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Abstract

For a Denjoy homeomorphism f of the circle S, we call a pair of distinct points
of the ω-limit set ω(f) whose forward and backward orbits converge together a
gap, and call an orbit of gaps a hole. In this paper, we generalise the Sturmian
system of Morse and Hedlund and show that the dynamics of any Denjoy mini-
mal set of finite number of holes is conjugate to a generalised Sturmian system.
Moreover, for any Denjoy homeomorphism f having a finite number of holes and
for any transitive orientation-preserving homeomorphism f1 of the circle with the
same rotation number ρ(f1) as ρ(f), we construct a family fε of Denjoy homeo-
morphisms of rotation number ρ(f) containing f such that (ω(fε), fε) is conjugate
to (ω(f), f) for 0 < ε < ε̃ < 1 but the number of holes changes at ε = ε̃, that
(ω(fε), fε) is conjugate to (ω(fε̃), fε̃) for ε̃ ≤ ε < 1 but limε↗1 fε(t) = f1(t) for
any t ∈ S, and that fε has a singular limit when ε ↘ 0. We show this singular
limit is an anti-integrable limit in the sense of Aubry. That is, the Denjoy minimal
system reduces to a symbolic dynamical system. The anti-integrable limit can be
degenerate or non-degenerate. All transitions can be precisely described in terms
of the generalised Sturmian systems.

Key words: Denjoy counterexample, Denjoy minimal set, generalised Sturmian sys-
tem, anti-integrable limit
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1 Introduction

Let S = {z ∈ C| |z| = 1} be the unit circle. We identify S with R/Z and have the iden-
tification [0, 1) 3 t with {z ∈ C| |z| = 1} 3 e2πit. We shall freely use the representation
of S which is most convenient. Let β ∈ (0, 1) and Rβ : S → S, t 7→ t + β (mod 1),
be the rotation with angle β. Denjoy proved by constructing examples that there exist
circle diffeomorphisms which have irrational rotation number β but are not conjugate to
Rβ . The ω-limit sets of Denjoy’s examples are Cantor sets. We refer to any orientation-
preserving homeomorphism (OPH) of S with irrational rotation number that is not con-
jugate to a rotation as a Denjoy homeomorphism or Denjoy counterexample. When we
say two dynamical systems are conjugate or semi-conjugate we means topologically
conjugate or topologically semi-conjugate, respectively.

For a monotone twist map of an annulus, the celebrated Aubry-Mather theory tells
that one can always find invariant minimal closed subsets of the annulus on which the
twist map has irrational rotation numbers. These closed subsets are either Lipschitz
circles or Cantor sets on Lipschitz circles. In the latter case, they are also called cantori
or Denjoy minimal sets.

Baesens and MacKay [8, 19] showed that cantori of a given rotation number may
form an interval in the vague topology for multiharmonic maps, for example, of the
following form

xi+1 = xi + yi+1 (mod 1), (1)

yi+1 = yi −
a

2π
sin 2πxi −

b

4π
sin 4πxi, (2)

near enough an anti-integrable limit (AI-limit). (For the concept of AI-limit, see e.g. [4,
5, 7, 12, 18].) This is because the cantori may have multiple number of holes. Following
their terminology, we call a pair of distinct points of a Denjoy minimal set whose forward
and backward orbits converge together a gap. The gaps come in orbits. We call an orbit
of gaps a hole. Aubry calls it a discontinuity class [6]. For the two-harmonic family
(1) and (2), the cantori depend on parameters a and b. Baesens and MacKay proved
that there are parameter regimes such that on passing different regimes there exists a
bifurcation in which a one-hole cantorus gains a second hole or there exists an invariant
circle to one-hole cantorus transition. See also [9] for numerical demonstration.

The Aubry-Mather theory indicates that an invariant circle breaks by the conjugacy
from an irrational rotation becoming discontinuous. For a large class of annulus maps
and rotation numbers, the breakup boundary in parameter space is believed to be smooth.
But for the two-harmonic family of maps (and for multiharmonic maps in general), the
breakup boundary exhibits a fractal structure. Baesens and MacKay [8] believe that this
is because the space of cantori of this family of fixed rotation number contains an inter-
val, and thus the breakup boundary is composed of many pieces, each one corresponding
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to a point in the interval.
Note that for an area-preserving monotone twist map, Mather [22] showed that if

there is no invariant circle of a given irrational rotation number β, then there exist un-
countably many Denjoy minimal sets of that rotation number. Moreover, as pointed out
by Boyland [10], these are n-fold Denjoy minimal sets, i.e. they wraps n-times around
the annulus, with average speed β for all n loops with n ≥ 2. The n-fold Denjoy
minimal sets showed by Mather have dimension n− 1 in the vague topology.

There are circle diffeomorphisms whose Denjoy minimal sets have multiple holes.
These diffeomorphisms can be constructed, for example, by “blowing up” points in a
multiple number of orbits of Rβ , instead of only in one orbit. It is natural and inter-
esting to investigate whether similar bifurcation and transition phenomena studied in
[8, 9] also happen in the minimal sets for Denjoy homeomorphisms of the circle. If
it does, can one describe the bifurcations or transitions for multi-hole Denjoy minimal
sets in terms of symbolic dynamics? More importantly, what is the AI-limit for Denjoy
homeomorphisms? Theses questions motivated this paper and are the central issues to
be addressed.

In this paper, we generalise the Sturmian system of Morse and Hedlund [23] by cod-
ing irrational rotations with respect to an arbitrary finite partition on the circle and show
that the dynamics of any Denjoy minimal set of finite number of holes is conjugate to a
generalised Sturmian system. Notice that it is known (see e.g. [17]) that the restriction
of a one-hole Denjoy homeomorphism to its ω-limit set is conjugate to the restriction
of the full two-shift homeomorphism to a closed invariant subset. We call a generalised
Sturmian system a multi-hole Sturmian system. Moreover, for any Denjoy homeomor-
phism f having a finite number of holes and for any transitive OPH f1 of the circle
with the same rotation number ρ(f1) as ρ(f), we construct a one-parameter family fε of
Denjoy homeomorphisms of rotation number ρ(f) having the following properties. The
first property is that fε0 = f and (ω(fε), fε) is conjugate to (ω(f), f) when 0 < ε < ε̃

with some 0 < ε0 < ε̃ < 1. The second is that the number of holes changes at ε = ε̃,
corresponding to a transition of cantorus in which a cantorus gains or loses a certain
number of holes, and that (ω(fε), fε) is conjugate to (ω(fε̃), fε̃) when ε̃ ≤ ε < 1. The
third is that limε↗1 fε(t) = f1(t) pointwisely for any t ∈ S, corresponding to the circle
to cantorus transition, and that fε has a singular limit when ε ↘ 0. We show that this
singular limit is an AI-limit in the sense of Aubry [4, 5]. That is, the Denjoy minimal set
collapses to a set of finite point and the Denjoy minimal system reduces to a symbolic
dynamical system. The AI-limit can be degenerate or non-degenerate. All transitions
can be precisely described in terms of multi-hole Sturmian sequences.

Roughly speaking, near an AI-limit, (ω(fε), fε) is conjugate to a multi-hole Sturmian
system but reduces to a factor of that multi-hole Sturmian system at the AI-limit. (When
we say a dynamical system is a factor of another, we mean a topological factor.) For
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instance, suppose that fε is constructed by blowing up orbit points Rn
β(0) of the origin

into wandering intervals I(1)
n and the length |I(1)

n | of I(1)
n depends on ε for every n ∈ Z.

Then, an AI-limit will correspond to the limit |I(1)
n | → 0 for all n except |I(1)

1 | → 1 as
ε→ 0.

Analogously, if fε is obtained by blowing up points of the two orbits {Rn
β(0)| n ∈ Z}

and {Rn
β(1/2)| n ∈ Z} into wandering intervals I(1)

n and I(2)
n , respectively. Again, if the

lengths of these intervals depend on ε. Then, a two to one-hole transition of cantorus
will occur at ε = ε̃ provided that the length of I(2)

n shrinks to zero (the gap corresponding
to the boundary of I(2)

n is annihilated) for every n when ε = ε̃ but the union
⋃
n∈Z I

(1)
n

remains constituting the wandering intervals.
The rest of this paper is organized as follows. In the next section, we briefly review

fundamental properties of Denjoy homeomorphisms. Before describing a way to code
symbolically a Denjoy minimal set in Section 4, we establish in Section 3 the multi-
hole Sturmian systems that code irrational rotations with respect to arbitrary partitions
on the circle. Section 5 is devoted to the transitions and AI-limits of Denjoy minimal
systems. The transitions and AI-limits will be described in terms of quotients of multi-
hole Sturmian systems. We postpone all proofs of our theorems until the final section.

2 Denjoy counterexample

The purpose of this section is twofold. On the one hand, it provides a brief review of
well-known facts about Denjoy counterexamples. (For a detailed account, the reader
may refer to [13, 17, 25], for instance.) On the other hand, it introduces our assumption
on the Denjoy minimal sets to be studied.

If f is a homeomorphism of S having ω(f) a Cantor set, then f is semi-conjugate to
Rβ for some irrational number β. In other words, f has Rβ as a factor. More precisely,
there is a unique (up to a rotation) continuous non-decreasing surjection h of degree one
such that the diagram below commutes:

S
f−→ S

h

y yh
S

Rβ−→ S.

(*)

The image of ω(f) under h is S. The complement S \ ω(f) =
⋃
n∈Z In consists of

countable pairwise disjoint open sets In, which are invariant under f and for which
h(In) is a single point for every n. Thus, h(S \ ω(f)) is a countable invariant set of Rβ .
The semi-conjugacy h is one-to-one on S \

⋃
n∈Z cl In, where cl In denotes the closure

of In.
The topological classification of Denjoy homeomorphisms with a given irrational

rotation number β is due to Markley given by a finite or countable collection of orbits
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of the rotation Rβ up to a simultaneous translation of all these orbits. For a Denjoy
homeomorphism, define

D(f) := h(
⋃
n∈Z

cl In).

We call the number of disjoint orbits ofD(f) underRβ the number of holes of ω(f). The
number of holes of a Denjoy minimal set is at least one, and may be infinite. Markley
[20] proved the following.

Theorem 2.1 (Markley 1970). A Denjoy homeomorphism f is semi-conjugate to an-
other f̃ via an orientation-preserving surjection if and only if they have the same rotation
number and

D(f̃) ⊆ Rα (D(f)) (3)

for some 0 ≤ α < 1. The surjection is a homeomorphism if and only if equality holds in
(3)

On the other way round, for any countable Rβ-invariant subset D ⊂ S, one can
choose pairwise disjoint open intervals Id, d ∈ D, which have the same cyclic ordering
as points in D and whose union is dense in S. Then there is a continuous surjection h
of S such that h−1(d) = cl Id for all d ∈ D and which is one-to-one on h−1(S \ D).
Moreover, one can construct a homeomorphism f of S with rotation number β so that h
satisfies (*) and that S \

⋃
d∈D Id is a Cantor set and is the unique minimal invariant set

(equal to ω(f)) under f .
Given a Cantor set C on S, the complement of C can be described as S\C =

⋃
n∈Z In

where In’s are pairwise disjoint open sets. A continuous function P : S → S is called a
Cantor function associated to C provided that

P (x) = P (y) ⇐⇒ x = y or x, y ∈ cl In

for some n ∈ Z and that the function collapses every In into a point in such a way that the
cyclic ordering is preserved. Therefore, the semi-conjugacy h satisfying (*) is a Cantor
function. It is worth noticing that for every given Cantor set C ⊂ S, irrational β ∈ (0, 1),
and a countable Rβ-invariant subset D ⊂ S, there is a Denjoy homeomorphism f with
rotation number β, D(f) = D, and ω(f) = C. This is because the components of S \ C
and the set D can be put in a one-to-one correspondence which preserves the cyclic
ordering.

Let X be a topological space and f an invertible map of X . Denote the orbit of a
point x ∈ X under the iteration of f by O(x; f) := {fn(x)| n ∈ Z}. If Y is a subset of
X , let O(Y ; f) :=

⋃
x∈Y O(x; f).

Denote by ρ(f) the rotation number of a homeomorphism f of the unit circle S.
If two OPHs f̃ and f of the circle are conjugate by an orientation preserving (resp.
reversing) homeomorphism, then ρ(f̃) = ρ(f) (resp. ρ(f̃) = −ρ(f) mod 1). Note

5



that Rβ and R−β are conjugate via reflection t 7→ −t mod 1. (The orbit O(t;Rβ) of a
point t under Rβ is identical to the one O(t;R−1

1−β) under inverse iteration of R1−β .) In
fact, two Denjoy homeomorphisms f̃ and f are conjugate via an orientation-reversing
conjugacy if and only if ρ(f̃) = 1−ρ(f) andD(f̃) = 1−Rα (D(f)) for some 0 ≤ α < 1

[20]. For these reasons, in this paper we concentrate on those Denjoy homeomorphisms
of rotation number less than 1/2.

If the number of holes is finite for a Denjoy minimal set, without loss of generality,
we make the following assumption throughout this paper.

Assumption A. Let f be a Denjoy homeomorphism. Assume that the number of holes
of ω(f) is finite and equal to some integer K ≥ 1. Assume that
• 0 < ρ(f) = β < 1/2,
• there is a set Θ = {θ(1), θ(2), . . . , θ(K)} of K points, 0 = θ(1) < θ(2) < . . . < θ(K) <

1, with O(θ(i);Rβ) ∩ O(θ(j);Rβ) = ∅ for all 1 ≤ i < j ≤ K,
• there are open sets I(k)

n , n ∈ Z, 1 ≤ k ≤ K, such that

h−1(θ(k)) = cl I
(k)
0

= [a
(k)
0 , b

(k)
0 ],

fn(I
(k)
0 ) = I(k)

n

= (a(k)
n , b(k)

n ),⋃
1≤k≤K

⋃
n∈Z

I
(k)
n = S,

where h is the semi-conjugacy satisfying (*), a(k)
n , b(k)

n are points in ω(f), and (a
(k)
n , b

(k)
n )

and [a
(k)
n , b

(k)
n ] denote the open and closed (anti-clockwise) intervals from a

(k)
n to b(k)

n

in S. We assume 0 ∈ I(1)
0 .

Remark 2.2.
(i) We call the minimal system (ω(f), f) in Assumption A a K-hole Denjoy minimal

system.
(ii) If a Denjoy homeomorphism f satisfies Assumption A, then D(f) = O(Θ;Rβ).

Clearly, fn(a
(k)
0 ) = a

(k)
n , fn(b

(k)
0 ) = b

(k)
n , and lim|n|→∞ |fn(a

(k)
0 ) − fn(b

(k)
0 )| = 0.

Therefore, the pair of points a(k)
n and b(k)

n is a gap. Define the following equivalence
relation on ω(f): For points x, y ∈ ω(f), and a subset Θ̂ ⊆ Θ, we say

x ∼Θ̂ y (4)

if lim|n|→∞ |fn(x) − fn(y)| = 0, x, y ∈
{
O(a

(k)
0 ; f),O(b

(k)
0 ; f)

}
, and if θ(k) ∈ Θ̂.

Note that x ∼Θ y if lim|n|→∞ |fn(x) − fn(y)| = 0 or equivalent if h(x) = h(y). It is
necessary that x ∼{θ} y for some θ ∈ Θ̂ if x ∼Θ̂ y. Hence, two distinct points x and y
in ω(f) form a gap if and only if x ∼Θ y or if and only if h(x) = h(y).
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For the sake of convenience of notation, in the sequel, we use (Y, f) to denote the
restriction f |Y of a continuous map f of a topological space X to an invariant subset
Y ⊆ X . Also, we use (Y, f)/∼ instead of (Y/∼, f∼) to denote dynamical system of the
induced map f∼ of f of the quotient of Y by an equivalence relation ∼ on Y .

The following is well-known.

Theorem 2.3. Let f be a Denjoy homeomorphism satisfying Assumption A. The quotient
space ω(f)/∼Θ of ω(f) by the equivalence relation ∼Θ is homeomorphic to S. The
quotient dynamics (ω(f), f) /∼Θ is conjugate to (S,Rβ).

3 Coding of irrational rotation

First, we describe a way to characterize symbolic codes of a irrational rotation of the
unit circle S. It is a generalisation of Morse and Hedlund’s construction of Sturmian
sequences in 1940 [23]. Given irrational β ∈ (0, 1/2) and t ∈ S, we investigate the
coding of the orbit O(t;Rβ) in this section.

Let Q ⊂ S be a finite set of real numbers having cardinality N ≥ 2. Suppose
Q = {q1, q2, . . . , qN} with the ordering

0 = q1 < q2 < . . . < qN < 1

is a set of N consecutive points on S. We call such a finite set Q a partition set or a set
of partition points on the circle S. Partition S into N number of intervals:

J+
1 = [0, q2) J−1 = (0, q2]

J+
2 = [q2, q3) J−2 = (q2, q3]

... or
...

J+
N−1 = [qN−1, qN) J−N−1 = (qN−1, qN ]

J+
N = [qN , 1), J−N = (qN , 1].

Denote by ](Q) the cardinality of Q. Given a partition set Q, we define Φ = {φ1,
φ2, . . . , φN} to be a finite real number set of the same cardinality as Q, ](Φ) = ](Q) =

N , with the ordering
0 ≤ φ1 < φ2 < . . . < φN ≤ 1.

Associated with the rotationRβ , define two maps ν+(·; β,Q,Φ) and ν−(·; β,Q,Φ) from
the circle S to the product space ΦZ,

ν+(t; β,Q,Φ) = (· · · ,ν+(t; β,Q,Φ)−1,ν
+(t; β,Q,Φ)0,ν

+(t; β,Q,Φ)1, · · · ),
ν−(t; β,Q,Φ) = (· · · ,ν−(t; β,Q,Φ)−1,ν

−(t; β,Q,Φ)0,ν
−(t; β,Q,Φ)1, · · · ),
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by
ν±(t; β,Q,Φ)n = φi if Rn

β(t) ∈ J±i for 1 ≤ i ≤ N, n ∈ Z.

In other words, ν±(t; β,Q,Φ) give the itinerary sequences of the orbit of t under Rβ

with respect to the partition Q. We call such a finite set Φ a symbol set or a set of
symbols, and call (Q,Φ) a partition-symbol pair or a pair of partition and symbol sets.

Endow the finite set Φ with the discrete topology, and the set of sequences u =

(. . . , u−1, u0, u1, . . .) ∈ ΦZ with the product topology. Define a set Xβ,Q,Φ by

Xβ,Q,Φ :=
⋃
t∈S

(
ν−(t; β,Q,Φ) ∪ ν+(t; β,Q,Φ)

)
. (5)

Let σ = σN : ΦZ → ΦZ, (ui)i∈Z 7→ (vi)i∈Z with vi = ui+1, be the usual shift auto-
morphism. We call the subshift (Xβ,Q,Φ, σ) of (ΦZ, σ) an N -symbol Sturmian system of
partition points Q with symbols Φ and rotation number β (where N = ](Q) = ](Φ)).
For the sake of simplicity, (ΦZ, σ) instead of (ΦZ, σN) is used in the rest of this paper
provided no ambiguity is caused.

A sequence u ∈ ΦZ is called a rotation sequence of partition Q with irrational
rotation number β ∈ (0, 1/2) if there exists t ∈ S such that either ν+(t; β,Q,Φ) = u or
ν−(t; β,Q,Φ) = u. A sequence u ∈ ΦZ is called a rotation sequence if it is a rotation
sequence of some partition with some rotation number.

By the definition above, a rotation sequence of partition {0, β} or {0, 1 − β} with
irrational rotation number β gives rise to a Sturmian sequence. See subsection 3.1 for a
brief account of the Sturmian sequence. We remark that for 0 < c < 1− β the partition
{0, c, c+β/2, 1−β/2} that divides the circle into four arcs was ever studied by Hockett
and Holmes [16], but they used two symbols rather than four to characterize a rotation.
See also [11] for coding rotations with two symbols by more general partitions.

Remark 3.1. Suppose (un)n∈Z = ν+(t; β,Q,Φ) (or ν−(t; β,Q,Φ)), then

un = φin ⇐⇒ R−n1−β(t) ∈ J+
in

(resp. J−in)

for all 1 ≤ in ≤ N = ](Q) and n ∈ Z. Hence, with respect to the partition Q,
the sequence (un)n∈Z is also the itinerary sequence of the orbit of t under the reverse
rotation with angle 1− β.

Theorem 3.2. Given an irrational number β ∈ (0, 1/2), the set Xβ,Q,Φ is a Cantor set
in ΦZ, the shift σ is a homeomorphism of Xβ,Q,Φ, and the system (Xβ,Q,Φ, σ) is invariant
and minimal.

The minimality of the set Xβ,Q,Φ means that the set can be defined alternatively to
be the orbit closure

Xβ,Q,Φ := {σn(u)| n ∈ Z} (6)
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of any rotation sequence u of partition points Q with symbols Φ and rotation number
β. (Actually, we prove the minimality in Theorem 3.2 by showing that (6) holds.) The
reader can refer to [15] for the equivalence of the two definitions for the Sturmian system
cases Xβ,{0,β},{0,1} and Xβ,{0,1−β},{0,1}. For the Sturmian cases, Theorem 3.2 has been
known in [15].

Theorem 3.3. Given any irrational numbers β, β̃ ∈ (0, 1/2), partition-symbol pairs
(Q,Φ) and (Q̃, Φ̃), the system (Xβ̃,Q̃,Φ̃, σ) is a factor of (Xβ,Q,Φ, σ) if and only if β̃ = β

and
O(Q̃;Rβ̃) ⊆ O(Q;Rβ). (7)

The two systems are conjugate if and only if equality holds in (7).

In virtue of the above theorem, it is necessary that β = β̃ for the two systems to be
conjugate. Hence, we shall concentrate on a fixed irrational β and, when no ambiguity
is caused, write ν±(t;Q,Φ) = ν±(t; β,Q,Φ) and XQ,Φ = Xβ,Q,Φ to simplify notation.

Remark 3.4. Theorem 3.3 is no longer true if one allows rotation numbers to belong to
(0, 1).

Given a partition set Q and a symbol set Φ, let Q̃ be a subset of Q. Assume
that u, v belong to XQ,Φ. Define the following equivalence relation: u ∼Q̃ v if u,
v ∈ {ν−(t;Q,Φ),ν+(t;Q,Φ)} for some t ∈ O(Q̃;Rβ). It is easy to check that the
equivalence relation defined is indeed an equivalence relation. For any two subsets Θ̃

and Θ′ of Θ, the union∼Θ̃ ∪ ∼Θ′ is again an equivalence relation, and is equal to∼Θ̃∪Θ′ .

Theorem 3.5. Given a partition-symbol pair (Q,Φ), the system (XQ,Φ, σ) is semi-
conjugate to (S,Rβ) in such a way that (XQ,Φ, σ) is a 2-to-1 extension of (S,Rβ) and the
semi-conjugacy is 1-to-1 except on the countable subset

⋃
q∈Q {σn ◦ ν±(q;Q,Φ)| n ∈ Z}.

The quotient space XQ,Φ/∼Q of XQ,Φ by the equivalence relation ∼Q is topologically a
circle, and (XQ,Φ, σ)/∼Q is conjugate to (S,Rβ).

The above theorem has been known (e.g. [3]) for the Sturmian case Q = {0, β} or
{0, 1− β}.

3.1 The Sturmian system

The material in this subsection can be found, for example, in [3, 14, 23].
Given a sequence u over a finite alphabet A, the complexity function p = pu :

N → N, n 7→ p(n), is defined as the number of distinct words of length n occurring
in u. If U is a finite word over A, denote by |U |a the number of occurrence of the
letter a ∈ A in U . A sequence u over a two-letter alphabet {0, 1} is called balanced
if for any pair of words U , V of the same length in u, we have ||U |1 − |V |1| ≤ 1 or
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equivalently ||U |0 − |V |0| ≤ 1. A theorem of Morse and Hedlund states that a binary
sequence u is periodic if and only if p(n) ≤ n for some n. A binary sequence u

is called Sturmian if it is balanced and not eventually periodic. It can be shown that
a binary sequence u is Sturmian if and only if it has complexity p(n) = n + 1 and
is not eventually periodic. Thus, among all non-eventually periodic binary sequences,
Sturmian sequences are those having the smallest possible complexity.

The frequency of letter 0 (or 1) in a Sturmian sequence u = (un)n∈Z ∈ {0, 1}Z

defined as the limit

lim
n→∞

|u−n . . . u0 . . . un|0
2n+ 1

( lim
n→∞

|u−n . . . u0 . . . un|1
2n+ 1

, resp.)

is an irrational number. If the frequency of letter 0 in a Sturmian sequence is β, the
frequency of letter 1 in that sequence is 1− β. The following has been known [23].

Theorem 3.6 (Morse & Hedlund 1940). Let β ∈ (0, 1/2) and u ∈ {0, 1}Z.
• u is a Sturmian sequence and the frequency of 0 in u is β if and only if u coincides

with ν+(t; {0, β}, {0, 1}) or ν−(t; {0, β}, {0, 1}) for some t ∈ S.
• u is a Sturmian sequence and the frequency of 1 in u is β if and only if u coincides

with ν+(t; {0, 1− β}, {0, 1}) or ν−(t; {0, 1− β}, {0, 1}) for some t ∈ S.

If a Sturmian sequence u differs from another v in exactly two positions, then
precisely u differs from v in exactly two consecutive positions. Therefore, if u =

ν+(t; {0, β}, {0, 1}) for some t ∈ S, then v must be ν−(t; {0, β}, {0, 1}), and vice
versa. Also, u ∼{0} v if u = v or u differs from v in exactly two positions.

We remark that Sturmian sequences over a two-letter alphabet are also codings of
trajectories of irrational initial slope in a unit square billiard obtained by labeling hor-
izontal sides by one letter and vertical sides by the other, namely the so-called billiard
sequences. Equivalently, they are also the so-called cutting sequences: Write the letter 0

each time when the line y = β
1−βx+ t

1−β on the x-y plane cuts a vertical line x = integer,
and the letter 1 each time it cuts a horizontal line y = integer. Then the cutting sequence
is a rotation sequence ν+(t; {0, 1− β}, {0, 1}) or ν−(t; {0, 1− β}, {0, 1})

3.2 Multi-hole Sturmian system

Given a partition set Q, we can find a subset Θ̃ ⊆ Q,

Θ̃ =
{
θ(1), θ(2), . . . , θ(L)

}
consisting of L points in S satisfying

0 = θ(1) < . . . < θ(L−1) < θ(L) < 1
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as well as
O(θ(i);Rβ) ∩ O(θ(j);Rβ) = ∅ ∀1 ≤ i < j ≤ L,

(i.e. orbits of elements of Θ̃ under Rβ are mutually disjoint) and can find integers

M1 ≥ 1, M2 ≥ 1, . . . ,ML ≥ 1,

T
(1)
1 < T

(1)
2 < . . . < T

(1)
M1
,

T
(2)
1 < T

(2)
2 < . . . < T

(2)
M2
,

...

T
(L)
1 < T

(L)
2 < . . . < T

(L)
ML

such that

Q =
L⋃
k=1

Mk⋃
i=1

R
T

(k)
i
β (θ(k)).

Note that for each k one element of the set {T (k)
1 , T

(k)
2 , . . . , T

(k)
Mk
} must be zero, i.e.

0 ∈ {T (k)
1 , T

(k)
2 , . . . , T

(k)
Mk
} ∀1 ≤ k ≤ L. Note also that ML ≥ 2 if L = 1. The choice

of the subset Θ for a given Q is finite but not unique, whereas the choice of the integers
M1, . . . ,ML is unique. In particular, ](Q) =

∑L
k=1Mk. Moreover, the cardinality of Θ̃

is fixed for any possible choice. We call the subset Θ̃ just described a least equivalent
sub-partition of Q, and call the cardinality ](Θ̃) of a least equivalent sub-partition Θ̃ the
number of holes of the subshift (XQ,Φ, σ) of (ΦZ, σ).

The subset Θ̃ is called a “sub-partition” because it is a subset of the partition set Q
and itself can be used as a partition set provided that L ≥ 2; it is called “equivalent”
because the resulting subshift XΘ̃,Θ̃ is conjugate to XQ,Q (by Theorem 3.3); it is called
“least” because if any point is removed from Θ̃, then the resulting subshift cannot be
conjugate to the original one, i.e. XΘ̂,Θ̂ is not conjugate to XQ,Q if Θ̂ which contains
zero is a proper subset of Θ̃.

In fact, we have the following result, which is an immediate consequence of Theorem
3.3.

Corollary 3.7.
(i) Any two systems (XQ,Φ, σ) and (XQ̃,Φ̃, σ) are not conjugate if their numbers of

holes are different.
(ii) The system (XQ,Φ, σ) is conjugate to (X{0,β},{0,1}, σ) if it has only one hole.

(iii) The system (XQ,Φ, σ) is conjugate to (XΘ̃,Θ̃, σ) if it has more than one hole and Θ̃

is a least equivalent sub-partition of Q.

An example of Corollary 3.7 is given below.
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Example 3.8. (X{0,β},{0,1}, σ) is not conjugate to (X{0,α},{0,1}, σ) if α 6∈ O(0, Rβ) be-
cause the former has one hole whereas the latter has two holes. Conversely, (X{0,α},{0,1}, σ)

is conjugate to (X{0,β},{0,1}, σ) if α ∈ O(0, Rβ).

We remark that, by our construction, an L-hole Sturmian system must have a least
max{2, L} symbols.

We learnt that Masui [21] ever constructed a partition of the unit circle similar to
our Θ̃ here, but it requires β ∈ Θ̃. And, a version of Theorem 4.3(i) to come in the
next section in this paper was also proved in [21]. The version proved there is a special
case of ours when the semi-conjugacy is a conjugacy. Note that partitions similar to our
Q here were also appeared in [1, 2], but they did not associate their partitions with the
Denjoy minimal system. The complexity of an irrational rotation sequence of partition
Q = {0, q2, q3, . . . , qN} has the form p(n) = an + b with a ≤ N for n large enough. If
β, q2, q3, . . . , qN are rationally independent, then a = N , b = 0 (see [2]). In particular,
if Q = {0, 1/2}, then p(n) = 2n for all integer n (see [26]).

The following result is an analogous of Theorem 3.5.

Theorem 3.9. Given a partition-symbol pair (Q,Φ) and a least equivalent sub-partition
Θ̃ of Q, suppose ](Θ̃) ≥ 2.

(i) (XQ,Φ, σ) is semi-conjugate to (X{0,β},{0,1}, σ). The semi-conjugacy is 1-to-1 ex-
cept on the countable set

⋃
θ∈Θ̃\{0} {σn ◦ ν±(θ;Q,Φ)| n ∈ Z}, where it is 2-to-1.

The quotient system (XQ,Φ, σ)/∼Θ̃\{0} is conjugate to (X{0,β},{0,1}, σ).
(ii) Suppose Θ̂ is a proper subset of Θ̃ not containing zero. If ](Θ̃ \ Θ̂) ≥ 2, then

(XQ,Φ, σ) is semi-conjugate to (XΘ̃\Θ̂,Θ̃\Θ̂, σ). The semi-conjugacy is 1-to-1 ex-
cept on the countable set

⋃
θ∈Θ̂ {σn ◦ ν±(θ;Q,Φ)| n ∈ Z}, where it is 2-to-1. The

quotient system (XQ,Φ, σ)/∼Θ̂ is conjugate to (XΘ̃\Θ̂,Θ̃\Θ̂, σ).

It is worth noticing a corollary of the statement (i) of the theorem above: The quotient
dynamical system (X{0,α},{0,1}, σ)/∼{α} is conjugate to (X{0,β},{0,1}, σ) for any α 6∈
O(0;R). Providing that ](Θ̃) ≥ 2, the statement (ii) says that if any non-zero partition
point θ is eliminated from Θ̃, then the resulting subshift (XΘ̃\{θ},Θ̃\{θ}, σ) is a factor of
the original one (XΘ̃,Θ̃, σ).

4 Coding of Denjoy minimal set

Assume that the ω-limit set ω(f) of a Denjoy homeomorphism f satisfying Assumption
A is a K-hole Cantor set. Let (Q,Φ) be a partition-symbol pair with a least equivalent
sub-partition Θ̃ of Q. Assume

Θ̃ ⊆ Θ, (8)
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](Q) = N , and Q = {q1, q2, . . . , qN}, with 0 = q1 < q2 < . . . < qN < 1. For each
0 ≤ i ≤ N , let

zi ∈ h−1(qi) (9)

be any point in h−1(qi). Define a set A,

A = {A1, A2, . . . , AN}, (10)

of open intervals Ai delimited by theses zi’s on S by

A1 = (z1, z2) ,

A2 = (z2, z3) ,
...

AN−1 = (zN−1, zN) ,

AN = (zN , z1) .

With the given symbol set Φ = {φ1, φ2, . . . , φN} and the intervals just constructed,
define the coding sequence E(x;Q,Φ) = (E(x;Q,Φ)n)n∈Z of a point x ∈ ω(f) by

E(x;Q,Φ)n = φi if fn(x) ∈ Ai (11)

for all n ∈ Z and some 1 ≤ i ≤ N . Remark that since the set {z1, z2, . . . , zN} does not
intersect the ω-limit set ω(f), the above definition is well defined.

Proposition 4.1. Suppose x ∈ ω(f).
(i) E(f(x);Q,Φ) = σ(E(x;Q,Φ)).

(ii) E(x;Q,Φ) = ν−(h(x);Q,Φ) if and only if x = inf(h−1(h(x)));
E(x;Q,Φ) = ν+(h(x);Q,Φ) if and only if x = sup(h−1(h(x))).
In particular, E(x;Q,Φ) = ν−(h(x);Q,Φ) = ν+(h(x);Q,Φ) if and only if
h(x) 6∈ O(Q;Rβ).

Proof. (i) The assertion clearly holds.
(ii) Let 1 ≤ i ≤ N = ](Q), qN+1 = 1, and suppose y ∈ Ai. Then, by our construc-

tion, we have h(y) ∈ J+
i (or J−i ) if and only if y 6∈ inf (h−1(qi+1)) (or sup (h−1(qi)),

respectively.)
If h(x) 6∈ O(Q;Rβ), then Rn

β(h(x)) does not locate on the boundary of J±i for every
n ∈ Z and 1 ≤ i ≤ N . Thus, E(x;Q,Φ) = ν−(h(x);Q,Φ) = ν+(h(x);Q,Φ). On the
other hand, if h(x) = Rn

β(qi) for some integer n and 1 ≤ i ≤ N , then

f−n(x) = inf
(
h−1 ◦R−nβ ◦ h(x)

)
or sup

(
h−1 ◦R−nβ ◦ h(x)

)
= inf

(
h−1(qi)

)
or sup

(
h−1(qi)

)
, respectively

∈ Ai−1 (with A0 = AN) or ∈ Ai, respectively.
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Therefore, by the paragraph above, it is necessary and sufficient that h(f−n(x)) ∈ J−i−1

so that E(x;Q,Φ)−n = φi−1, or it is necessary and sufficient that h(f−n(x)) ∈ J+
i so

that E(x;Q,Φ)−n = φi.

Proposition 4.2.
(i) The mapping x 7→ E(x;Q,Φ) is continuous in ω(f) and is 1-to-1 except on the

countable set ω(f) ∩
⋃
t∈O(Θ\Θ̃;Rβ) h

−1(t) where it is 2-to-1.

(ii) {σn ◦ E(x;Q,Φ)| n ∈ Z} = E(ω(f);Q,Φ) = XQ,Φ for any x ∈ ω(f).

Proof. (i) Because S is compact, f is uniformly continuous. Given any positive integer
M , there exists δ > 0 such that if |y−x| < δ then |fn(y)−fn(x)| < minNi=1 |h−1(qi)|/2
for all |n| ≤ M and qi ∈ Q, where |h−1(qi)| is the length of h−1(qi) and N = ](Q).
It follows that if x ∈ ω(f) and fn(x) ∈ Ai for some 1 ≤ i ≤ N then fn(y) ∈ Ai for
all |n| ≤ M for any point y whose distance from x is within δ, for otherwise fn(y) ∈
S \ ω(f). This proves the continuity.

In view of Proposition 4.1(ii), E(x;Q,Φ) is 1-to-1 in x if h(x) ∈ O(Q;Rβ). Other-
wise, it is 2-to1 since E(x;Q,Φ) = E(y;Q,Φ) for distinct x and y if h(x) = h(y). But,
h(x) = h(y) 6∈ O(Q;Rβ) if and only if h(x) = h(y) ∈ O(Θ \ Θ̃;Rβ).

(ii) Because of (i), E(ω(f);Q,Φ) is a continuous image of the compact set ω(f)

thus is compact. And, the set O(x; f) is dense in ω(f), so is E(O(x; f);Q,Φ) in
E(ω(f);Q,Φ). The first equality follows. Because h is surjective, the second equal-
ity follows from Proposition 4.1(ii) and the definition (5). (Alternatively, the second
equality can also be obtained by using (6).)

It is known (see e.g. [17]) that the restriction of a one-hole Denjoy homeomorphism
to its ω-limit set is conjugate to the restriction of the full two-shift homeomorphism to
a closed invariant subset. In view of Propositions 4.1 and 4.2 we arrive at the following
conclusion.

Theorem 4.3. Assume that ω(f) of a Denjoy homeomorphism f satisfies Assumption A.
Let (Q,Φ) be a partition-symbol pair with a least equivalent sub-partition Θ̃. Assume
Θ̃ ⊆ Θ. Then,

(i) (ω(f), f) is semi-conjugate to (XQ,Φ, σ) via the coding E(·;Q,Φ). In particular,
the coding is injective if and only if Θ̃ = Θ.

(ii) (ω(f), f)/∼Θ\Θ̃ is conjugate to (XQ,Φ, σ).

Because for any set Θ containing zero on S, there exists a Denjoy homeomorphism
f of irrational rotation number β such that D(f) coincides with O(Θ;Rβ), we have an
immediate corollary.
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Corollary 4.4. For any partition-symbol pair (Q,Φ) with a least equivalent sub-partition
Θ, there exists a Denjoy homeomorphism f satisfying Assumption A such that (ω(f), f)

is conjugate to (XQ,Φ).

Remark 4.5. Theorem 4.3(i) says that (XQ,Φ, σ) is always a factor of (ω(f), f) if the
condition (8) holds. Of course, one could construct a partition set Q′ with a least equiv-
alent sub-partition Θ′ such that Θ is a proper subset of Θ′. Then, (ω(f), f) would be a
factor of (XQ′,Q′ , σ) via a multi-valued coding E(·;Q′, Q′). The coding is multi-valued
because there must be some interval in the set A whose boundary points contains a point
of (ω(f), f). Using a set like this A as a partition to code a Cantor set is not natural.

5 Transitions and anti-integrable limits

Theorem 5.1 (Cantorus to circle transition). Assume that ω(f) of a Denjoy homeomor-
phism f satisfies Assumption A. Let (Q,Φ) be a partition-symbol pair with Θ a least
equivalent sub-partition of Q. Let 0 < ε0 < 1 be a real number, and f1 be any transitive
OPH of S with ρ(f1) = ρ(f) = β. We can construct a family of OPHs fε parametrized
by ε with fε0 = f and limε↗1 fε(t) = f1(t) for all t ∈ S so that (ω(fε), fε) is conjugate
to (XQ,Φ, σ) for ε0 ≤ ε < 1, but (ω(f1), f1) is conjugate to (S,Rβ).

In Theorem 5.1, a Denjoy minimal system (ω(fε), fε) is conjugate to the ](Θ)-hole
Sturmian system (XQ,Φ, σ) when ε is slightly less than 1, but to the irrational rotation
(S,Rβ) when ε is equal to 1. In this situation, up to a conjugacy, the system (ω(fε), fε)

bifurcates or degenerates to the irrational rotation (S,Rβ) at ε = 1.

Theorem 5.2 (](Θ) to ](Θ̃)-hole cantorus transition). Assume that ω(f) of a Denjoy
homeomorphism f satisfies Assumption A. Suppose ](Θ) ≥ 2. Let Θ̃ containing zero
be a proper subset of Θ, 0 < ε0 < ε̃ be real numbers, and fε̃ be any Denjoy homeo-
morphism satisfying ρ(fε̃) = β and D(fε̃) = O(Θ̃, Rβ). We can construct a family of
Denjoy homeomorphisms fε with fε0 = f and limε↗ε̃ fε(t) = fε̃(t) for all t ∈ S so
that (ω(fε), fε) is conjugate to (XΘ,Θ, σ) for ε0 ≤ ε < ε̃, but (ω(fε̃), fε̃) is conjugate to
(XΘ̃,Θ̃, σ) if ](Θ̃) ≥ 2 or to (X{0,β},{0,1}, σ) if ](Θ̃) = 1.

In Theorem 5.2, ](Θ̃) < ](Θ), and (ω(fε), fε) is conjugate to the ](Θ)-hole Sturmian
system (XΘ,Θ, σ) when ε is slightly less than ε̃, but to the ](Θ̃)-hole Sturmian system
(XΘ̃,Θ̃, σ) when ε is equal to ε̃. In this situation, the Denjoy minimal system (ω(fε), fε)

undergoes a ](Θ) to ](Θ̃)-hole transition at ε = ε̃.

Theorem 5.3 (AI-limit). Assume that ω(f) of a Denjoy homeomorphism f satisfies
Assumption A. Let 0 < ε0 < 1 be a real number, and Θ̃ containing zero a subset of
Θ. For any partition-symbol pair (Q,Φ) with Θ̃ a least equivalent sub-partition of Q,
we can construct a continuous family of Denjoy homeomorphisms fε so that fε0 = f
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and that (ω(fε), fε) is semi-conjugate to (XQ,Φ, σ) via a family of codings Eε(·;Q,Φ) :

ω(fε)→ XQ,Φ, which is injective if and only if Θ̃ = Θ, for 0 < ε ≤ ε0 with the property:
for all u ∈ XQ,Φ we have

lim
ε↘0
O
(
E−1
ε (u;Q,Φ), fε

)
= u (12)

in the uniform topology.

In Theorem 5.3, (ω(fε), fε) is semi-conjugate to the ](Θ̃)-hole Sturmian system
(XQ,Φ, σ) when ε is slightly larger than zero. As ε tends to zero from above, in the light
of (12), (ω(fε), fε) reduces to the ](Φ)-symbol ](Θ̃)-hole Sturmian system (XQ,Φ, σ)

of partition Q. We say that the limit ε↘ 0 is the anti-integrable limit (AI-limit) for the
family of Denjoy homeomorphisms fε.

If Θ̃ = Θ, we call the AI-limit in Theorem 5.3 a non-degenerate AI-limit. Because
in this situation the semi-conjugacy is in fact a conjugacy, and when ε ↘ 0 the Denjoy
minimal system (ω(fε), fε) reduces to a symbolic dynamical system that is conjugate to
(ω(fε), fε) of small ε. If, when ε ↘ 0, a Denjoy minimal system (ω(fε), fε) reduces
to a symbolic dynamical system that is not conjugate to but a factor of (ω(fε), fε) of
small ε, we call such a limit a degenerate AI-limit. The limit ε↘ 0 in Theorem 5.3 is a
degenerate AI-limit if and only if Θ̃ 6= Θ.

5.1 Examples

We close this section by providing examples in this subsection.
Let f be a Denjoy homeomorphism satisfying Assumption A. Let the length |I(k)

n |
of I(k)

n be l(k)
n > 0. For instance, l(k)

n can be chosen such that
∑K

k=1 l
(k) = 1 with

l(k) =
∑

n∈Z l
(k)
n , and the pairwise disjoint open intervals I(k)

n can be chosen as

a(k)
n := η +

∑
1≤j≤K

∑
i:Riβ(θ(j))∈[0,Rnβ(θ(k)))

l
(j)
i (mod 1),

b(k)
n := a(k)

n + l(k)
n ,

where η satisfying 0 < η + l
(1)
0 < 1 is a real number to control the position of a(1)

0 .
Actually, (a

(1)
0 , b

(1)
0 ) = (η, η + l

(1)
0 ). It is easy to see that I(k)

n defined by the above a(k)
n

and b(k)
n has the same cyclic ordering as Rn

β(θ(k)). Because
∑K

k=1 l
(k) = 1, the union⋃

1≤k≤K, n∈Z I
(k)
n is open and dense in S.

Suppose η and l(k)
n depend continuously on a parameter ε, then f , which has S \⋃

1≤k≤K,n∈Z I
(k)
n as its ω-limit set, depends on ε as well. Write it as fε.

Partitions on S and schematic illustrations of the construction of families of Denjoy
homeomorphisms by changing the size of wandering intervals are shown in Figure 1.
In Figure 1(a), Θ = {0, 1/2}, Q = {0, 1/2}, Φ = {0, 1}. There is a circle to one-hole

16



cantorus transition occurring at ε = 1, a one to two-hole cantorus transition at ε = ε̃. The
limit ε↘ 0 is a non-degenerate AI-limit, at which the dynamics is (X{0,1/2},{0,1}, σ). In
Figure 1(b), Θ = {0, 1/2}, Q = {0, 1/2, Rn

β(0)} for some n ∈ Z, Φ = {φ1, φ2, 1} for
some 0 < φ1 < φ2 < 1. There is a circle to two-hole cantorus transition occurring
at ε = 1. The limit ε ↘ 0 is a non-degenerate AI-limit, at which the dynamics is
(X{0,1/2,Rnβ(0)},{φ1,φ2,1}, σ). In Figure 1(c), Θ = {0, 1/2}, Q = {0, Rn

β(0)}, Φ = {0, 1}.
There is a circle to two-hole cantorus transition occurring at ε = 1. The limit ε↘ 0 is a
degenerate AI-limit, at which the dynamics is (X{0,Rnβ(0)},{0,1}, σ).

Example 5.4. Set Θ = {0, 1/2}, Q = {0, 1/2} and Φ = {0, 1}. Then, (ω(fε), fε) is
conjugate to (X{0,1/2},{0,1}, σ) via the coding Eε(·; {0, 1/2}, {0, 1}) when 0 < ε < ε̃.
See Figure 1(a).

Example 5.5. Set Θ = {0, 1/2}, Q = {0, 1/2, 1 − β} and Φ = {φ1, φ2, 1} for 0 <

φ1 < φ2 < 1. Then, (ω(fε), fε) is conjugate to (X{0,1/2,1−β},{φ1,φ2,1}, σ) via the coding
Eε(·; {0, 1/2, 1− β}, {φ1, φ2, 1}) when 0 < ε < 1. See Figure 1(b).

Certainly, (X{0,1/2},{0,1}, σ) is conjugate to (X{0,1/2,1−β},{φ1,φ2,1}, σ) by Theorem 3.3.

Example 5.6. Set Θ = {0, 1/2},Q = {0, 1/2} and Φ = {0, 1}. Can choose the positive
numbers l(k)

n ’s in such a way that l(k)
n → 0 as ε↗ 1 for all n ∈ Z and 1 ≤ k ≤ 2. Then,

fε(x) → Rβ(x) =: f1(x) for all x ∈ S as ε ↗ 1, and (ω(f1), f1) is conjugate to
(X{0,1/2},{0,1}, σ)/∼{0,1/2}. See Figure 1(a).

Example 5.7. Set Θ = {0, 1/2}, Q = {0, 1/2, 1−β}, and Φ = {φ1, φ2, 1}. Can choose
the positive numbers l(k)

n ’s in such a way that l(k)
n → 0 as ε ↗ 1 for all n ∈ Z and

1 ≤ k ≤ 2. Then, fε(x) → Rβ(x) =: f1(x) for all x ∈ S as ε ↗ 1, and (ω(f1), f1) is
conjugate to (X{0,1/2,1−β},{φ1,φ2,1}, σ)/∼{0,1/2}. See Figure 1(b).

Certainly, (X{0,1/2},{0,1}, σ)/∼{0,1/2} is conjugate to (X{0,1/2,1−β},{φ1,φ2,1}, σ)/∼{0,1/2}
by Theorem 3.3.

Example 5.8. Set Θ = {0, 1/2}, Q = {0, 1/2} and Φ = {0, 1}. Can choose l(k)
n ’s in

such a way that l(2)
n → 0 but I(1)

n remains a component of wandering intervals for every
integer n as ε↗ ε̃. Then, (ω(fε̃), fε̃) is conjugate to (X{0,1/2},{0,1}, σ)/∼{1/2}. The latter
itself is conjugate to (X{0,β},{0,1}, σ). See Figure 1(a).

Example 5.9. Set Θ = {0, 1/2}, Q = {0, 1/2} and Φ = {0, 1}. Can choose l(k)
n ’s in

such a way that l(k)
n → 0 but l(2)

0 → 1 as ε ↘ 0 for every n ∈ Z and 1 ≤ k ≤ 2.
Consequently, as ε↘ 0, the two-hole Denjoy minimal system (ω(fε), fε) reduces to the
two-hole Sturmian system (X{0,1/2},{0,1}, σ) in the sense that

lim
ε↘0
O
(
E−1
ε (u; {0, 1/2}, {0, 1}), fε

)
= u
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Figure 1: Partitions on S with which orbits of irrational rotations and Denjoy home-
omorphisms are coded, and schematic illustrations of the idea of the construction of
families of Denjoy homeomorphisms by changing the size of wandering intervals. (a)
Θ = {0, 1/2}, Q = {0, 1/2}, Φ = {0, 1}. (b) Θ = {0, 1/2}, Q = {0, 1/2, Rn

β(0)},
Φ = {φ1, φ2, 1}. (c) Θ = {0, 1/2}, Q = {0, Rn

β(0)}, Φ = {0, 1}.
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for any u ∈ X{0,1/2},{0,1}. The limit ε ↘ 0 is a non-degenerate AI-limit. See Figure
1(a).

Example 5.10. Set Θ = {0, 1/2}, Q = {0, 1/2, 1 − β}, and Φ = {φ1, φ2, 1}. Can
design l(k)

n ’s in such a way that l(k)
n → 0 for every n ∈ Z and 1 ≤ k ≤ 2 but l(1)

0 → φ1,
l
(2)
0 → φ2−φ1, and l(1)

−1 → 1−φ2 as ε↘ 0. Then, as ε↘ 0, the two-hole Denjoy minimal
system (ω(fε), fε) reduces to the two-hole Sturmian system (X{0,1/2,1−β},{φ1,φ2,1}, σ) in
the sense that

lim
ε↘0
O
(
E−1
ε (u; {0, 1/2, 1− β}, {φ1, φ2, 1}), fε

)
= u

for any u belonging to the subshift X{0,1/2,1−β},{φ1,φ2,1}. The limit ε ↘ 0 is a non-
degenerate AI-limit. See Figure 1(b).

Example 5.11. Set Θ = {0, 1/2}, Q = {0, 1 − β} and Φ = {0, 1}. Can design l(k)
n ’s

in such a way that l(k)
n → 0 except l(1)

−1 → 1 as ε ↘ 0 for every n ∈ Z and 1 ≤ k ≤ 2.
Then, as ε↘ 0, the two-hole Denjoy minimal system (ω(fε), fε) reduces to the one-hole
Sturmian system (X{0,1−β},{0,1}, σ) in the sense that

lim
ε↘0
O
(
E−1
ε (u; {0, 1− β}, {0, 1}), fε

)
= u

for any u ∈ X{0,1−β},{0,1}. The limit ε↘ 0 is a degenerate AI-limit. See Figure 1(c).

6 Proofs of Theorems

For the Sturmian cases, the partition set is {0, β} or {0, 1−β}. From [15] we know that
each of the four mappings t 7→ ν±(t; {0, β}, {0, 1}) or t 7→ ν±(t; {0, 1 − β}, {0, 1})
is 1-to-1 everywhere in S, and is continuous in S except at a countable set consisting
of the orbit O(0;Rβ) of 0 under Rβ . Each of the inverses ν±(t; {0, β}, {0, 1}) 7→ t

or ν±(t; {0, 1 − β}, {0, 1}) 7→ t, however, is continuous. All these properties can be
extended to the multi-hole Sturmian cases for a general, arbitrary partition set Q.

Proposition 6.1. For any partition-symbol pair (Q,Φ), both maps ν−(·;Q,Φ) and
ν+(·;Q,Φ) are 1-to-1 everywhere in S:
(i) If ν+(s;Q,Φ) = ν+(t;Q,Φ) or ν−(s;Q,Φ) = ν−(t;Q,Φ), then s = t.
(ii) ν+(s;Q,Φ) = ν−(t;Q,Φ) if and only if Rn

β(s) = Rn
β(t) 6∈ Q for all integer n.

Proof. (i) If the statement is not true, then s 6= t. Subsequently, there exists an integer l
such that Rl

β(t) lies in the interior of J±1 while Rl
β(s) lies in the interior of J±j for some

2 ≤ j ≤ N = ](Q). Consequently, ν±(t;Q,Φ)l = 1 6= j = ν±(s;Q,Φ), contradicting
to the hypothesis of the proposition.

(ii) If s = t and O(s;Rβ) ∩ Q = ∅, then for every integer n the orbit point Rn
β(s)

does not located on the boundary of J±i for all 1 ≤ i ≤ N . Hence, ν+(s;Q,Φ) =
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ν−(s;Q,Φ) = ν−(t;Q,Φ) = ν+(t;Q,Φ). On the other hand, if ν+(s;Q,Φ) =

ν−(t;Q,Φ), then s = t. (For if s 6= t, then it follows by the same argument used
to prove (i), there exists l ∈ Z such that ν+(s;Q,Φ)l = 1 but ν−(t;Q,Φ)l = j for some
j 6= 1.) Suppose Rm

β (t) = qk for some m ∈ Z and 1 ≤ k ≤ N . Then, ν+(t;Q,Φ)m = k

while ν−(t;Q,Φ)m = k − 1 (or = N if k = 1), contradicting to the hypothesis.

Proposition 6.2. For any partition-symbol pair (Q,Φ), both maps ν−(·;Q,Φ) and
ν+(·;Q,Φ) are continuous except at the countable set O(Q;Rβ). More precisely, if
t 6∈ O(Q;Rβ), then

lim
s→t

ν−(s;Q,Φ) = ν−(t;Q,Φ) = ν+(t;Q,Φ) = lim
s→t

ν+(s;Q,Φ);

if t ∈ O(Q;Rβ), then

lim
s→t−

ν−(s;Q,Φ) = lim
s→t−

ν+(s;Q,Φ) = ν−(t;Q,Φ) (13)

and
lim
s→t+

ν−(s;Q,Φ) = lim
s→t+

ν+(s;Q,Φ) = ν+(t;Q,Φ). (14)

Proof. If t 6∈ O(Q;Rβ), then for every integer n the orbit point Rn
β(t) does not locate at

any boundary point of J±i for all 1 ≤ i ≤ N = ](Q). Thus, ν−(t;Q,Φ) = ν+(s;Q,Φ).
Given any integer M > 0, there exists δ > 0 such that for every |n| ≤ M both orbit
points Rn

β(s) and Rn
β(t) lie in the same interior of intervals J+

i and J−i for some i pro-
vided |s − t| < δ. This means that ν−(s;Q,Φ)n = ν−(t;Q,Φ)n = ν+(s;Q,Φ)n =

ν+(t;Q,Φ)n for all |n| ≤M , and implies the continuity at t.
If t = Rm

β (qj) for some m ∈ Z and 1 ≤ j ≤ N , then there are Nj number of
integers m1, m2, . . . ,mNj (all depending on m and j) with 1 ≤ Nj ≤ N and m1 = −m
for which Rm1

β (t), Rm2
β (t), . . . , R

mNj
β (t) ∈ Q, and Rn

β(t) 6∈ Q for any other integer n.
Therefore, none of the points in {Rn

β(t)| n ∈ Z \ {m1, . . . ,mNj}} is a boundary point
of J±i for all 1 ≤ i ≤ N . Thus, for any integer M > 0 there exists δ > 0 such that
for every |n| ≤M and n 6∈ {m1, . . . ,mNj} both orbit points Rn

β(s) and Rn
β(t) lie in the

same interior of both intervals J+
i and J−i and that for every n ∈ {m1, . . . ,mNj} points

Rn
β(s) andRn

β(t) lie in the same interval J+
i for some 1 ≤ i ≤ N provided 0 < s−t < δ.

This implies the property (14). Similarly, the property (13) can be proved.

Proposition 6.3. For any partition-symbol pair (Q,Φ), both the inverses ν−(t;Q,Φ) 7→
t and ν+(t;Q,Φ) 7→ t are continuous in S: Suppose u∞, u1, u2, . . . all belong to XQ,Φ

with limn→∞ un = u∞, and suppose t∞, t1, t2, . . . are corresponding points in S given
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by the injectivity of each of the mappings t 7→ ν±(t;Q,Φ). Then

lim
n→∞

tn = t∞ if u∞ = ν+(t∞;Q,Φ) = ν−(t∞;Q,Φ);

lim
n→∞

tn = t+∞ if u∞ = ν+(t∞;Q,Φ) 6= ν−(t∞;Q,Φ);

lim
n→∞

xn = t−∞ if u∞ = ν−(t∞;Q,Φ) 6= ν+(t∞;Q,Φ).

Proof. Rn
β(t∞) 6∈ Q for all integer n if u∞ = ν+(t∞;Q,Φ) = ν−(t∞;Q,Φ). In this

case, t∞ is contained in the interior of an interval J+
j or J−j for some 1 ≤ j ≤ N = ](Q).

Suppose (tn)n≥1 does not converge to t∞. Then, it contains a subsequence that converges
to another point, say, t̄. It follows from Proposition 6.2 that the sequence (u)n≥1 must
converge either to ν+(t̄;Q,Φ) or to ν−(t̄;Q,Φ). In other word, u∞ = ν+(t̄;Q,Φ) or
ν−(t̄;Q,Φ). But, it follows from Proposition 6.1(i) that ν+(t̄;Q,Φ) 6= ν+(t∞;Q,Φ) =

ν−(t∞;Q,Φ) 6= ν−(t̄;Q,Φ), a contradiction.
If u∞ = ν+(t∞;Q,Φ) 6= ν−(t∞;Q,Φ), then t∞ ∈ O(Q;Rβ). If (tn)n≥1 con-

verges to t∞, then limn→∞ tn = t+∞ by Proposition 6.2. If (tn)n≥1 does not converge,
there is a subsequence converging to another point t̄ 6= t∞. And, there is a correspond-
ing subsequence of (un)n≥1 that converges to ν+(t̄;Q,Φ) or ν−(t̄;Q,Φ). Therefore,
ν+(t∞;Q,Φ) = ν+(t̄;Q,Φ) or ν+(t∞;Q,Φ) = ν−(t̄;Q,Φ), but according to Propo-
sition 6.1(ii), the latter is impossible, and the former implies t∞ = t̄ by Proposition
6.1(i).

The final case u∞ = ν−(t∞;Q,Φ) 6= ν+(t∞;Q,Φ) can be treated similarly.

Proof of Theorem 3.2.

It is well-known that the shift σ is a homeomorphism of ΦZ. Thus, σ is also a home-
omorphism of XQ,Φ if XQ,Φ is a compact invariant subset of ΦZ. Since the latter is
compact, it is enough to show that XQ,Φ is invariant and closed. Because

σ±1(ν+(t;Q,Φ) = ν+(R±1
β (t);Q,Φ) (15)

and
σ±1(ν−(t;Q,Φ) = ν−(R±1

β (t);Q,Φ) (16)

for any t ∈ S, the shift σ is a bijection of XQ,Φ and XQ,Φ is invariant under σ.
Now, we show that XQ,Φ is a closed subset. Any infinite sequence of points in

XQ,Φ must contain an infinite subsequence of points of the form (ν+(tn;Q,Φ))n≥1

or of the form (ν−(tn;Q,Φ))n≥1. Without loss of generality, we can assume that the
first case happens. Taking a subsequence if necessary, we assume that the sequence
(tn)n≥1 converges to a point t∞ by the compactness of S. Then, (tn)n≥1 contains either
a subsequence that converges to t∞ from the left (anti-clockwise) or a subsequence that
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converges to t∞ from the right (clockwise). If the first case holds for (tn)n≥1, that is,
limn→∞ tn = t−∞ (by taking a subsequence again if necessary), then by Proposition 6.2,
we infer that limn→∞ ν+(tn;Q,Φ) = ν−(t∞;Q,Φ). If the second case holds, that is,
limn→∞ tn = t+n , then limn→∞ ν+(tn;Q,Φ) = ν+(t∞;Q,Φ). This proves that XQ,Φ is
closed.

Now, XQ,Φ is a subset of the totally disconnected set ΦZ, so is itself totally discon-
nected. Proposition 6.2 implies that every point in XQ,Φ is a limit point of points in
XQ,Φ. Since XQ,Φ is compact, it is a Cantor set.

Because O(s;Rβ) is dense in S for any s ∈ S, it follows from (15) and (16) and
Proposition 6.2 again that O(u;σ) is dense in XQ,Φ for any u ∈ XQ,Φ. This completes
the proof of the minimality.

Proof of Theorem 3.3.

From Corollary 4.4, there are Denjoy homeomorphisms f and f̃ satisfying Assumption
A such that ρ(f) = β, ρ(f̃) = β̃, (ω(f), f) is conjugate to (Xβ,Q,Φ), and that (ω(f̃), f̃)

is conjugate to (Xβ̃,Q̃,Φ̃). By Remark 2.2(ii), we have D(f) = O(Q;Rβ) and D(f̃) =

O(Q̃;Rβ̃). Therefore, by Theorem 2.1, (Xβ,Q,Φ, σ) is semi-conjugate to (Xβ̃,Q̃,Φ̃, σ) if
and only if β̃ = β and

O(Q̃;Rβ) ⊆ Rα(O(Q;Rβ̃))

for some 0 ≤ α < 1. But, because both O(Q;Rβ) and O(Q̃;Rβ) contain O(0;Rβ), the
values of α satisfying the above equality are those Rα(O(Q;Rβ)) = O(Q;Rβ).

LetX and Y be topological spaces. Recall that a surjective map p : X → Y is called
a quotient map if a subset U of Y is open (or closed) in Y if and only if p−1(U) is open
(resp. closed) in X . We shall use the following result, the statement of which is slightly
modified from Theorem 22.2 and Corollary 22.3 of [24].

Theorem 6.4. Let X , Z be topological spaces, g : X → Z a continuous surjection, and
X∗ = {g−1(z)| z ∈ Z} a collection of subsets of X . Let p : X → X∗ be the quotient
map and give X∗ the quotient topology induced by p.
(i) The map g induces a continuous bijection ξ : X∗ → Z satisfying ξ ◦ p = g, which is
a homeomorphism if and only if g is a quotient map.

X

p
��

g

!!

X∗
ξ
// Z

(ii) If Z is Hausdorff, so is the quotient space X∗.
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Proof of Theorem 3.5.

It follows from Proposition 6.3 that a map ν−1 : XQ,Φ → S defined by

ν−1(u) = t if u = ν+(t;Q,Φ) or ν−(t;Q,Φ)

is a continuous surjection. And, because

ν−1 ◦ σ
(
ν±(t;Q,Φ)

)
= ν−1

(
ν±(Rβ(t);Q,Φ)

)
= Rβ(t)

= Rβ ◦ ν−1
(
ν±(t;Q,Φ)

)
,

the map ν−1 is a semi-conjugacy. From Proposition 6.1, the map ν−1 is 1-to-1 except
when ν+(t;Q,Φ) 6= ν−(t;Q,Φ) and this occurs only if t ∈ O(Q,Rβ). This proves the
first part of the theorem.

XQ,Φ

��

ν−1

!!

X∗Q,Φ
// S

For the second part, notice that ν−1 is a quotient map: It sends closed sets, which are
compact inXQ,Φ, to closed sets in S, since compact sets in a Hausdorff space are closed.
Now, let X∗Q,Φ =

{
(ν−1)

−1
(t)| t ∈ S

}
. It is clear that X∗Q,Φ = XQ,Φ/∼Q. Then, by

virtue of Theorem 6.4 and the first part of the theorem, ν−1 induces a homeomorphism
for which (XQ,Φ, σ)/∼Q is conjugate to (S,Rβ).

Proof of Theorem 3.9.

In view of Theorem 3.3, it is enough to prove the theorem for the caseQ = Θ̃. Moreover,
we are going to prove the case (ii) only. Case (i) can be proved almost exactly the same
as case (ii).

We would like to show that a surjection g : XΘ̃,Θ̃ → XΘ̃\Θ̂,Θ̃\Θ̂ defined by

g : u 7→

ν+(t; Θ̃ \ Θ̂, Θ̃ \ Θ̂) if u = ν+(t; Θ̃, Θ̃)

ν−(t; Θ̃ \ Θ̂, Θ̃ \ Θ̂) if u = ν−(t; Θ̃, Θ̃)
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for all t ∈ S acts as a semi-conjugacy. First, it is easy to verify that

g ◦ σ ◦ ν±(t; Θ̃, Θ̃) = g ◦ ν±(Rβ(t); Θ̃, Θ̃)

= ν±(Rβ(t); Θ̃ \ Θ̂, Θ̃ \ Θ̂)

= σ ◦ ν±(t; Θ̃ \ Θ̂, Θ̃ \ Θ̂)

= σ ◦ g ◦ ν±(t; Θ̃, Θ̃).

By Proposition 6.1, the map g is 1-to-1 at ν±(t; Θ̃, Θ̃) if t is such a point in S that
Rβ(t) 6∈ Θ̃ for all integer n or if Rn

β(t) ∈ Θ̃ \ Θ̂ for some n, otherwise it is 2-to-1. To
show it is continuous, suppose u∞, u1, u2, . . . all belong to XΘ̃,Θ̃ with limn→∞ un =

u∞, and suppose t∞, t1, t2, . . . are corresponding points in S and v∞, v1, v2, . . . are
corresponding points in XΘ̃\Θ̂,Θ̃\Θ̂ given by the injectivity of each of the mappings
ν+(t; Θ̃, Θ̃) 7→ t 7→ ν+(t; Θ̃ \ Θ̂, Θ̃ \ Θ̂) or ν−(t; Θ̃, Θ̃) 7→ t 7→ ν−(t; Θ̃ \ Θ̂, Θ̃ \ Θ̂).
From Proposition 6.3, it follows that limn→∞ tn = t∞. If t∞ 6∈ O(Θ̃ \ Θ̂;Rβ), then
limn→∞ vn = v∞ by Proposition 6.2. If t∞ ∈ O(Θ̃ \ Θ̂;Rβ), then t∞ ∈ O(Θ̃;Rβ), and
limn→∞ tn → t+∞ provided u∞ = ν+(t∞; Θ̃, Θ̃) by Proposition 6.3. In this situation,
v∞ = ν+(t∞; Θ̃ \ Θ̂, Θ̃ \ Θ̂). Consequently, limn→∞ vn = v∞ by using Proposition 6.2
again. The other situation that t∞ ∈ O(Θ̃ \ Θ̂;Rβ) and limn→∞ → t−∞ can be treated
similarly. This proves the continuity of g.

XΘ̃,Θ̃

��

g

%%

X∗
Θ̃,Θ̃

// XΘ̃\Θ̂,Θ̃\Θ̂

Now, let X∗
Θ̃,Θ̃

=
{
g−1(v)| v ∈ XΘ̃\Θ̂,Θ̃\Θ̂

}
. It is clear that X∗

Θ̃,Θ̃
= XΘ̃,Θ̃/∼Θ̂, and

that g is a quotient map. Then, by Theorem 6.4, g induces a homeomorphism via which
(XΘ̃,Θ̃, σ)/∼Θ̂ is conjugate to (XΘ̃\Θ̂,Θ̃\Θ̂, σ).

Recall that a lift of an OPH f : S → S is a homeomorphism F : R → R which
satisfies f(x) = F (x) mod 1 for x ∈ [0, 1) and F (x + 1) = F (x) + 1 for every
x ∈ R. Such a lift is unique up to an additive constant: If F̃ is another lift, then
F̃ (x) = F (x) +m for some integer m.

Proof of Theorem 5.1

f1 is transitive, thus is conjugate to Rβ . That is, there exists an OPH g of S such that

Rβ ◦ g = g ◦ f1.

Subsequently, f is semi-conjugate to f1:

g−1 ◦ h ◦ f = f1 ◦ g−1 ◦ h.
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Let h1 = g−1 ◦h, the orientation-preserving semi-conjugacy. Without loss of generality,
we can assume g(0) = 0, thence h1(0) = g−1 ◦ h(0) = g−1(0) = 0.

Let H1 : R → R be the unique lift of h1 satisfying H1(0) = 0. For ε0 ≤ ε ≤ 1,
define a continuous map of R:

Hε : x̄ 7→ H1(x̄) +
1− ε
1− ε0

(x̄−H1(x̄)) .

We claim that Hε is an OPH when ε0 ≤ ε < 1. To see this, it is sufficient to show that it
is strictly increasing. Suppose x̄ < ȳ, then H1(x̄) ≤ H1(ȳ), and

Hε(x̄)−Hε(ȳ) =
ε− ε0
1− ε0

(H1(x̄)−H1(ȳ)) +
1− ε
1− ε0

(x̄− ȳ)

< 0.

Now, becauseHε(x̄+1) = H1(x̄+1)+(x̄+ 1−H1(x̄+ 1)) (1−ε)/(1−ε0) = Hε(x̄)+1,
the map Hε is a lift of an OPH hε : S → S. Clearly, maps hε form a continuous family
of homeomorphisms when ε0 ≤ ε < 1, and hε → h1 uniformly on S as ε ↗ 1. Notice
that the map H(ε, ·) := Hε acts as a straight-line homotopy for which H(ε0, ·) = idR,
and H(1, ·) = H1, and that the map h(ε, ·) := hε is a straight-line homotopy for which
h(ε0, ·) = idS , and h(1, ·) = h1.

Let F : R → R be the unique lift of f satisfying F (0) = f(0). Define a family of
OPHs Fε of R by

Fε := Hε ◦ F ◦H−1
ε for ε0 ≤ ε < 1,

and define a family of OPHs fε of S by

fε := hε ◦ f ◦ h−1
ε for ε0 ≤ ε < 1.

Clearly, Fε is a lift of fε, satisfying Fε(0) = fε(0).
Now, from the Proposition 6.5 below and Theorem 4.3, it follows that (ω(fε), fε)

is conjugate to (XQ,Φ, σ) when ε0 ≤ ε < 1. And, the proof of Theorem 5.1 will be
complete if we prove the Proposition 6.6 below.

Let I(k)
n,ε = hε(I

(k)
n ).

Proposition 6.5. fε is a Denjoy homeomorphism having rotation number β for every
ε0 ≤ ε < 1. The set S \

⋃
n∈Z
⋃

1≤k≤K I
(k)
n,ε is equal to ω(fε), and D(fε) = D(f).

Proof. fε is conjugate to f via h−1
ε , and I(k)

n,ε ’s are the wandering intervals. In particular,⋃
n∈Z
⋃

1≤k≤K I
(k)
n,ε is a continuous image of

⋃
n∈Z
⋃

1≤k≤K I
(k)
n under hε, thus is dense

in S.

Proposition 6.6. limε↗1 fε(t)→ f1(t) for all t in S.
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Proof. It is convenient to prove the proposition by showing that limε↗1 Fε(t̄) → F1(t̄)

for all t̄ ∈ R, where F1 is the unique lift of f1 satisfying F1(0) = f1(0).
Let π : R → S, t̄ 7→ t̄ mod 1, be the projection, ā(k)

n , b̄(k)
n be real numbers, and

Ī
(k)
n,ε , Ī(k)

n be open intervals on R such that Ī(k)
n,ε0 = Ī

(k)
n = (ā

(k)
n , b̄

(k)
n ), π(Ī

(k)
n,ε ) = I

(k)
n,ε ,

F n
ε (Ī

(k)
0,ε ) = Ī

(k)
n,ε , Hε(Ī

(k)
n ) = Ī

(k)
n,ε for all ε0 ≤ ε < 1, n ∈ Z, and 1 ≤ k ≤ K.

There are two cases: H−1
1 (t̄) = Ī

(k)
n + p for some n, p ∈ Z, 1 ≤ k ≤ K, or

H−1
1 (t̄) = x̄ for some x ∈ R.

There are two sub-cases for the first case: t̄ ∈ cl Ī
(k)
n + p or not. If t̄ ∈ cl Ī

(k)
n + p,

then t̄ ∈ cl Ī
(k)
n,ε + p for all ε0 ≤ ε < 1. Consequently, Hε ◦ F ◦H−1

ε (t̄) ∈ Ī(k)
n+1,ε + p for

all ε0 ≤ ε < 1. And, limε↗1 Ī
(k)
n+1,ε + p = F1(t̄). If t̄ 6∈ cl Ī

(k)
n + p, then t̄ 6∈ cl Ī

(k)
n,ε + p for

all ε0 ≤ ε < 1. In this situation, suppose b̄(k)
n + p < t̄. (The other situation a(k)

n + p > t̄

can be treated similarly.) Let ȳε = H−1
ε (t̄). Then ȳε > b̄

(k)
n + p and ȳε → b̄

(k)+
n + p as

ε↗ 1. Now,

Fε(t̄) = H1(F (ȳε)) +
1− ε
1− ε0

(F (ȳε)−H1(F (ȳε))) , (17)

F1(t̄) = H1(F (b̄(k)
n + p). (18)

Because the distance between ȳ and H1(ȳ) is bounded above by 1 for any ȳ ∈ R and
because F and H1 are continuous, Fε(t̄)→ F1(t̄) as ε↗ 1.

For the second case H−1
1 (t̄) = x̄, the proof is essentially the same as the first case.

There are two sub-cases: t̄ = x̄ or not. If t̄ = x̄, then t̄ = H−1
ε (t̄) = x̄ for all ε0 ≤ ε < 1,

hence limε↗1Hε ◦ F ◦ H−1
ε (t) = H1 ◦ F (t̄) = F1 ◦ H1(t̄) = F1(t̄). If t̄ 6= x̄, then

t̄ 6= H−1
ε (t̄) 6= x̄ for all ε0 ≤ ε < 1. In this situation, suppose x̄ < t̄. (The alternative

situation x̄ > t̄ can be treated similarly.) Let x̄ε = H−1
ε (t̄). Then x̄ε → x̄+ as ε ↗ 1.

Then repeating calculations (17) and (18) but replacing ȳε by x̄ε, b̄
(k)
n +p by x̄, and using

continuity of F and H1 again, we conclude Fε(t̄)→ F1(t̄) as ε↗ 1.

Proof of Theorem 5.2

The proof of this theorem is similar to that of Theorem 5.1. fε̃ is semi-conjugate to Rβ ,
thus there exists an orientation-preserving surjection hε̃ of S such that

Rβ ◦ hε̃ = hε̃ ◦ fε̃.

The wandering intervals of fε̃ consists of the union
⋃
θ∈O(Θ̃;Rβ) h

−1
ε̃ (θ). There exists an

orientation-preserving semi-conjugacy g such that

g ◦ f = fε̃ ◦ g

and that
h = hε̃ ◦ g

26



by choosing an appropriate hε̃. Except on the set
⋃
θ∈O(Θ\Θ̃;Rβ) h

−1(θ), the semi-conjugacy

g is 1-to-1. If θ ∈ O(Θ \ Θ̃;Rβ), h−1(θ) consists of two points, but the image of h−1(θ)

under g is a single point.
Let G : R → R be the lift of g satisfying G(0) = 0. For ε0 ≤ ε ≤ ε̃, define a

continuous map of R:

Gε : x̄ 7→ G(x̄) +
ε̃− ε
ε̃− ε0

(x̄−G(x̄)) .

We claim that Gε is an OPH when ε0 ≤ ε < ε̃. To see this, it is sufficient to show that it
is strictly increasing. Suppose x̄ < ȳ, then G(x̄) ≤ G(ȳ), and

Gε(x̄)−Gε(ȳ) =
ε− ε0
ε̃− ε0

(G(x̄)−G(ȳ)) +
ε̃− ε
ε̃− ε0

(x̄− ȳ)

< 0.

Now, becauseGε(x̄+1) = G(x̄+1)+(x̄+ 1−G(x̄+ 1)) (ε̃−ε)/(ε̃−ε0) = Gε(x̄)+1,
the map Gε is a lift of an OPH gε : S → S. Clearly, maps gε form a continuous family
of homeomorphisms when ε0 ≤ ε < ε̃, and gε → g uniformly on S as ε ↗ ε̃. Notice
that the map G(ε, ·) := Gε acts as a straight-line homotopy for which G(ε0, ·) = idR,
and H(ε̃, ·) = G, and that the map g(ε, ·) := gε is a straight-line homotopy for which
g(ε0, ·) = idS , and h(ε̃, ·) = g.

Let F : R → R be the unique lift of f satisfying F (0) = f(0). Define a family of
OPHs Fε of R by

Fε := Gε ◦ F ◦G−1
ε for ε0 ≤ ε < ε̃,

and define a family of OPHs fε of S by

fε := gε ◦ f ◦ g−1
ε for ε0 ≤ ε < ε̃.

Clearly, Fε is a lift of fε, satisfying Fε(0) = fε(0).
Now, from the Proposition 6.7 below and Theorem 4.3, it follows that (ω(fε), fε)

is conjugate to (XΘ,Θ, σ) when ε0 ≤ ε < ε̃. And, the proof of Theorem 5.2 will be
complete if we prove the Proposition 6.8 below.

Let I(k)
n,ε = gε(I

(k)
n ).

Proposition 6.7. fε is a Denjoy homeomorphism having rotation number β when ε0 ≤
ε < ε̃. The set S \

⋃
n∈Z
⋃

1≤k≤K I
(k)
n,ε is equal to ω(fε), and D(fε) = D(f).

Proof. fε is conjugate to f via g−1
ε , and I(k)

n,ε ’s are the wandering intervals. In particular,⋃
n∈Z
⋃

1≤k≤K I
(k)
n,ε is a continuous image of

⋃
n∈Z
⋃

1≤k≤K I
(k)
n under gε, thus is dense in

S.
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Proposition 6.8. limε↗ε̃ fε(t)→ fε̃(t) for all t in S.

Proof. It is convenient to prove the proposition by showing that limε↗ε̃ Fε(t̄) → Fε̃(t̄)

for all t̄ ∈ R, where Fε̃ is the unique lift of fε̃ satisfying Fε̃(0) = fε̃(0).
Let π : R → S, t̄ 7→ t̄ mod 1, be the projection, ā(k)

n , b̄(k)
n be real numbers, and

Ī
(k)
n,ε , Ī(k)

n be open intervals on R such that Ī(k)
n,ε0 = Ī

(k)
n = (ā

(k)
n , b̄

(k)
n ), π(Ī

(k)
n,ε ) = I

(k)
n,ε ,

F n
ε (Ī

(k)
0,ε ) = Ī

(k)
n,ε , Gε(Ī

(k)
n ) = Ī

(k)
n,ε for all ε0 ≤ ε < ε̃, n ∈ Z, and 1 ≤ k ≤ K.

There are two cases: G−1(t̄) = Ī
(k)
n + p for some n, p ∈ Z, 1 ≤ k ≤ K, or

G−1(t̄) = x̄ for some x ∈ R.
There are two sub-cases for the first case: t̄ ∈ cl Ī

(k)
n + p or not. If t̄ ∈ cl Ī

(k)
n + p,

then t̄ ∈ cl Ī
(k)
n,ε + p for all ε0 ≤ ε < ε̃. Consequently, Gε ◦ F ◦ G−1

ε (t̄) ∈ Ī(k)
n+1,ε + p for

all ε0 ≤ ε < ε̃, and limε↗ε̃ Ī
(k)
n+1,ε + p = Fε̃(t̄). If t̄ 6∈ cl Ī

(k)
n + p, then t̄ 6∈ cl Ī

(k)
n,ε + p for

all ε0 ≤ ε < ε̃. In this situation, suppose b̄(k)
n + p < t̄. (The other situation a(k)

n + p > t̄

can be treated similarly.) Let ȳε = G−1
ε (t̄). Then ȳε > b̄

(k)
n + p and ȳε → b̄

(k)+
n + p as

ε↗ ε̃. Now,

Fε(t̄) = G(F (ȳε)) +
ε̃− ε
ε̃− ε0

(F (ȳε)−G(F (ȳε))) , (19)

Fε̃(t̄) = G(F (b̄(k)
n + p). (20)

Because the distance between ȳ and G(ȳ) is bounded above by 1 for any ȳ ∈ R and
because F and G are continuous, Fε(t̄)→ Fε̃(t̄) as ε↗ ε̃.

For the second case G−1(t̄) = x̄, the proof is essentially the same as the first case.
There are two sub-cases: t̄ = x̄ or not. If t̄ = x̄, then t̄ = G−1

ε (t̄) = x̄ for all ε0 ≤ ε < ε̃,
hence limε↗ε̃Gε ◦ F ◦ G−1

ε (t) = G ◦ F (t̄) = Fε̃ ◦ G(t̄) = Fε̃(t̄). If t̄ 6= x̄, then
t̄ 6= G−1

ε (t̄) 6= x̄ for all ε0 ≤ ε < ε̃. In this situation, suppose x̄ < t̄. (The alternative
situation x̄ > t̄ can be treated similarly.) Let x̄ε = G−1

ε (t̄). Then x̄ε → x̄+ as ε ↗ ε̃.
Subsequently, repeating calculations (19) and (20) but replacing ȳε by x̄ε, b̄

(k)
n + p by x̄,

and using continuity of F and G again, we conclude Fε(t̄)→ Fε̃(t̄) as ε↗ ε̃.

Proof of Theorem 5.3

By Theorem 4.3, (ω(f), f) is semi-conjugate to (XQ,Φ, σ) via the semi-conjugacyE(·;Q,Φ).
Let H : R→ R be the unique lift of h satisfying H(0) = h(0). For 0 ≤ ε ≤ ε0, define a
continuous map Gε of R:

Gε : x̄ 7→



(
1− ε

ε0

)(
φi−1 +

x̄− inf H−1(qi)

supH−1(qi)− inf H−1(qi)
(φi − φi−1)

)
+

ε

ε0
x̄

if inf H−1(qi) ≤ x̄ ≤ supH−1(qi) and 1 ≤ i ≤ N(
1− ε

ε0

)
φi +

ε

ε0
x̄

if supH−1(qi) ≤ x̄ ≤ inf H−1(qi+1) and 1 ≤ i ≤ N,
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where N = ](Q), qi ∈ Q, qN+1 = q1 + 1, φi ∈ Φ and φ0 = φN − 1. By using the
property H(x̄ + 1) = H(x̄) + 1, the map Gε can be defined on the entire real numbers,
and has the property Gε(x̄+ 1) = Gε(x̄) + 1. It is clear that Gε is strictly increasing on
both intervals [inf H−1(qi), supH−1(qi)] and [supH−1(qi), inf H−1(qi+1)] for non-zero
ε. Consequently, Gε is an OPH when 0 < ε ≤ ε0.

Note that the image of the interval [inf H−1(qi), supH−1(qi)] underG0 is the interval
[φi−1, φi], while the image of [supH−1(qi), inf H−1(qi+1)] is the single point φi.

Let F : R→ R be the unique lift of f satisfying F (0) = f(0). Define a continuous
family of OPHs Fε of R by

Fε := Gε ◦ F ◦G−1
ε for 0 < ε ≤ ε0.

The map Gε is a lift of an OPH gε of S. Notice that Gε0 = idR and gε0 = idS . Define
also a continuous family of OPHs fε of S by

fε := gε ◦ f ◦ g−1
ε for 0 < ε ≤ ε0.

Clearly, Fε is a lift of fε, satisfying Fε(0) = fε(0).
Let I(k)

n,ε = gε(I
(k)
n ). Because fε is conjugate to f via g−1

ε , the map fε is a Denjoy
homeomorphism having rotation number β when 0 < ε ≤ ε0. The set S\

⋃
n∈Z
⋃

1≤k≤K I
(k)
n,ε

is equal to ω(fε). In particular,
⋃
n∈Z
⋃

1≤k≤K I
(k)
n,ε is a continuous image of

⋃
n∈Z
⋃

1≤k≤K I
(k)
n ,

thus is dense in S. Hence, (ω(fε), fε) is semi-conjugate to (XQ,Φ, σ) when 0 < ε ≤ ε0.
The proof of the theorem will be complete if we prove the Proposition 6.9 below.

Proposition 6.9. limε↘0O (E−1
ε (u;Q,Φ), fε) = u in the uniform topology for all u ∈

XQ,Φ.

Proof. Let zi,ε, 1 ≤ i ≤ N = ](Q), be any point in gε(h
−1(qi)) and Ai,ε be open

intervals delimited by zi,ε’s on S: A1,ε = (z1,ε, z2,ε), A2,ε = (z2,ε, z3,ε), . . . , AN,ε =

(zN,ε, z1,ε). Then, with the partition-symbol pair (Q,Φ), a family of coding sequences
Eε(·;Q,Φ) can be constructed as in (9)–(11) (replacing the sets Ai’s in (10) by Ai,ε’s
here), via which fε is semi-conjugate to (XQ,Φ, σ). Given u = (un)n∈Z ∈ XQ,Φ, let
xε = E−1

ε (u;Q,Φ), and fnε (xε) = xn,ε for all integer n. Then xn,ε belongs to the closed
interval [gε (suph−1(qin)) , gε (inf h−1(qin+1))], where every in satisfies φin = un. Sub-
sequently, by our construction of gε, both points gε (suph−1(qin)) and gε (inf h−1(qin+1))

converge to point φin as ε↘ 0 uniformly in n.
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