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Abstract

This paper investigates the global dynamics of a mean field model of the electroencephalo-
gram developed by Liley et al., 2002. The model is presented as a system of coupled ordinary
and partial differential equations with periodic boundary conditions. Existence, uniqueness,
and regularity of weak and strong solutions of the model are established in appropriate function
spaces, and the associated initial-boundary value problems are proved to be well-posed. Suf-
ficient conditions are developed for the phase spaces of the model to ensure nonnegativity of
certain quantities in the model, as required by their biophysical interpretation. It is shown that
the semigroups of weak and strong solution operators possess bounded absorbing sets for the en-
tire range of biophysical values of the parameters of the model. Challenges towards establishing
a global attractor for the model are discussed and it is shown that there exist parameter values
for which the constructed semidynamical systems do not posses a compact global attractor, due
to the lack of assymptotic compactness property. Finally, instructive insights provided by the
theoretical results of the paper on the computational analysis of the model are discussed.

1. Introduction

Inspired by the seminal work of Alan Hodgkin and Andrew Huxley on modeling the flow of ionic cur-
rents through the membrane of a giant nerve fiber, numerous biophysical and mathematical models
have been developed towards understanding the neurophysiology of the central nervous system and
the underlying mechanism of the various phenomena that emerge during its vital operation in the
body; many of which still remain mysterious to researchers [16,24,39,51|. In particular, exploring
the core component of the central nervous system—the brain—substantial effort has been devoted to
develop models at different levels of scope; from the molecular and intercellular level dealing with the
enzymatic kinetics of neurotransmitter-receptor binding at ion channels and transportation of ions;
to the single cell and intracellural level dealing with creation and transmission of action potential;
to the population and neuronal network level dealing with the average behavior and synchronized
activity of neuronal ensembles; to the system level dealing with systematic operation and interaction
between cortical and subcortical components of the brain; and finally to the behavioral and cognitive
level dealing with integrated mental activity and creation of the mind [1,14,21,27,28,43,45,52].
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As an effective methodology to develop models at the population and network level, mean field
theory has been applied to construct approximate models for interconnected populations of neurons
by averaging the effect of all other neurons on a given individual neuron inside the population. The
resulting averaged neuron can be used to analyze the overall temproal behavior of a single population
of neurons, leading to a neural mass model. Alternatively, the averaged neuron can be considered
as a locally averaged component of a continuum of neural populations, leading to a spatio-temporal
mean field model. These models are particularly useful in analyzing the electrophysiological activity
of neuronal ensembles using local field potentials and electroencephalograms [9,37,40,42].

The evolution equations that describe a mean field model of neural activity in the cortex are in
the form of a system of partial differential equations, or a system of coupled ordinary and partial
differential equations. The theory of infinite-dimensional dynamical systems is hence used to analyze
the global dynamics and long-term behavior of these systems. The classical approach to this problem
follows several steps. First, existence, uniqueness, and regularity of solutions are established for all
positive times in appropriately chosen problem-dependent function spaces, and the well-posedness
of the problem is confirmed. Second, a semidynamical framework is constructed over a positively
invariant complete normed space—the phase space for the evolution of solutions—and is shown to
posesses bounded absorbing sets. Asymptotic compactness of the semigroup of solution operators
is then ensured to guarantee existence of a global attractor, which is a compact strictly invariant
attracting set, and hence, contains all the information regarding the asymptotic behavior of the
model. Third, the Hausdorff or fractal dimension of the global attractor is estimated to show that
the attractor is finite dimensional, so that the asymptotic dynamics of the system is determined by
a finite number of degrees of freedom. Fourth, the existence of an inertial manifold is established,
which is a smooth finite dimensional inaviant manifold conatinig the global attractor. Consequently,
the dynamics on the attractor can be presented by a finite set of ordinary differential equations and
further characterized to give the overall picture of long-term behavior of the system [7,23,41,48]|.

In this paper, we investigate the mean field model proposed in [33] for understanding the elec-
trical activity in the neocortex as observed in the electroencephalogram (EEG). This model, which
is comprised of a system of coupled ordinary and partial differential equations in a two-dimensional
space, has been widely used in the literature to study the alpha- and gamma-band rhythmic ac-
tivity in the cortex [3,4], phase transition and burst suppression in cortical neurons during general
anesthesia [6,34,46], the effect of anesthetic drugs on the EEG [2,18|, and epileptic seizures [29-32].
Open-source tools for numerical implementation of the model and computation of equilibria and
time-periodic solutions are developed in [22]. Complexity of the dynamics of the model, including
periodic and pseudo-periodic solutions, chaotic behavior, multistability, and bifurcation are studied
in [10-12,19,20,49,50].

The above results, however, are mainly computational or involve approximate versions of the
model. A rigorous analysis of the dynamics of the model in the infinite-dimensional dynamical
system framework as outlined above is not available in the literature. In particular, the basic
problems of well-posedness of the initial-boundary value problem associated to the model and the
regularity of solutions remain uninvestigated. It is not known under what conditions, if any, the
solutions of the model evolve partially nonnegatively for all time, which is required for certain
physical quantities in the model. Solutions that take negative values for such quantities—even for
a small interval of time in distant future—cannot depict a biophysically plausible dynamics of the
electrical activity in the neocortex.

The aim of this paper is to study the global dynamics of the mean field model discussed above,
ensure its biophysical plausibility, and to provide the basic analytical results required for charac-



terization of the long-term dynamics of the model. Specifically, we follow the first two steps of the
aforementioned classical analysis approach to investigate the problem of existence or nonexistence
of a global attractor.

This paper is organized as follows. In Section 2, we introduce notation and recall key defini-
tions necessary for developing the results in the paper. In Section 3, we present the mathematical
structure of the model as a system of coupled ordinary-partial differential equations with initial
values and periodic boundary conditions, preceded with a description of the anatomical structure of
the neocortex and the physiological interactions that underly the construction of the model. Then,
following the first step of the classical analysis approach, in Section 4 we prove existence and unique-
ness of weak and strong solutions for the proposed initial value problem and analyze the regularity
of these solutions.

As in the second step of the classical analysis, in Section 5 we define semigroups of solution op-
erators and show their continuity properties. Moreover, we establish conditions on the phase spaces
to ensure biophysical plausibility of the evolution of the solution under the associated semidynam-
ical systems. In Section 6, we show that the semigroups of solution operators possess bounded
absorbing sets for all possible values of the biophysical parameters of the model. In Section 7, we
discuss challenges towards establishing a global attractor for the model, and in particular, we show
that there exist sets of values for the biophysical parameters of the model such that the associated
semigroups of solution operators do not possess a compact global attractor. We conclude the paper
in Section 8 with a discussion on the results developed in the paper and their application to the
computational analysis of the model.

2. Notation and Preliminaries

The notation used in this paper is fairly standard. Specifically, R" denotes the n-dimensional real
Euclidean space and R™*" denotes the space of real m x n matrices. A point & € R" is presented
by the n-tuple = (z1,...,x,) or, when it appears in matrix operations, by the column vector x =

[ T1 e Ty ]T, where ()T denotes transpose. The nonnegative cone {:17 ER":2; > 0forj =
1,...,n} is denoted by R”'. A sequence of points in R" is denoted by {x(l)}loil, with the jth

component of ) denoted by xg-l). Moreover, the trace of a square matrix A € R"*" is denoted by

tr A and a block-diagonal matrix D with k blocks Dy, ..., Dy is denoted by diag(Dy,..., D). For
z,y € R", we write x > y to denote component-wise inequality, that is, z; > y;, j = 1,...,n. For
A, B € R™" we write A > B to denote A — B is positive semidefinite. Finally, we denote by 0%y
and I,,x, the zero and identity matrices in R™*"™ respectively. We write [ for the identity operator
in other vector spaces.

For an inner product space U, we denote the associated inner product by (', ')u and the norm
generated by the inner product by H . Hu For a Hilbert space U we denote the standard pairing of
U with its dual space U* by <-, ‘>u- In particular, for &4 = R" we write (', ‘)]R” and H . HRn for the
standard inner product and the Euclidean norm, respectively. Similarly, for 4 = R™*™ we write
(A, B)Rmxn for the standard inner product and HAHRan for the associated inner product norm.
Moreover, we denote the 1-norm in R™ by H . H1 and the co-norm in R" by H . Hoo The induced matrix

[l = [I llgn and

1-, 2-, and oco-norms in R”*"™ induced, respectively, by the vector norms H . |
Il e e denoted by |- | -, and | ..

Let © be an open subset of R™ denoting the space domain of a given dynamical system, with
z €  denoting a spatial point in 2. The time domain of the model is given by the closed interval
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[0,7] € R, T > 0, with the temporal point ¢t. For a function u : [0,7] — R, the kth-order total
derivative with respect to ¢ at to is denoted by dFu(ty). For k = 1, we write dsu(tg). For a function
u(z,t) : @ x [0,T7] — R, the kth-order partial derivative with respect to ¢ at (z,%o) is denoted
by OFu(wo,to) and the kth-order partial derivative with respect to x; at (zo,t) is denoted by
8§ju(azo,t0), j=1,...,n. For k =1, we write dyu(x, ty) and Oz,;u(To,t0). The gradient of u in ) is
denoted by 0yu and is given by dyu := (O, u, ..., 05, u) € R™. The Laplacian of u in 2 is denoted by
Auw and is given by Au := (92, +---4+092 ) € R. For a vector-valued function u(z,t) : 2x[0,7] — R™
we interpret u(x,t) as the m-tuple u(z,t) = (u1(x,t),...,um(z,t)), where each component u;(x,1),
j=1,...,m, is ascalar-valued function on € x [0, 7]. In this case, dyu(x,t) € R™*" is the gradient
of u and the vector Laplacian Au € R™ is given by Au := (Auq,...,Au,,), assuming Cartesian
coordinates in R™.

For every integer k > 0, the space of k-times continuously differentiable real-valued functions
on  is denoted by C*(Q). The space C*(Q) consists of all functions in C*(Q) that, together with
all of their partial derivatives up to the order k, are uniformly continuous in bounded subsets of 2.
Moreover, for 0 < A < 1, the Holder space C**(Q) is a subspace of C*(Q) consisting of functions
whose partial derivatives of order k are Hélder continuous with exponent A; see [8, Sec. 1.18] for
details. We use C°(Q2) to denote the space of infinitely differentiable real-valued functions with
compact support in 2. Moreover, we denote by Llloc(Q) the space of locally integrable real-valued
functions on Q. Then, for every function u € L] (€2) and any multi index « with || > 1, the weak
partial derivative of u in LL (Q), of order |a|, is defined by the distribution u® that stisfies

/uaqﬁda: _ (—1)ll / wWPedr for all ¢ € C(Q),
Q Q

where dz = dz; - - - dz,, is the Lebesgue measure on R"; see [8, Sec. 6.3] for details. With a minor
abuse of notation, we use 0f and 9* to denote the kth-order weak, as well as classical partial
derivatives with respect to t and x, respectively. The distinction will be clear from context, or will
otherwise be explicitly specified.

The Hilbert space of vector-valued Lebesgue measurable functions w : @ — R™ with finite
L?-norm is denoted by L?(£;R™), with associated inner product and norm given by

()i = [ (o) o, [l = [ [ I te]

The Banach space of vector-valued Lebesgue measurable functions u : 2 — R with finite L°°-norm
is denoted by L (£2;R™), with norm given by

) = esssup [|u(2)||

il ey = s

The Sobolev space of vector-valued functions u € LP(£2;R™) whose all Ith-order weak derivatives
Olu, I < k, exist and belong to Lp(Q;RmX”l) is denoted by W*P(Q;R™). When p = 2, the
Sobolev spaces W*2(Q; R™) are Hilbert spaces for all k € [0, 00), and are denoted by H*(Q; R™) :=
WH2(Q;R™). Specifically, HO(Q;R™) = L?(;R™), and H'(;R™) is a Hilbert space with the

inner product

(wv)@mm) = (4, 0) 2@mm) + (90tt, Do) L2(@pmn).



Moreover, H2(£;R™) is a Hilbert space with the inner product
(u,v)Hz(Q;Rm) = (U,U)L2(Q;]Rm) + (8xu,axU)L2(Q;Rm><n) + (8§u, agv)Lg(Q;Rmmz).

Let @ = (0,w1) X -+ x (0,wy), where w; > 0, j = 1,...,n, be an open rectangle in R". A
function u : R™ — R is called Q2-periodic if it is periodic in each direction, that is,

w(x +wje;) =u(x), j=1,...,n, z€&R",

where e; is the unit vector in the jth direction. Define the space Cpg, (£2) as the restriction to €2 of

the space of infinitely differentiable Q-periodic functions. Then, the Sobolev space H_ (), k > 0,

per

is defined by the completion of CSS.(€2) in H*(9); see [41, Definition 5.37]. A vector-valued function

per
u: R™ — R™ is (-periodic if each of its components u; : R" — R, j =1,...,m, is Q-periodic. The
spaces C2 (;R™) and HE,(Q;R™) are then defined accordingly. It follows from Green’s formula

per per
and the definition of norms in these spaces that

(21) ( AU ’U) (Q Rm) = (8 u, 8 U) (Q Rmxn)
(A + Du,v) 1z @mm) = (v, U)chr(ﬂ;m
(= Au, (=A+ D)z mm) = [ulliz, omm) = lellzz omm):
H A+I UHLQ L(QR™) = H HH2er(Q?Rm + Ha uHL%er (Q;Rmxn)

= [Ju HH;H(Q;RM +|0a uHHg) (Q;Rm*n)"

In this paper, we interchangeably view the function u(z,t), x € Q, t € [0,T], as a composite
function of x and ¢, as well as a mapping v of ¢ into a function of z, defined as

[u®)](z) = u(z,t), z€Q, te]l0,T].

With a minor abuse of notation, the same symbol is used to denote both the original form of the
function and the mapping. The distinction becomes evident in the way we define the space of such
mappings or, equivalently, Banach space-valued functions; see for example |15, Appx. E.5|. For a
Banach space U, the space L?(0,T;U) is composed of all strongly measurable Banach space-valued
functions u : [0, 7] — U with the finite L2norm defined by

lrran = [ | o]

The space C°([0, T];U) is composed of all continuous Banach space-valued functions u : [0, 7] — U
with the finite uniform norm defined by

H“HCO([O,T};M) = tgf(% [[u(®)]],,-
Accordingly, the spaces C*([0,T];U) and CH [0, T];U), k > 0, 0 < XA < 1, are defined as the

space of k-times continuously differentiable Banach space-valued functions and its Holder continuous
subspace. The Sobolev spaces H*(0,T;U), k > 0, are composed of all functions u € L%(0,T;U)



whose [th-order weak derivatives du exist for I < k and belong to L2(0,7;U). In particular, for
k =1 we have

lll 0,00 = [/OT (el + @]l dtr

For further details on these spaces; see |15, Sec. 5.9.2| and |41, Sec. 7.1].

When P : U — Y is a mapping between the Banach spaces U and ), we denote the kth order
Fréchet derivative of P at ug by d,P(ug). The space C¥(U;)) is then composed of all k-times
continuously differentiable mappings from U into ). For a mapping P : Ui X -+ X U, — ), where
Y and Uj, j = 1,...m, are Banach spaces, 0y, P(ug) is the jth partial Fréchet derivative of P at
uo = (Uo1,---,Uom ). The gradient of P at ug is then written as 9, P(up); see [8, Sec. 7.1] for details.

Finally, we denote the symmetric difference of two sets 2" and % by 2" A #%. In a topological
space X, we denote the closure of a set 2~ C X by 2, its interior by .2°°, and its boundary by 0.2
The characteristic function of 2" is denoted by x(27). When X is a measure space, |2 | denotes
the measure of the set 2~ C X. When X is a metric space and the topology on X' is induced by the
given metric, B(z, R) denotes the open ball centered at x € X with radius R > 0, which is a basis
element for the topology. For every bounded measurable set in X and, in particular for B(z, R),
we denote by fB(w,R) the averaging operator over B(x, R), that is, J‘:B(:B,R) = m fB(x,R)'

3. Model Description

The neocortex has a layered columnar structure consisting mostly of six distinctive layers. Neu-
rons in the neocortex are organized in vertical columns, usually referred to as cortical columns or
macrocolumns, which are a fraction of a millimeter wide and traverse all the layers of the neocortex
from the white matter to the pial surface [25,26,38|. Depending on their type of action, neurons
are mainly classified as excitatory or inhibitory, wherein this distinction depends on whether they
increase the firing rate in the destination neurons they are communicating with, or they essentially
suppress them. Inhibitory neurons are located within all layers and usually have axons that remain
within the same area were their cell body resides, and hence, they have a local range of action.
Layers 111, V, and VI contain pyramidal excitatory neurons whose axons can provide long-range
communication (projection) throughout the neocortex. Layer IV contains primarily star-shaped ex-
citatory interneurons that receive sensory inputs from the thalamus. Figure 1 shows a schematic of
the structure of the neocortex, including the intracortical and corticocortical neuronal connections;
see |26, Ch. 15| for further details.

On a local scale, within a cortical column, neurons are densely interconnected and involve all
types of feedforward and feedback intracortical connections. Such a dense and relatively homoge-
neous local structure of the neocortex suggests modeling a local population of functionally similar
neurons by a single space-averaged neuron, which preserves enough physiological information to
understand the temporal patterns observed in spatially smoothed (averaged) EEG signals, without
creating excessive theoretical complicacies in the mathematical analysis of the model. On a global
scale, in the exclusively excitatory corticocortical communication throughout the neocrtex, two ma-
jors patterns of connectivity are observed. Namely, a homogeneous, symmetrical, and translation
invariant pattern of connections, versus a heterogeneous, patchy, and asymmetrical distribution of
connections. For modeling simplicity and due to unavailability of detailed anatomical data, in the
model that we investigate in this paper the corticocortical connectivity is assumed to be isotropic,
homogenous, symmetric, and translation invariant [33].
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Figure 1: Schematic of the structure of the neocortex with intracortical and corticocortical connec-
tions.
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Figure 2: Cortical inputs to two local networks located at points x and y as modeled by (3.1).

To establish the mathematical framework of the model, let Q = (0,w) % (0,w), w > 0, be an open
rectangle in R? that defines the domain of the neocortex. Each point x = (1, 22) € Q indicates the
location of a local network—possibly representing a cortical column—modeled by a space-averaged
excitatory neuron and a space-averaged inhibitory neuron. Let E denote a population of excitatory
neurons and I denote a population of inhibitory neurons. For x € Q, ¢t € [0,T], T > 0, and
X,Y € {E, I}, we denote by vx(z,t), measured in mV, the spatially mean soma membrane potential
of a population of type X centered at z. Moreover, we denote by ixy(z,t), measured in mV, the
spatially mean post synaptic activation of synapses of a population of type X centered at x, on a
population of type Y centered at the same point z. In addition, we denote by wgx(x,t), measured
in s7!, the mean rate of corticocortical excitatory input pulses from the entire domain of neocortex
to a population of type X centered at x. Finally, we denote by gxy (z,t), measured in s~!, the mean
rate of subcortical input pulses of type X to a population of type Y centered at x. Note that, by
definition, ixy(z,t), wgx(x,t), and gxy(x,t) are nonnegative quantities.

Then, as developed in [33], the system of partial differential equations

(3.1) (TR0 + )vg(x,t) = VEE_—W gE(x,t) + Vie — vE(xjt) e(z, t),
[Veg| Vgl
(10, + (o, £) = VEI’_V—”I‘(”“’” () + \[H‘_Viqﬁx’t)in(x,t),
(0 + veE)%iEE (2, t) = eTERYEE [NEEfE (vE(2, 1)) + wEE (2, 1) + gEE(2, )],
(0 + ve1) i1 (2, t) = eYrrym [Neife(ve(z, 1)) + wei(z,t) + gri(z,t)]
(0 +7)%iE(z, t) = eYwye [Nfi(v(z, b)) + gr(z,t)]
(O 4+ yn)?in(z,t) = eTH’YH N1 fi(vi(, t) + gr(x, )]
[(&5 + I/AEE) — §V2A] wgg(x,t) = EMEEfE (UE(J} t))
[(@ + I/AEI) — —V ]wEI(ZE,t) =v AEIMEIfE(UE(:E t)) (ﬂj,t) cQx (O,T],



Table 1: Definition and range of values for the biophysical parameters of the mean field model
(3.1). All electric potentials are given with respect to the mean resting soma membrane potential
Upest = —70 mV [5].

Parameter Definition Range Unit
TE Passive excitatory membrane decay time constant [0.005,0.15] s

T Passive inhibitory membrane decay time constant [0.005,0.15] s
VEr, VE Mean excitatory Nernst potentials [50, 80] mV
Vig, Vi Mean inhibitory Nernst potentials [—20, —5] mV
YEE, YEI Excitatory post synaptic potential rate constants [100, 1000] st
YIE, YII Inhibitory post synaptic potential rate constants [10, 500] s 1
YTer, Trr Amplitude of excitatory post synaptic potentials [0.1,2.0] mV
Tig, Tu Amplitude of inhibitory post synaptic potentials [0.1,2.0] mV
Ngg, Nir Number of intracortical excitatory connections [2000 5000] —
Nig, N1 Number of intracortical inhibitory connections [100, 1000] —

v Corticocortical conduction velocity [100, 1000] cm/s
AgE, Awr Decay scale of corticocortical excitatory connectivities [0.1,1.0] cm ™!
Mgg, Mgr Number of corticocortical excitatory connections [2000, 5000] —
Fg Maximum mean excitatory firing rate [50, 500] st
Fy Maximum mean inhibitory firing rate [50, 500] st
UE Excitatory firing threshold potential [15, 30] mV
I Inhibitory firing threshold potential [15, 30] mV
OE Standard deviation of excitatory firing threshold potential  [2,7] mV
o1 Standard deviation of inhibitory firing threshold potential [2,7] mV

with periodic boundary value condition provides a mean field model of electrocortical activity in the
neocortex. Here, e is the Napier constant and fx(-) is the mean firing rate function of a population
of type X and is given by

Fx
t _ )
1+ exp (—\/§ vx(@,?) = px NX)

0X

(3.2) fx(vx(z,t)) == X € {E,1}.

The definition of the biophysical parameters of the model and the ranges of the values they may take
are given in Table 1. For the range of values given in Table 1 we have |Vgg| = Vgg, |VEi| = Vi,
[Vig| = —Vig , and | V| = —Vir, which we use to simplify (3.1). Note that other than notational
changes to the original equations given in [33], we have changed the reference of electrical potential
to the resting potential to avoid the constant terms that would otherwise appear in (3.1). Figure
2 shows a schematic of intracortical, corticocortical, and subcortical inputs to two local networks
located at points  and y together with their contribution to the global corticocortical activation as
modeled by (3.1).

The first six equations given in (3.1) model the dynamics of the space-averaged excitatory and
inhibitory neurons located at x, including the first-order capacitive dynamics of the membrane, the



Nernst (reversal) potential effect, and the second-order dynamics related to the passive dendritic

cable delays and neurotransmitter kinetics. The last two equations in (3.1) model the dynamics of

the spatial distribution of excitatory corticocortical activity over the domain of the neocortex.
Now, let

v(z,t) = (vg(z,t), vi(2,t)) € R?,

i(z,t) == (igg(z, t), ipr (2, t), i (@, t), in (2, 1)) € R?,
w(z,t) = (wpg(z,t), we(z,t)) € R?,

g(x,t) := (gun(@,t), gu1 (2, ), gie(z, 1), gn(z,t)) € RY,

and note that (3.1) can be represented in vector form in  x (0,77 as

(3.3) PO + v — Jyi + Jovit Wy 4 Jzvit W5 =0,
O%i + 2T04i 4+ T2 — YT Jgw — eXTNJ; f(v) = eXTg,
8fw + 2vA 0w — %VQAw + 12N — V2A2MJ8f(’U) =0

where v, i, and w are -periodic vector-valued functions with the initial values

(36) U‘t:o = Yo, i‘t:(] = iOa (afi)‘t:() = ’567 w|t:0 = Wo, (atw)‘t -0 — ZU6,
and
o o 1 1
(387 @ =diag(ms,n), ¥ = diag ([ e Wl o)
I' = diag(veE, Y1, ME; Y1), T = diag(Yer, Yer, YiE, Y1),
N = diag(Ngg, Ne1, Nig, Ni1), M = diag(Mgg, Mgi),
A= dlag(AEE,AEI), J1 — [ sz2 _I2><2 ],
= diag(1,0), J3 = diag(0, 1),
J4:[1010]T, Js=[0 10 1]
J_1000T J_1100T
1o 100" Y1001 1]
_|10 [ fe([ 1 0]w)
=16 o= Fto 110 |

For simplicity of exposition, the dependence of the functions v, ¢, w, and g on the arguments (z,t)
is not explicitly shown in (3.3)-(3.5). Note that (3.3) and (3.4), which model the local dynamics
of the neocortex, are essentially systems of ordinary differential equations. These equations do not
possess any spatial smoothing component, and hence, their dynamics is expected to evolve in less
regular function spaces [36,44|. The system of partial differential equations (3.5) consists of two
damped wave equations or, more specifically, two telegraph equations coupled indirectly through
(3.3) and (3.4).

4. Existence and Uniqueness of Solutions

In this section, we investigate the problem of existence, uniqueness, and regularity of solutions
for (3.3)—(3.5) with the initial values (3.6) and periodic boundary conditions. We set appropriate
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spaces of Q-periodic functions as the functional framework of the problem by which we include
the boundary conditions in the solution spaces. We view v(x,t), i(x,t), and w(x,t) as Banach
space-valued functions and follow the standard technique of Galerkin approximations [15,41,48] to
construct weak and strong solutions.

First, define the function spaces

(1) L2 I2,(4RY), 2= IZ(ORY), L3 = 12, (R?),
Ly = Lgoer(Q;R2), L= L;r(Q;R4), Ly = Lg‘;r(Q;R2),
Hay = Hpo (B R?),  H, o= Hpo (5 R?),
Low = Lo (G R¥?), Hp,, 1= Hper(GR¥?),
Wi™ = Wi (5 R?),

and denote by E%*, E?*, and H}; the dual spaces of £2, E?, and H., respectively. Note that £2
and £? are, respectively, isometrically isomorphic to £2" and £2" [17, Th. 6.15], which we denote
by £2* = £2 and E?* = L2, By the Rellich-Kondrachov compact embedding theorems we have
HL € L2 C HE'; see, for example [8, Th. 6.6-3] and [41, Th. A.4]. Moreover, there exists a dual

orthogonal basis of H} and £2 given by the following lemma.

Lemma 4.1 (Dual orthogonal basis) There exists an orthonormal basis of L2, that is an orthog-
onal basis of HY,, and can be constructed by the eigenfunctions of the linear operator A == (—A+1) :

HY — HY
Proof. Consider the linear operator A : HL — HL' defined by
(Aw, hyp = ((=A+ Iw, h)g2 for all h € HL and every fized w € HY.

First, we show that A is an isometric isomorphism. For every h € HL such that HhHHl =1, it
follows from (2.1) and the Cauchy-Schwarz inequality that

| (Aw, )z | = [(w, Py, | < [l [Plles, = [[0l]3,
and hence, HAwHHl* < HwHHl. For every w # 0 € HL set h = HwH;iw and note that
|(Aw, HwH; U))E%}‘ = HwHHl , which implies HAanl* > Hanl' Therefore, A is an isometry.

Now, it suffices to show A is surjective. This follows immediately from the Riesz representation
theorem [8, Th. 4.6-1]. Indeed, for every linear functional q € H}U* there exists a unique wy € H}U
such that

(@:hr, = (wg h)ag, = (Awg h) gz, = (Awg, ey,

Neat, we show that A has a compact inverse on L2, Since A is an isomorphism and L2 C HL",
the restriction of A~ to L2 is a bounded map from L2 to H.. Since HL € L2, it follows that
A=Y 2 — L2 s compact. Therefore, by the spectral theory of compact self-adjoint linear operators
[8, Th. 4.11-3], there exists an orthonormal Hilbert basis B,, = {hg)};’; of L2 consisting of the
eigenfunctions of A~1.

Now, note that B, C HL, since for every hg) € By,
1190y, = 1N A7 gy = 32D < o0,
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where N\ > 0 is the eigenvalue corresponding to hg). Moreover, By, is complete in HL since for

h € HY satisfying (hg), h)H}U =0 for all hg) € By, we have
0= () By, = (N7 AR, Ry, = N7 (D ).

which implies h = 0 due to completeness of By, in L2, Orthogonality of B, in HL is proved by
similar computation, which completes the proof that B, is also an orthogonal Hilbert basis of H}
consisting of the eigenfunctions of the operator A : HL — 'H}U*.

Before proceeding to the main results of this section, we define the notions of weak and strong
solutions of (3.3)—(3.6) as used in this paper.

Definition 4.2 (Weak solution) A solution (v,i,w) is called an Q-periodic weak solution of the
initial value problem (3.8)-(5.6) if it solves the weak version of the problem wherein the partial
differential equations are understood as equalities in the space of duals L*(0,T; E%* X ﬁ?* X H}:)
That s, the functions

ve LX0,T;L3), i€ L*0,T:L7), we L*(0,T;H,),

with
dw € L2(0,T; £27), dyi € L*(0,T; L), d%i e L*(0,T; L"),
daw € L*(0,T; L2), d?w € L2(0,T;H11U*),

construct an Q-periodic weak solution for (3.3)—(5.6) if for every £, € L2, {; € L2, hy, € HY, and
almost every t € [0,T], T > 0,

(4.2)  (@dew, by )z + (v, 8) g2 — (Juis by) gz + (Jovi" Wy + J3vit W5, £y) 2 = 0,
(43)  (dPi, i)z + 2(Tdsi, ) 2 + (T2, 65) g2 — e (YT Jgw, &) 2
—E(TFNJK}C(U),&)L? == e(TFg, Ei)ﬁ?,
(4.4) <d?w,hw>Hl10 + ZV(Adtw,hw)Egj — %y2 (Aw,hw)ggj + 7/2(A2w,hw)£%}
~V? (A*MUs f (v), hu) g2 =0,
with the initial values
(4.5) v(0) = o, (0) =1ip, dsi(0) =71y, w(0)=wpy, dw(0)=wy.

Definition 4.3 (Strong solution) A solution (v,i,w) is called an Q-periodic strong solution of
the initial value problem (3.3)—(3.6) if it solves the strong version of the problem wherein the partial
differential equations are understood as equalities in L(0,T; L2 x E? x L2). That is, the functions

ve HY0,T;L%), i€ H*0,T;L?), weL*0,T;H2),
with
dww € L2(0,T;£%),  djie HY(0,T;L£2), d% e L*(0,T;L?),
dsw € L2(0,T;HY), d?w € L(0,T; £2),

construct an Q-periodic strong solution for (3.3)-(3.6) where they solve the equations for almost
every x € Q and almost every t € [0,T].

12



Now, let B, = {E,(f)};’; be a basis of E% such that {<I>%£,€”};’; is orthonormal in E%. Note
that (3.7), with the range of values given in Table 1, implies that ® is a positive-definite diagonal
matrix, and hence, such a basis exists. Moreover, let B; = {Ky)}zl be an orthonormal basis of £?

and B, = {hg) }zl be an orthogonal basis of HL, that is orthonormal in £2; see Lemma 4.1 for the
existence and structure of B,,. Finally, construct the set B = {b(k)}zozl C L2 x L2 xHL, as

(4.6) Bi=B, x B; x By = {b(k) = (0 B By o) e B, %) e B nF) € Bw}zo_
For each positive integer m, we seek approximations v(™ : [0,T] — £2, i(™ : [0,T] — £?, and
w™ 1 [0,T] — HL of the form

(4.7) ot = 3l e,
-(m m m k
(4.8) i) =>" e,
(19) W) =Y dmend),
with sufficiently smooth functions cgf,?), cgkm), and cz(un,:) on [0,7], such that, for all ¢ € [0,7], and
k=1,...,m, these approximations satisfy the system of differential equations

(4.10)  (@dw ™, 6P) g2 + (V™) 6 o — (1™ 6P 12
+(Joo ™ Ty 4 T g 08 s = 0,
(411) (2 6F) o 4+ 2(Tdi™ (M) 2+ (D20 6P o
—e(YT 0™, () 12 = e(YINJr f(0(™), ) 12 = (D9, €07 2,
(4.12) (d?w(m), hu’f))ggu + 21/(Adtw(m), h,(jf))ﬁgu — 32 (Aw(m), hg’f))%
(A2 W) p — 1 (APMUTs £ (0™), B ) 2 =0,

subject to the initial conditions

(413)  M(0) = (v, )2, ™ (0) = (i, )2, el (0) = (if, £8) 2,
S (0) = (wo, b))z, dicli? (0) = (wh, b)) 2,

on the coefficients c]gm) (t) = (01()7:) (t) cim (1), cz(un,:) (t)) € R3.

» g
Equations (4.10)-(4.13) are equivalgnt to a system of nonlinear 3m-dimensional ordinary differ-
ential equations on coefficients ¢ (t) = (cgm) (t),... ) (t)) € R¥™. Therefore, by the standard
theory of ordinary differential equations [47, Th. 2.1], there exists a unique function ¢ (t) that
solves (4.10)—(4.13) for t € [0,T},,), Tr, > 0, with the approximations (4.7)—(4.9). Moreover, T,,, =T
for all positive integers m, which follows from Proposition 4.4.

Proposition 4.4 (Energy estimates) Suppose g € L?(0,T; E?) and for every positive integer m
let v™ (™) and w™ be functions of the form (4.7)-(4.9), respectively, satisfying (4.10)-(4.12)
with the initial conditions (4.13). Then there exist positive constants o, By, a;, and ou,, dependent
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only on the parameters of the model, such that for every positive integer m,

m 2 m) 112
(1.14) e (o Oz ) + 4™ oo, < o
(4.15) S[‘lp <Hdtz(m )Hig + [ (@) HEZ) + [|d7it™) HLZ(O,T;EZ?*) < Ki,
(4.16) tes[lé})ﬂ (Hdtw Hﬁgj + Hw(m)(t)HHl) + || dZwt™ HLZ(O,T;HE) < Ko,

where Ky, K;i, and Ky are positive constants given, independently of m, by

(4.17) Ky 1= Qi ((1 +(1+ \/ﬁ_i)zT) exp (Buv/kiT) |:H’UOHi% + /@-T} + /{Z-T> ,
(4.18) Ki = ((1 +T) [HigHi? + Hz‘oui?} +(2+T) [T (Fu + |9/(F% + F2))

+H9H2L2(0,T;£§)]> ,

2 2
(419) k= ay (14 T) [[Jwplzg + [lwollsy | + @+ DITICFE) .
Proof. Multiplying (4.12) by dtc(m) and summing over k= 1,....m yields

(d2 (m) dtw(m))ﬁgu +2I/(Adtw(m),dtw( ))£2 -2 (Aw( m) dtw(m))ﬁgu
V2(A2 (m ),dtw( ))‘C%u_ 2(A2MJ8f(’U(m)),dtw(m))£12U :0,

or, equivalently, using (2.1) in the third term in the above equation,
S [ |2, + 20,2, + o2, ] + 2efadda™ 2,
v? (AzMjgf(’U(m)), dtw(m))ﬁgv = 0.

Now, Young’s inequality implies that for every 1 > 0,

7/2(A2MJ8f('U(m)),dtw(m))[/%} §61V2Hdtw(m) 2

Hﬁgu HAQMJE?JC Hz?

= 611/2Hdtw(m)Hi%U -+ 4—61‘51°(A41\/[2)/Q |fE(v]gm))|2dx

< slqudtw(m)

¥ +”—2|Q|F2t (AM2)
[%} 461 g lr .

Therefore,

di [Hdt’w(m) ;

Iz, + 32 100w™ 2+ [ Aw™)|Z, | + 20(2Amin — 10| ™|

Iz,

2
< L Q[F2 tr(A*M2),
261

where Apin := min{Agg, Ag1} is the smallest eigenvalue of A.
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Next, setting 1 = %Amin and integrating with respect to time over [0,t] yields

ldi™ )]

2z + 377100 W), + A0 O

Iz

2 tr(ATM?)t,

3
< (a2, + 3202 + 2wt 2,)] 4

t=0

which, using (4.13), implies

™2, + ™ O3, < (bl + ol + 35— IO AN )
for all t € [0,T] and some Gy, > 0. Since this inequality holds for all t € [0,T1], it follows that

m 2 m 2 N
(4.20) s (™ O] + [0y ) < o

where
o 1= G <||wouﬁ2 ol + 45— |Q|F2 S (AMD)T )

Now, fiz h € HY, such that HEH'Hl < 1 and decompose h as h = h+h', where h € span{hgf)}zlzl

and (hq(y),hJ‘)Ez =0, k=1,...,m. Since the basis By, used to construct B in (4.6) is orthonormal
in L2, it follows from (4.9) that

<d§’w(m)7ﬁ>Hg = (dtzw(m)aﬁ)ﬁg = (d?w(m)ah)ﬁg,
where the first equality holds since d?w™ € HL ; see the proof of [15, Th. 5.9-1]. Therefore, (4.12)
gives
(dfw™ By, =
—2V(Adtw(m),h)£gu + %V2(Aw(m),h)£1zu —V2(A2w( m) h)EZ +v (AQMJgf( ), )Ez.
Since By, is orthogonal in H. we have HhHHl < HﬁHHl < 1, and hence, the Cauchy-Schwarz
imequality gives

(3™, By
< 20y 20,0 1y 4 22 |AR |yt 2 AP £ )
< o ([l 1y + w0 gy + o2 (U (A N2)¢ )

for some ay > 0. Therefore, there exists ao > 0 such that
T 2 r 2 2
/0 dew(m)HH}:dt < az/o (Hdtwm)H% + Hw<m>|{% + 4QIFZ tr(A4M2)> dt,
which, using (4.20), yields

Hd?w(m) 2

HLz(O,T;'Hg") S (65) (l‘%w + V4‘Q’F}23 tr(A4M2)) T
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This inequality, together with (4.20), establishes the bound (4.16) with (4.19) for some ay, > 0.
Next, multiplying (4.11) by dth(:l) and summing over k =1,...,m yields
(4.21) (A%, di"™) o + 2(Ddyi™, i) oo + (T2, dyi™) 2
— e(YTJgw™, dyi™) z2 — e(YINI f (™), dyi ™) 22 = e(YTg, dyi™) .
For the second term we have
(T, dei™) 2 > Yonin | dei™ | 7o
where Ymin := mMin{ygg, VeI, YIE, Y11} 1S the smallest eigenvalue of T'. Now, using Young’s inequality

and recalling (4.16) we obtain, for every eq,...,e4 > 0,

e(TFJGw(m),dti(m))Elz < Engtz‘(m) 2

2
2 + IEHTPJGW(m)Hig

< el a2y + [T B 2,

< oo a2, + 2 Tl
e(YTNJ2f (™), dii™) 22 < es|ii™ |2, + —HTFNJH” ™2

< eg|dii™| 2 + —HTFNJ7HQHJ”(U( ]

< el + 4' (3 + 7)o 2

(T, 0y < 244 |2 + -]
2
(m e
< el ™|z + T lloll-
Hence, with the above inequalities, (4.21) implies
dy [Hdtz [z + [t Hﬁg] + 2(2min — &2 — &3 — £4)||ded ™|
|

e/{w

5 gy 2+ L

e? 201 112
(FE+F2 HTTNJ7H2+EHTT\EHQHQ-

Now, setting eo = €3 = §’Ymin and €4 = Ymin, integrating with respect to time over [0,t], and
taking the supremum over t € [0,T] we have

() o 112 () (o 112 X
(4.22) tes[té%] <Hdt2( )(t)Hﬁ? + [|a¢ )(t)Hﬁf) < &y,

where, for some &; > 0,

2 210
i = i (il + il + | ’fwumu%i.‘w%+F%>Hrrw7u1 T
i g “Ymin Ymin

+_HTI‘H H9HL2(0TE2)> '
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Fiz 0 € E? such that HZHﬁ < 1 and decompose ¢ as { = ¢ + (-, where { € span{fgk)}zzl an

(ﬁgk),EL)Ez =0,k=1,...,m. Using (4.8) and (4.11) we obtain

<d%l(m),g>£$ = (dt’l Z)[Q = (dtZ 6)[3
—2(Pdsi™, ) 2 = (T2 ) 2 + e (YT g™, £) 22 + € (YINJ7 f(01™), £) 2

The orthogonality of the basis B; in (4.6) implies H€H£2 <1, and hence,

(7™, Bz ] < 2Tl [lad™ 2 + [T2[, "

+ e T o + €| YTNJf (o) 13 + ]| Tl -

Therefore, it follows from the same inequalities used to derive (4.22) that, for some ag > 0,

35 a0 < 5 ([f+era| TRIS]5 10008 + FD| YN 7

0Tl 2 o 7))

This, together with (4.22), establishes the bound (4.15) with (4.18) for some «; > 0.
Finally, multiplying (4.10) by cz(,zl) and summing over k =1,... m yields

(4.23) (@dew™, v a4 (00,00 22 — (i 00 2

+ (ng(m)i(m)T\PJ4 + ng(m)i(m)T\PJ5, U(m))ﬁg = 0.

Now, using Young’s inequality and recalling (4.15) we obtain, for every 5 > 0,
. 1 .
(A o) g < e [0y + 18
1.
< eslo™ g + 511l

1% + 52
L3 265.

< E5H?J(m)
Moreover, using Hélder’s inequality in R? and the Cauchy-Schwarz inequality in R* we obtain
— (Jo™i™ W gy 4 Ty @ g 0™
=- / (™2 @y + (o) w5 ) da
Q
< / o0 |5 max { i w g, 11 w5 |} da
Q

m)||2 -(m
S/QHU( e (11 [l max {[[ T g, [ 05 [} o

< V2| W[l 2,

17

d



Therefore, (4.23) implies

<_

Al @20 [y +2 (1= 25 = VER[|W]) [[o™][ 7 <

Neat, setting €5 = 1 and using Gronwall’s inequality [48, Sec. II11.1.1.3.] yields

(4.24) sup (Hv(’”)(t) : ) < Ry,

t€[0,7]

where, for some &, > 0 and BU > 0,
o = Gy exp (Bov/2ri]|9[1,T) ([[vollzs + #iT) -

Now, fir £ € L2 such that HZHﬁ < 1 and decompose £ as £ = {40+, where { € Span{ﬁg,k)};n:l and

(@&()k),@J‘)E% =0, k=1,...,m. Note that this decomposition exists due to the way we construct the

basis B, in (4.6), wherein the elements, weighted by CI)%, are orthonormal in L2. Then, it follows
from (4.7) and (4.10) that

(@dw™, 0)ps = (@dw™, 0) 2 = (@A™, ) 2
= (™, 0) 22 + (1™, 0) 2 — (T ™ i Ty 4 Ty G )

Since By is a o> -weighted orthonormal set in L2, it follows that

v’

o < [l272] |22

_1 12
ez < 1272l

oz <[22l 22]l,

Vi _1 1
ez < 1272 5|22

and hence, letting oy := H<I> H H<I>2 and using Cauchy-Schwarz inequality we have

(@™ D3] < o ([
< ag ([[p™]] gy + V20
< o (1 + 20 |0])) o

(8

([T | o+ | Foo i Ty 4 Ty W )
-+ 2V2[o 0| i) )

+ v 251) s

which, along with (4.24) implies that, for some as > 0,
4™ 122 0 pya) < a5 ((1 + 2v/25]|W]|,)* ey + zm) T.

This, together with (4.24), establishes the bound (4.14) with (4.17) for some «, > 0. Note that
constants a, ..., a5, Gy, ﬁv, Q;, and G, depend only on the parameters of the model, which further
implies that the constants v, By, a;, and a,, also depend only on the parameters of the model and
completes the proof.

Theorem 4.5 (Ex1stence and unlqueness of weak solutions) Suppose that g € L?(0,T; L?),
vo € L2, g € Ez, ip € L2, wy € HL, and wy € L2. Then there exists a unique Q-periodic weak

77 w?r

solution (v,i,w) of the initial value problem (3.3)—(3.6).
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Proof. The energy estimate (4.14) implies that the sequence {v(m } is bounded in L?(0,T; L?)
and the sequence {dtv(m) }mzl is bounded in L*(0, T E% ). Since £2 = £2 it follows that {v(m }mzl
is bounded in H'(0,T; L2) and {dtv(m)}:zl is bounded in Lo(0,T; L2). Similarly, since L2 = L2,
the energy estimate (4.15) implies that the sequence {i(m)}:no:l is bounded in H?*(0,T;L?), the
sequence {dti(m)};::l is bounded in H'(0,T;L?), and the sequence {dfz'(m)}zjzl 18 bounded in
L%(0,T; L?). Finally, the energy estimate (4.16) implies that the sequence {w(m }OO_ is bounded in
L?(0,T;HL), the sequence {dtw )}:2: is bounded in L%(0,T; L), and the sequence {de(m)}m_l
is bounded in L*(0,T; H}U*) Now, it follows from the Rellich-Kondrachov compact embedding the-
orems [8, Th. 6.6-3] that Hl(O,T7 L£%) € L*(0,T;L2%) and H*(0,T;L%) € L*(0,T;L?). Therefore,
by [8, Th. 2.10-1b], there exist subsequences {v(mk)}Zil, {i(mk)}zozl, and {dti(mk)}zozl such that
(4.25) ™) v strongly in L*(0,T; £2),
i) i strongly in L2(0,T; £2),
dgi™) — 3" strongly in L*(0,T; £2).
Moreover, by the Banach-Eberlein-Smulian theorem [8, Th. 5.14-4], there exist subsequences
{dtv(mk)}zozlf dg{i(mk)}zozv {w(mk)}Zi17 {dtw(m’“)}i‘;p and {d%w(mk)}zod such that
(4.26) dpo(me) s o weakly in L2(0,T; ,Cg),
dfz'(m’“) — " weakly in L*(0,T; L?),
w™) ~w  weakly in L*(0,T;HL),
dyw™) —~ W' weakly in L2(0,T; £2),
2w™) — " weakly in L*(0,T; HL),

where the time deriatives in the above analysis are derivatives in the weak sense.
Next, we show that

vV =dw, i =dyi, "= d?z’, w =dw, w' = d?w.

Since L*(0,T;HL) is reflexive, the weak and weak* convergence coincide. Recalling the definition
of weak* convergence and weak derivatives, it follows that for every h € HY and ¢ € C°(]0,T)),

T T T
( / w”¢dt, hyyn = / <w”¢,h>mudt=khm / (dFw™) b, By dt
0 0 —Jo

T
= lim </ dfw™gdt, b, = lim <(—1)2/ wm™) A pdt, By
0 0

k—o00

= lim ( / (w2, hyp dt = / (wd} ¢, h)p dt

k—>oo
T
— <(_1)2/ wdigdt, hyy
0

which implies w" = d%w i the weak sense. The other identities are proved similarly.
Now, recall (3.2) and (3.7) and note that the nonlinear map f : R? — R? is bounded and
smooth, and in particular, is Lipschitz continuous. Therefore, it follows from the strong convergence
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of {o™) V> in (4.25) that
(4.27) F™)Y — f(v)  strongly in L*(0,T; £2).
For the bilinear term Jovi* Wy, use (4.14) and (4.15) to write
72 (v — ’U(mk)i(mk) ‘I’J4HL2(0T£2)
< || Ja(v = v™*))i | 2o i) + [ Towm) (i — i) T
= \/§H\I'H2 [HU — o o012 T H”(mk)Hm(o,T;ag)Hi - i(mk)“LZ(o,T;cg)}

= \/§H‘PH2 [\/“_Z HU - U(mk)HH(o,T;Lg) + Vhy HZ - i(mk)|’L2(0,T;£?)] :

HL2 (0,T5L£2)

k)HLQ(O,T;E%) L

The same inequality holds for the bilinear term Jsvit W.Js as well. Therefore, (4.25) gives

(4.28) ng(m’“)i(mk)T\I/J4 — JovitWJ,  strongly in L*(0,T; L2,
ng(m’“)i(m’“)T\I/Jg, — JyuitWJs  strongly in L2(O,T; ﬁ%)

Next, fiz a positive integer K and choose the functions

f):zk: co, ()P € C([0,TT; £2),
=" e -k € CN([0.71: £7),
_ ZK co ()RE) € CL([0, T); HY),
where, for every k € {1,...,K}, the scalar-valued functions c,,,ci,,Cy, are sufficiently smooth

n [0,T] and (e,(f“),éﬁ ),hgf)) € B, where B is given by (4.6). Set m = my in (4.10)-(4.12) and
choose my, > K. Then, multiplying (4.10)-(4.12) by cy,., ci,, and cy,, , respectively, summing over
k=1,...,K, and integrating over t € [0,T] yields

T
(4.29) / [<@dtv(mk)7ﬁ>£% + (U(mk)jf))ﬁg — (le‘(mk)j’f))ﬁ%
0

+ (Jpu ) i) g gy 4 Tyl i) g g @)E%} dt =0,
T
/ [<d§¢<mk>,%>£z +2(Tdgi ™) 4) 2 + (T2 ) 1o
0 1 1

(3

T
—e(TFJGw(m’“),%)Elz — e(TFNJ7f(v(mk)),%)£lz} dt = /0 e(TFg,%)E%dt,

T
/0 [(d?w(m’“),wh%j +2V(Adtw(m’“),1i))£gv — guz(Aw(mk),w)%
v (Azw(mk), 'lz))g%} — 2 (AZMJgf(U(m)), 'Ut))ﬁ%):| dt = 0.

Note that the families of functions 0, i, and W chosen above are dense in the spaces L2(0,T; £2),
L%(0,T;L2), and L?(0, T; HL), respectively. Therefore, (4.29) holds for all functions © € L*(0,T; L2),
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i € L2(0,T; £2), and i € L*(0,T;HL). Now, use (4.25)-(4.28) to pass to the limits in (4.29), which
implies that (4.2)-(4.4) hold for all £, € L2, {; € L2, hy, € HL, and almost every t € [0,T].

wr
It remains to verify the initial conditions (4.5). Choose the functions

b e CH[0,T);£2), e C¥[0,T);LE), weC*([0,T);HL),

such that these functions vanish at the end point t = T. Integrating by parts in (4.29) yields

T -
(4.30) / [— (@U(mk), dt@)gg | dt = (@v(mk)(0)7 @(O))Q)’
0 ]

T -
[0z - dt =+ @00, 50) ez — (67)(0) i)z,
0 i i i i

/0 : [(w<mk>,d§w)% + - dt = (dew™)(0),9(0)) 2 — (w!™)(0), dd(0)) 2 ,

((' .

where “ -7 denotes terms that are not pertinent to the analysis. Similarly, integrating by parts in
the limit of (4.29) yields

T
(4.31) ‘A [—(Pv,ded) 2 + -+~ | dt = (®v(0),9(0)) 2,
T
/0 [(i,d?%)ﬁg 4 .] dt = -+ (d4i(0),7(0)) 22 — (i(0), d¢i(0)) 2,

T
/0 [, A2y + -] dt = (dw(0), @(0)) 2 — (w(0), dytd(0))z

Now, consider the initial conditions (4.13), pass to the limits in (4.30) through (4.25)-(4.28), and
compare the results with (4.81). Since 0, i, and W are arbitrary the initial condition (4.5) holds and
this completes the proof of existence.

To prove uniqueness, assume, by contradiction, that there exist two weak solutions (27,5,16) and
(0,1,%) for (3.1), initiating from the same initial values, such that (0,1,W) # (0,1,w). Then,
(v,i,w) == (0,1,W) — (0,%,0) is a weak solution initiating from the zero initial condition (o, 10, 1,
wo, wy) = 0. Now, fir s € [0,T] and define, for 0 <t <T, the functions

JSw(r)dr, if0<t<s,
0, ifs<t<T.

(4.32) p(t) :== /0 w(r)dr, q(t) :== {

Note that p(t) € HL and q(t) € HL for all t € [0,T], and hence, p and q are regular enough to be
used as the test function hy, in (4.4). Moreover, q(s) = 0, q(0) = p(s), and p(0) = 0. Let & and G
satisfy (4.2)—(4.4) with the same test functions €, = v(t), £; = dyi(t), and hy = q(t). Subtracting
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the two sets of equations and integrating over t € [0, s] yields
S -
(4.33) / <q)dt’U,U>£g + (’L),U)E% - (Jl’i,v)ﬁg
0 L

+ (o057 = 09I )W Iy + Jy(57" — 6i7) W5, 0) 2 |dt = 0,

(4.34) / '<d§¢,dtz’>ﬁg +2(Ddyd, dyi) o2 + (D%, dyi) 2 — e(YT Jow, dyi) 2
0 L 1 1 1 1

—e(TTNJ(f(5) = f(0)),dei)gz |t = 0,

(4.35) /0 :<dfw,q>H11U + 20 (Adyw, q) g2 — 307 (Aw, q) 2 + v (Aw, q) 2

V2 (APMUS(f(5) = £(8)), 0)ez, |t = 0.

Nezxt, integrating by parts in the first and second terms in (4.35) yields

/ {— (dtw,dtq)ﬁgu — 2V(Aw,dtq)£gu — %V2 (Aw,q)ﬁgu + V2(A2w,q)£gu]dt
0

— /05 V2 (APMUJs(f(0) — f(0)),q) 2 dt.

Note that <dtw,dtq>Hl10 = (dtw,dtq)ﬁgv since dygw € L2, for almost every t € [0,T); see the proof
of [15, Th. 5.9-1]. Now, it follows from the definition of q(t) that dyg = —w for all t € [0, s].
Therefore,

(4.36) /0 (3 (leolZy — 3v2010uall 7 ) + 2v[[ A3l +v2(A%w,q)z3 | at

- /OS V2 (AMUs(f(3) — f(0)), )3 dt.

Using Young’s inequality,

vg(z,t)ER

2
ﬁMW%U@%fwxm%sﬂﬂwg+ﬁwmwﬂ[sw @wawﬂ\M@
F2
< llallz + 573 (AN Jo 5,
E
A (Nw,q)ez, < 37 lallzy + Al el -
where the second inequality follows, for X = E, from differentiating (3.2) as

(4.37) Do fx(vx) = g Fx exp <—ﬁ M) [1 + exp (—ﬁ %)} _2, X € {E,I},

0X

which implies SUp,, (; 1yer [Oux fx (vx)] < 2\/5;(.

Now, (4.36) implies

S
3w(s) 2 + 30l S/O (=21, + 22 A ol + 5l

F2
+3 E n(A) o i] dt -+ 302]g(0)||% .
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Noting from (4.32) that q(t) = p(s) — p(t) for all t € [0,s], it follows that the above inequality can
be written as

ooz + 352l < [ [(~ 200l + 2 A 1 + 257 o002
2
+§y2§—g tr(A4M2)Hfu(t)Hi%] at + 37Jp(s) [,

Moreover, ||p(s) —p(t)Hi%U < 2!‘])(3)“22“ +2Hp(t)Hi%U < 2Hp(s)H3{%U —|-2Hp(t)H3{%U, and it follows from

the definition of p(t) that Hp(s)Hiz < Hw(t)”i2 dt. Therefore,

439 A, -G - bl < [ (-2l + 2L+ ) ool
+2p(t HH1+1uF r(AM2) ot Hig]dt

Nezxt, recalling (4.14) and (4.15) and using the Cauchy-Schwarz and Young inequalities, it follows
that the fourth term in (4.33) satisfies, for every e1 > 0,

(J2(0i" — 01" )Wy, 0) g2 = (Jovi" Wg,0) g2 + (Jo0iT W4, 0) 02
2/%
olley = Nl

where /-iv and r; are in the form of (4.17) and (4.18), respectively. The same inequality holds for
(Jg( wt — i )\I/J5,v)£%. Similarly, using Young’s inequality and (4.37),

2/1;

2
e(CTNJ7(f(5) = f(0)), dud) 2 < ||| 7 + 46—62HTFNJ7

I3 s 250

. e? F% F;
< ealldilf + g TN e { 5. %}H\um
for every ea > 0. Moreover, for every es > 0 and €4 > 0,

(Jli,v) 2

.12
2 T EHZH@’
: 2 € 2 12
e(YTJow, dvi) 2 < ealdil|z + YT 3 [ ][5 -

Substituting the above inequalities into (4.33) and (4.34), and adding the resulting inequalities
to (4.38) yields, for some o > 0,

H<I>%v(s) p

o+ [[di(s) | 2+ [Tis)[[ 22 + ew(s)[ 2 +° 3 = 28)[p(3) 13

a [ [IoCOZ; + a2 + 1iE + ol + 0] a

Now, setting T1 = %, it follows from the integral form of Gronwall’s inequality [15, Appz. B.2/
that (v(s),i(s),w(s)) =0 for all s € [0,T1]. Repeating the same arguments for intervals [Ty, 2T1],
[27},3T1], ..., we deduce (v(t),i(t),w(t)) = 0 for all t € [0,T], and hence, (0,i,%) = (,1,0) for
all t € [0,T], which is a contradiction and completes the proof of uniqueness.
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Proposition 4.6 (Regularity of weak solutions) Suppose that the assumptions of Theorem 4.5
hold, namely, g € L*(0,T;L?), vo € L2, iy € L2, iy € L2, wy € HL, and w), € L2. Then the Q-

v’ (3 17 w’

periodic weak solution (v,i,w) of the initial value problem (3.3)—(3.6) satisfies

2 2
(4.39) csssup (lo@1Z2 ) + devl 20 miez) < o

. 2 . 2 112
css sup (lldei(®) 172 + @72 ) + 1072072 < s

)

2 2 2
css sup (lldsw®|zs + [lw®)ll3, ) + 2] Fazaesr) < Fus

(4.40) ve H'(0,T; L) N C*([0,T); £3),
i€ H0,T;£2) nCY2([0,T); £2),  dyi € HY(0,T;£2) N C%3(0,T; £2),
we HY0,T; £2)nCo([0, T, HY),  duw € CO([0,T]; £2),

where ky, ki, and Ky are given by (4.17)-(4.19). Moreover, if g € C°([0,T); £2), then
(4.41) ve C3([0,T];:£%), ieC*[0,T);£%), dyieC(0,T);L3),

and if g € CY([0,T]; £L?), then

(4.42) ve CN0,T); L2, icC30,T);L2), diiec C*[0,T];L?).

Proof. First, recall that L2 = L2* and L2 = L2". Assertion (4.39) follows immediately from (§.14)-
(4.16) by setting m = my and passing to the limits through (4.25) and (4.26). The inclusions in
H' and H? in assertion (4.40) are immediate from (4.39). The Sobolev embedding theorems [8, Th.
6.6-1] applied to Banach space-valued functions on [0,T] C R imply that v € CO’%([O,T];E%),
i€ Cl’%([O,T];,C?), and dgi € CO’%([O,T];,C?), which further implies by (3.3) thatv € C*([0,T]; £2).

Let A := (=A 4 1) : HL— HL be the time-independent, self-adjoint operator considered in
Lemma 4.1. Note that f(v) € C2%([0,T); L) since f is a bounded smooth function and v €
C?([0,T); £L2). Then, it follows from (3.5) and (4.39) that d>w + Aw € L?(0,T;L2). Therefore,
by [48, Lemma II.4.1] we have w € C([0,T); HY,) and dyw € C([0,T); £L2)), which completes the proof
of (4.40). Assertions (4.41) and (4.42) are now immediate from (3.8), (3.4), and (4.40).

Theorem 4.7 (Existence and uniqueness of strong solutions) Suppose that g € L*(0,T;L?),
vo € L2, ig € L2, il € L2, wo € HZ, and wly € HL,. Then there exists a unique Q-periodic strong

solution (v,i,w) of the initial value problem (3.3)-(3.6).

Proof. Uniqueness follows immediately from Theorem 4.5 since every strong solution is also a
weak solution. Moreover, Proposition 4.6 implies that the weak solutions v € H'Y(0,T;L2) and
i € H2(0,T;£?) are indeed strong solutions as given in Definition 4.5. It remains to prove the
reqularity required for w by Definition 4.3.

Consider (4.12) with the approzimation (4.9), let By, = {hﬁ,ﬂ“)}j’zl be the orthogonal basis of HL,
consisting of the eigenfunctions of A = (=A+ 1) : HL — HY as given by Lemma 4.1, and let
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A denote the eigenvalue corresponding to the eigenfunction hgf). Multiplying (4.12) by )\kcgz) and
summing over k=1,... m yields

(d (m) Aw(m))ﬁg’) +2I/(Adtw(m),Aw(m))£gH - %Vz(Aw(m),Aw(m))Egj
+ 2 (A2w(m),Aw(m))£%u — 2 (A2MJ8f(v(m)), Aw(m))ﬁgu = 0.

Now, Young’s inequality implies that, for every e1,...,e4 > 0,
~ (@™ 4™ gy < |42, + |,
~(Adewl™, Aw™) gy < el w2, + | Ade™ |7,
— (A%, Aw™) gy < el 4w, + éuww«ii’
(APMAF (™), 4™ < el 4|2, + - AMI )],

< e Aw™ |7, + E|Q|F§ tr(AM?),
and hence, using (2.1),
322y < (o1 2ves 2 ) (0™ + 0™ ]2,
3™ + o @™ [ + o Adwt™

2
LRI eMNGONE
+4€3HAw

2
v 2 4 12
H% + —4€4|Q|FEtr(A M?).

2
Next, set &1 = 5, €2 = 15, €3 = %, and 4 = %, and note that, for some constant 8 > 0,

@43 o), <8 (a2, + fant 2, + w2, +2F aaie).

Bounds on Hdtw(m)H£2 and Hw(m)HHl are given by the energy estimate (4.16). To establish bounds
on Hde(m)||£2 and Hdtw(m)HH1 , consider (4.12) with the initial values given in (4.13). Differen-

tiating (4.12) with respect to t, multiplying the result by d; c&,k), and summing over k = 1,...m,
yields

(d2 (m) dt’w(m))ﬁﬁj + 21/(Adtw(m), dtw(m))ﬁgu — %I/2 (Aw(m),dtw(m))ﬁgu
+ 2 (A2, dpo ™) o — 12 (AP Mg dy f (00™), d ™) 22 = 0,

where W = d;w and dth(vém)) = vEfE( )) dﬂ)fE ™) Now, (4.37) with X = E gives
(4.44) [ AMIsdef (0|3, = tr(ATM2) / |de fe (v de
w Q

2
< (A / A Pdr < tr(AM?) 2 Ty a7
9E
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Using similar arguments as in the proof of Proposition 4.4, it follows from the above inequality and
Young’s inequality that, for every e > 0,

a [llanit

25, + 32 0u™ 2 4[4, | + 20/(2min — 20 ™| 7,

V2 F2 m) 112
< gétr(Ale\/J?)HdtU( )HE%’

where Apin := min{Agg, Agr} is the smallest eigenvalue of A. Next, setting ¢ = %Amin, replacing
w = dyw, and using Gronwall’s inequality yields

(4.45) Hd?w(m)(t) 2 +%V2Hdt8ww(m H£2 +1/2HAdtw

HE%U H£2

< (udfwwﬁz + 3™ [+ Ada )]

FE tr(ATM?) Hdtv

+ 32A " HL2 (0,T;£2)"

Finally, it follows from (4.12) and (413) that, for some ap > 0,

o2 2, | < (bl + lwollss +v20IF tr(A'2))

Now, using the energy estimate (4.14) and the above inequality in (4.45) it follows that
22, + [ O] < o (bl + lunlg + 121+ 5F2)

for some ag > 0 and all t € [0,T]. Since this inequality and (4.43) hold for all t € [0,T1], it follows
that

(4.46) sup ([[azw™ (1)[|2, + [dw™ 0)[5, + @™ O[5 ) < Bu
te[0,7 w w w

where
By =« <Hw6H3ﬂU + Hwouigj + (9] + HU)F%>

for some o > 0. Now, using the above estimate and passing to the limits, the result follows by
similar arguments as in the proof of Theorem 4.5.

Proposition 4.8 (Regularity of strong solutions) Suppose that the assumptions of Theorem
4.7 hold, namely, g € LQ(O,T;E?), vg € L2, ig € EZ, i € E?, wo € H2, and wy € HL. Then,
in addition to the properties of the weak solutzon given in Proposition 4.6, the Q-periodic strong
solution (v,i,w) of the initial value problem (3.3)-(3.6) satisfies

(4.47) 388[51%1]3 <Hdtw Hz? + [l du( HH1 + [Jw( HH2> + ||d? wHiQ(O,T;H}:) < B,

(4.48) we H*(0,T;L£2) N HY0,T; HL) N L>®(0,T; H?)
NCY2([0,T7]; £2) N C%2 ([0, T); HL,) N L=(0,T; CONQ,R?),
dew € HY0,T; £2) N L®(0,T; HL) n €2 ([0, T); £2)),
d?w € L>=(0,T; L2),
for all X € (0,1) and some B, > 0.
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Proof. Differentiate (4.12) with respect to t and denote w := dyw. Use (4.44) and follow the same

steps used to prove (4.16) in Proposition 4.4 to show Hd%u') ) < Bw for every positive

Sl [y
integer m, all t € [0,T), and some By, > 0 proportional to By in (4.46). Replacing w = dyw, adding
the result to (4.46), and passing to the limits establishes (4.47) for some By, > 0 proportional to B

The inclusions in H', H?, and L> in assertion (4.48) follow immediately from (4.47), whereas
the inclusions in the time-continuous spaces are implied by the Sobolev embedding theorems [8, Th.
6.6-1] applied to Banach space-valued functions on [0,T] C R. Finally, the inclusion in the space-
continuous space is implied by the Sobolev embedding theorems applied to Q-periodic functions in
R2.

Other than the regularity properties given in Propositions 4.6 and 4.8, boundedness of weak
and strong solutions for bounded input functions g can also be established. We defer this result to
Section 5, where the proof is obtained as a corollary of Proposition 5.3.

In the remainder of the paper, we give formal arguments for some of the proofs, in the sense that
we take the inner product of (3.5) with functions that belong to £2,, instead of functions belonging
to ML that is required for the test functions h,, in (4.4). However, the proofs can be made rigorous
using the Galerkin approximation technique based on the dual orthogonal basis of H. € £2 and
then passing to the limits, as in the proofs of Theorems 4.5 and 4.7. See the discussion and results
in [41, Sec. 11.1.2] for further details.

5. Semidynamical Systems and Biophysical Plausibility of the Evo-
lution

In this section, we establish a semidynamical system framework for the initial-value problem pre-
sented in Section 4. Assume g € L?(0,00; £?) and let u(t) := (v(t),i(t),dsi(t), w(t), dyw(t)) denote
a solution of (3.3)—(3.5) with the initial value ug := u(0) = (v, @0, i, wo, w}). Recall the Definitions
4.2 and 4.3 and the results of Theorems 4.5 and 4.7 to note that the Hilbert spaces

(5.1) Uy = L2 X L2 x Li x HL x £2,
Us = L2 x L2 Lix HE x HL,

construct, respectively, the phase spaces associated with the weak and strong solutions. Now, for
every t € [0,00), define the mappings

Sw(t) : Uy — Uy, Sy (t)ug := u(t),
Ss(t) : Us — Us,  Ss(t)ug := ul(t).

The existence and uniqueness of solutions given by Theorems 4.5 and 4.7 along with the time-
continuity of solutions given by Propositions 4.6 and 4.8 imply that the above mappings are well-
defined for all ¢ € [0,00). Then, {Sw(t)}te[o ooy a0 {Ss(t)}te[o 00) form semigroups of operators

which give the weak and strong solutions of (3.1), respectively. The following propositions show
that these semigroups are continuous, which also ensures that the initial-value problems of finding
weak and strong solutions for (3.1) are well-posed.

Proposition 5.1 (Continuity of the smigroup {Sw}) The semigroup {Sw(t)}te[o 00) of weak

solution operators is continuous for all g € L?(0, oc; E?)
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Proof. Contintuity of the semigroup with respect to t follows immediately from the continuity of
the weak solutions given in Proposition 4.6. It remains to prove continuous dependence of the
solution on the initial values. Let g and tg be any two initial values in Uy, that give the solutions
u(t) = Sw(t)up and u(t) = Sy (t)ug for all t € [0,T], T > 0. Let u(t) := u(t) — u(t) be the weak
solution with the initial value ug := Gy — Gg. Now, consider (3.3)—(3.5) satisfied by 4 and 4, and
take the inner product of (3.3)—(3.5) in each set with v, d¢i, and dyw, respectively. Subtracting the
resulting two sets of equations yields

(5.2) (@dtv,v)ﬁg + (U,U)E% — (Jli,v)ﬁg
+(Jo(0i" — 0 )WIy + J3(0i" — 00T )W 5, )02 =0,
(5.3) (d7i, dsi) g2 + 2(Tdsi, dyi) 2 + (T2, i) g2 — (YT Jow, dyi) o2
—e(YINJ7(f(0) — f(2)), d¢i) 2 = O,
(5.4) (d?w,dtw)ﬁa + 21/(Adtw, dtw)ﬁgv - %1/2 (Aw,dtw)ggv + 12 (A2w, dt?ﬂ)ﬁ%}
—V*(N*MUJs(f(0) — f()),dyw) 2 = 0.

As in the proof of uniqueness given in Theorem 4.5,

(55) (BT = 00T, 0) g < V2 W]l + olZ + 31257012,
(50" = 01" )T, )03 < /27 [ W lellg + Nellzs + Smoll @l e,

F2 F?
e(YTNJ(£(5) = (). dii)es < |2 + 52| TN max {U_g U_I;} o],

F2
1/2(A2MJ8(f(17) — f(@)),dtw)ﬁgu < 1/2Hdthi% + 3%V20_—}23 tr(A4M2)Hqui%,
E

(J18,0)z < o]

2 12
2t %HZH@’
(X0, i)z < i + BTl
where kg and k; are in the form of (4.17) and (4.18). Now, substituting the above inequalities

into (5.2)-(5.4), adding the resulting inequalities together, and using Gronwall’s inequality yield,
for some a, 3 > 0,

(5.6) [u®)|ly,, < BeT||uolly, ~ for allt € [0,T],
which completes the proof.

Proposition 5.2 (Continuity of the smigroup {Ss}) The semigroup {Ss(t)}te[o 00) of strong

solution operators is continuous for all g € L*(0,00; L?).

Proof. Continwuity of the semigroup with respect to t follows immediately from the time continuity
of the strong solutions given by Proposition 4.8. To prove continuous dependence on the initial
values, consider any two initial values Gy and g in Us and construct the solutions u(t) = Ss(t)ug
and u(t) = Ss(t)tg, t € [0,T], T > 0, for (3.3)-(3.5). Let u:=u—u and A := —A+ I, and take
the inner product of (3.3)—(3.5) for each solutions with v, dyi, and Adyw, respectively. Subtracting
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the resulting two sets of equations gives (5.2), (5.3), and
(65.7) gdildwl, +2v|[Azdulf, +§7d| 0w, + dridi]|Aw]f7,
= v (A"MI5(f(0) — f(0)), dAw) s,

Note that (5.6) also holds since Us C Uy, and since (5.2) and (5.3) remain unchanged, the continuity
of v and i holds.
Now, it follows from (5.7) by integrating over [0,t] that

laawl2y, + 2 [3louly + 2wl ] < (lanl, + o2 [2owly +aul,])]

2 [ (M) = 1(0).d,Au) gy ds.

which, using (2.1), can be written equivalently for some aq, 31 > 0 as

(58) Q(t), duw(t) < mQ(w(0), dyw(0)) + By / (AMLJs(£(5) — £(0)), duAw) 2 ds,

0

where
(5.9) Qw(t), dsw(®)) = [|dew(®) |5, + [ Aw(®)] s -

Integrating by parts in the second term of the right-hand side of the above inequality yields
¢
510) B [ (APMI(F(0) = F(5)).diw) g ds
= B (A*MUIs(f () — f(9)), Aw) gz — By (A*MJs(f (o) — f(20)), Awg) 2
¢
— b /0 (AzMJsds(f(f)) — f(0)), AU))E%]dS.

Next, recalling that sup, (, per |Ovx fx(vx)] < 2\[ by (4.37) and using Young’s inequality we
obtain

(5.11) Br(AMI(f(8) — £(0), Aw) gz, < §]|Aw]|zy + f—g— tr(AMM?)[ol |2,
— 1 (A*MJs(f(70) = £ (00)), Auwo) 3, < 3| Awollz, + f—g—E tr(AMM?) o[z

Moreover,

—B1 (A*MJgds(f (D) — £(2)), Aw) g2,
= — 31 (A*MJg(05 f (0)dsD — 0 f (0)dsd), Aw) 2

< 3| Aw|fz, + 38} APMIS(9pf (0)dst — Do f (0)dsb)| s

= EHAWH% + 367 tr(A*M?) /Q |05, f (0)d st — Oay, f (05)ds0p[*d,
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where, noting that Sup,, . »er 02 fe(ve)| < %—53 by direct computation of the derivative of (4.37),
we can write

|05 f (05)dsTE — Oay, f (08)dstp|*dx = |95y £ (U5)dsvr + (Tpg f(TR) — O f (0))ds0R|?
< 2|95, £ (98)|?|dsvE | + 2|05, f (TE) — O f (08)|*|dsor|?

2
z—g\d vel?+2| sup |05 fe(ve)|| |vel*|dsos?
0g vg(x,t)ER
| Fi > 2 Fp
< Z_2| sE|? + 55— i = op | |dsor .
g R
Therefore, it follows that
2 -~ - 1 2 5% F}23 4712 2
(5.12) — 1 (A*MIsd(f(0) — f(9)), Aw) z < 5[ Awl[, + ga—ztr(A M) | dsv[ 22
piE A\2) 2
+%7UAM| 2 ||v

Furthermore, (3.3) implies that for some ay > 0,

(5.13) Hdsv(s)

s)Hzﬁf> for all s € [0,T7.

2 < 02 (|[o(s)|2s + i) 22 + [[o(s)]]2

v

Now, substituting (5.11), (5.12) and (5.13) into (5.10) and using (5.6), it follows that there exist
some (a,..., 03¢ > 0 such that

b1 /0 t (A*MJs(f (D) — f(9)),dsAw) 2 ds
< %/OtHAwHigjds—i_ﬂz/ot( ; gv 2i)ds

+ 3l wllzg + Bsllellzg + 5l Awollzg + Ballvolz,

+ [illz:

t
<4 [ aulZy s+ sl (1+ ol ) ¢+ Bl ulZ, + §l Aol + ool

Substituting this inequality into (5.8) yields

G149 SQu(), dw(t) / QUu(s). duuw(s))ds + Bs o2, (1+ ol )

+ a1Q(w(0), dyw(0)) EHA“’OH% +56H“0HZW7

where, using Gronwall’s inequality for the function %fot Q(w(s),dsw(s))ds, we can write

[ @t deutsnas < sl (1+ ol ) (¢~ 6+ 1)

+ [1Q(w(0), dew(0)) + 3| Ao, + s[5, ] (" = 1)-
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This inequality along with (5.14) and the definition of Q, given by (5.9), implies that for some
pr >0,

Q(w(t), dyw(t)) < Bret [Q(w(o),dtw(o)) + ool (1 + Huougw)] for all t € [0, 7).

Now, noting that Q(w(0),d;w(0)) = Hw{)Hil + HAwOHZ2 , it follows from the above inequality and
(5.6) that, for some &, 3> 0,

lu(®)]

i, < B [luo

v (1+[uolly, ) for att t € (0,7,
which completes the proof.

Although the spaces Uy, and Us constructed in (5.1) provide the theoretical phase spaces of the
problem for the solutions constructed in Section 4, the evolution of the dynamics of the model is
not biophysically plausible on entire spaces Uy, and Us. As described in Section 3, i(x,t) and w(z,t)
(and also g(w,t)) are nonnegative quantities.In fact, one can construct initial functions i, € £? and
w}y € L2, such that the solutions i(x,t) and w(w,t), despite starting from nonnegative initial values
ig € E? and wg € HL, take negative values over a subset 2~ € Q of positive measure for a time
interval of positive length. In the following propositions, we establish conditions under which the
dynamics of the model is guaranteed to evolve in biophysically plausible subsets of U, and Us.

Proposition 5.3 (Nonnegativity of the solution w(z,t)) Suppose that w € L*(0,T;HL) is
the w-component of an Q-periodic weak solution u(t) = Sy (t)ug of (3.3)~(3.6) and define the set
D, C HL x L2 as

(5.15) Dy = {(wo,wp) € WL 5 £2° wl + vAwy > 0 a.e. in €,
and wo(y) + Oywo(y)(y — x) > 0 for almost every x € Q,y € B(x,t),t € (0,T]}.

Then, for every initial values (wo,w() € Dy, the solution w(z,t) remains nonnegative almost ev-
erywhere in Q0 for all t € (0,T].

Proof. First, note that the weak and strong solutions coincide for v(t) and they satisfy (3.3) and
(3.4) almost everywhere in Q) for allt € [0,T], T > 0; see the proof of Theorem 4.7. Substituting v(t)
into f, we can interpret f(v) in (3.5) as a function f(x,t) := f(v(z,t)) for almost every x €  and
all t € [0,T]. Next, note that, by definitions (3.2) and (3.7), and Proposition 4.6, f € L>®(0,T; L)

and f >0 in Q x [0,T]. Now, replace f(v) in (3.5) by f and scale z by the factor \/gu to obtain

2 + A — A + VA2 — f =0, inQx(0,T],

W =1, O = by, on Q x {0},

where Q = \/ng, and W, g, W), and f denote w, wy, w), and V2PA2MJgf in the scaled domain

Q, respectively. Note that with the new interpretation of f, the above equation is a system of two
decoupled telegraph equations. Therefore, applying the same arguments to each of the two equations
independently, in what follows we assume without loss of generality that the above equation is scalar.
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At@ the problem can be transformed to the initial-value

problem of the standard wave equation given by

Using the change of variable q := e”

. q—Agqg=e ~a in X 9 )
5.16 Oq—Ng=e"Mf R? x (0,T
q =1, 0iq=1w,+vAibg, on R? x {0}.

Here, the extension from Q to R? is done periodically due to the Q-periodicity of the functions. Let
Woe, W, and fe denote, respectively, o, Wy, and f after mollification by the standard positive
mollifier ¢p. € C°; see [8, Sec. 2.6]. Using Poisson’s formula for the homogeneous wave equation in
R?, along with Duhamel’s principle for the nonhomogenous problem [15, Sec. 2.4], it can be shown
that the function

ge(.1) = l][ t[ioe (y) + (9yBoe(y), y — @)ez] + 20 () + vAG0: ()]
o e CRPRNTAE

+%/t(t - s)ze”As][ o) 21 dds
0 B(z,t—s) [(t —s)?%— Hy - ‘/EHW] :

solves the wave equation (5.16) classically for the forcing term e”Ath and initial values wo. and
Woe - . .

The second term in this solution is nonnegative for all t € [0,T] since f, and consequently, f-
are nonnegative on B(x,t) for all x € Q and all t € [0,T]. Moreover, by [8, Theorem 2.6-1] and the
definition of weak derivative we can write

(5.17)

dy

(aywOE(y)7 Yy — x)]Rz = (/ 8y¢€(y - Z)wO(Z)dZ7 Yy — x)Rz
B(y.e)
= (- /B(y’e) D:0:(y — 2)wo(2)dz , y — @)g2
— (/B(y’s) ¢y — 2)0:00(2)dz , y — x)ge
= / D=y — 2)(9:w0(2), 2 — x)gedz
B(y.e)
+ /B(y,e) ¢E(y - Z) (82'11}0(2), Y= Z)]RZdZa

where, using Holder’s inequality and the property fB(O 0 ¢e(z)dx =1, we have

/ ¢E(y - Z) (82'11}0(2), Y — Z)R2d2
B(y.e)

<ol ey, [, oely==)ly ]

y?a

< V| ouito] o=

32



Therefore, it follows that
][ t[woe(y) + (8ywoe(y), y — x)re] q
I N Ak
N ]z | Joe 0y = )[@0() + (Ouito(2). 2 — a)pe]dz V2O e
Bz 12— [ly — al|3] 12— fly — 2]l2.]2
> —ﬂ“@mwo“ﬁgowe for all (g, Wh) € Dy,

where Dy, denotes Dy, in the scaled domain Q. Note that the last inequality holds since the first term

1
in the integration on the right-hand side is nonnegative by (5.15), and t[tz — Hy — xHéz] 2 takes the
average value 1 over the ball B(x,t). Finally, note that Wy (y) + vAwoe(y) in (5.17) is nonnegative
on B(xz,t) when (g, w) € Dy,. Therefore, it follows that

(5.18) ge(z,t) > —\/EHaIwOHEBO e for all (o, W)) € Dy

Now, taking the limits as ¢ — 0, it follows from [8, Theorem 2.6-5] that wo. — o, Whe —
wp, and fo — [ in L*(Q), where Qy := {y € R? :y € B(x,t),x € Q}. Therefore, there exists a

o0

subsequence {6n} convergent to 0, such that Wy, — Wy, wgen — Wy, and f., — [ almost

n=1’
everywhere on Q4 as n — oo [17, Th. 2.80]. Moreover, since (o, W) € WhH™ x L in Dy,
f e L°(0,T; L), and the function (2 — Hy - xHéz]_% is integrable over B(x,t), it follows that
the integrands in (5.17) are uniformly bounded with respect to € by integrable functions over B(x,t).
The Lebesgue dominated convergence theorem then implies that q(x,t) := lim,, .~ ¢, (z,t) exists on
Q and, by uniqueness of the weak solution, is a weak solution of the wave equation (5.16). Now,
letting € = &, — 0 in (5.18), it follows that if (o, wh) € Dy, then q(x,t) > 0 for almost every
ze€Qandallt e (0,T]. This completes the proof since the change of variable W = e Mg and space

rescaling ) = \/gl/_lﬁ do not change the sign of solutions.

Corollary 5.4 (Boundedness of the weak solutions) Suppose g € L*(0,T; L), vg € L,
ip € L3°, i) € L3°, wy € WL, and w)y € L. Then, in addition to the regularities given by

Proposition 4.6, the weak solution (v(t),i(t),w(t)) of (3.3)—(3.6) satisfies
v € CVH[0,TILY), i€ CON[0,THLY),  we L2(0,T; LF).

Proof. The boundedness of w follows immediately from the proof of Proposition 5.3, since under
the assumption wy € WH> and wyy € LY the integrands in (5.17) are integrable and each component
of the weak solution w(t) is achieved almost everywhere in Q as the limit of (5.17) when € — 0,
followed by the space rescaling from Q to €.

Now, to prove boundedness of v, i, and dsi let xg € Q be any Lebesgue point of the initial
functions vy, ig, iy, wo, and g(0). Take the R*-inner product of (3.4) at xo with dyi(wo,t) for every
t € (0,T] to obtain

(A7 g, deing )rt + 2(Ddting, iing Jrt + ([iag, deizg )ra
— e(TFJwaO, dtixo)R4 — e(TFNhf(va), dtixO)R4 = e(TFng, dtixO)R4,
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where vy, (1) := v(T0,1), iz (t) = i(x0,1), Wy, (t) := w(0,1), and gz, (t) := g(xo,t). This equality is
similar to (4.21) in the proof of Proposition 4.4, with E?—inner products being replaced by R*-inner
product, and the approzimate solutions v™, i(™  and w(™ being replaced by Vgos lag, 0Nd Wy,
respectively. Therefore, similar arguments as in the proof of Proposition 4.4 imply that

(5.19) sup <Hdtimo(t)H§§4 + Himo(t)H]?y) < Ky,
t€[0,T
where, with Ky, == HwHiw(o,T;Lw) and for some a1 > 0 independent of zq,
- 7112 2 Ky 2, €19 2 2
ki = HZOHLgO‘FHZOHﬁ;?O"' o HTFJ6H2+7—.(FE+FI)HTPNJ7H2 T

e? 201 112
e L

and Ymin %S the smallest eigenvalue of T'.
Similarly, taking the R%-inner product of (3.3) at x¢ with v, (t) and using the arguments follow-
ing (4.23) in the proof of Proposition 4.4 yields

2
(5.20) S (l[oa ()17 ) < o

where, for some ag, 8 > 0 independent of xg,
Ky = Qg €Xp (ﬂ\/QRiH\IIHQT) (H”()Higo + HiT) )

Now, note that almost every point xg € € is a Lebesque point for the locally integrable initial
functions, and the estimates k, and k; are independent of xg. Therefore, taking the supremum over
all Lebesgue points xg € Q in (5.19) and (5.20) implies v € L>°(0,T; L) and i € WH°(0,T; L)
which, recalling (3.3), further imply v € W2>(0,T;LX). Finally, it follows by using Morrey’s
inequality [15, Th. 5.6-4 and Th. 5.6-5] that v € C11([0,T); £3°) and i € CO1([0,T]; £°), which
completes the proof.

Next, we recall and use the following standard result in the theory of ordinary differntial equa-
tions to establish conditions that guarantee nonnegativity of i(z,t) for all biophysically plausible
values of the input g, that is, for all g € L?(0,T; Dy ), where

(5.21) Dy:={leL:{>0ae inQ}.

Proposition 5.5 (Invariance of the nonnegative cone [7, Prop. L.1.1]) Let {S(t be

)}tE[O,oo)

the semigroup of solution operators associated with the ordinary differential equation
dig(t) = P(q(t)), q(t) eR", te]0,00),

where P : R" — R" is a continuous locally Lipschitz mapping. Then the nonnegative cone R} is
invariant for {S(t)}te[o 00) if and only if P(q) is quasipositive, that is, for every j € {1,...,n},

Pi(q1,...,qn) > 0 whenevr gj =0 and g > 0 for all k # j.
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Proposition 5.6 (Positively invariant region for the solution i(x,t)) Suppose g € L*(0,T;
Dy) and let u(t) = Sw(t)uog be an Q-periodic weak solution of (3.3)-(3.6). Suppose the w-component
of the weak solution, w(x,t), is nonnegative for almost every x € Q and all t € [0,T], T > 0, and
define the set

(5.22) Dy ={(,0)eLIxL;:L>0and ' +TC>0 ae. inQ}.

Then, for every (io,iy) € D;, we have (i(t),di(t)) € D; almost everywhere in Q for all t € [0,T].
An identical result holds for strong solutions u(t) = Ss(t)up of (3.3)=(3.6) with nonnegative w-
component.

Proof. Let b := dyi + T'i and rewrite (3.4) as the first-order system of equations

(5.23) dyi = —I'i + b,
dib = —Tb+ eXYTJsgw + eXYT'NJ; f(v) + eXTg.

Let g € Q be a Lebesque point of the initial functions vo, o, i, wo, and g(0), and define vy, (),
iz (1), Wy (1), and gz, (t) as given in the proof of Corollary 5.4. Accordingly, let by, (t) := b(xo,t) =
dyigy () + Digy (£).

Now, (5.23) implies that the function qu, := (i, bz,) Satisfies the ordinary differential equation
diquy (t) = P(quy(t)), t € [0,T], where the mapping P : R® — R® given by

P(qz,) = Plizg, bzy) = (—Tigy + bzy, =y + € YT Jswy, + e YTNJI7 f(vy,) + € YT gs,)

is Lupschitz continuous. Moreover, note that by assumption we have wy, > 0 and g, > 0 which,
along with the definitions of f, Y, I', N, Js, and J; given by (3.2) and (3.7), implies eXT Jows, (t) >
0, eXYTINJ; f(vg(t)) > 0 and eXTgy,(t) > 0 for all t € [0,T]. Therefore, it follows that P is
quasipositive, and hence, by Proposition 5.5 we have qu,(t) > 0 for allt € [0, T]. This completes the
proof since xq is an arbitrary Lebesque point of the initial functions and almost every points in € is
a Lebesgue point for these functions.

Remark 5.7 (Biophysically plausible set of initial values) Propositions 5.3 and 5.6 ensure
that if g € L*(0,00;D,), where D, is given by (5.21), and the initial values lie in the set

(5.24) Dgio := L2 X D; X Dy,

where Dy, and D; are given by (5.15) and (5.22), respectively, then i(x,t) and w(x,t) always remain
nonnegative at almost every point in ) as they evolve over the time. However, it should be noted
that this does not imply that the set Dpio C Uy s positively invariant, since Proposition 5.3 does
not imply positive invariance of the set Dy,. Therefore, Dpi, cannot serve as a phase space for the
semidynamical system framework of the problem.

In the analysis of next sections, nonnegativity of the solution i(x,t) is essential. Moreover, it
would be of no practical value if we analyze the dynamics of the model out of the biophysical regions
of the phase space. Therefore, we define

(5.25) Dy := {ug € Uy : i(t) ,w(t) > 0a.e. in Q for all t € [0,00),u(t) = Sw(t)uo},

,w(t) > 0ae. in Q for all t € [0,00),u(t) = Ss(t)uo},
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as the maximal closed subsets of Uy, and Us for the initial values of the weak and strong solutions,
respectively, such that ¢ and w initiated from the points in these sets evolve nonnegatively over
time. Note that Dy, and Dy are nonempty since Dpjo C Dy and Dpjo NUs C Ds when g €
L%(0,00,D,). Moreover, Dy, and Dy are closed sets since {Sw(t)}te[o,oo) and {Ss(t)}te[o,oo) are
continuous semigroups, as given by Propositions 5.1 and 5.2. Moreover, it follows immediately from
the definitions given by (5.25) that Dy, and Dy are positively invariant sets. Therefore, endowed
with the metric induced by the norm in Uy, and Us, the sets Dy, and Dy form positively invariant
complete metric spaces and can be considered as biophysically plausible phase spaces of the model,
based on which, we construct the semidynamical systems

(P ASx Oicpg) (P S0} i)

associated with the weak and strong solutions of (3.3)-(3.6), respectively, and investigate their
global dynamics in the remainder of the paper.

6. Existence of Absorbing Sets

In this section, we prove the existence of absorbing sets for the semigroups {Sw(t)} t€[0,00) and

{Ss(t)}, €[0.00) ACtNg O Dy, and Dg, respectively. First recall the following definition of an absorbing
set for an operator semigroup.

Definition 6.1 (Absorbing set |7, Def. 11.2.3]) A set By in a complete metric space D is
called an absorbing set for the semigroup {S(t) :D — D}te[o 00) if for every bounded set X € D
there exists to(A) € (0,00) such that S(t)AB C By for all t > to(B).

Theorem 6.2 (Existence of absorbing sets in Uy,) Assume that g € L>°(0,00;D,) and there
exists 6 > 27;11311 such that

i) %962T%E7max(VAEE)_3 <1,
ii) %062T%17max(yAE1)_3 <1,

where Ypin := MIn{YEE, YEI, V1B, Y1} and Ymax := Max{YEE, YEI, YIE, Y11} are the smallest and largest
eigenvalues of I, respectively. Then the semigroup {Sw(t) : Dy — DW}tE[O 00) associated with the

weak solutions of (3.3)-(3.6) has a bounded absorbing set By. Specifically, consider the functions
Qy : Dy — [0,00) and Q. : Dy, — [0,00) defined by

(6.1) Qulu) = [[@20] 7, +0/dii + 374 7 + §6[|Ti 72 + | dew + §rAw|7,
+ 12 min{6, A, } w7,
Qi (u) = [[ @20y + 0dii + 374 7 + 36(|Ti 7 + | dew + Sv A7,
+ %V2 maX{G,A?nax}HwHil ,
and a scalar € such that

(6.2) max {%GezT%EvmaX(VAEE)_?’, %962T%17max(uAE1)_3} < 29maxé < 1.
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Let Tax := max{7g, 71} denote the largest eigenvalue of ®, and Ayiy := min{Agg, Agr} and Apax =

w

max{Agg, Ag1} denote the smallest and largest eigenvalues of A, respectively. Let p2, := Bw yhere

Qi 7
(6.3) Q1= min {%Tn_l;x, (%’y;lix — 5) ’yﬁlin, R/ (H’ymin — 27’;11211) , %VAmin,

—2 . 3 2 e2 A2 3 2 e2 An2
VA pay Min{Apy — ngEEv A — S;B_ETEI}}v

2
(64)  fui= —

€
g [ FI TN Tl

|+ 2000 r(adN2),

Then, for all p > py, the bounded sets By, = {u € Dy : Qy(u) < p2} are absorbing in Uy,. More-
over, for every bounded set & C Dy, there evists R > 0 such that Q. (ug) < R? for all ug € B, and
S(t)#B C By for all t > tw(A), where

(6.5) fo(B) = tu(R) = max 40, - log — 2
) w =ty ‘= max o ogp2_pgv.

Proof. First, taking the inner product of (3.3) with v yields

ooy

£t el

20— (Jii,0) 2 + / (0T Jy + 03TV T5) dz = 0.
v Q

The integral term in this equation is nonnegative in Dy for all t € [0,00); see (3.7) and (5.25).
Therefore, dropping the integral term and using Young’s inequality yields, for every e1 > 0,

1
(6.6) d[|@20]|7s < —2(1 = &1)][o]|7, + E—lHiHig
_ 1 1 )
< 200 = 0@l + Tl

Next, let b:= dyi + 3T and rewrite (3.4) as
deb + 3T+ 1T2% — eYTJgw — eXYTNJ7 f(v) = eYTg.
Tuking the inner product of the above equality with b yields
B [BlI 7 + 3 (U0 b) ez + [T 7 + |74 .
— e(YTJgw,b) 2 — e(YTNJ7 £ (v),b) 22 = (YT, b) 2.

Note that

(T,6) 2 2 Yond [ TB 2+

I0il1Z > minl 7] 2
and, using similar arguments as in the proof of Proposition 4.4, it follows that for every ea, 3,4 > 0,

(T, b)er < eal[T0 + [T

YI'N 2, e 2 2
6( J?f(v)yb)ﬁ? < 53HFbH£$ + 4—€3(FE + FI)HTNJ7H27

2
e(YTy, b)ﬁ? < €4HFbHig + IEHT‘EHgHif
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Therefore,
67 [ + HITiIE] < - (ke — 2(ea + 25+ 20) [70]2 — a2
e? 2 e? 2 e 20 112
bl ¢ U+ DTN Y]
Next, let q := dyw + SvAw and rewrite (3.5) as
(6.8) dig + 3vAq — 312 Aw + $2N%w — VAP Mg f(v) =
Taking the inner product of this equality with q yields
sillalz + 5vA2alZ + 3 d|owlz + 300 AR 0w Gy + A Aw]Z,
+ 31/3HA2wH£2 — v} (A*MJs f(v),q) g2 = 0.
Using similar arguments as in the proof of Proposition 4.4 we can write, for every €5 > 0,
(AzMjgf( ), qQ)c2 <E5HA2qH£2 5\Q]F%tr(A3M2),
and hence, it follows that
69l + 20wl +12rel]
< —u(1 = 2wep)|abal2, —su(Badoully + d2atull,)
2
v 2 32

Now, set ey = 2 in (6.6), set e3 = e4 = £(Vmix — 26) in (6.7) with € == 3, and set 5 = & in

(6.9). Then, multiplying (6. 7) by 6 > 0 and adding the result to (6.6) and (6.9) yields

i Qu < 5 Tmax =0 (37 = ) T8l z2 = § (0rmin = 232) [Tl — 5w [A %l
—3y< 2HA28wH£2 + 3%( A3——9iJ6TT2J6]w w) 2 >+ﬁW,
where By is given by (6.4) and
610)  Qulw) = |22l gy + 00l + 0ITillZs + lall gy + 302 0wllzy, + 50 Awly

Note that for 6 > 2’yn_]§’n we have H’ymin—Q’yI;izn > 0 and for range of values of € given by (6.2) we have

max —€ > 0. Moreover, Assumptions (i) and (ii) along with (6.2) ensure that A — gfg JE2J >

0. Therefore, with the decay rate oy, given by (6.3),

(611) dth(u) < _anw(U) + B,
and hence, using Gronwall’s inequality [48, Sec. I11.1.1.3.],
(6.12) Qy (u(t)) < Q3 (u(0))e™ ™" + pf (1 — e ™),
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where Qy, and Qf are given in (6.1) and limsup,_, .. Qy, (u(t)) < pg = g—: Now, since the mapping
(6.13) (0,4, 8, w,w') — (D20, 10274, 02 [if + 3T], Lu[max{6, A2, Hzw, v + 3vAw)

is a linear isomorphism over Uy, for every bounded set 98 C Dy, there exists R > 0 such that
Q& (ug) < R? for all ug € PB. Hence, it is immediate from (6.12) that Sy (t)B C By for all
t > tw(A), where ty(A) is given by (6.5).

Theorem 6.3 (Existence of absorbing sets in D) Suppose the assumptions of Theorem 6.2
hold, namely, assume g € L>°(0,00;Dy) and there exists § > 27;5;1 such that the biophysical param-
eters of the model satisfy

i) §9€2T]%3E7max(VAEE)_3 <1,
ii) %062T%17max(l/AE1)_3 <1,

where Ymin ond Ymax ore the smallest and largest eigenvalues of I', respectively. Then the semigroup
{Ss(t) : Dy — Ds}te[o 00) associated with the strong solutions of (3.3)-(3.6) has a bounded absorbing

set Bs. Specifically, consider the function Q5 : Ds — [0,00) defined by

(6.14) Qs (w) = [|@70]|7, +6[|dei + 3T

+ 00| g2 + [[dew + SvAwl]fy,
+ 12 mind6, A2y, }| (—A + Dw|Z,

and denote by Anmin and Amax the smallest and largest eigenvalues of A, respectively, and by Tymax
the largest eigenvalue of ®. Let p? = 2B yith

Qs

(6.15) Qs := min {% Trna (%’y;l?llx - E) ’yﬁlin, 301 (H’ymin - 2’Yn_112n) , VA in,

37/A 2 mln{A%E 31/3 TEE7A 31/3 TEI}}

max
616)  fi= [0+ FDONL + Tl )]

+ 202 [32152 ZE tr(ATM?)np5, + |Q[FE tr(ATM?) <é + j—zﬂ ;
where 1 is a positive constant, p2, = g—"; s the same constant given in Theorem 6.2, the scalar €
takes values within the same range given by (6.2), and
(6.17) £1 1= syasmin{6, AZ; H(1+ |3vA — aIH ) €2 := 1= min{6, A2 }.

Then, for all p > ps, the bounded sets By := {u €Ds:Q: (u) < p2} are absorbing in Ds.

Proof. Let A:= —A+ I and take the inner product of (6.8) with Aq to obtain

1 1
saellalliy + vllAzallzy + fPAow]z, + dAToull, + gutde Al

+ %V?’HA%wHib —? (AQMJgf(v),Aq)EgU = 0.
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This equality, along with the inequalities (6.6) and (6.7) derived in the proof of Theorem 6.2 and
the same values of €1,...,¢e4 therein, implies that

d:Q, < =0 (37max — ) 11022 = 3 (Ormin — 2vh) |71 72 — v A2 a3,
0 2
- 3v ( 2HA28wHH1 + }l 2( [A?’ — _VTeE 6TT2J6} ’w,w)H%U>
+ 207 (A°MJs f (v), Aq) 2 + B,
where

Qs(u) :== H(I)%U 2
4620 2 2 2 2 2
5= 1 [0l + BN+ [Tl )]

Ymax —

s + 011l + 3Ol + lallzg, + 302 [0wllzgy, + 3 Awllry

and € takes values within the range given by (6.2). Now, using similar arguments as in the proof of
Theorem 6.2, it follows from Assumptions (i) and (ii) with 0 > 2’yn_]§’n that

(6.18) deQs(u) < —asQs(u) + 207 (A*MJs f (v), Aq) 2 + 3,

where the decay rate as is given by (6.15). Then, Gronwall’s inequality [48, Sec. II1.1.1.3.] implies

¢
(6.19) Qs(u(t)) < Qs(u(0))e ! + 2u2/ (AQMJgf( ), Aq) 2 e (s 4 aﬁ (1—e ).
0 s
Replacing q := dyw + %VA’LU wn the integral term in the above inequality and integrating by parts
yields

t
/ (AzMJgf(U), Aq)ﬁgv e (5=t dg
0

t t
B _/ (A*MJsdsf (v), Aw) gz e~ ds + / (A*MJg f (v), (3vA — asT) Aw) g2 e®* s
0 0

+ (A*MJs f(v), Aw) 2 — (A*MJs f(v0), Awp) gz e~ .

Nexzt, noting that dsf(v) = 9, f(v)dsv and sup,, (, 1yer [Ovs fE(VE)| < 25—}3 by (4.37), it follows that

for every e1,e9 > 0,

t
/ (A2MJ8f(v), Aq)EZ e g
0

t
<er (1 [on —aut ) [ auzy e 0as 4 TR w ) [ faal e

1 1
+ EQHAWHQU + HQIFE tr(A'M?) <a—€1 + €2> (A*MJs f (vo), Awg) gz ™"

Moreover, it follows from Theorem 6.2 that for every bounded set 8 C D there exists a time ty(A),
given by (6.5), and a constant n > 0 such that Hdtv(t)Hi2 < np2 for all t > ty(AB). Therefore,
using the estimate (5.13) for t < tw(%#) we can write

t tw (%) 2 2
0200 [ |dele0ds < [T duol[Fyen e Ods B < (et 4 T,
0 Y 0 v s

Qg
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where, for some a > 0,

ko(AB) = a/OtW(E%) <Hv(8) 2

Now, using the above estimate for the integral term in (6.19), with €1 and 9 given by (6.17),
yields

2+ HZ(S)Hif + ||v(s)| i2 i S)Hi;) e®*ds < o0.

Bs ot
_Seas s

A

(6.21) Qy (u)e™" < taq /t Qs (w)e**ds + k(A) +
0

where By = 3 + 202 {325 tr(A*M2)np2, + 1|Q|F?, tr(A4M2)(é + ?_25)] as given in (6.16), Q5 (u)
is given in (6.14), and

2
K(B) = Q: (u(0)) + 20/° [321 e L tr(A"M?)ro(2) — (A*MJsf (vo), Awo) 2, ] - aﬁ,

S

QJ (u

ez Ololls + 19HFZH£2+HQHH1 + 2 max{6, AL H w7,

Neat, using Gronwall’s inequality for the function fg Q3 (u)e**ds in (6.21) gives

/Ot Qg (u)e™*ds < %(115 [ﬂ(@) <e§o‘st — 1) +§—: (east ezast>:| 7

which, along with (6.21) implies

(622 Qr () < (@)e o 4 2 (1— femdot),
where limsup, . Q; (u(t)) < p? := 2%,

Finally, considering the linear isomorphism (6.13) over Us, it follows that for every bounded set
B C Ds there exists R > 0 such that k(B) < R? for all ug € B. Therefore, (6.22) implies that
Ss(t) B C By for all t > ts(A) and some ts(A) > 0, which completes the proof.

Note that an estimate similar to (6.5) given in Theorem 6.2 can be also obtained for t5(#) in
the proof of Theorem 6.3. However, this would be of limited practical value since the bound (6.20)
is very conservative for times t < ty(4).

Remark 6.4 (Conditions on parameter sets) For the range of values given in Table 1, the
mazimum value that the left-hand side of the inequalities in Assumptions (i) and (ii) of Theorems
6.2 and 6.3 may take is 39.4083 6, which is achieved when Ygr = 2, Yrr = 2, Agg = 0.1, Ag; = 0.1,
v = 100, and Ymax = 1000. Assumptions (i) and (it) then require that 6 < m = 0.0254.
Moreover, Theorems 6.2 and 6.3 allow for 0 > 27mf’n > 0.002, wn accordance with Table 1. This
implies that—for the entire range of values that the biophysical parameters of the model may take—
the conditions imposed by Theorems 6.2 and 6.3 are satisfied at least for any 0.002 < 6 < 0.0254,

and the model (3.1) possesses bounded absorbing sets as given by these theorems.
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7. Existence and Nonexistence of a Global Attractor

In this section, we investigate the problem of existence of a global attractor for the semigroups
{Sw(t) : Dy — DW}tE[O,oo) and {Ss(t) : Ds — DS}tE[O,oo) of solution operators of (3.3)-(3.6). First,
we recall the definition of a global attractor and a widely used theorem for establishing the existence
of a global attractor.

Definition 7.1 (Attracting set |7, Def. I1.2.4]) A set & in a complete metric space D is
called an attracting set for a semigroup {S(t)}te[o 00) acting in D if for every bounded set B € D,
distp(S(t)%, &) — 0 as t — co. Here, distp(¥, ) := supyey infrer g — hHD is the Hausdorff
distance between the two sets G, 75 C D.

Definition 7.2 (Global attractor [7, Def. I1.3.1]) A bounded set .o/ in a complete metric space

D is called a global attractor for a semigroup {S(t)}te[o 00) acting 1n D if it satisfies the following

conditions:
i) o is compact in D.

ii) & is an attracting set for {S(t)}te[o 00)’

iii) o is strictly invariant with respect to {S(t)}te[opo), that is, S(t)of = </ for allt € [0,00).

Definition 7.3 (Asymptotic compactness [7, Def. I1.2.5]) The semigroup {S(t)}te[o 0o) €t

wng in a complete metric space D is called asymptotically compact if it possesses a compact attracting
set # €D.

Theorem 7.4 (Global Attractor |7, Th. 11.3.1]) Let {S(t)}te[o 00)
pact continuous semigroup in a complete metric space D possessing a compact attracting set & € D.
Then {S(t has a global attractor o/ C & given by o/ = w(X), where w(A") is the w-limit
set of A .

be an asymptotically com-

)}tE[O,oo)

7.1 Challenges in Establishing a Global Attractor

Continuity of {Sw(t)}te[o,oo) and {Ss(t)}te[opo), as required by Theorem 7.4, is established in Propo-
sitions 5.1 and 5.2, respectively. To prove asymptotic compactness of a semigroup {S (t)} t€[0,00)
acting in D a general approach is to show first, that the semigroup possesses a bounded absorbing
set and second, that the semigroup is k-contracting, meaning that lim; ., x(S(t)%#) = 0 for any
bounded set & € D, where k denotes the Kuratowski measure of compactness [35,53]. An effective
way to establish the later property is through a decomposition S(t) = Si(t) + Sa2(t) such that for
every bounded set #8 € D the component S;(t)% converges uniformly to 0 as t — 0, and the
component So(t)Z is k-contractive or is precompact in D for large t [44,48].

As the first step towards proving the asymptotic compactness property stated above, existence of
bounded absorbing sets for {Sw(t)}te[o,oo) and {Ss(t)}te[o,oo) is established in Theorems 6.2 and 6.3,
respectively. However, it turns out that the x-contracting property is hard to achieve for the model
(3.3)—(3.5) with parameter values in the range given in Table 1, due to the lack of space-dissipative
terms in the ordinary differential equations (3.3) and (3.4), the nature of nonlinear couplings in
(3.3) and (3.4), and the range of values of the biophysical parameters of the model.
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The uniform compactness of the component S5(t) in the decomposition approach stated above is
usually verified by establishing energy estimates in more regular function spaces and then deducing
compactness from compact embedding theorems. This approach, although successfully used in [36]
to prove existence of a global attractor for a coupled ODE-PDE reaction-diffusion system, is not very
promising here. In [36], the ODE subsystem is linear and the energy estimates in a higher regular
space are achieved by taking space-derivatives of the ODE’s and constructing energy functionals
for the resulting equations. As seen in the proof of Theorem 6.2, the nonnegativity of i(x,t) is a
key property that permits elimination of the sign-indefinite quadratic term in the energy equation
of (3.3), which results in the energy variation inequality 6.6. This nonnegativity property, however,
is not preserved in the derivative or any other variations of i(x,t), leaving some sign-indefinite
quadratic terms in the analysis. Moreover, it can be observed from the range of parameter values
given in Table 1 that the sign-indefinite nonlinear terms that would appear in the energy equations of
any variations of (3.3) and (3.4) have significantly larger coefficients than the sign-definite dissipative
terms. This makes the analysis challenging to balance the terms in the energy functional to absorb
the nondissipative terms into dissipative ones. Finally, the nonlinear terms appearing in (3.3) and
(3.4) do not satisty the usual assumptions, e.g., as in [13], that enable shaping the energy functional
to eliminate the nondissipative terms that would otherwise appear in the equations.

Some other techniques are available in the literature to avoid energy estimations in higher regular
spaces. In [35], for instance, the notion of w-limit compactness is used to develope necessary and
sufficient conditions for existence of a global attractor. This is accomplished by decomposing the
phase space into two spaces, one of which being finite-dimensional, and then showing that for every
bounded set 8 C D the canonical projection of S(t)% onto the finite-dimensional space is bounded,
and the canonical projection on the complement space remains arbitrarily small for sufficiently large
t > tg, for some tog = to(#) > 0. These decomposition techniques, however, rely on the spectral
decomposition of the space-acting operators to construct the desired phase space decomposition.
Such operators do not exist in the ODE subsystems (3.3) and (3.4) in our problem.

7.2 Nonexistence of a Global Attractor

As discussed in Section 7.1, establishing a global attractor for (3.3)-(3.5) is a challenging problem.
In fact, in this section we show that there exit sets of parameter values, leading to physiologically
reasonable behavior in the model, for which the semigroups {Sw(t)}te[o 00) and {Ss(t)}te[o 00) do

not possess a global attractor. We first use [13, Prop. 4.7] to prove the following theorem giving
sufficient conditions for noncompactness of the equilibrium sets of (3.3)-(3.5) in Uy, and Us.

Theorem 7.5 (Noncompactness of equilibrium sets) Suppose g is bounded and constant in
time, that is, g(x,t) = g(x) for all (z,t) € Q x [0,00) and g € L°. Let ue = (Ve, ie, 0, we, 0) be
an equilibrium of (3.3)-(3.5) such that ve € L, ic € L, and w. € H2. Define the mapping
P=(P,,P): L x LX — L XL as

(7.1) P,(v,4) = v — Jyi + Jovi T Wy + J3vit W T,
Pi(v,i) == (eX)"'T% — NJ; f(v) — g,

and let A := —%A + A%I. Assume that the following conditions hold:

i) Agg and Agr take the same values, that is, A = Agplaxo = Agrlaxo.
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ii) There exists (vo,ig) € L3 x L such that

esg,ﬂselnf H Ve(),d0(x)) — (vo(x),io(x))HOO >0

and
(7.2) Py (vo,ig) =0, P;(vo,i0) = Pi(ve,ie)-
iii) Oy,5) P(Ve,ic) and O, ;) P(vo,i0) are nonsingular almost everywhere in ).
iv) There exists o > 0 such that, for every b= (by,b;) € L3° x L3, the system of equations

(73) 8(v7i)Pv(Ue, Zo)¢ = by,
Doy Prler i) — Ty A" APNLIS0, [ (1) = by,

has a unique solution ¢ = (¢y, ¢;) € L3 X L that satisfies

(7.4)

Then, for a measurable partition 2 = QU Qo and

(75) V1= Ve XQ, T VOX Q> 1= ieXQe + Z’OXQ()y
the following assertions hold:

I) For every e > 0 there exists § > 0 and an equilibrium u* := (v*,7*,0,w*,0) of (3.3)—(3.5)
such that
[ (v*, %) — (17,5)HL00X£90 <e, whenever |Qy| < 0.

IT) The equilibrium sets of (3.3)~(3.5) are noncompact in Us and Uy, .

Proof. First, we show that the system of equations

(7.6) 0w,y Po(0,9) = by,
a(vz (U Z)qb J6 1A2NL]S8 f( )¢v = bZa
has a umque solutzon ¢ € L X LX for every b= (by,b;) € L x L5°.

Let ¢(0 (qb QS(O) be the solution of (7.3) for a gwen b e £°° X L and construct an

approzimate solution for (7.6) of the form ¢(1) = ¢(©) +¢r , where qbr (qbrv ) r, ) 1s the unique
solution of

(7.7) w1y P (v0,750) 8 = (O(.i) P (Ve ie) — Oty P(v0,10)) 6V xa

Note that by Assumption (i) the unique solution ngl) exists and belongs to L° x L. The approz-
imate solution ¢V solves

8(” Z)P (77 E)é(l) = b’l)7
a(vz ( )¢(1 Je A~ 1A2MJ88 f( ) =b; _|_b(1)
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where b = (0, bg)), with
(78) b = Jg AT AU (9 (ve) = B (10)) 67 = 0, (10)02 ] X,

s the remainder resulting from the approximation error in oW,
Now, note that by Assumption (iv) there exist oy := o > 0 such that

(7.9) |61

Loxre S o[ LoxLe

Moreover, since by Assumption (i) we have (vo,ig) € L° x L5, it is immediate from the definition

of P, and P, given by (7.1), that O, ;P (vo,i0) is bounded. This, along with Assumption (iii) and
(7.9), implies that the solution ¢§1) of (7.7) satisfies

(7.10) H‘bgl)Hﬁgocho = ng(b(O)‘

Looxce S o [b] L3ox Lo
for some (1,1 > 0.
Next, note that since A~' : L2 — H2 is a bounded operator and f is smooth, the definition of

bgl), given by (7.8), implies that bgl) € H2. Moreover, it further implies by the Sobolev embedding

theorems that bﬁl) S C’S;fr‘(ﬁ, R?) for all A € (0,1) and, in particular, there ewist Ca,...,(s, 31 > 0
such that

112z < llb g, < s (116”]

< 51\90‘%Hbucgoxﬁ;?°'

oot

) <Gl

Lawp2 S SNk H¢(O)Hzg<>x£;?°

Now, form =2,3,..., let ¢™) := p(m=1) 4 Qng), where ¢§m’ s the unique solution of
a(v,i)P(U07i0)¢§m) = bﬁm_l)XQO'

It follows wmmediately that, for some n > 0,

(7.11) 68 oo < ml[BI™ Y| m=2,3,....

[oeh]
LPXLS

Moreover, ¢§m’ solves the system of equations
8(v7i)PU(Q_}’E)¢(m) = by,
wyiy Pi(0,1)9™) — T A7 APMJgd, f ()™ = by + b,

where
™ = Je AT APMIs0, f (v0) ™ X, M =2,3,. ...

The remainder bgm) = (0, bgﬂ)) satisfies, for some (g,(7,(s, 3 > 0,

10 e < Gollbl™ [y, < ol g r < G120 [0 | e e

SB\QO\%|{b§m_1 m=23,...,

)HLgOXEfO’
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which, letting k = ﬂ]QOI%, implies

15| o < B1]92] 25| m=23,....

ez 18/l o 2o

Now, let Q| < 8, 6 > 0, and choose & such that k < 1. Note that 3, and consequently, the
choice of 0 and the value of k do not depend on b and the specific form of the partition Q = QU Q.

Therefore, it follows that Hbgm)Hﬁwxzw
for (7.6) when |Qq| < 6. Moreover, (7.9), (7.10), and (7.11) imply

— 0 as m — oo, and hence, $(™ converges to a solution ¢

m
LEXLX + Z “¢El)|lﬁg°x£f°
=2

m
ag +ag + 7751|QO|% Z,{(l—Q) HbHLg°x£$°’
1=2

18 g oo < 116

o

IN

and hence, taking the limit as m — oo, there exists & > 0 such that

(7.12) 9|

ceoxee < )

LPXLX"

To prove the solution constructed above for (7.6) is unique, first note that by Assumption (i) the
operator A becomes a scalar operator given by A = (—%A + A%EI). Then, considering the structure
of the matriz parameters given by (3.7) and reinspecting the expanded form (3.1), the system of
equations (7.6) can be transformed to a system composed of five algebraic equations and one partial
differential equation by pre-multiplying the second equation in (7.6) by the elementary matriz

1 0
_ Mgr 1 O2x2
Mgg
O2x2 | Jox2

This follows from the fact that the scalar operator (—%A+A%EI)_1 acts only on one of the unknowns,
namely, ¢y, . Now, since 8(v7i)P(ﬁ,f) is nonsingular by Assumption (i11), ¢; and ¢y, can be uniquely
determined with respect to ¢uy, by elementary algebraic operations. Consequently, (7.6) is reduced to
a scalar partial differential equation of the form

p(@,g)%E - (_%A + A%JEI)_lA}%JEMEEavEf(Q_}E)%E = il’
where h € L% (Q,R) is given by the same elementary operations on b and p(0,17) is nonzero almost

everywhere in €, since elementary operations do not disrupt the nonsingularity of 8(1,,2-)1:’(17,;).
Neaxt, dividing by p(v,1), the above equation can be written as

(7.13) (I = K)oy, = h,

where K = p(0,1) ' A rMpg0y, f(08)(—3A + AR D)™t and h = p(0,7) " h. The operator K :
Lfmr(Q,R) — Lgcr(Q,R) is linear, self-adjoint, and compact by the Rellich-Kondrachov compact

embedding theorems [8, Th. 6.6-3]. The existence of solutions of (7.6) proved above guaranteers
the existence of a solution ¢y € L. (S2,R) for every h € LS. (2, R), which implies, LSS (2, R) C

per per per

Range(I — K). However, Range(I — K) = Kernel(I — K*)* = Kernel(I — K)* by Fredholm
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alternative [15, Th. 5, Appz. D], and hence, Lo (2, R) N Kernel(I — K) = {0}. This proves the

per
uniqueness of bounded solutions of (7.13), and consequently, the uniqueness of solutions of (7.6)

for every b= (by,b;) € L° x L®.
Now, to prove Assertion (I) note that since ue := (Ve, ie, 0, We, 0) is an equilibrium of (3.3)-(3.5),
we have

(7.14) Py(veyie) =0,  Pi(ve,ic) = Jowe, we = AT'A*MJIgf (ve).
We seek an equilibrium point u* := (v*,i*,0,w*,0) such that
V=04 ¢y, iF =1+ ¢,
where ¢ = (¢n, i) € L x L is a small corrector function that satisfies
(7.15) P,(v*,i*) =0, Pi(v*,i*) = Jow*, w*=A"TA2MJgf(v*).
Note that (7.2), (7.5), and (7.14) imply
Py(0,i) =0, Pi(0,1) = Jowe, Ve =70 — (V9 — Ve)Xp-
Therefore, it follows from (7.14) and (7.15) that
(T16)  Pu(0+ 6uri+ ) — Po(5,7) = 0,
Pi(T+ ¢u,i + ¢i) — Pi(0,7) = JeAT A*MIg(f(0 + by) — (7 = (v0 — ve)xap)),

which, by the implicit function theorem [8, Th. 7.13-1], has a unique solution ¢ € L x L3 since
(7.6) has a unique solution in L3° x L for every b € L x L3°, as proved above. Moreover, it is

immediate from the definition of the Fréchet derivative of the mappings P; and P, that the solution
of (7.16) is arbitrarily close to the solution of (7.6) with

b:= (0, Je A" A Mg, £ (7) (vo — ve)) X%

provided it is sufficiently small, which is ensured for small |Q| since < ﬁ|Qo|% for some

(L s
B> 0. Therefore, (7.12) implies that Assertion (I) holds for some § = §(¢) < 6.
Finally, to prove Assertion (11), let

(7.17) €= %eiseiélf |(ve (), ie(@)) — (vo(x),i0(2))|| ;, > 0

in Assertion (I) and let 6 = d(g) > 0 be the corresponding bound on the size of the partitions that
satisfies the result of Assertion (I). Note that € exists by Assumption (ii). Moreover, let 4 (Q)
denote the set of all measurable subsets of ) and define

P5(Q) 1= {(Qe, ) € M(Q) x A(Q) : Qo = Q\ Q, ] <6}

Let ©5(Q) C P5(Q) such that for every 0 = (Qo, Q) € O5(Q) and § = (%, Q) € Os5(Q) we
have Qo A Qo] > $0. Note that ©5(Q) is an uncountable set that can be viewed as an index set
enumerating all measurable partitions Q = Q¢ U Qq, |Qo| < 6, which are distinct in the sense of
measure by a factor of at least %5.
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Now, it follows from Assertion (I) that, for every 6+6¢ Os(Q2), there erist equilibria uz =
(vg,15,0,w5,0) and uy := (vy,i4,0,wy,0) such that

ess sup | (vs(x),i5(x)) — (vo(x),io(x))Hoo <e,
2€(QeNQo)

esssup [|(v(x),45(x)) = (ve(@), i (2))]| , <&
x€(QoN2e)

esssup || (vg(2),ig()) — (ve(),ie))|| o, <€
z€(QeN0)

ess sup H(v(;(x),i(;(:n)) - (vo(:n),z'o))Hoo <e.
x€(QoNe)

Therefore, noting that Qo A Qg = Qo N Qe) U (QeN Qo) and recalling the definition of € given by
(7.17),
ess sup H(vé,ig) — (vé,ié)Hoo > e,
(EG(Q()AQQ)

which further implies

105 78) = @Wgo i) 2z 2 100 & 0l esssup [|(vgg) = (v5:39) |, > (36)%e.
¢ z€(QoAQ0)

Since 6 and 6 are arbitrary, it follows that the set £ := {u9}6685(ﬂ) composed of the equilibria ug

constructed as above is an uncountable discrete subset of the equilibrium sets of (3.3)—(3.5) in Us
and Uy,. This completes the proof.

Remark 7.6 (Alternative assumptions for Theorem 7.5) According to the proof of Theorem
7.5, some of the assumptions of this theorem can be relazed or replaced by alternative assumptions
as follows:

o Assumption (1) is used to prove the uniqueness of solutions of (7.6). Without this assumption,
the operator A is not a scalar operator and (7.6) cannot be reduced to a scalar partial differen-
tial equation using elementary algebraic operations. The system of PDE’s arising in this case
would not be self-adjoint, and hence, application of the Fredholm alternative would not im-
mediately imply uniqueness of solutions. However, an alternative assumption to Assumption
(i) can be made on the adjoint of the operator representing the system of PDE’s such that it
still ensures uniqueness of solutions of (7.6) deduced from the Fredholm alternative. We avoid
this unnecessary complication since the fiber decay scale constants Agg and Agr are always
assumed to be equal in the practical applications of the model [5].

o In Assumption (ii), it is sufficient to have essinfye s ||(ve,ic) — (vo,io)Hoo > 0, where 2
is any measurable subset of Q with positive measure. Correspondingly, it suffices that the
nonsingularity in Assumption (iii) holds almost everywhere on an open subset % > Z  of Q.
In this case, the proof is modified by restricting Ps(2) to its subset consisting of partitions
with Qo C 2. The index set ©5(2) remains uncountable, and the noncompactness result of
the theorem holds with no change.
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Table 2: A set of biophysically plausible parameter values for the model (3.1) for which Theorem
7.5 implies nonexistence of a global attractor |5, Table VI, Col. 2|. The parameters ggg, Jr1, JrI,
and gy are, respectively, the mean values of the physiologically shaped random inputs ggg, gg1, 9ErI,
and g1 used in [5].

Parameter B TI Veg Vi Vi Vi VEE VEI
Value 11.787x10=3  138.25x10=3 61.264 51.703 —7.127  —12.679 816.04 261.29
Parameter VIE I TeE TEr T T NeE Ng1
Value 219.09 40.575 0.92695 1.3012 0.19053  0.94921  3893.0 3326.8
Parameter Nig Nir v Agr, Ar1 Mg Mg Fg Fr
Value 839.39 682.41 101.78 0.96545 4013.5 1544.3 266.44  300.65
Parameter LB 1 OE o1 JEE JEL JIE g
Value 30.628 19.383 5.6536 3.3140 83.190 6407.5 0 0

Remark 7.7 (Nonexistence of a Global Attractor) Suppose that the assumptions of Theorem
7.5 hold for an input g and an equilibrium wue that further satisfy ic,we > 0 almost everywhere
in Q and g € Dy, where Dy is given by (5.21). Note that ue then belongs to Ds. Then, the
equation Pj(ve,ic) = Jewe in the equilibrium equations (7.14) implies that P;(ve, i) > 0, and hence,
Pi(vo,i9) > 0 in (7.2). Therefore, it follows from the definition of P; given by (7.1) that every
solution iy of (7.2) is positive almost everywhere in Q. Then, by definition of (v,1), given by (7.5),
all equilibria u* constructed by Assertion (I) of Theorem 7.5 satisfy i* > 0 almost everywhere in
Q when 0 is sufficiently small. Also, the equilibrium equations we = A~'A’MJg f(ve) and w* =
ATYA2MIg f(v*) imply that

l” = wel gop < Bal|w” = ey < Bll0" = vel| e
‘Cw HU} ‘Cv

for some 8 > 0, and hence, w* > 0 almost everywhere in ), when § s sufficiently small. Therefore,
Assertion (1I) of Theorem 7.5 ensures existence of a biophysically plausible noncompact set of equi-
libria £ C Dy C Dy. This, in particular, implies that in the case where the assumptions of Theorem
7.5 are satisfied for some ue and g as given above, the semigroups {Sw(t) : Dy — Dw}te[o 00) and
{Ss(t) : Dy — Ds}te[o 00) OT€ not asymptotically compact, and hence, they do not posses a global
attractor.

The assumptions of Theorem 7.5 are relatively straightforward to check for the space-homogeneous
equilibria of (3.3)-(3.5). Consider the set of values given in Table 2 for the parameters of the model,
which are suggested in [5, Table VI, col. 2| as a set of parameter values leading to physiologically
reasonable behavior in the model. The parameters ggg, grr, ge1, and g are the mean values of the
physiologically shaped random signals used in [5] as the subcortical inputs ggg, gr1, gr1, and g,
respectively. Here, we set g(¢,z) = (Jgg, gr1, gr1, gir) for all x and ¢, and check the assumptions of
Theorem 7.5 for a space-homogeneous equilibrium of (3.3)-(3.5).

Assumption (i) holds with Agg = Agg = 0.96545, as given in Table 2. Solving the equations
Py(ve,ie) = 0, P;(ve,ie) = Jswe and we = MJg f(ve), a space-homogeneous equilibrium is calculated
as

ve = (1.9629,6.5150), i, = (5.2552,100.2372,2.4493, 53.5665), w. = (821.7136,316.1760).
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Note that the numbers given here should actually be regarded as constant functions over €. As-
sumption (ii) then holds by finding a solution (vg, o) # (Ve, %) for (7.2) as
vo = (10.9417,7.7148), o = (25.9005,177.5837,4.0757,89.1352).

Assumption (iii) also holds with the following nonsingular matrix-valued functions

1.4294 0 —0.9680 0 1.2754 0
0 7.1635 0 —0.8740 0 1.5138
Bro o Plun i) = —199.2222 0 323.8625 0 0 0
(va) 7 e fe —170.2472 0 0 73.8727 0 0
0 —440.3409 0 0 423.0237 0
I 0 —357.9898 0 0 0 15.7254 |
1.9946 0 —0.8214 0 2.5352 0
0 11.4648 0 —0.8508 0 1.6085
0o Pluniy) = —1858.395 0 323.8625 0 0 0
(v,5) 7 170,70 —1588.109 0 0 73.8727 0 0
0 —730.7260 0 0 423.0237 0
I 0 —594.0680 0 0 0 15.7254 |

To check Assumption (iv), note that for every b = (by,b;) € L x L

77, elementary algebraic
operations reduce (7.3) to

(7.18) Gy = 0.6287igE + oy,

iy = 2.4834¢1E + higy,

¢v1 = 0.0521¢igg + hvl,

(25,'1E = 0.0543¢igg + h,’IE, ¢i11 = 1.1870¢igg + h,’H,

and the scalar partial differential equation

(7.19) (I = D)y = higg, D :=0.6060(—3A + 0.96545%1)",

where h = (hy, h;) € L3 x L3° is the result of the same algebraic operations on b. Now, note that
since —A is a nonnegative operator in ngr(Q;R), it follows from the spectral theory of bounded
linear self-adjoint operators [15, Appx. D.6] that the spectrum of the operator (I—D) : L2 (9% R) —
L2 (€ R) lies entirely above 1—0.6060 x 0.96545~2 = 0.3498 > 0. Therefore, the partial differential
equation (7.19) has a unique solution ¢, € L2, (€ R) for every higy, € L2, (Q;R) D L2 (4 R),
and hence, it follows from (7.18) that (7.3) has a unique solution ¢ = (¢, ¢;) € L x L for every
be L5 x L5C.

It remains to check (7.4). Using the spectral theory of bounded linear self-adjoint operators and
Cauchy-Schwarz inequality we can write

H¢7IEE Hi%er(Q;R) < m ((I - D)¢ZEE7 ¢iEE)L%er(Q§R) = m (hiEE7 ¢iEE)L%er(Q§R)
< m thEE HLgcr(Q;R) H(%:E HLgcr(Q;R)'
Therefore, there exists aq = m > 0 such that

< aif|

H‘JSZ'EE HL%er(Q;R) iEE HLger(Q;R)'
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Now, using (7.19) and the Sobolev embedding theorems we can write, for some ag, asz > 0,

H¢iEEHLw (R) = HhiEEHLw @Rr) T |’D¢iEEHL°° (R) = HhiEEHLw (Q;R) + a2HD¢iEEHH§H(Q;R)

per per per per

= HhiEEHLw @Rr) T O‘3H¢iEEHL2 (R) = HhiEEHLw (R) + a1a3HhiEEHLger(Q;R)

per per per

<(1+ a1043|9|%)HhiEEHngr(Q;R)’

which, along with the algebraic equalities (7.18), implies (7.4). Hence, Assumption (iv) holds.

It is now implied by Theorem 7.5 that the equilibrium sets of (3.3)-(3.5) are noncompact in Us
and Uy,. Moreover, it follows immediately from the equilibrium equations (7.14) and the definition
of P; given by (7.1) that, in general, all space-homogeneous equilibria i, and w, are positive and, in
particular, belong to Dpijo N Ds. Therefore, by Remark 7.7, the semigroups {SS (t) : Dy — Ds}te[()m)
associated with the model with parameter values given by Table 2 do not possess a global attractor.

It can be shown by similar calculations as above that the assumptions of Theorem 7.5 are
satisfied by space-homogeneous equilibria of the model for 3 other sets of parameter values out the
24 sets available in [5, Tables V and VI|, namely, the sets given in [5, Tables V, col. 2| and [5, Tables
VI, col. 10 and col. 12]. Moreover, it is likely that these assumptions or their possible alternatives
suggested in Remark 7.6 would also hold for other sets of parameter values if we consider equilibria
ue and inputs g that are not homogeneous over 2. Checking the assumptions of Theorem 7.5 in
this case is, however, not very straightforward.

8. Discussion and Conclusion

In this paper, we developed basic analytical results to establish a global attractor theory for the
mean field model of the electroencephalogram proposed by Liley et al., 2002. We showed the
boundary-initial value problem associated with the model is well-posed in the weak and strong sense,
and established sufficient conditions for the nonnegativity of the i(x,t) and w(z,t) components of
the solution over the entire time horizon. Moreover, we proved existence of bounded absorbing
sets for semigroups of weak and strong solutions, and discussed challenges towards proving the
asymptotic compactness property for these semigroups. Finally, we showed that the equilibrium
sets of the model are noncompact for some physiologically reasonable sets of parameter values which,
in particular, implies nonexistence of a global attractor.

The conditions developed in this paper for ensuring nonnegativity of the solution components
i(z,t) and w(x,t) over the entire infinite time horizon can be useful in computational analysis of
the model. Without using such mathematical analysis, it is impossible to ensure that the solutions
computed numerically over a finite time horizon are biophysically plausible since, evidently, non-
negativity might occur for time intervals beyond the finite time horizon of numerical computations.
This fact has been overlooked in most of the available computational analysis of the model. However,
in these computational studies, the initial values are usually set equal to the numerically computed
space-homogenous equilibrium of the model, or equal to zero in the case where no equilibrium is
found numerically. In both cases, the preset initial values satisfy the sufficient conditions developed
in Section 5 of this paper for biophysical plausibility of the solutions. It is perhaps an intractable
problem to specify a set of biophysical initial values for a model of the EEG; however, analyzing a
more diverse set of reasonable initial values satisfying the sufficient conditions developed in Section
5 can be beneficial in observing different behaviors of the model.
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Existence of bounded absorbing sets is a desirable global property for a model of electrical
activity in the neocortex. As stated in Remark 6.4, the EEG model investigated in this paper
possesses this global property for its entire range of parameter values given in Table 1. Moreover, this
property holds independently of the parameters of the firing rate functions, number of intracortical
and corticocortical connections, mean Nernst potentials, and membrane time constants, as observed
in Assumptions (i) and (ii) of Theorems 6.2 and 6.3.

The lack of space dissipation terms in the ODE components (3.3) and (3.4) of the model is a
major source of difficulty towards establishing a global attractor. Indeed, as implied by the proof
of Theorem 7.5, the v(z,t) and i(x,t) components of the solution can evolve discontinuously in
space despite continuous evolution of the w(x,t) component. Other than disrupting the asymptotic
compactness property of the semigroups of solution operators, these space irregularities can predict
sharp transitions in the v(z,t) and i(x,t) components of the solution, which can potentially be
problematic in numerical computation of the model. A slight modification to the model wherein the
underlying neurophysiological structure of the model is maintained can be beneficial. Considering
a singularly perturbed version of (3.3) and (3.4) by including additional diffusion terms A with
sufficiently small € can be considered as a potential modification.
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