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Abstract. A Lagrangian system with two degrees of freedom is consid-
ered. The configuration space of the system is a cylinder. A large class
of periodic solutions has been found. The solutions are not homotopy
equivalent to each other.

1. Statement of the Problem and Main Result

This short note is devoted to the following dynamical system.

Figure 1. the tube and the ball

A thin tube can rotate freely in the vertical plane about a fixed horizontal
axis passing through its centre O. A moment of inertia of the tube about this
axis is equal to J . The mass of the tube is distributed symmetrically such
that tube’s centre of mass is placed at the point O.

Inside the tube there is a small ball which can slide without friction. The
mass of the ball is m. The ball can pass by the point O and fall out from the
ends of the tube.

The system undergoes the standard gravity field g.
It seems to be evident that for typical motion the ball reaches an end of

the tube and falls down out the tube. It is surprisingly, at least for the first
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glance, that this system has very many periodic solutions such that the tube
turns around several times during the period.

The sense of generalised coordinates ϕ, x is clear from Figure 1.
A kinetic energy and a potential of the system are given by the formulas

T =
1

2

(
mx2 + J

)
ϕ̇2 +

1

2
mẋ2, V = mgx sinϕ.

By the suitable choice of dimension of units we obtain

J = 1, g = 1, m = 1.

So that a Lagrangian of the system is

L(x, ϕ, ẋ, ϕ̇) =
1

2

(
x2 + 1

)
ϕ̇2 +

1

2
ẋ2 − x sinϕ. (1.1)

Theorem 1.1. For any constants ω > 0, k ∈ N system (1.1) has a solu-
tion ϕ(t), x(t), t ∈ R such that

1) x(t) = −x(−t), ϕ(t) = −ϕ(−t);
2) x(t+ ω) = x(t), ϕ(t+ ω) = ϕ(t) + 2πk.

This theorem means that if ω and k are given and the tube is long enough
then the system has an ω−periodic motion and the tube turns around k
times during the period.

2. Proof of Theorem 1.1

2.1. Preliminary Remarks. Introduce a space

H1
o (−a, a) = {u ∈ H1(−a, a) | u(−t) = −u(t)}, a ∈ (0,∞).

Recall that the Sobolev space H1(−a, a) is compactly embedded to C[−a, a].

Lemma 2.1. Let u ∈ H1
o (−a, a) then the following inequalities hold

∥u∥2L2(0,a) ≤
a2

2
∥u̇∥2L2(0,a), ∥u∥2C[0,a] ≤ a∥u̇∥2L2(0,a).

This Lemma is absolutely standard, we bring its proof just for complete-
ness of exposition.

Remark 1. Lemma 2.1 implies that the function u 7→ ∥u̇∥L2(0,a) is a norm

of H1
o (−a, a) and this norm is equivalent to the standard norm of H1(−a, a).

Proof of Lemma 2.1. We prove only the first inequality the second one
goes in the same way. First assume that a function u ∈ H1(−a, a) is smooth.
From the formula

u(t) =

∫ t

0
u̇(s)ds

it follows that ∫ a

0
u2(s)ds =

∫ a

0

(∫ t

0
u̇(s)ds

)2
dt.
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It remains to observe that by the Cauchy inequality∣∣∣ ∫ t

0
u̇(s)ds

∣∣∣ ≤ ∫ t

0
|u̇(s)|ds ≤ ∥u̇∥L2(0,a)

(∫ t

0
ds
)1/2

, t ∈ [0, a].

Since the space of smooth functions is dense in H1(−a, a), the inequality
under consideration holds for all u ∈ H1(−a, a).

The Lemma is proved.

Lemma 2.2. Being endowed with a collection of seminorms

∥u∥n = ∥u∥H1(−n,n), n ∈ N (2.1)

the space H1
loc(R) turns to a reflexive Fréchet space.

Remark 2. It would be more accurate to write formula (2.1) as follows
∥u∥n = ∥u |[−n,n] ∥H1(−n,n), where |[−n,n] is the operation of restriction to
the interval [−n, n]. Nevertheless here and in the sequel we will hold this
little bit informal notation. It will not generate a misleading.

Surely Lemma 2.2 is a trivial and well-known fact. Nevertheless, we did
not encounter it in the textbooks, so we present its proof.

Proof of Lemma 2.2. It is clear that the space H1
loc(R) is compete, thus

it is a barrelled space [3].
The space H1

loc(R) is a projective limit of the spaces H1(−n, n) with
respect to the restriction operators

H1
loc(R) → H1(−n, n).

The projective limit of reflexive spaces is a semi-reflexive space [2]. A
barreled semi-reflexive space is a reflexive space [3]. Consequently, H1

loc(R)
is a reflexive space.

The Lemma is proved.
Determine the following subspaces

H1
o (R) = {u ∈ H1

loc(R) | u(−t) = −u(t)}

and

Xω = {x ∈ H1
o (R) | x(t+ ω) = x(t)}.

They both are closed. Moreover, from Lemma 2.1 it follows that a function
x 7→ ∥ẋ∥L2(0,ω) is a norm in Xω and the topology of this norm is equivalent

to the one inherited of H1
loc(R). So Xω is a Banach space.

Lemma 2.3. The spaces H1
o (R), Xω are reflexive.

The proof of this lemma almost literally repeats the proof of Lemma 2.2.
Just note that the space H1

o (−n, n) is a reflexive space because it is a real
Hilbert space with standard inner product

(u, v) =

∫
(−n,n)

u(t)v(t)dt+

∫
(−n,n)

u̇(t)v̇(t)dt.
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Introduce a set

Φk,ω = {ϕ ∈ H1
o (R) | ϕ(t+ ω) = ϕ(t) + 2πk}.

The set Φk,ω is closed and convex in H1
o (R).

With the help of Lemma 2.1 it is not hard to show that the function
ρ(u, v) = ∥u̇− v̇∥L2(0,ω) determines a metric on Φk,ω and this metric endows

Φk,ω with the same topology as the space H1
o (R) does.

2.2. The Action. Our goal is to prove that a functional

S : Xω ×H1
o (R) → R, S(x, ϕ) =

∫ ω

0
L
(
x(t), ϕ(t), ẋ(t), ϕ̇(t)

)
dt

attains a minimum in a set Ek,ω = Xω × Φk,ω.

Lemma 2.4. For any (x, ϕ) ∈ H1
o (R)×H1

o (R) the following inequality holds

S(x, ϕ) ≥ 1

2
∥ϕ̇∥2L2(0,ω) +

1

2
∥ẋ∥2L2(0,ω) −

ω3/2

√
2
∥ẋ∥L2(0,ω).

Proof. Indeed, with the help of Cauchy inequality it immediately follows
that

S(x, ϕ) ≥ 1

2
∥ϕ̇∥2L2(0,ω) +

1

2
∥ẋ∥2L2(0,ω) − ∥x∥L1(0,ω)

≥ 1

2
∥ϕ̇∥2L2(0,ω) +

1

2
∥ẋ∥2L2(0,ω) − ∥x∥L2(0,ω)

√
ω.

It remains to apply Lemma 2.1.
The Lemma is proved.

2.3. Minimization of the Action Functional. Let {(xn, ϕn)}n∈N ⊂ Ek,ω

be a minimizing sequence for the functional S that is

S(xn, ϕn) → α, n → ∞, α = inf
Ek,ω

S.

From Lemma 2.4 it follows that the sequence {(xn, ϕn)}n∈N is bounded in
Xω ×H1

o (R) and α > −∞.
Thus the sequence {(xn, ϕn)} contains a weakly convergent subsequence,

we denote this subsequence by the same letters:

xn → x∗ ∈ Xω, ϕn → ϕ∗ ∈ H1
o (R).

Since a convex set of a locally convex space is closed iff it is weakly closed
[1], we have ϕ∗ ∈ Φk,ω.

We also know from analysis that the sequence {(xn, ϕn)} contains a sub-
sequence that is convergent in C[0, ω] × C[0, ω]. (See Remark 2.) So we
accept that (xn, ϕn) → (x∗, ϕ∗) in C[0, ω]× C[0, ω].

Our next goal is to prove that α = S(x∗, ϕ∗).
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Observe the following evident estimates∫ ω

0
x2nϕ̇

2
ndt ≥

∫ ω

0
(x2n − x2∗)ϕ̇

2
ndt

+

∫ ω

0
x2∗ϕ̇

2
∗dt+ 2

∫ ω

0
ϕ̇∗x

2
∗(ϕ̇n − ϕ̇∗)dt, (2.2)∫ ω

0
ϕ̇2
ndt ≥

∫ ω

0
ϕ̇2
∗dt+ 2

∫ ω

0
ϕ̇∗(ϕ̇n − ϕ̇∗)dt. (2.3)

Since xn → x∗ in C[0, ω] and the sequence {ϕ̇n} is bounded in L2(0, ω) the
first term in the right side of formula (2.2) vanishes as n → ∞.

The last terms in the right sides of formulas (2.2) and (2.3) are vanished
as n → ∞ because ϕn → ϕ∗ weakly in H1

o (R).
Note also that ∫ ω

0
xn sinϕndt →

∫ ω

0
x∗ sinϕ∗dt

it is because {(xn, ϕn)} converges in C[0, ω]× C[0, ω].
Gathering all these observations we get α ≥ S(x∗, ϕ∗). So that

α = S(x∗, ϕ∗), (x∗, ϕ∗) ∈ Ek,ω.

2.4. Weak Solutions to the Lagrange Equations. Take any two func-
tions x, ϕ ∈ Xω and put

f(ξ, η) = S(x∗ + ξx, ϕ∗ + ηϕ), ξ, η ∈ R.

From previous section it follows that a point ξ = η = 0 is a minimum of f .
This implies

∂f

∂ξ

∣∣∣
ξ=η=0

=
∂f

∂η

∣∣∣
ξ=η=0

= 0,

or in the detailed form∫ ω

0

(
ẋ∗(t)ẋ(t)dt+

∂L

∂x

(
x∗(t), ϕ∗(t), ẋ∗(t), ϕ̇∗(t)

)
x(t)

)
dt = 0,

(2.4)∫ ω

0

(
(1 + x2∗(t))ϕ̇∗(t)ϕ̇(t)dt+

∂L

∂ϕ

(
x∗(t), ϕ∗(t), ẋ∗(t), ϕ̇∗(t)

)
ϕ(t)

)
dt = 0.

(2.5)

Equations (2.4) and (2.5) imply that the functions x∗, ϕ∗ are the weak solu-
tions to the Lagrange equations and x, ϕ ∈ Xω are the test functions.

2.5. Regularization. From the theory developed above we know that x∗, ϕ∗
belong to H1

loc(R) end by the Sobolev embedding theorem x∗, ϕ∗ ∈ C(R).
Our aim is to show that x∗, ϕ∗ ∈ C2(R). Let us check this for ϕ∗.
Introduce a space

Yω = {u ∈ L2
loc(R) | u(−t) = u(t), u(t+ ω) = u(t)}.

In this definition the equalities hold almost everywhere.
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Assume that a function y belongs to Yω. If in addition this function
satisfies equality ∫ ω

0
y(s)ds = 0

then

ϕ(t) =

∫ t

0
y(s)ds ∈ Xω.

Moreover, it is clear that every function from Xω can be presented in this
way.

Let us put

a(t) = (1 + x2∗(t))ϕ̇∗(t) ∈ Yω, l(t) = −x∗(t) cosϕ∗(t) ∈ Xω.

Introduce the following linear functionals

p(y) =

∫ ω

0
y(s)ds,

h(y) =

∫ ω

0

(
a(t)y(t) + l(t)

∫ t

0
y(s)ds

)
dt.

Them both belong to Y ′
ω. By Fubini’s theorem we can rewrite the last

functional in the form

h(y) =

∫ ω

0
a(t)y(t)dt+

∫ ω

0
y(s)

∫ ω

s
l(t)dtds.

From equation (2.5) we know that ker p ⊂ kerh. Therefore there exists a
constant λ such that

h = λp. (2.6)

Since y ∈ Yω is an arbitrary function, and the functions a(t),
∫ ω
t l(s)ds are

even, equation (2.6) takes the form

(1 + x2∗(t))ϕ̇∗(t) +

∫ ω

t
l(s)ds = λ. (2.7)

Since {l, x∗} ⊂ Xω ⊂ C(R) we obtain ϕ∗ ∈ C1(R).
By the same argument from equation (2.4) we get

ẋ∗(t) +

∫ ω

t

(
x∗(s)ϕ̇

2
∗(s)− sinϕ∗(s)

)
ds = const. (2.8)

From equation (2.8) it follows that x∗ ∈ C2(R). Then we go back to equation
(2.7) and yield ϕ∗ ∈ C2(R).

The Theorem is proved.
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