽ = uγ − v̂∗ ∈ H4
0 (Φ) and p̃ = p− p∗ ∈ L2 (Φ) . Subtracting (3.13) from (3.6), we obtain

(ṽt − Lṽ, wt − Lw) + γ [ṽ, w] = (p̃, wt − Lw)− γ [v̂∗, w] ,∀w ∈ H4
0 (Φ) .

Setting here w := ṽ and using Cauchy-Schwarz inequality and (3.10), we obtain∫
Φ1

(ṽt − Lṽ)
2
dxdt+ γ ‖ṽ‖2H4(Φ) ≤ ω

2 + γ ‖v̂∗‖2H4(Φ) ≤ ω
2 + γY 2. (3.14)

Since γ (ω) = ω ∈ (0, 1) , then (3.14) implies that ‖ṽ‖H4(Φ) ≤ Y + 1. Hence, using again (3.14) as well as

embedding theorem, we obtain with the constant c = c (Φ) > 0 depending only on the domain Φ

‖ṽ‖C1(Φ) ≤ cY, (3.15)∫
Φ

(ṽt − Lṽ)
2
dxdt ≤

(
Y 2 + 1

)
ω2, (3.16)

We now apply Theorem 2.2. Comparing (3.16) and (3.15) with (2.45) and (2.47) respectively, we set

K := F := ω
√

(Y 2 + 1), C2 := cY. (3.17)

Therefore, (3.11) and (3.12) follow from (3.17), (2.48) and (2.50). �
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