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tThis paper investigates the global dynami
s of a mean �eld model of the ele
troen
ephalo-gram developed by Liley et al., 2002. The model is presented as a system of 
oupled ordinaryand partial di�erential equations with periodi
 boundary 
onditions. Existen
e, uniqueness,and regularity of weak and strong solutions of the model are established in appropriate fun
tionspa
es, and the asso
iated initial-boundary value problems are proved to be well-posed. Suf-�
ient 
onditions are developed for the phase spa
es of the model to ensure nonnegativity of
ertain quantities in the model, as required by their biophysi
al interpretation. It is shown thatthe semigroups of weak and strong solution operators possess bounded absorbing sets for the en-tire range of biophysi
al values of the parameters of the model. Challenges towards establishinga global attra
tor for the model are dis
ussed and it is shown that there exist parameter valuesfor whi
h the 
onstru
ted semidynami
al systems do not posses a 
ompa
t global attra
tor, dueto the la
k of assymptoti
 
ompa
tness property. Finally, instru
tive insights provided by thetheoreti
al results of the paper on the 
omputational analysis of the model are dis
ussed.1. Introdu
tionInspired by the seminal work of Alan Hodgkin and Andrew Huxley on modeling the �ow of ioni
 
ur-rents through the membrane of a giant nerve �ber, numerous biophysi
al and mathemati
al modelshave been developed towards understanding the neurophysiology of the 
entral nervous system andthe underlying me
hanism of the various phenomena that emerge during its vital operation in thebody; many of whi
h still remain mysterious to resear
hers [16, 24, 39, 51℄. In parti
ular, exploringthe 
ore 
omponent of the 
entral nervous system�the brain�substantial e�ort has been devoted todevelop models at di�erent levels of s
ope; from themole
ular and inter
ellular level dealing with theenzymati
 kineti
s of neurotransmitter-re
eptor binding at ion 
hannels and transportation of ions;to the single 
ell and intra
ellural level dealing with 
reation and transmission of a
tion potential;to the population and neuronal network level dealing with the average behavior and syn
hronizeda
tivity of neuronal ensembles; to the system level dealing with systemati
 operation and intera
tionbetween 
orti
al and sub
orti
al 
omponents of the brain; and �nally to the behavioral and 
ognitivelevel dealing with integrated mental a
tivity and 
reation of the mind [1, 14, 21, 27, 28, 43, 45, 52℄.
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As an e�e
tive methodology to develop models at the population and network level, mean �eldtheory has been applied to 
onstru
t approximate models for inter
onne
ted populations of neuronsby averaging the e�e
t of all other neurons on a given individual neuron inside the population. Theresulting averaged neuron 
an be used to analyze the overall temproal behavior of a single populationof neurons, leading to a neural mass model. Alternatively, the averaged neuron 
an be 
onsideredas a lo
ally averaged 
omponent of a 
ontinuum of neural populations, leading to a spatio-temporalmean �eld model. These models are parti
ularly useful in analyzing the ele
trophysiologi
al a
tivityof neuronal ensembles using lo
al �eld potentials and ele
troen
ephalograms [9, 37, 40, 42℄.The evolution equations that des
ribe a mean �eld model of neural a
tivity in the 
ortex are inthe form of a system of partial di�erential equations, or a system of 
oupled ordinary and partialdi�erential equations. The theory of in�nite-dimensional dynami
al systems is hen
e used to analyzethe global dynami
s and long-term behavior of these systems. The 
lassi
al approa
h to this problemfollows several steps. First, existen
e, uniqueness, and regularity of solutions are established for allpositive times in appropriately 
hosen problem-dependent fun
tion spa
es, and the well-posednessof the problem is 
on�rmed. Se
ond, a semidynami
al framework is 
onstru
ted over a positivelyinvariant 
omplete normed spa
e�the phase spa
e for the evolution of solutions�and is shown toposesses bounded absorbing sets. Asymptoti
 
ompa
tness of the semigroup of solution operatorsis then ensured to guarantee existen
e of a global attra
tor, whi
h is a 
ompa
t stri
tly invariantattra
ting set, and hen
e, 
ontains all the information regarding the asymptoti
 behavior of themodel. Third, the Hausdor� or fra
tal dimension of the global attra
tor is estimated to show thatthe attra
tor is �nite dimensional, so that the asymptoti
 dynami
s of the system is determined bya �nite number of degrees of freedom. Fourth, the existen
e of an inertial manifold is established,whi
h is a smooth �nite dimensional inaviant manifold 
onatinig the global attra
tor. Consequently,the dynami
s on the attra
tor 
an be presented by a �nite set of ordinary di�erential equations andfurther 
hara
terized to give the overall pi
ture of long-term behavior of the system [7, 23, 41, 48℄.In this paper, we investigate the mean �eld model proposed in [33℄ for understanding the ele
-tri
al a
tivity in the neo
ortex as observed in the ele
troen
ephalogram (EEG). This model, whi
his 
omprised of a system of 
oupled ordinary and partial di�erential equations in a two-dimensionalspa
e, has been widely used in the literature to study the alpha- and gamma-band rhythmi
 a
-tivity in the 
ortex [3, 4℄, phase transition and burst suppression in 
orti
al neurons during generalanesthesia [6,34,46℄, the e�e
t of anestheti
 drugs on the EEG [2,18℄, and epilepti
 seizures [29�32℄.Open-sour
e tools for numeri
al implementation of the model and 
omputation of equilibria andtime-periodi
 solutions are developed in [22℄. Complexity of the dynami
s of the model, in
ludingperiodi
 and pseudo-periodi
 solutions, 
haoti
 behavior, multistability, and bifur
ation are studiedin [10�12, 19, 20, 49, 50℄.The above results, however, are mainly 
omputational or involve approximate versions of themodel. A rigorous analysis of the dynami
s of the model in the in�nite-dimensional dynami
alsystem framework as outlined above is not available in the literature. In parti
ular, the basi
problems of well-posedness of the initial-boundary value problem asso
iated to the model and theregularity of solutions remain uninvestigated. It is not known under what 
onditions, if any, thesolutions of the model evolve partially nonnegatively for all time, whi
h is required for 
ertainphysi
al quantities in the model. Solutions that take negative values for su
h quantities�even fora small interval of time in distant future�
annot depi
t a biophysi
ally plausible dynami
s of theele
tri
al a
tivity in the neo
ortex.The aim of this paper is to study the global dynami
s of the mean �eld model dis
ussed above,ensure its biophysi
al plausibility, and to provide the basi
 analyti
al results required for 
hara
-2



terization of the long-term dynami
s of the model. Spe
i�
ally, we follow the �rst two steps of theaforementioned 
lassi
al analysis approa
h to investigate the problem of existen
e or nonexisten
eof a global attra
tor.This paper is organized as follows. In Se
tion 2, we introdu
e notation and re
all key de�ni-tions ne
essary for developing the results in the paper. In Se
tion 3, we present the mathemati
alstru
ture of the model as a system of 
oupled ordinary-partial di�erential equations with initialvalues and periodi
 boundary 
onditions, pre
eded with a des
ription of the anatomi
al stru
ture ofthe neo
ortex and the physiologi
al intera
tions that underly the 
onstru
tion of the model. Then,following the �rst step of the 
lassi
al analysis approa
h, in Se
tion 4 we prove existen
e and unique-ness of weak and strong solutions for the proposed initial value problem and analyze the regularityof these solutions.As in the se
ond step of the 
lassi
al analysis, in Se
tion 5 we de�ne semigroups of solution op-erators and show their 
ontinuity properties. Moreover, we establish 
onditions on the phase spa
esto ensure biophysi
al plausibility of the evolution of the solution under the asso
iated semidynam-i
al systems. In Se
tion 6, we show that the semigroups of solution operators possess boundedabsorbing sets for all possible values of the biophysi
al parameters of the model. In Se
tion 7, wedis
uss 
hallenges towards establishing a global attra
tor for the model, and in parti
ular, we showthat there exist sets of values for the biophysi
al parameters of the model su
h that the asso
iatedsemigroups of solution operators do not possess a 
ompa
t global attra
tor. We 
on
lude the paperin Se
tion 8 with a dis
ussion on the results developed in the paper and their appli
ation to the
omputational analysis of the model.2. Notation and PreliminariesThe notation used in this paper is fairly standard. Spe
i�
ally, R
n denotes the n-dimensional realEu
lidean spa
e and R

m×n denotes the spa
e of real m × n matri
es. A point x ∈ R
n is presentedby the n-tuple x = (x1, . . . , xn) or, when it appears in matrix operations, by the 
olumn ve
tor x =

[

x1 · · · xn

]T, where (·)T denotes transpose. The nonnegative 
one {

x ∈ R
n : xj ≥ 0 for j =

1, . . . , n
} is denoted by R

n
+. A sequen
e of points in R

n is denoted by {

x(l)
}∞

l=1
, with the jth
omponent of x(l) denoted by x

(l)
j . Moreover, the tra
e of a square matrix A ∈ R

n×n is denoted by
tr A and a blo
k-diagonal matrix D with k blo
ks D1, . . . ,Dk is denoted by diag(D1, . . . ,Dk). For
x, y ∈ R

n, we write x ≥ y to denote 
omponent-wise inequality, that is, xj ≥ yj, j = 1, . . . , n. For
A,B ∈ R

n×n we write A ≥ B to denote A − B is positive semide�nite. Finally, we denote by 0n×nand In×n the zero and identity matri
es in R
n×n, respe
tively. We write I for the identity operatorin other ve
tor spa
es.For an inner produ
t spa
e U , we denote the asso
iated inner produ
t by (

·, ·
)

U and the normgenerated by the inner produ
t by ∥

∥ ·
∥

∥

U . For a Hilbert spa
e U we denote the standard pairing of
U with its dual spa
e U∗ by 〈

·, ·
〉

U . In parti
ular, for U = R
n we write (

·, ·
)

Rn and ∥

∥ ·
∥

∥

Rn for thestandard inner produ
t and the Eu
lidean norm, respe
tively. Similarly, for U = R
m×n we write

(

A,B
)

Rm×n for the standard inner produ
t and ∥

∥A
∥

∥

Rm×n for the asso
iated inner produ
t norm.Moreover, we denote the 1-norm in R
n by ∥

∥·
∥

∥

1
and the ∞-norm in R

n by ∥

∥·
∥

∥

∞. The indu
ed matrix1-, 2-, and ∞-norms in R
m×n indu
ed, respe
tively, by the ve
tor norms ∥

∥ ·
∥

∥

1
, ∥

∥ ·
∥

∥

2
:=

∥

∥ ·
∥

∥

Rn , and
∥

∥ ·
∥

∥

∞ in R
n, are denoted by ∥

∥ ·
∥

∥

1
, ∥

∥ ·
∥

∥

2
and ∥

∥ ·
∥

∥

∞.Let Ω be an open subset of R
n denoting the spa
e domain of a given dynami
al system, with

x ∈ Ω denoting a spatial point in Ω. The time domain of the model is given by the 
losed interval3



[0, T ] ⊂ R, T > 0, with the temporal point t. For a fun
tion u : [0, T ] → R, the kth-order totalderivative with respe
t to t at t0 is denoted by dk
t u(t0). For k = 1, we write dtu(t0). For a fun
tion

u(x, t) : Ω × [0, T ] → R, the kth-order partial derivative with respe
t to t at (x0, t0) is denotedby ∂k
t u(x0, t0) and the kth-order partial derivative with respe
t to xj at (x0, t0) is denoted by

∂k
xj

u(x0, t0), j = 1, . . . , n. For k = 1, we write ∂tu(x0, t0) and ∂xj
u(x0, t0). The gradient of u in Ω isdenoted by ∂xu and is given by ∂xu := (∂x1

u, . . . , ∂xnu) ∈ R
n. The Lapla
ian of u in Ω is denoted by

∆u and is given by ∆u := (∂2
x1

+· · ·+∂2
xn

) ∈ R. For a ve
tor-valued fun
tion u(x, t) : Ω×[0, T ] → R
mwe interpret u(x, t) as the m-tuple u(x, t) = (u1(x, t), . . . , um(x, t)), where ea
h 
omponent uj(x, t),

j = 1, . . . ,m, is a s
alar-valued fun
tion on Ω× [0, T ]. In this 
ase, ∂xu(x, t) ∈ R
m×n is the gradientof u and the ve
tor Lapla
ian ∆u ∈ R

m is given by ∆u := (∆u1, . . . ,∆um), assuming Cartesian
oordinates in R
m.For every integer k ≥ 0, the spa
e of k-times 
ontinuously di�erentiable real-valued fun
tionson Ω is denoted by Ck(Ω). The spa
e Ck(Ω) 
onsists of all fun
tions in Ck(Ω) that, together withall of their partial derivatives up to the order k, are uniformly 
ontinuous in bounded subsets of Ω.Moreover, for 0 < λ ≤ 1, the Hölder spa
e Ck,λ(Ω) is a subspa
e of Ck(Ω) 
onsisting of fun
tionswhose partial derivatives of order k are Hölder 
ontinuous with exponent λ; see [8, Se
. 1.18℄ fordetails. We use C∞

c (Ω) to denote the spa
e of in�nitely di�erentiable real-valued fun
tions with
ompa
t support in Ω. Moreover, we denote by L1
loc(Ω) the spa
e of lo
ally integrable real-valuedfun
tions on Ω. Then, for every fun
tion u ∈ L1

loc(Ω) and any multi index α with |α| ≥ 1, the weakpartial derivative of u in L1
loc(Ω), of order |α|, is de�ned by the distribution uα that stis�es

∫

Ω
uαφdx = (−1)|α|

∫

Ω
u∂αφdx for all φ ∈ C∞

c (Ω),where dx = dx1 · · · dxn is the Lebesgue measure on R
n; see [8, Se
. 6.3℄ for details. With a minorabuse of notation, we use ∂k

t and ∂k
x to denote the kth-order weak, as well as 
lassi
al partialderivatives with respe
t to t and x, respe
tively. The distin
tion will be 
lear from 
ontext, or willotherwise be expli
itly spe
i�ed.The Hilbert spa
e of ve
tor-valued Lebesgue measurable fun
tions u : Ω → R

m with �nite
L2-norm is denoted by L2(Ω; Rm), with asso
iated inner produ
t and norm given by

(

u, v
)

L2(Ω;Rm) =

∫

Ω

(

u(x), v(x)
)

Rmdx,
∥

∥u
∥

∥

L2(Ω;Rm)
=

[
∫

Ω

∥

∥u(x)
∥

∥

2

Rmdx

]
1
2

.The Bana
h spa
e of ve
tor-valued Lebesgue measurable fun
tions u : Ω → R
m with �nite L∞-normis denoted by L∞(Ω; Rm), with norm given by

∥

∥u
∥

∥

L∞(Ω;Rm)
= ess sup

x∈Ω

∥

∥u(x)
∥

∥

∞.The Sobolev spa
e of ve
tor-valued fun
tions u ∈ Lp(Ω; Rm) whose all lth-order weak derivatives
∂l

xu, l ≤ k, exist and belong to Lp(Ω; Rm×nl
) is denoted by W k,p(Ω; Rm). When p = 2, theSobolev spa
es W k,2(Ω; Rm) are Hilbert spa
es for all k ∈ [0,∞), and are denoted by Hk(Ω; Rm) :=

W k,2(Ω; Rm). Spe
i�
ally, H0(Ω; Rm) = L2(Ω; Rm), and H1(Ω; Rm) is a Hilbert spa
e with theinner produ
t
(

u, v
)

H1(Ω;Rm) =
(

u, v
)

L2(Ω;Rm) +
(

∂xu, ∂xv
)

L2(Ω;Rm×n).4



Moreover, H2(Ω; Rm) is a Hilbert spa
e with the inner produ
t
(

u, v
)

H2(Ω;Rm) =
(

u, v
)

L2(Ω;Rm) +
(

∂xu, ∂xv
)

L2(Ω;Rm×n) +
(

∂2
xu, ∂2

xv
)

L2(Ω;Rm×n2 )
.Let Ω = (0, ω1) × · · · × (0, ωn), where ωj > 0, j = 1, . . . , n, be an open re
tangle in R

n. Afun
tion u : R
n → R is 
alled Ω-periodi
 if it is periodi
 in ea
h dire
tion, that is,

u(x + ωjej) = u(x), j = 1, . . . , n, x ∈ R
n,where ej is the unit ve
tor in the jth dire
tion. De�ne the spa
e C∞

per(Ω) as the restri
tion to Ω ofthe spa
e of in�nitely di�erentiable Ω-periodi
 fun
tions. Then, the Sobolev spa
e Hk
per(Ω), k ≥ 0,is de�ned by the 
ompletion of C∞

per(Ω) in Hk(Ω); see [41, De�nition 5.37℄. A ve
tor-valued fun
tion
u : R

n → R
m is Ω-periodi
 if ea
h of its 
omponents uj : R

n → R, j = 1, . . . ,m, is Ω-periodi
. Thespa
es C∞
per(Ω; Rm) and Hk

per(Ω; Rm) are then de�ned a

ordingly. It follows from Green's formulaand the de�nition of norms in these spa
es that
(

− ∆u, v
)

L2
per(Ω;Rm) =

(

∂xu, ∂xv
)

L2
per(Ω;Rm×n),(2.1)

(

(−∆ + I)u, v
)

L2
per(Ω;Rm) =

(

u, v
)

H1
per(Ω;Rm),

(

− ∆u, (−∆ + I)u
)

L2
per(Ω;Rm) =

∥

∥u
∥

∥

2

H2
per(Ω;Rm)

−
∥

∥u
∥

∥

2

L2
per(Ω;Rm)

,

∥

∥(−∆ + I)u
∥

∥

2

L2
per(Ω;Rm)

=
∥

∥u
∥

∥

2

H2
per(Ω;Rm)

+
∥

∥∂xu
∥

∥

2

L2
per(Ω;Rm×n)

=
∥

∥u
∥

∥

2

H1
per(Ω;Rm)

+
∥

∥∂xu
∥

∥

2

H1
per(Ω;Rm×n)

.In this paper, we inter
hangeably view the fun
tion u(x, t), x ∈ Ω, t ∈ [0, T ], as a 
ompositefun
tion of x and t, as well as a mapping u of t into a fun
tion of x, de�ned as
[u(t)](x) := u(x, t), x ∈ Ω, t ∈ [0, T ].With a minor abuse of notation, the same symbol is used to denote both the original form of thefun
tion and the mapping. The distin
tion be
omes evident in the way we de�ne the spa
e of su
hmappings or, equivalently, Bana
h spa
e-valued fun
tions; see for example [15, Appx. E.5℄. For aBana
h spa
e U , the spa
e L2(0, T ;U) is 
omposed of all strongly measurable Bana
h spa
e-valuedfun
tions u : [0, T ] → U with the �nite L2-norm de�ned by

∥

∥u
∥

∥

L2(0,T ;U)
:=

[
∫ T

0

∥

∥u(t)
∥

∥

2

Udt

]

1
2

.The spa
e C0([0, T ];U) is 
omposed of all 
ontinuous Bana
h spa
e-valued fun
tions u : [0, T ] → Uwith the �nite uniform norm de�ned by
∥

∥u
∥

∥

C0([0,T ];U)
:= max

t∈[0,T ]

∥

∥u(t)
∥

∥

U .A

ordingly, the spa
es Ck([0, T ];U) and Ck,λ([0, T ];U), k ≥ 0, 0 < λ ≤ 1, are de�ned as thespa
e of k-times 
ontinuously di�erentiable Bana
h spa
e-valued fun
tions and its Hölder 
ontinuoussubspa
e. The Sobolev spa
es Hk(0, T ;U), k ≥ 0, are 
omposed of all fun
tions u ∈ L2(0, T ;U)5



whose lth-order weak derivatives dl
tu exist for l ≤ k and belong to L2(0, T ;U). In parti
ular, for

k = 1 we have
∥

∥u
∥

∥

H1(0,T ;U)
:=

[
∫ T

0

(

∥

∥u(t)
∥

∥

2

U +
∥

∥dtu(t)
∥

∥

2

U

)

dt

]

1
2

.For further details on these spa
es; see [15, Se
. 5.9.2℄ and [41, Se
. 7.1℄.When P : U → Y is a mapping between the Bana
h spa
es U and Y, we denote the kth orderFré
het derivative of P at u0 by duP (u0). The spa
e Ck(U ;Y) is then 
omposed of all k-times
ontinuously di�erentiable mappings from U into Y. For a mapping P : U1 × · · · × Um → Y, where
Y and Uj , j = 1, . . . m, are Bana
h spa
es, ∂uj

P (u0) is the jth partial Fré
het derivative of P at
u0 = (u01, . . . , u0m). The gradient of P at u0 is then written as ∂uP (u0); see [8, Se
. 7.1℄ for details.Finally, we denote the symmetri
 di�eren
e of two sets X and Y by X △ Y . In a topologi
alspa
e X , we denote the 
losure of a set X ⊂ X by X , its interior by X ◦, and its boundary by ∂X .The 
hara
teristi
 fun
tion of X is denoted by χ(X ). When X is a measure spa
e, |X | denotesthe measure of the set X ⊂ X . When X is a metri
 spa
e and the topology on X is indu
ed by thegiven metri
, B(x,R) denotes the open ball 
entered at x ∈ X with radius R > 0, whi
h is a basiselement for the topology. For every bounded measurable set in X and, in parti
ular for B(x,R),we denote by −

∫

B(x,R) the averaging operator over B(x,R), that is, −
∫

B(x,R) := 1
|B(x,R)|

∫

B(x,R).3. Model Des
riptionThe neo
ortex has a layered 
olumnar stru
ture 
onsisting mostly of six distin
tive layers. Neu-rons in the neo
ortex are organized in verti
al 
olumns, usually referred to as 
orti
al 
olumns orma
ro
olumns, whi
h are a fra
tion of a millimeter wide and traverse all the layers of the neo
ortexfrom the white matter to the pial surfa
e [25, 26, 38℄. Depending on their type of a
tion, neuronsare mainly 
lassi�ed as ex
itatory or inhibitory, wherein this distin
tion depends on whether theyin
rease the �ring rate in the destination neurons they are 
ommuni
ating with, or they essentiallysuppress them. Inhibitory neurons are lo
ated within all layers and usually have axons that remainwithin the same area were their 
ell body resides, and hen
e, they have a lo
al range of a
tion.Layers III, V, and VI 
ontain pyramidal ex
itatory neurons whose axons 
an provide long-range
ommuni
ation (proje
tion) throughout the neo
ortex. Layer IV 
ontains primarily star-shaped ex-
itatory interneurons that re
eive sensory inputs from the thalamus. Figure 1 shows a s
hemati
 ofthe stru
ture of the neo
ortex, in
luding the intra
orti
al and 
orti
o
orti
al neuronal 
onne
tions;see [26, Ch. 15℄ for further details.On a lo
al s
ale, within a 
orti
al 
olumn, neurons are densely inter
onne
ted and involve alltypes of feedforward and feedba
k intra
orti
al 
onne
tions. Su
h a dense and relatively homoge-neous lo
al stru
ture of the neo
ortex suggests modeling a lo
al population of fun
tionally similarneurons by a single spa
e-averaged neuron, whi
h preserves enough physiologi
al information tounderstand the temporal patterns observed in spatially smoothed (averaged) EEG signals, without
reating ex
essive theoreti
al 
ompli
a
ies in the mathemati
al analysis of the model. On a globals
ale, in the ex
lusively ex
itatory 
orti
o
orti
al 
ommuni
ation throughout the neo
rtex, two ma-jors patterns of 
onne
tivity are observed. Namely, a homogeneous, symmetri
al, and translationinvariant pattern of 
onne
tions, versus a heterogeneous, pat
hy, and asymmetri
al distribution of
onne
tions. For modeling simpli
ity and due to unavailability of detailed anatomi
al data, in themodel that we investigate in this paper the 
orti
o
orti
al 
onne
tivity is assumed to be isotropi
,homogenous, symmetri
, and translation invariant [33℄.6
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Figure 1: S
hemati
 of the stru
ture of the neo
ortex with intra
orti
al and 
orti
o
orti
al 
onne
-tions.
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 Figure 2: Corti
al inputs to two lo
al networks lo
ated at points x and y as modeled by (3.1).To establish the mathemati
al framework of the model, let Ω = (0, ω)×(0, ω), ω > 0, be an openre
tangle in R
2 that de�nes the domain of the neo
ortex. Ea
h point x = (x1, x2) ∈ Ω indi
ates thelo
ation of a lo
al network�possibly representing a 
orti
al 
olumn�modeled by a spa
e-averagedex
itatory neuron and a spa
e-averaged inhibitory neuron. Let E denote a population of ex
itatoryneurons and I denote a population of inhibitory neurons. For x ∈ Ω, t ∈ [0, T ], T > 0, and

X,Y ∈ {E, I}, we denote by vX(x, t), measured in mV, the spatially mean soma membrane potentialof a population of type X 
entered at x. Moreover, we denote by iXY(x, t), measured in mV, thespatially mean post synapti
 a
tivation of synapses of a population of type X 
entered at x, on apopulation of type Y 
entered at the same point x. In addition, we denote by wEX(x, t), measuredin s−1, the mean rate of 
orti
o
orti
al ex
itatory input pulses from the entire domain of neo
ortexto a population of type X 
entered at x. Finally, we denote by gXY(x, t), measured in s−1, the meanrate of sub
orti
al input pulses of type X to a population of type Y 
entered at x. Note that, byde�nition, iXY(x, t), wEX(x, t), and gXY(x, t) are nonnegative quantities.Then, as developed in [33℄, the system of partial di�erential equations
(τE∂t + 1)vE(x, t) =

VEE − vE(x, t)

|VEE|
iEE(x, t) +

VIE − vE(x, t)

|VIE|
iIE(x, t),(3.1)

(τI∂t + 1)vI(x, t) =
VEI − vI(x, t)

|VEI|
iEI(x, t) +

VII − vI(x, t)

|VII|
iII(x, t),

(∂t + γEE)2iEE(x, t) = eΥEEγEE

[

NEEfE

(

vE(x, t)
)

+ wEE(x, t) + gEE(x, t)
]

,

(∂t + γEI)
2iEI(x, t) = eΥEIγEI

[

NEIfE

(

vE(x, t)
)

+ wEI(x, t) + gEI(x, t)
]

,

(∂t + γIE)2iIE(x, t) = eΥIEγIE

[

NIEfI

(

vI(x, t)
)

+ gIE(x, t)
]

,

(∂t + γII)
2iII(x, t) = eΥIIγII

[

NIIfI

(

vI(x, t)
)

+ gII(x, t)
]

,
[

(∂t + νΛEE)2 − 3
2ν2∆

]

wEE(x, t) = ν2Λ2
EEMEEfE

(

vE(x, t)
)

,
[

(∂t + νΛEI)
2 − 3

2ν2∆
]

wEI(x, t) = ν2Λ2
EIMEIfE

(

vE(x, t)
)

, (x, t) ∈ Ω × (0, T ],8



Table 1: De�nition and range of values for the biophysi
al parameters of the mean �eld model(3.1). All ele
tri
 potentials are given with respe
t to the mean resting soma membrane potential
vrest = −70 mV [5℄.Parameter De�nition Range Unit

τE Passive ex
itatory membrane de
ay time 
onstant [0.005, 0.15] s
τI Passive inhibitory membrane de
ay time 
onstant [0.005, 0.15] s
VEE, VEI Mean ex
itatory Nernst potentials [50, 80] mV
VIE, VII Mean inhibitory Nernst potentials [−20,−5] mV
γEE, γEI Ex
itatory post synapti
 potential rate 
onstants [100, 1000] s−1

γIE, γII Inhibitory post synapti
 potential rate 
onstants [10, 500] s−1

ΥEE, ΥEI Amplitude of ex
itatory post synapti
 potentials [0.1, 2.0] mV
ΥIE, ΥII Amplitude of inhibitory post synapti
 potentials [0.1, 2.0] mV
NEE, NEI Number of intra
orti
al ex
itatory 
onne
tions [2000, 5000] �
NIE, NII Number of intra
orti
al inhibitory 
onne
tions [100, 1000] �
ν Corti
o
orti
al 
ondu
tion velo
ity [100, 1000] 
m/s
ΛEE, ΛEI De
ay s
ale of 
orti
o
orti
al ex
itatory 
onne
tivities [0.1, 1.0] 
m−1

MEE, MEI Number of 
orti
o
orti
al ex
itatory 
onne
tions [2000, 5000] �
FE Maximum mean ex
itatory �ring rate [50, 500] s−1

FI Maximum mean inhibitory �ring rate [50, 500] s−1

µE Ex
itatory �ring threshold potential [15, 30] mV
µI Inhibitory �ring threshold potential [15, 30] mV
σE Standard deviation of ex
itatory �ring threshold potential [2, 7] mV
σI Standard deviation of inhibitory �ring threshold potential [2, 7] mVwith periodi
 boundary value 
ondition provides a mean �eld model of ele
tro
orti
al a
tivity in theneo
ortex. Here, e is the Napier 
onstant and fX(·) is the mean �ring rate fun
tion of a populationof type X and is given by(3.2) fX

(

vX(x, t)
)

:=
FX

1 + exp

(

−
√

2
vX(x, t) − µX

σX

) , X ∈ {E, I}.The de�nition of the biophysi
al parameters of the model and the ranges of the values they may takeare given in Table 1. For the range of values given in Table 1 we have |VEE| = VEE, |VEI| = VEI,
|VIE| = −VIE , and |VII| = −VII, whi
h we use to simplify (3.1). Note that other than notational
hanges to the original equations given in [33℄, we have 
hanged the referen
e of ele
tri
al potentialto the resting potential to avoid the 
onstant terms that would otherwise appear in (3.1). Figure2 shows a s
hemati
 of intra
orti
al, 
orti
o
orti
al, and sub
orti
al inputs to two lo
al networkslo
ated at points x and y together with their 
ontribution to the global 
orti
o
orti
al a
tivation asmodeled by (3.1).The �rst six equations given in (3.1) model the dynami
s of the spa
e-averaged ex
itatory andinhibitory neurons lo
ated at x, in
luding the �rst-order 
apa
itive dynami
s of the membrane, the9



Nernst (reversal) potential e�e
t, and the se
ond-order dynami
s related to the passive dendriti

able delays and neurotransmitter kineti
s. The last two equations in (3.1) model the dynami
s ofthe spatial distribution of ex
itatory 
orti
o
orti
al a
tivity over the domain of the neo
ortex.Now, let
v(x, t) :=

(

vE(x, t), vI(x, t)
)

∈ R
2,

i(x, t) :=
(

iEE(x, t), iEI(x, t), iIE(x, t), iII(x, t)
)

∈ R
4,

w(x, t) :=
(

wEE(x, t), wEI(x, t)
)

∈ R
2,

g(x, t) :=
(

gEE(x, t), gEI(x, t), gIE(x, t), gII(x, t)
)

∈ R
4,and note that (3.1) 
an be represented in ve
tor form in Ω × (0, T ] as

Φ∂tv + v − J1i + J2viTΨJ4 + J3viTΨJ5 = 0,(3.3)
∂2

t i + 2Γ∂ti + Γ2i − eΥΓJ6w − eΥΓNJ7f(v) = eΥΓg,(3.4)
∂2

t w + 2νΛ∂tw − 3
2ν2∆w + ν2Λ2w − ν2Λ2MJ8f

(

v
)

= 0,(3.5)where v, i, and w are Ω-periodi
 ve
tor-valued fun
tions with the initial values(3.6) v
∣

∣

t=0
= v0, i

∣

∣

t=0
= i0, (∂ti)

∣

∣

t=0
= i′0, w

∣

∣

t=0
= w0, (∂tw)

∣

∣

t=0
= w′

0,and
Φ = diag

(

τE, τI

)

, Ψ = diag
(

1
|VEE| ,

1
|VEI| ,

1
|VIE| ,

1
|VII|

)

,(3.7)
Γ = diag(γEE, γEI, γIE, γII), Υ = diag(ΥEE,ΥEI,ΥIE,ΥII),

N = diag(NEE,NEI,NIE,NII), M = diag(MEE,MEI),

Λ = diag(ΛEE,ΛEI), J1 =
[

I2×2 −I2×2

]

,

J2 = diag(1, 0), J3 = diag(0, 1),

J4 =
[

1 0 1 0
]T

, J5 =
[

0 1 0 1
]T

,

J6 =

[

1 0 0 0
0 1 0 0

]T

, J7 =

[

1 1 0 0
0 0 1 1

]T

,

J8 =

[

1 0
1 0

]

, f(v) =

[

fE

( [

1 0
]

v
)

fI

( [

0 1
]

v
)

]

.For simpli
ity of exposition, the dependen
e of the fun
tions v, i, w, and g on the arguments (x, t)is not expli
itly shown in (3.3)�(3.5). Note that (3.3) and (3.4), whi
h model the lo
al dynami
sof the neo
ortex, are essentially systems of ordinary di�erential equations. These equations do notpossess any spatial smoothing 
omponent, and hen
e, their dynami
s is expe
ted to evolve in lessregular fun
tion spa
es [36, 44℄. The system of partial di�erential equations (3.5) 
onsists of twodamped wave equations or, more spe
i�
ally, two telegraph equations 
oupled indire
tly through(3.3) and (3.4).4. Existen
e and Uniqueness of SolutionsIn this se
tion, we investigate the problem of existen
e, uniqueness, and regularity of solutionsfor (3.3)�(3.5) with the initial values (3.6) and periodi
 boundary 
onditions. We set appropriate10



spa
es of Ω-periodi
 fun
tions as the fun
tional framework of the problem by whi
h we in
ludethe boundary 
onditions in the solution spa
es. We view v(x, t), i(x, t), and w(x, t) as Bana
hspa
e-valued fun
tions and follow the standard te
hnique of Galerkin approximations [15,41,48℄ to
onstru
t weak and strong solutions.First, de�ne the fun
tion spa
es
L2

v := L2
per(Ω; R2), L2

i := L2
per(Ω; R4), L2

w := L2
per(Ω; R2),(4.1)

L∞
v := L∞

per(Ω; R2), L∞
i := L∞

per(Ω; R4), L∞
w := L∞

per(Ω; R2),

H1
w := H1

per(Ω; R2), H2
w := H2

per(Ω; R2),

L2
∂w := L2

per(Ω; R2×2), H1
∂w := H1

per(Ω; R2×2),

W1,∞
w := W 1,∞

per (Ω; R2),and denote by L2
v
∗, L2

i
∗, and H1

w
∗ the dual spa
es of L2

v, L2
i , and H1

w, respe
tively. Note that L2
vand L2

i are, respe
tively, isometri
ally isomorphi
 to L2
v
∗ and L2

i
∗ [17, Th. 6.15℄, whi
h we denoteby L2

v
∗

= L2
v and L2

i
∗

= L2
i . By the Relli
h-Kondra
hov 
ompa
t embedding theorems we have

H1
w ⋐ L2

w ⊂ H1
w
∗; see, for example [8, Th. 6.6-3℄ and [41, Th. A.4℄. Moreover, there exists a dualorthogonal basis of H1

w and L2
w given by the following lemma.Lemma 4.1 (Dual orthogonal basis) There exists an orthonormal basis of L2

w that is an orthog-onal basis of H1
w, and 
an be 
onstru
ted by the eigenfun
tions of the linear operator A := (−∆+I) :

H1
w → H1

w
∗.Proof. Consider the linear operator A : H1

w → H1
w
∗ de�ned by

〈

Aw,h
〉

H1
w

:=
(

(−∆ + I)w, h
)

L2
w
for all h ∈ H1

w and every �xed w ∈ H1
w.First, we show that A is an isometri
 isomorphism. For every h ∈ H1

w su
h that ∥

∥h
∥

∥

H1
w

= 1, itfollows from (2.1) and the Cau
hy-S
hwarz inequality that
∣

∣

(

Aw,h
)

L2
w

∣

∣ =
∣

∣

(

w, h
)

H1
w

∣

∣ ≤
∥

∥w
∥

∥

H1
w

∥

∥h
∥

∥

H1
w

=
∥

∥w
∥

∥

H1
w
,and hen
e, ∥

∥Aw
∥

∥

H1
w
∗ ≤

∥

∥w
∥

∥

H1
w
. For every w 6= 0 ∈ H1

w set h =
∥

∥w
∥

∥

−1

H1
w
w and note that

∣

∣

(

Aw,
∥

∥w
∥

∥

−1

H1
w
w

)

L2
w

∣

∣ =
∥

∥w
∥

∥

H1
w
, whi
h implies ∥

∥Aw
∥

∥

H1
w
∗ ≥

∥

∥w
∥

∥

H1
w
. Therefore, A is an isometry.Now, it su�
es to show A is surje
tive. This follows immediately from the Riesz representationtheorem [8, Th. 4.6-1℄. Indeed, for every linear fun
tional q ∈ H1

w
∗ there exists a unique wq ∈ H1

wsu
h that
〈

q, h
〉

H1
w

=
(

wq, h
)

H1
w

=
(

Awq, h
)

L2
w

=
〈

Awq, h
〉

H1
w
.Next, we show that A has a 
ompa
t inverse on L2

w. Sin
e A is an isomorphism and L2
w ⊂ H1

w
∗,the restri
tion of A−1 to L2

w is a bounded map from L2
w to H1

w. Sin
e H1
w ⋐ L2

w, it follows that
A−1 : L2

w → L2
w is 
ompa
t. Therefore, by the spe
tral theory of 
ompa
t self-adjoint linear operators[8, Th. 4.11-3℄, there exists an orthonormal Hilbert basis Bw =

{

h
(l)
w

}∞
l=1

of L2
w 
onsisting of theeigenfun
tions of A−1.Now, note that Bw ⊂ H1

w sin
e for every h
(l)
w ∈ Bw,

∥

∥h(l)
w

∥

∥

H1
w

=
∥

∥λ−1
l A−1h(l)

w

∥

∥

H1
w

= λ
− 1

2

l

∥

∥h(l)
w

∥

∥

L2
w

< ∞,11



where λl > 0 is the eigenvalue 
orresponding to h
(l)
w . Moreover, Bw is 
omplete in H1

w sin
e for
h ∈ H1

w satisfying (

h
(l)
w , h

)

H1
w

= 0 for all h
(l)
w ∈ Bw we have

0 =
(

h(l)
w , h

)

H1
w

=
(

λ−1
l A−1h(l)

w , h
)

H1
w

= λ−1
l

(

h(l)
w , h

)

L2
w
,whi
h implies h = 0 due to 
ompleteness of Bw in L2

w. Orthogonality of Bw in H1
w is proved bysimilar 
omputation, whi
h 
ompletes the proof that Bw is also an orthogonal Hilbert basis of H1

w
onsisting of the eigenfun
tions of the operator A : H1
w → H1

w
∗.Before pro
eeding to the main results of this se
tion, we de�ne the notions of weak and strongsolutions of (3.3)�(3.6) as used in this paper.De�nition 4.2 (Weak solution) A solution (v, i, w) is 
alled an Ω-periodi
 weak solution of theinitial value problem (3.3)�(3.6) if it solves the weak version of the problem wherein the partialdi�erential equations are understood as equalities in the spa
e of duals L2(0, T ;L2

v
∗ × L2

i
∗ × H1

w
∗
).That is, the fun
tions

v ∈ L2(0, T ;L2
v), i ∈ L2(0, T ;L2

i ), w ∈ L2(0, T ;H1
w),with

dtv ∈ L2(0, T ;L2
v
∗
), dti ∈ L2(0, T ;L2

i ), d2
t i ∈ L2(0, T ;L2

i
∗
),

dtw ∈ L2(0, T ;L2
w), d2

t w ∈ L2(0, T ;H1
w
∗
),
onstru
t an Ω-periodi
 weak solution for (3.3)�(3.6) if for every ℓv ∈ L2

v, ℓi ∈ L2
i , hw ∈ H1

w, andalmost every t ∈ [0, T ], T > 0,
〈

Φdtv, ℓv

〉

L2
v

+
(

v, ℓv

)

L2
v
−

(

J1i, ℓv

)

L2
v

+
(

J2viTΨJ4 + J3viTΨJ5, ℓv

)

L2
v

= 0,(4.2)
〈

d2
t i, ℓi

〉

L2
i
+ 2

(

Γdti, ℓi

)

L2
i
+

(

Γ2i, ℓi

)

L2
i
− e

(

ΥΓJ6w, ℓi

)

L2
i

(4.3)
−e

(

ΥΓNJ7f(v), ℓi

)

L2
i

= e
(

ΥΓg, ℓi

)

L2
i
,

〈

d2
t w, hw

〉

H1
w

+ 2ν
(

Λdtw, hw

)

L2
w
− 3

2ν2
(

∆w, hw

)

L2
w

+ ν2
(

Λ2w, hw

)

L2
w

(4.4)
−ν2

(

Λ2MJ8f(v), hw

)

L2
w

= 0,with the initial values(4.5) v(0) = v0, i(0) = i0, dti(0) = i′0, w(0) = w0, dtw(0) = w′
0.De�nition 4.3 (Strong solution) A solution (v, i, w) is 
alled an Ω-periodi
 strong solution ofthe initial value problem (3.3)�(3.6) if it solves the strong version of the problem wherein the partialdi�erential equations are understood as equalities in L2(0, T ;L2

v ×L2
i ×L2

w). That is, the fun
tions
v ∈ H1(0, T ;L2

v), i ∈ H2(0, T ;L2
i ), w ∈ L2(0, T ;H2

w),with
dtv ∈ L2(0, T ;L2

v), dti ∈ H1(0, T ;L2
i ), d2

t i ∈ L2(0, T ;L2
i ),

dtw ∈ L2(0, T ;H1
w), d2

t w ∈ L2(0, T ;L2
w),
onstru
t an Ω-periodi
 strong solution for (3.3)�(3.6) where they solve the equations for almostevery x ∈ Ω and almost every t ∈ [0, T ]. 12



Now, let Bv =
{

ℓ
(l)
v

}∞
l=1

be a basis of L2
v su
h that {

Φ
1
2 ℓ

(l)
v

}∞
l=1

is orthonormal in L2
v. Notethat (3.7), with the range of values given in Table 1, implies that Φ is a positive-de�nite diagonalmatrix, and hen
e, su
h a basis exists. Moreover, let Bi =

{

ℓ
(l)
i

}∞
l=1

be an orthonormal basis of L2
iand Bw =

{

h
(l)
w

}∞
l=1

be an orthogonal basis of H1
w that is orthonormal in L2

w; see Lemma 4.1 for theexisten
e and stru
ture of Bw. Finally, 
onstru
t the set B =
{

b(k)
}∞

k=1
⊂ L2

v × L2
i ×H1

w as
B := Bv × Bi × Bw =

{

b(k) = (ℓ(k)
v , ℓ

(k)
i , h(k)

w ) : ℓ(k)
v ∈ Bv, ℓ

(k)
i ∈ Bi, h

(k)
w ∈ Bw

}∞

k=1
.(4.6)For ea
h positive integer m, we seek approximations v(m) : [0, T ] → L2

v, i(m) : [0, T ] → L2
i , and

w(m) : [0, T ] → H1
w of the form

v(m)(t) =
∑m

k=1
c(m)
vk

(t)ℓ(k)
v ,(4.7)

i(m)(t) =
∑m

k=1
c
(m)
ik

(t)ℓ
(k)
i ,(4.8)

w(m)(t) =
∑m

k=1
c(m)
wk

(t)h(k)
w ,(4.9)with su�
iently smooth fun
tions c

(m)
vk

, c
(m)
ik

, and c
(m)
wk

on [0, T ], su
h that, for all t ∈ [0, T ], and
k = 1, . . . ,m, these approximations satisfy the system of di�erential equations

(

Φdtv
(m), ℓ(k)

v

)

L2
v

+
(

v(m), ℓ(k)
v

)

L2
v
−

(

J1i
(m), ℓ(k)

v

)

L2
v

(4.10)
+

(

J2v
(m)i(m)TΨJ4 + J3v

(m)i(m)TΨJ5, ℓ
(k)
v

)

L2
v

= 0,
(

d2
t i

(m), ℓ
(k)
i

)

L2
i
+ 2

(

Γdti
(m), ℓ

(k)
i

)

L2
i
+

(

Γ2i(m), ℓ
(k)
i

)

L2
i

(4.11)
−e

(

ΥΓJ6w
(m), ℓ

(k)
i

)

L2
i
− e

(

ΥΓNJ7f(v(m)), ℓ
(k)
i

)

L2
i

= e
(

ΥΓg, ℓ
(k)
i

)

L2
i
,

(

d2
t w

(m), h(k)
w

)

L2
w

+ 2ν
(

Λdtw
(m), h(k)

w

)

L2
w
− 3

2ν2
(

∆w(m), h(k)
w

)

L2
w

(4.12)
+ν2

(

Λ2w(m), h(k)
w

)

L2
w
− ν2

(

Λ2MJ8f(v(m)), h(k)
w

)

L2
w

= 0,subje
t to the initial 
onditions
c(m)
vk

(0) =
(

v0, ℓ
(k)
v

)

L2
v
, c

(m)
ik

(0) =
(

i0, ℓ
(k)
i

)

L2
i
, dtc

(m)
ik

(0) =
(

i′0, ℓ
(k)
i

)

L2
i
,(4.13)

c(m)
wk

(0) =
(

w0, h
(k)
w

)

L2
w
, dtc

(m)
wk

(0) =
(

w′
0, h

(k)
w

)

L2
w
,on the 
oe�
ients c

(m)
k (t) = (c

(m)
vk

(t), c
(m)
ik

(t), c
(m)
wk

(t)) ∈ R
3.Equations (4.10)�(4.13) are equivalent to a system of nonlinear 3m-dimensional ordinary di�er-ential equations on 
oe�
ients c(m)(t) = (c

(m)
1 (t), . . . , c

(m)
m (t)) ∈ R

3m. Therefore, by the standardtheory of ordinary di�erential equations [47, Th. 2.1℄, there exists a unique fun
tion c(m)(t) thatsolves (4.10)�(4.13) for t ∈ [0, Tm), Tm > 0, with the approximations (4.7)�(4.9). Moreover, Tm = Tfor all positive integers m, whi
h follows from Proposition 4.4.Proposition 4.4 (Energy estimates) Suppose g ∈ L2(0, T ;L2
i ) and for every positive integer mlet v(m), i(m), and w(m) be fun
tions of the form (4.7)�(4.9), respe
tively, satisfying (4.10)�(4.12)with the initial 
onditions (4.13). Then there exist positive 
onstants αv, βv, αi, and αw, dependent13



only on the parameters of the model, su
h that for every positive integer m,
sup

t∈[0,T ]

(

∥

∥v(m)(t)
∥

∥

2

L2
v

)

+
∥

∥dtv
(m)

∥

∥

2

L2(0,T ;L2
v
∗)

≤ κv,(4.14)
sup

t∈[0,T ]

(

∥

∥dti
(m)(t)

∥

∥

2

L2
i

+
∥

∥i(m)(t)
∥

∥

2

L2
i

)

+
∥

∥d2
t i

(m)
∥

∥

2

L2(0,T ;L2
i
∗
)
≤ κi,(4.15)

sup
t∈[0,T ]

(

∥

∥dtw
(m)(t)

∥

∥

2

L2
w

+
∥

∥w(m)(t)
∥

∥

2

H1
w

)

+
∥

∥d2
t w

(m)
∥

∥

2

L2(0,T ;H1
w
∗)

≤ κw,(4.16)where κv, κi, and κw are positive 
onstants given, independently of m, by
κv := αv

(

(

1 + (1 +
√

κi)
2T

)

exp (βv

√
κiT )

[

∥

∥v0

∥

∥

2

L2
v

+ κiT
]

+ κiT
)

,(4.17)
κi := αi

(

(1 + T )
[

∥

∥i′0
∥

∥

2

L2
i

+
∥

∥i0
∥

∥

2

L2
i

]

+ (2 + T )
[

T
(

κw + |Ω|(F2
E + F2

I )
)(4.18)

+
∥

∥g
∥

∥

2

L2(0,T ;L2
i
)

])

,

κw := αw

(

(1 + T )
[

∥

∥w′
0

∥

∥

2

L2
w

+
∥

∥w0

∥

∥

2

H1
w

]

+ (2 + T )T |Ω|F2
E

)

.(4.19)Proof. Multiplying (4.12) by dtc
(m)
wk

and summing over k = 1, . . . ,m yields
(

d2
t w

(m),dtw
(m)

)

L2
w

+ 2ν
(

Λdtw
(m),dtw

(m)
)

L2
w
− 3

2ν2
(

∆w(m),dtw
(m)

)

L2
w

+ ν2
(

Λ2w(m),dtw
(m)

)

L2
w
− ν2

(

Λ2MJ8f(v(m)),dtw
(m)

)

L2
w

= 0,or, equivalently, using (2.1) in the third term in the above equation,
1
2dt

[

∥

∥dtw
(m)

∥

∥

2

L2
w

+ 3
2ν2

∥

∥∂xw(m)
∥

∥

2

L2
∂w

+ ν2
∥

∥Λw(m)
∥

∥

2

L2
w

]

+ 2ν
∥

∥Λ
1
2 dtw

(m)
∥

∥

2

L2
w

− ν2
(

Λ2MJ8f(v(m)),dtw
(m)

)

L2
w

= 0.Now, Young's inequality implies that for every ε1 > 0,
ν2

(

Λ2MJ8f(v(m)),dtw
(m)

)

L2
w
≤ ε1ν

2
∥

∥dtw
(m)

∥

∥

2

L2
w

+
ν2

4ε1

∥

∥Λ2MJ8f(v(m))
∥

∥

2

L2
w

= ε1ν
2
∥

∥dtw
(m)

∥

∥

2

L2
w

+
ν2

4ε1
tr(Λ4M2)

∫

Ω

∣

∣fE(v
(m)
E )

∣

∣

2
dx

≤ ε1ν
2
∥

∥dtw
(m)

∥

∥

2

L2
w

+
ν2

4ε1
|Ω|F2

E tr(Λ4M2).Therefore,
dt

[

∥

∥dtw
(m)

∥

∥

2

L2
w

+ 3
2ν2

∥

∥∂xw(m)
∥

∥

2

L2
∂w

+ ν2
∥

∥Λw(m)
∥

∥

2

L2
w

]

+ 2ν(2Λmin − ε1ν)
∥

∥dtw
(m)

∥

∥

2

L2
w

≤ ν2

2ε1
|Ω|F2

E tr(Λ4M2),where Λmin := min{ΛEE,ΛEI} is the smallest eigenvalue of Λ.14



Next, setting ε1 = 2
ν
Λmin and integrating with respe
t to time over [0, t] yields

∥

∥dtw
(m)(t)

∥

∥

2

L2
w

+ 3
2ν2

∥

∥∂xw(m)(t)
∥

∥

2

L2
∂w

+ ν2
∥

∥Λw(m)(t)
∥

∥

2

L2
w

≤
(

∥

∥dtw
(m)

∥

∥

2

L2
w

+ 3
2ν2

∥

∥∂xw(m)
∥

∥

2

L2
∂w

+ ν2
∥

∥Λw(m)
∥

∥

2

L2
w

)∣

∣

∣

t=0
+ 1

4

ν3

Λmin
|Ω|F2

E tr(Λ4M2)t,whi
h, using (4.13), implies
∥

∥dtw
(m)(t)

∥

∥

2

L2
w

+
∥

∥w(m)(t)
∥

∥

2

H1
w
≤ α̂w

(

∥

∥w′
0

∥

∥

2

L2
w

+
∥

∥w0

∥

∥

2

H1
w

+ 1
4

ν3

Λmin
|Ω|F2

E tr(Λ4M2)t

)for all t ∈ [0, T ] and some α̂w > 0. Sin
e this inequality holds for all t ∈ [0, T ], it follows that
sup

t∈[0,T ]

(

∥

∥dtw
(m)(t)

∥

∥

2

L2
w

+
∥

∥w(m)(t)
∥

∥

2

H1
w

)

≤ κ̂w,(4.20)where
κ̂w := α̂w

(

∥

∥w′
0

∥

∥

2

L2
w

+
∥

∥w0

∥

∥

2

H1
w

+ 1
4

ν3

Λmin
|Ω|F2

E tr(Λ4M2)T

)

.Now, �x h̄ ∈ H1
w su
h that ∥

∥h̄
∥

∥

H1
w
≤ 1 and de
ompose h̄ as h̄ = h+h⊥, where h ∈ span

{

h
(k)
w

}m

k=1and (

h
(k)
w , h⊥)

L2
w

= 0, k = 1, . . . ,m. Sin
e the basis Bw used to 
onstru
t B in (4.6) is orthonormalin L2
w, it follows from (4.9) that

〈

d2
t w

(m), h̄
〉

H1
w

=
(

d2
t w

(m), h̄
)

L2
w

=
(

d2
t w

(m), h
)

L2
w
,where the �rst equality holds sin
e d2

t w
(m) ∈ H1

w; see the proof of [15, Th. 5.9-1℄. Therefore, (4.12)gives
〈

d2
t w

(m), h̄
〉

H1
w

=

− 2ν
(

Λdtw
(m), h

)

L2
w

+ 3
2ν2

(

∆w(m), h
)

L2
w
− ν2

(

Λ2w(m), h
)

L2
w

+ ν2
(

Λ2MJ8f(v(m)), h
)

L2
w
.Sin
e Bw is orthogonal in H1

w we have ∥

∥h
∥

∥

H1
w

≤
∥

∥h̄
∥

∥

H1
w

≤ 1, and hen
e, the Cau
hy-S
hwarzinequality gives
∣

∣

〈

d2
t w

(m), h̄
〉

H1
w

∣

∣

≤ 2ν
∥

∥dtw
(m)

∥

∥

L2
w
+ 3

2ν2
∥

∥∂xw(m)
∥

∥

L2
∂w

+ ν2
∥

∥Λ2w(m)
∥

∥

L2
w
+ ν2

∥

∥Λ2MJ8f(v(m))
∥

∥

L2
w

≤ α1

(

∥

∥dtw
(m)

∥

∥

L2
w

+
∥

∥w(m)
∥

∥

H1
w

+ ν2
(

|Ω|F2
E tr(Λ4M2)

)
1
2

)for some α1 > 0. Therefore, there exists α2 > 0 su
h that
∫ T

0

∥

∥d2
t w

(m)
∥

∥

2

H1
w
∗dt ≤ α2

∫ T

0

(

∥

∥dtw
(m)

∥

∥

2

L2
w

+
∥

∥w(m)
∥

∥

2

H1
w

+ ν4|Ω|F2
E tr(Λ4M2)

)

dt,whi
h, using (4.20), yields
∥

∥d2
t w

(m)
∥

∥

2

L2(0,T ;H1
w
∗)

≤ α2

(

κ̂w + ν4|Ω|F2
E tr(Λ4M2)

)

T.15



This inequality, together with (4.20), establishes the bound (4.16) with (4.19) for some αw > 0.Next, multiplying (4.11) by dtc
(m)
ik

and summing over k = 1, . . . ,m yields(4.21) (

d2
t i

(m),dti
(m)

)

L2
i
+ 2

(

Γdti
(m),dti

(m)
)

L2
i
+

(

Γ2i(m),dti
(m)

)

L2
i

− e
(

ΥΓJ6w
(m),dti

(m)
)

L2
i
− e

(

ΥΓNJ7f(v(m)),dti
(m)

)

L2
i

= e
(

ΥΓg,dti
(m)

)

L2
i
.For the se
ond term we have

(

Γdti
(m),dti

(m)
)

L2
i
≥ γmin

∥

∥dti
(m)

∥

∥

2

L2
i

,where γmin := min{γEE, γEI, γIE, γII} is the smallest eigenvalue of Γ. Now, using Young's inequalityand re
alling (4.16) we obtain, for every ε2, . . . , ε4 > 0,
e
(

ΥΓJ6w
(m),dti

(m)
)

L2
i
≤ ε2

∥

∥dti
(m)

∥

∥

2

L2
i

+
e2

4ε2

∥

∥ΥΓJ6w
(m)

∥

∥

2

L2
i

≤ ε2

∥

∥dti
(m)

∥

∥

2

L2
i

+
e2

4ε2

∥

∥ΥΓJ6

∥

∥

2

2

∥

∥w(m)
∥

∥

2

L2
w

≤ ε2

∥

∥dti
(m)

∥

∥

2

L2
i

+
e2κw

4ε2

∥

∥ΥΓJ6

∥

∥

2

2
,

e
(

ΥΓNJ7f(v(m)),dti
(m)

)

L2
i
≤ ε3

∥

∥dti
(m)

∥

∥

2

L2
i

+
e2

4ε3

∥

∥ΥΓNJ7f(v(m))
∥

∥

2

L2
i

≤ ε3

∥

∥dti
(m)

∥

∥

2

L2
i

+
e2

4ε3

∥

∥ΥΓNJ7

∥

∥

2

2

∥

∥f(v(m))
∥

∥

2

L2
v

≤ ε3

∥

∥dti
(m)

∥

∥

2

L2
i

+
e2|Ω|
4ε3

(F2
E + F2

I )
∥

∥ΥΓNJ7

∥

∥

2

2
,

e
(

ΥΓg,dti
(m)

)

L2
i
≤ ε4

∥

∥dti
(m)

∥

∥

2

L2
i

+
e2

4ε4

∥

∥ΥΓg
∥

∥

2

L2
i

≤ ε4

∥

∥dti
(m)

∥

∥

2

L2
i

+
e2

4ε4

∥

∥ΥΓ
∥

∥

2

2

∥

∥g
∥

∥

2

L2
i

.Hen
e, with the above inequalities, (4.21) implies
dt

[

∥

∥dti
(m)

∥

∥

2

L2
i

+
∥

∥Γi(m)
∥

∥

2

L2
i

]

+ 2(2γmin − ε2 − ε3 − ε4)
∥

∥dti
(m)

∥

∥

2

L2
i

≤ e2κw

2ε2

∥

∥ΥΓJ6

∥

∥

2

2
+

e2|Ω|
2ε3

(F2
E + F2

I )
∥

∥ΥΓNJ7

∥

∥

2

2
+

e2

2ε4

∥

∥ΥΓ
∥

∥

2

2

∥

∥g
∥

∥

2

L2
i

.Now, setting ε2 = ε3 = 1
2γmin and ε4 = γmin, integrating with respe
t to time over [0, t], andtaking the supremum over t ∈ [0, T ] we have
sup

t∈[0,T ]

(

∥

∥dti
(m)(t)

∥

∥

2

L2
i

+
∥

∥i(m)(t)
∥

∥

2

L2
i

)

≤ κ̂i,(4.22)where, for some α̂i > 0,
κ̂i = α̂i

(

∥

∥i′0
∥

∥

2

L2
i

+
∥

∥i0
∥

∥

2

L2
i

+

[

e2κw

γmin

∥

∥ΥΓJ6

∥

∥

2

2
+

e2|Ω|
γmin

(F2
E + F2

I )
∥

∥ΥΓNJ7

∥

∥

2

2

]

T

+
e2

2γmin

∥

∥ΥΓ
∥

∥

2

2

∥

∥g
∥

∥

2

L2(0,T ;L2
i )

)
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Fix ℓ̄ ∈ L2
i su
h that ∥

∥ℓ̄
∥

∥

L2
i

≤ 1 and de
ompose ℓ̄ as ℓ̄ = ℓ + ℓ⊥, where ℓ ∈ span
{

ℓ
(k)
i

}m

k=1
and

(

ℓ
(k)
i , ℓ⊥

)

L2
i

= 0, k = 1, . . . ,m. Using (4.8) and (4.11) we obtain
〈

d2
t i

(m), ℓ̄
〉

L2
i

=
(

d2
t i

(m), ℓ̄
)

L2
i

=
(

d2
t i

(m), ℓ
)

L2
i

= −2
(

Γdti
(m), ℓ

)

L2
i
−

(

Γ2i(m), ℓ
)

L2
i
+ e

(

ΥΓJ6w
(m), ℓ

)

L2
i
+ e

(

ΥΓNJ7f(v(m)), ℓ
)

L2
i

+ e
(

ΥΓg, ℓ
)

L2
i
.The orthogonality of the basis Bi in (4.6) implies ∥

∥ℓ
∥

∥

L2
i

≤ 1, and hen
e,
∣

∣

〈

d2
t i

(m), ℓ̄
〉

L2
i

∣

∣ ≤ 2
∥

∥Γ
∥

∥

2

∥

∥dti
(m)

∥

∥

L2
i

+
∥

∥Γ2
∥

∥

2

∥

∥i(m)
∥

∥

L2
i

+ e
∥

∥ΥΓJ6w
(m)

∥

∥

L2
i

+ e
∥

∥ΥΓNJ7f(v(m))
∥

∥

L2
i

+ e
∥

∥ΥΓg
∥

∥

L2
i

.Therefore, it follows from the same inequalities used to derive (4.22) that, for some α3 > 0,
∥

∥d2
t i

(m)
∥

∥

2

L2(0,T ;L2
i
∗
)
≤ α3

([

κ̂i + e2κw

∥

∥ΥΓJ6

∥

∥

2

2
+ e2|Ω|(F2

E + F2
I )

∥

∥ΥΓNJ7

∥

∥

2

2

]

T

+e2
∥

∥ΥΓ
∥

∥

2

2

∥

∥g
∥

∥

2

L2(0,T ;L2
i )

)

.This, together with (4.22), establishes the bound (4.15) with (4.18) for some αi > 0.Finally, multiplying (4.10) by c
(m)
vk

and summing over k = 1, . . . ,m yields(4.23) (

Φdtv
(m), v(m)

)

L2
v

+
(

v(m), v(m)
)

L2
v
−

(

J1i
(m), v(m)

)

L2
v

+
(

J2v
(m)i(m)TΨJ4 + J3v

(m)i(m)TΨJ5, v
(m)

)

L2
v

= 0.Now, using Young's inequality and re
alling (4.15) we obtain, for every ε5 > 0,
(

J1i
(m), v(m)

)

L2
v
≤ ε5

∥

∥v(m)
∥

∥

2

L2
v

+
1

4ε5

∥

∥J1i
(m)

∥

∥

2

L2
v

≤ ε5

∥

∥v(m)
∥

∥

2

L2
v

+
1

2ε5

∥

∥i(m)
∥

∥

2

L2
v

≤ ε5

∥

∥v(m)
∥

∥

2

L2
v

+
κi

2ε5
.Moreover, using Hölder's inequality in R

2 and the Cau
hy-S
hwarz inequality in R
4 we obtain

−
(

J2v
(m)i(m)TΨJ4 + J3v

(m)i(m)TΨJ5, v
(m)

)

L2
v

= −
∫

Ω

(

(v
(m)
1 )2i(m)TΨJ4 + (v

(m)
2 )2i(m)TΨJ5

)

dx

≤
∫

Ω

∥

∥v(m)
∥

∥

2

R2 max
{

|i(m)TΨJ4|, |i(m)TΨJ5|
}

dx

≤
∫

Ω

∥

∥v(m)
∥

∥

2

R2

∥

∥i(m)
∥

∥

R4 max
{
∥

∥ΨJ4

∥

∥

R4 ,
∥

∥ΨJ5

∥

∥

R4

}

dx

≤
√

2κi

∥

∥Ψ
∥

∥

2

∥

∥v(m)
∥

∥

2

L2
v
.17



Therefore, (4.23) implies
dt

∥

∥Φ
1
2 v(m)

∥

∥

2

L2
v

+ 2
(

1 − ε5 −
√

2κi

∥

∥Ψ
∥

∥

2

)
∥

∥v(m)
∥

∥

2

L2
v
≤ κi

ε5
.Next, setting ε5 = 1 and using Grönwall's inequality [48, Se
. III.1.1.3.℄ yields

sup
t∈[0,T ]

(

∥

∥v(m)(t)
∥

∥

2

L2
v

)

≤ κ̂v,(4.24)where, for some α̂v > 0 and β̂v > 0,
κ̂v = α̂v exp

(

β̂v

√
2κi

∥

∥Ψ
∥

∥

2
T

)(

∥

∥v0

∥

∥

2

L2
v

+ κiT
)

.Now, �x ℓ̄ ∈ L2
v su
h that ∥

∥ℓ̄
∥

∥

L2
v
≤ 1 and de
ompose ℓ̄ as ℓ̄ = ℓ+ℓ⊥, where ℓ ∈ span

{

ℓ
(k)
v

}m

k=1
and

(

Φℓ
(k)
v , ℓ⊥

)

L2
v

= 0, k = 1, . . . ,m. Note that this de
omposition exists due to the way we 
onstru
t thebasis Bv in (4.6), wherein the elements, weighted by Φ
1
2 , are orthonormal in L2

v. Then, it followsfrom (4.7) and (4.10) that
〈

Φdtv
(m), ℓ̄

〉

L2
v

=
(

Φdtv
(m), ℓ̄

)

L2
v

=
(

Φdtv
(m), ℓ

)

L2
v

= −
(

v(m), ℓ
)

L2
v

+
(

J1i
(m), ℓ

)

L2
v
−

(

J2v
(m)i(m)TΨJ4 + J3v

(m)i(m)TΨJ5, ℓ
)

L2
v
.Sin
e Bv is a Φ

1
2 -weighted orthonormal set in L2

v, it follows that
∥

∥ℓ
∥

∥

L2
v
≤

∥

∥Φ− 1
2

∥

∥

2

∥

∥Φ
1
2 ℓ

∥

∥

L2
v
≤

∥

∥Φ− 1
2

∥

∥

2

∥

∥Φ
1
2 ℓ̄

∥

∥

L2
v
≤

∥

∥Φ− 1
2

∥

∥

2

∥

∥Φ
1
2

∥

∥

2

∥

∥ℓ̄
∥

∥

L2
v
≤

∥

∥Φ− 1
2

∥

∥

2

∥

∥Φ
1
2

∥

∥

2and hen
e, letting α4 :=
∥

∥Φ− 1
2

∥

∥

2

∥

∥Φ
1
2

∥

∥

2
and using Cau
hy-S
hwarz inequality we have

∣

∣

〈

Φdtv
(m), ℓ̄

〉

L2
v

∣

∣ ≤ α4

(

∥

∥v(m)
∥

∥

L2
v

+
∥

∥J1i
(m)

∥

∥

L2
v

+
∥

∥J2v
(m)i(m)TΨJ4 + J3v

(m)i(m)TΨJ5

∥

∥

L2
v

)

≤ α4

(

∥

∥v(m)
∥

∥

L2
v

+
√

2
∥

∥i(m)
∥

∥

L2
v

+ 2
√

2
∥

∥v(m)
∥

∥

L2
v

∥

∥i(m)
∥

∥

L2
v

∥

∥Ψ
∥

∥

2

)

≤ α4

(

(

1 + 2
√

2κi

∥

∥Ψ
∥

∥

2

)
∥

∥v(m)
∥

∥

L2
v

+
√

2κi

)

,whi
h, along with (4.24) implies that, for some α5 > 0,
∥

∥dtv
(m)

∥

∥

2

L2(0,T ;L2
v
∗)

≤ α5

(

(

1 + 2
√

2κi

∥

∥Ψ
∥

∥

2

)2
κ̂v + 2κi

)

T.This, together with (4.24), establishes the bound (4.14) with (4.17) for some αv > 0. Note that
onstants α1, . . . , α5, α̂v, β̂v, α̂i, and α̂w depend only on the parameters of the model, whi
h furtherimplies that the 
onstants αv, βv, αi, and αw also depend only on the parameters of the model and
ompletes the proof.Theorem 4.5 (Existen
e and uniqueness of weak solutions) Suppose that g ∈ L2(0, T ;L2
i ),

v0 ∈ L2
v, i0 ∈ L2

i , i′0 ∈ L2
i , w0 ∈ H1

w, and w′
0 ∈ L2

w. Then there exists a unique Ω-periodi
 weaksolution (v, i, w) of the initial value problem (3.3)�(3.6).18



Proof. The energy estimate (4.14) implies that the sequen
e {

v(m)
}∞

m=1
is bounded in L2(0, T ;L2

v)and the sequen
e {

dtv
(m)

}∞
m=1

is bounded in L2(0, T ;L2
v
∗
). Sin
e L2

v
∗

= L2
v, it follows that {

v(m)
}∞

m=1is bounded in H1(0, T ;L2
v) and {

dtv
(m)

}∞
m=1

is bounded in L2(0, T ;L2
v). Similarly, sin
e L2

i
∗

= L2
i ,the energy estimate (4.15) implies that the sequen
e {

i(m)
}∞

m=1
is bounded in H2(0, T ;L2

i ), thesequen
e {

dti
(m)

}∞
m=1

is bounded in H1(0, T ;L2
i ), and the sequen
e {

d2
t i

(m)
}∞

m=1
is bounded in

L2(0, T ;L2
i ). Finally, the energy estimate (4.16) implies that the sequen
e {

w(m)
}∞

m=1
is bounded in

L2(0, T ;H1
w), the sequen
e {

dtw
(m)

}∞
m=1

is bounded in L2(0, T ;L2
w), and the sequen
e {

d2
t w

(m)
}∞

m=1is bounded in L2(0, T ;H1
w
∗
). Now, it follows from the Relli
h-Kondra
hov 
ompa
t embedding the-orems [8, Th. 6.6-3℄ that H1(0, T ;L2

v) ⋐ L2(0, T ;L2
v) and H1(0, T ;L2

i ) ⋐ L2(0, T ;L2
i ). Therefore,by [8, Th. 2.10-1b℄, there exist subsequen
es {

v(mk)
}∞

k=1
, {

i(mk)
}∞

k=1
, and {

dti
(mk)

}∞
k=1

su
h that
v(mk) → v strongly in L2(0, T ;L2

v),(4.25)
i(mk) → i strongly in L2(0, T ;L2

i ),

dti
(mk) → i′ strongly in L2(0, T ;L2

i ).Moreover, by the Bana
h-Eberlein-�mulian theorem [8, Th. 5.14-4℄, there exist subsequen
es
{

dtv
(mk)

}∞
k=1

, d2
t

{

i(mk)
}∞

k=1
, {

w(mk)
}∞

k=1
, {

dtw
(mk)

}∞
k=1

, and {

d2
t w

(mk)
}∞

k=1
su
h that

dtv
(mk) ⇀ v′ weakly in L2(0, T ;L2

v),(4.26)
d2

t i
(mk) ⇀ i′′ weakly in L2(0, T ;L2

i ),

w(mk) ⇀ w weakly in L2(0, T ;H1
w),

dtw
(mk) ⇀ w′ weakly in L2(0, T ;L2

w),

d2
t w

(mk) ⇀ w′′ weakly in L2(0, T ;H1
w
∗
),where the time derivatives in the above analysis are derivatives in the weak sense.Next, we show that

v′ = dtv, i′ = dti, i′′ = d2
t i, w′ = dtw, w′′ = d2

t w.Sin
e L2(0, T ;H1
w) is re�exive, the weak and weak* 
onvergen
e 
oin
ide. Re
alling the de�nitionof weak* 
onvergen
e and weak derivatives, it follows that for every h ∈ H1

w and φ ∈ C∞
c ([0, T ]),

〈

∫ T

0
w′′φdt, h

〉

H1
w

=

∫ T

0

〈

w′′φ, h
〉

H1
w
dt = lim

k→∞

∫ T

0

〈

d2
t w

(mk)φ, h
〉

H1
w
dt

= lim
k→∞

〈

∫ T

0
d2

t w
(mk)φdt, h

〉

H1
w

= lim
k→∞

〈

(−1)2
∫ T

0
w(mk)d2

t φdt, h
〉

H1
w

= lim
k→∞

(−1)2
∫ T

0

〈

w(mk)d2
t φ, h

〉

H1
w
dt = (−1)2

∫ T

0

〈

wd2
t φ, h

〉

H1
w
dt

=
〈

(−1)2
∫ T

0
wd2

t φdt, h
〉

H1
w
,whi
h implies w′′ = d2

t w in the weak sense. The other identities are proved similarly.Now, re
all (3.2) and (3.7) and note that the nonlinear map f : R
2 → R

2 is bounded andsmooth, and in parti
ular, is Lips
hitz 
ontinuous. Therefore, it follows from the strong 
onvergen
e19



of {

v(mk)
}∞

k=1
in (4.25) that(4.27) f(v(mk)) → f(v) strongly in L2(0, T ;L2

v).For the bilinear term J2viTΨJ4, use (4.14) and (4.15) to write
∥

∥J2

(

viT − v(mk)i(mk)T
)

ΨJ4

∥

∥

L2(0,T ;L2
v)

≤
∥

∥J2(v − v(mk))iTΨJ4

∥

∥

L2(0,T ;L2
v)

+
∥

∥J2v
(mk)(i − i(mk))TΨJ4

∥

∥

L2(0,T ;L2
v)

≤
√

2
∥

∥Ψ
∥

∥

2

[

∥

∥v − v(mk)
∥

∥

L2(0,T ;L2
v)

∥

∥i
∥

∥

L2(0,T ;L2
i )

+
∥

∥v(mk)
∥

∥

L2(0,T ;L2
v)

∥

∥i − i(mk)
∥

∥

L2(0,T ;L2
i )

]

≤
√

2
∥

∥Ψ
∥

∥

2

[√
κi

∥

∥v − v(mk)
∥

∥

L2(0,T ;L2
v)

+
√

κv

∥

∥i − i(mk)
∥

∥

L2(0,T ;L2
i )

]

.The same inequality holds for the bilinear term J3viTΨJ5 as well. Therefore, (4.25) gives
J2v

(mk)i(mk)TΨJ4 → J2viTΨJ4 strongly in L2(0, T ;L2
v),(4.28)

J3v
(mk)i(mk)TΨJ5 → J3viTΨJ5 strongly in L2(0, T ;L2

v).Next, �x a positive integer K and 
hoose the fun
tions
v̂ =

∑K

k=1
cvk

(t)ℓ(k)
v ∈ C1([0, T ];L2

v),

î =
∑K

k=1
cik(t)ℓ

(k)
i ∈ C1([0, T ];L2

i ),

ŵ =
∑K

k=1
cwk

(t)h(k)
w ∈ C1([0, T ];H1

w),where, for every k ∈ {1, . . . ,K}, the s
alar-valued fun
tions cvk
, cik , cwk

are su�
iently smoothon [0, T ] and (ℓ
(k)
v , ℓ

(k)
i , h

(k)
w ) ∈ B, where B is given by (4.6). Set m = mk in (4.10)�(4.12) and
hoose mk ≥ K. Then, multiplying (4.10)�(4.12) by cvk

, cik , and cwk
, respe
tively, summing over

k = 1, . . . ,K, and integrating over t ∈ [0, T ] yields
∫ T

0

[

〈

Φdtv
(mk), v̂

〉

L2
v

+
(

v(mk), v̂
)

L2
v
−

(

J1i
(mk), v̂

)

L2
v

(4.29)
+

(

J2v
(mk)i(mk)TΨJ4 + J3v

(mk)i(mk)TΨJ5, v̂
)

L2
v

]

dt = 0,
∫ T

0

[

〈

d2
t i

(mk), î
〉

L2
i
+ 2

(

Γdti
(mk), î

)

L2
i
+

(

Γ2i(mk), î
)

L2
i

−e
(

ΥΓJ6w
(mk), î

)

L2
i
− e

(

ΥΓNJ7f(v(mk)), î
)

L2
i

]

dt =

∫ T

0
e
(

ΥΓg, î
)

L2
i
dt,

∫ T

0

[

〈

d2
t w

(mk), ŵ
〉

L2
w

+ 2ν
(

Λdtw
(mk), ŵ

)

L2
w
− 3

2ν2
(

∆w(mk), ŵ
)

L2
w

+ν2
(

Λ2w(mk), ŵ
)

L2
w
− ν2

(

Λ2MJ8f(v(m)), ŵ
)

L2
w

]

dt = 0.Note that the families of fun
tions v̂, î, and ŵ 
hosen above are dense in the spa
es L2(0, T ;L2
v),

L2(0, T ;L2
i ), and L2(0, T ;H1

w), respe
tively. Therefore, (4.29) holds for all fun
tions v̂ ∈ L2(0, T ;L2
v),20



î ∈ L2(0, T ;L2
i ), and ŵ ∈ L2(0, T ;H1

w). Now, use (4.25)�(4.28) to pass to the limits in (4.29), whi
himplies that (4.2)�(4.4) hold for all ℓv ∈ L2
v, ℓi ∈ L2

i , hw ∈ H1
w, and almost every t ∈ [0, T ].It remains to verify the initial 
onditions (4.5). Choose the fun
tions

v̂ ∈ C1([0, T ];L2
v), î ∈ C2([0, T ];L2

i ), ŵ ∈ C2([0, T ];H1
w),su
h that these fun
tions vanish at the end point t = T . Integrating by parts in (4.29) yields

∫ T

0

[

−
(

Φv(mk),dtv̂
)

L2
v
+ · · ·

]

dt =
(

Φv(mk)(0), v̂(0)
)

L2
v
,(4.30)

∫ T

0

[

(

i(mk),d2
t î

)

L2
i
+ · · ·

]

dt = · · · +
(

dti
(mk)(0), î(0)

)

L2
i
−

(

i(mk)(0),dtî(0)
)

L2
i
,

∫ T

0

[

(

w(mk),d2
t ŵ

)

H1
w

+ · · ·
]

dt =
(

dtw
(mk)(0), ŵ(0)

)

L2
w
−

(

w(mk)(0),dtŵ(0)
)

L2
w
,where �· · · � denotes terms that are not pertinent to the analysis. Similarly, integrating by parts inthe limit of (4.29) yields

∫ T

0

[

−
(

Φv,dtv̂
)

L2
v

+ · · ·
]

dt =
(

Φv(0), v̂(0)
)

L2
v
,(4.31)

∫ T

0

[

(

i,d2
t î

)

L2
i
+ · · ·

]

dt = · · · +
(

dti(0), î(0)
)

L2
i
−

(

i(0),dt î(0)
)

L2
i
,

∫ T

0

[(

w,d2
t ŵ

)

H1
w

+ · · ·
]

dt =
(

dtw(0), ŵ(0)
)

L2
w
−

(

w(0),dtŵ(0)
)

L2
w
.Now, 
onsider the initial 
onditions (4.13), pass to the limits in (4.30) through (4.25)�(4.28), and
ompare the results with (4.31). Sin
e v̂, î, and ŵ are arbitrary the initial 
ondition (4.5) holds andthis 
ompletes the proof of existen
e.To prove uniqueness, assume, by 
ontradi
tion, that there exist two weak solutions (ṽ, ĩ, w̃) and

(v̂, î, ŵ) for (3.1), initiating from the same initial values, su
h that (ṽ, ĩ, w̃) 6= (v̂, î, ŵ). Then,
(v, i, w) := (ṽ, ĩ, w̃) − (v̂, î, ŵ) is a weak solution initiating from the zero initial 
ondition (v0, i0, i

′
0,

w0, w
′
0) = 0. Now, �x s ∈ [0, T ] and de�ne, for 0 ≤ t ≤ T , the fun
tions(4.32) p(t) :=

∫ t

0
w(r)dr, q(t) :=

{

∫ s

t
w(r)dr, if 0 ≤ t ≤ s,

0, if s < t ≤ T.Note that p(t) ∈ H1
w and q(t) ∈ H1

w for all t ∈ [0, T ], and hen
e, p and q are regular enough to beused as the test fun
tion hw in (4.4). Moreover, q(s) = 0, q(0) = p(s), and p(0) = 0. Let ũ and ûsatisfy (4.2)�(4.4) with the same test fun
tions ℓv = v(t), ℓi = dti(t), and hw = q(t). Subtra
ting
21



the two sets of equations and integrating over t ∈ [0, s] yields
∫ s

0

[

〈

Φdtv, v
〉

L2
v

+
(

v, v
)

L2
v
−

(

J1i, v
)

L2
v

(4.33)
+

(

J2(ṽĩT − v̂îT)ΨJ4 + J3(ṽĩT − v̂îT)ΨJ5, v
)

L2
v

]

dt = 0,
∫ s

0

[

〈

d2
t i,dti

〉

L2
i
+ 2

(

Γdti,dti
)

L2
i
+

(

Γ2i,dti
)

L2
i
− e

(

ΥΓJ6w,dti
)

L2
i

(4.34)
−e

(

ΥΓNJ7(f(ṽ) − f(v̂)),dti
)

L2
i

]

dt = 0,
∫ s

0

[

〈

d2
tw, q

〉

H1
w

+ 2ν
(

Λdtw, q
)

L2
w
− 3

2ν2
(

∆w, q
)

L2
w

+ ν2
(

Λ2w, q
)

L2
w

(4.35)
−ν2

(

Λ2MJ8(f(ṽ) − f(v̂)), q
)

L2
w

]

dt = 0.Next, integrating by parts in the �rst and se
ond terms in (4.35) yields
∫ s

0

[

−
(

dtw,dtq
)

L2
w
− 2ν

(

Λw,dtq
)

L2
w
− 3

2ν2
(

∆w, q
)

L2
w

+ ν2
(

Λ2w, q
)

L2
w

]

dt

=

∫ s

0
ν2

(

Λ2MJ8(f(ṽ) − f(v̂)), q
)

L2
w
dt.Note that 〈

dtw,dtq
〉

H1
w

=
(

dtw,dtq
)

L2
w
sin
e dtw ∈ L2

w for almost every t ∈ [0, T ]; see the proofof [15, Th. 5.9-1℄. Now, it follows from the de�nition of q(t) that dtq = −w for all t ∈ [0, s].Therefore,(4.36) ∫ s

0

[

1
2dt

(

∥

∥w
∥

∥

2

L2
w
− 3

2ν2
∥

∥∂xq
∥

∥

2

L2
∂w

)

+ 2ν
∥

∥Λ
1
2 w

∥

∥

2

L2
w

+ ν2
(

Λ2w, q
)

L2
w

]

dt

=

∫ s

0
ν2

(

Λ2MJ8(f(ṽ) − f(v̂)), q
)

L2
w
dt.Using Young's inequality,

ν2
(

Λ2MJ8(f(ṽ) − f(v̂)), q
)

L2
w
≤ 1

4ν2
∥

∥q
∥

∥

2

L2
w

+ ν2 tr(Λ4M2)

[

sup
vE(x,t)∈R

|∂vE
fE(vE)|

]2
∥

∥v
∥

∥

2

L2
v

≤ 1
4ν2

∥

∥q
∥

∥

2

L2
w

+ 1
8ν2 F2

E

σ2
E

tr(Λ4M2)
∥

∥v
∥

∥

2

L2
v
,

−ν2
(

Λ2w, q
)

L2
w
≤ 1

4ν2
∥

∥q
∥

∥

2

L2
w

+ ν2
∥

∥Λ
∥

∥

4

2

∥

∥w
∥

∥

2

L2
w
,where the se
ond inequality follows, for X = E, from di�erentiating (3.2) as(4.37) ∂vX

fX(vX) =

√
2

σX
FX exp

(

−
√

2
vX − µX

σX

)[

1 + exp

(

−
√

2
vX − µX

σX

)]−2

, X ∈ {E, I},whi
h implies supvX(x,t)∈R |∂vX
fX(vX)| ≤ FX

2
√

2σX
.Now, (4.36) implies

1
2

∥

∥w(s)
∥

∥

2

L2
w

+ 3
4ν2

∥

∥q(0)
∥

∥

2

H1
w
≤

∫ s

0

[(

− 2ν
∥

∥Λ
∥

∥

2
+ ν2

∥

∥Λ
∥

∥

4

2

)

∥

∥w
∥

∥

2

L2
w

+ 1
2ν2

∥

∥q
∥

∥

2

L2
w

+1
8ν2 F2

E

σ2
E

tr(Λ4M2)
∥

∥v
∥

∥

2

L2
v

]

dt + 3
4ν2

∥

∥q(0)
∥

∥

2

L2
w
.22



Noting from (4.32) that q(t) = p(s) − p(t) for all t ∈ [0, s], it follows that the above inequality 
anbe written as
1
2

∥

∥w(s)
∥

∥

2

L2
w

+ 3
4ν2

∥

∥p(s)
∥

∥

2

H1
w
≤

∫ s

0

[(

− 2ν
∥

∥Λ
∥

∥

2
+ ν2

∥

∥Λ
∥

∥

4

2

)

∥

∥w(t)
∥

∥

2

L2
w

+ 1
2ν2

∥

∥p(s) − p(t)
∥

∥

2

L2
w

+1
8ν2 F2

E

σ2
E

tr(Λ4M2)
∥

∥v(t)
∥

∥

2

L2
v

]

dt + 3
4ν2

∥

∥p(s)
∥

∥

2

L2
w
.Moreover, ∥

∥p(s)− p(t)
∥

∥

2

L2
w
≤ 2

∥

∥p(s)
∥

∥

2

L2
w

+2
∥

∥p(t)
∥

∥

2

L2
w
≤ 2

∥

∥p(s)
∥

∥

2

H1
w

+2
∥

∥p(t)
∥

∥

2

H1
w
, and it follows fromthe de�nition of p(t) that ∥

∥p(s)
∥

∥

2

L2
w
≤

∫ s

0

∥

∥w(t)
∥

∥

2

L2
w
dt. Therefore,

1
2

∥

∥w(s)
∥

∥

2

L2
w

+ ν2(3
4 − s)

∥

∥p(s)
∥

∥

2

H1
w
≤

∫ s

0

[(

− 2ν
∥

∥Λ
∥

∥

2
+ ν2

∥

∥Λ
∥

∥

4

2
+ 3

4ν2
)

∥

∥w(t)
∥

∥

2

L2
w

(4.38)
+ν2

∥

∥p(t)
∥

∥

2

H1
w

+ 1
8ν2 F2

E

σ2
E

tr(Λ4M2)
∥

∥v(t)
∥

∥

2

L2
v

]

dt.Next, re
alling (4.14) and (4.15) and using the Cau
hy-S
hwarz and Young inequalities, it followsthat the fourth term in (4.33) satis�es, for every ε1 > 0,
(

J2(ṽĩT − v̂îT)ΨJ4, v
)

L2
v

=
(

J2vĩTΨJ4, v
)

L2
v

+
(

J2v̂iTΨJ4, v
)

L2
v

≥ −
√

2κĩ

∥

∥Ψ
∥

∥

2

∥

∥v
∥

∥

2

L2
v
− ε1

∥

∥v
∥

∥

2

L2
v
− 2κv̂

4ε1

∥

∥Ψ
∥

∥

2

2

∥

∥i
∥

∥

2

L2
i

,where κv̂ and κĩ are in the form of (4.17) and (4.18), respe
tively. The same inequality holds for
(

J3(ṽĩT − v̂îT)ΨJ5, v
)

L2
v
. Similarly, using Young's inequality and (4.37),

e
(

ΥΓNJ7(f(ṽ) − f(v̂)),dti
)

L2
i
≤ ε2

∥

∥dti
∥

∥

2

L2
i

+
e2

4ε2

∥

∥ΥΓNJ7

∥

∥

2

2
sup

v(x,t)∈R2

∥

∥∂vf(v)
∥

∥

2

2

∥

∥v
∥

∥

2

L2
v

≤ ε2

∥

∥dti
∥

∥

2

L2
i

+
e2

32ε2

∥

∥ΥΓNJ7

∥

∥

2

2
max

{

F2
E

σ2
E

,
F2

I

σ2
I

}

∥

∥v
∥

∥

2

L2
v
,for every ε2 > 0. Moreover, for every ε3 > 0 and ε4 > 0,

(

J1i, v
)

L2
v
≤ ε4

∥

∥v
∥

∥

2

L2
v

+
1

2ε4

∥

∥i
∥

∥

2

L2
i

,

e
(

ΥΓJ6w,dti
)

L2
i
≤ ε4

∥

∥dti
∥

∥

2

L2
i

+
e2

4ε4

∥

∥ΥΓJ6

∥

∥

2

2

∥

∥w
∥

∥

2

L2
w
.Substituting the above inequalities into (4.33) and (4.34), and adding the resulting inequalitiesto (4.38) yields, for some α > 0,

∥

∥Φ
1
2 v(s)

∥

∥

2

L2
v

+
∥

∥dti(s)
∥

∥

2

L2
i

+
∥

∥Γi(s)
∥

∥

2

L2
i

+
∥

∥w(s)
∥

∥

2

L2
w

+ ν2(3
2 − 2s)

∥

∥p(s)
∥

∥

2

H1
w

≤ α

∫ s

0

[

∥

∥v(t)
∥

∥

2

L2
v

+
∥

∥dti(t)
∥

∥

2

L2
i

+
∥

∥i(t)
∥

∥

2

L2
i

+
∥

∥w(t)
∥

∥

2

L2
w

+
∥

∥p(t)
∥

∥

2

H1
w

]

dt.Now, setting T1 = 3
4 , it follows from the integral form of Grönwall's inequality [15, Appx. B.2℄that (v(s), i(s), w(s)) = 0 for all s ∈ [0, T1]. Repeating the same arguments for intervals [T1, 2T1],

[2T1, 3T1], . . . , we dedu
e (v(t), i(t), w(t)) = 0 for all t ∈ [0, T ], and hen
e, (ṽ, ĩ, w̃) = (v̂, î, ŵ) forall t ∈ [0, T ], whi
h is a 
ontradi
tion and 
ompletes the proof of uniqueness.23



Proposition 4.6 (Regularity of weak solutions) Suppose that the assumptions of Theorem 4.5hold, namely, g ∈ L2(0, T ;L2
i ), v0 ∈ L2

v, i0 ∈ L2
i , i′0 ∈ L2

i , w0 ∈ H1
w, and w′

0 ∈ L2
w. Then the Ω-periodi
 weak solution (v, i, w) of the initial value problem (3.3)�(3.6) satis�es

ess sup
t∈[0,T ]

(

∥

∥v(t)
∥

∥

2

L2
v

)

+
∥

∥dtv
∥

∥

2

L2(0,T ;L2
v)

≤ κv ,(4.39)
ess sup
t∈[0,T ]

(

∥

∥dti(t)
∥

∥

2

L2
i

+
∥

∥i(t)
∥

∥

2

L2
i

)

+
∥

∥d2
t i

∥

∥

2

L2(0,T ;L2
i )
≤ κi,

ess sup
t∈[0,T ]

(

∥

∥dtw(t)
∥

∥

2

L2
w

+
∥

∥w(t)
∥

∥

2

H1
w

)

+
∥

∥d2
t w

∥

∥

2

L2(0,T ;H1
w
∗)

≤ κw,

v ∈ H1(0, T ;L2
v) ∩ C2([0, T ];L2

v),(4.40)
i ∈ H2(0, T ;L2

i ) ∩ C1, 1
2 ([0, T ];L2

i ), dti ∈ H1(0, T ;L2
i ) ∩ C0, 1

2 ([0, T ];L2
i ),

w ∈ H1(0, T ;L2
w) ∩ C0([0, T ];H1

w), dtw ∈ C0([0, T ];L2
w),where κv, κi, and κw are given by (4.17)�(4.19). Moreover, if g ∈ C0([0, T ];L2

i ), then(4.41) v ∈ C3([0, T ];L2
v), i ∈ C2([0, T ];L2

i ), dti ∈ C1([0, T ];L2
i ),and if g ∈ C1([0, T ];L2

i ), then(4.42) v ∈ C4([0, T ];L2
v), i ∈ C3([0, T ];L2

i ), dti ∈ C2([0, T ];L2
i ).Proof. First, re
all that L2

v = L2
v
∗ and L2

i = L2
i
∗. Assertion (4.39) follows immediately from (4.14)�(4.16) by setting m = mk and passing to the limits through (4.25) and (4.26). The in
lusions in

H1 and H2 in assertion (4.40) are immediate from (4.39). The Sobolev embedding theorems [8, Th.6.6-1℄ applied to Bana
h spa
e-valued fun
tions on [0, T ] ⊂ R imply that v ∈ C0, 1
2 ([0, T ];L2

v),
i ∈ C1, 1

2 ([0, T ];L2
i ), and dti ∈ C0, 1

2 ([0, T ];L2
i ), whi
h further implies by (3.3) that v ∈ C2([0, T ];L2

v).Let A := (−∆ + I) : H1
w→ H1

w
∗ be the time-independent, self-adjoint operator 
onsidered inLemma 4.1. Note that f(v) ∈ C2([0, T ];L∞

v ) sin
e f is a bounded smooth fun
tion and v ∈
C2([0, T ];L2

v). Then, it follows from (3.5) and (4.39) that d2
t w + Aw ∈ L2(0, T ;L2

w). Therefore,by [48, Lemma II.4.1℄ we have w ∈ C([0, T ];H1
w) and dtw ∈ C([0, T ];L2

w), whi
h 
ompletes the proofof (4.40). Assertions (4.41) and (4.42) are now immediate from (3.3), (3.4), and (4.40).Theorem 4.7 (Existen
e and uniqueness of strong solutions) Suppose that g ∈ L2(0, T ;L2
i ),

v0 ∈ L2
v, i0 ∈ L2

i , i′0 ∈ L2
i , w0 ∈ H2

w, and w′
0 ∈ H1

w. Then there exists a unique Ω-periodi
 strongsolution (v, i, w) of the initial value problem (3.3)�(3.6).Proof. Uniqueness follows immediately from Theorem 4.5 sin
e every strong solution is also aweak solution. Moreover, Proposition 4.6 implies that the weak solutions v ∈ H1(0, T ;L2
v) and

i ∈ H2(0, T ;L2
i ) are indeed strong solutions as given in De�nition 4.3. It remains to prove theregularity required for w by De�nition 4.3.Consider (4.12) with the approximation (4.9), let Bw =

{

h
(k)
w

}∞
k=1

be the orthogonal basis of H1
w
onsisting of the eigenfun
tions of A := (−∆ + I) : H1

w → H1
w
∗ as given by Lemma 4.1, and let24



λk denote the eigenvalue 
orresponding to the eigenfun
tion h
(k)
w . Multiplying (4.12) by λkc

(m)
wk

andsumming over k = 1, . . . ,m yields
(

d2
t w

(m), Aw(m)
)
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w

+ 2ν
(
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)
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w

= 0.Now, Young's inequality implies that, for every ε1, . . . , ε4 > 0,
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tw
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)
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∥

∥Aw(m)
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∥
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∥
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∥
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∥

2
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−
(

Λ2w(m), Aw(m)
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∥
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∥

2
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1
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∥
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∥
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∥
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∥
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∥

2
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w

+
1

4ε4
|Ω|F2

E tr(Λ4M2),and hen
e, using (2.1),
3
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∥w(m)
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∥

2
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∥
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∥

2
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w

+
∥
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∥

2
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+ 3
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∥

∥w(m)
∥

∥

2
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1
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∥

∥d2
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∥

2
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+
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∥
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∥

2
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+
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4ε3

∥
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∥

∥

2

L2
w

+
ν2

4ε4
|Ω|F2

E tr(Λ4M2).Next, set ε1 = ν2

8 , ε2 = ν
16 , ε3 = 1

8 , and ε4 = 1
8 , and note that, for some 
onstant β > 0,(4.43) ∥

∥w(m)
∥

∥

2

H2
w
≤ β

(

∥

∥d2
t w

(m)
∥

∥

2

L2
w

+
∥

∥dtw
(m)

∥

∥

2

L2
w

+
∥

∥w(m)
∥

∥

2

H1
w

+ |Ω|F2
E tr(Λ4M2)

)

.Bounds on ∥

∥dtw
(m)

∥

∥

L2
w
and ∥

∥w(m)
∥

∥

H1
w
are given by the energy estimate (4.16). To establish boundson ∥

∥d2
t w

(m)
∥

∥

L2
w
and ∥

∥dtw
(m)

∥

∥

H1
w
, 
onsider (4.12) with the initial values given in (4.13). Di�eren-tiating (4.12) with respe
t to t, multiplying the result by d2

t c
(m)
wk

, and summing over k = 1, . . . m,yields
(

d2
t ẇ

(m),dtẇ
(m)

)

L2
w

+ 2ν
(

Λdtẇ
(m),dtẇ

(m)
)

L2
w
− 3

2ν2
(

∆ẇ(m),dtẇ
(m)

)

L2
w

+ ν2
(

Λ2ẇ(m),dtẇ
(m)

)

L2
w
− ν2

(

Λ2MJ8 dtf(v(m)),dtẇ
(m)

)

L2
w

= 0,where ẇ := dtw and dtfE(v
(m)
E ) = ∂vE

fE(v
(m)
E ) dtv

(m)
E . Now, (4.37) with X = E gives

∥

∥Λ2MJ8 dtf(v(m))
∥

∥

2

L2
w

= tr(Λ4M2)

∫

Ω

∣

∣dtfE(v
(m)
E )

∣

∣

2
dx(4.44)

≤ tr(Λ4M2)
F2

E

8σ2
E

∫

Ω

∣

∣dtv
(m)
E

∣

∣

2
dx ≤ tr(Λ4M2)

F2
E

8σ2
E

∥

∥dtv
(m)

∥

∥

2

L2
v
.25



Using similar arguments as in the proof of Proposition 4.4, it follows from the above inequality andYoung's inequality that, for every ε > 0,
dt

[

∥

∥dtẇ
(m)

∥

∥

2

L2
w

+ 3
2ν2

∥

∥∂xẇ(m)
∥

∥

2

L2
∂w

+ ν2
∥

∥Λẇ(m)
∥

∥

2

L2
w

]

+ 2ν(2Λmin − εν)
∥

∥dtẇ
(m)

∥

∥

2

L2
w

≤ ν2

2ε

F2
E

8σ2
E

tr(Λ4M2)
∥

∥dtv
(m)

∥

∥

2

L2
v
,where Λmin := min{ΛEE,ΛEI} is the smallest eigenvalue of Λ. Next, setting ε = 2

ν
Λmin, repla
ing

ẇ = dtw, and using Grönwall's inequality yields
∥

∥d2
t w

(m)(t)
∥

∥

2

L2
w

+ 3
2ν2

∥

∥dt∂xw(m)(t)
∥

∥

2

L2
∂w

+ ν2
∥

∥Λdtw
(m)(t)

∥

∥

2

L2
w

(4.45)
≤

(

∥

∥d2
t w

(m)
∥

∥

2

L2
w

+ 3
2ν2

∥

∥dt∂xw(m)
∥

∥

2

L2
∂w

+ ν2
∥

∥Λdtw
(m)

∥

∥

2

L2
w

)∣

∣

∣

t=0

+ 1
32
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Λminσ2
F2

E tr(Λ4M2)
∥

∥dtv
(m)

∥

∥

2

L2(0,T ;L2
v)

.Finally, it follows from (4.12) and (4.13) that, for some α1 > 0,
∥

∥d2
t w

(m)
∥

∥

2

L2
w

∣

∣

∣

t=0
≤ α1

(

∥

∥w′
0

∥

∥

2

H1
w

+
∥

∥w0

∥

∥

2

H2
w

+ ν2|Ω|F2
E tr(Λ4M2)

)

.Now, using the energy estimate (4.14) and the above inequality in (4.45) it follows that
∥

∥d2
t w

(m)(t)
∥

∥

2

L2
w

+
∥

∥dtw
(m)(t)

∥

∥

2

H1
w
≤ α2

(

∥

∥w′
0

∥

∥

2

H1
w

+
∥

∥w0

∥

∥

2

H2
w

+ (|Ω| + κv)F
2
E

)for some α2 > 0 and all t ∈ [0, T ]. Sin
e this inequality and (4.43) hold for all t ∈ [0, T ], it followsthat
sup

t∈[0,T ]

(

∥

∥d2
t w

(m)(t)
∥

∥

2

L2
w

+
∥

∥dtw
(m)(t)

∥

∥

2

H1
w

+
∥

∥w(m)(t)
∥

∥

2

H2
w

)

≤ β̂w,(4.46)where
β̂w := α

(

∥

∥w′
0

∥

∥

2

H1
w

+
∥

∥w0

∥

∥

2

H2
w

+ (|Ω| + κv)F
2
E

)for some α > 0. Now, using the above estimate and passing to the limits, the result follows bysimilar arguments as in the proof of Theorem 4.5.Proposition 4.8 (Regularity of strong solutions) Suppose that the assumptions of Theorem4.7 hold, namely, g ∈ L2(0, T ;L2
i ), v0 ∈ L2

v, i0 ∈ L2
i , i′0 ∈ L2

i , w0 ∈ H2
w, and w′

0 ∈ H1
w. Then,in addition to the properties of the weak solution given in Proposition 4.6, the Ω-periodi
 strongsolution (v, i, w) of the initial value problem (3.3)�(3.6) satis�es

ess sup
t∈[0,T ]

(

∥

∥d2
t w(t)

∥

∥

2

L2
w

+
∥

∥dtw(t)
∥

∥

2

H1
w

+
∥

∥w(t)
∥

∥

2

H2
w

)

+
∥

∥d3
t w

∥

∥

2

L2(0,T ;H1
w
∗)

≤ βw,(4.47)
w ∈ H2(0, T ;L2

w) ∩ H1(0, T ;H1
w) ∩ L∞(0, T ;H2

w)(4.48)
∩ C1, 1

2 ([0, T ];L2
w) ∩ C0, 1

2 ([0, T ];H1
w) ∩ L∞(0, T ;C0,λ

per(Ω, R2)),

dtw ∈ H1(0, T ;L2
w) ∩ L∞(0, T ;H1

w) ∩ C0, 1
2 ([0, T ];L2

w),

d2
t w ∈ L∞(0, T ;L2

w),for all λ ∈ (0, 1) and some βw > 0. 26



Proof. Di�erentiate (4.12) with respe
t to t and denote ẇ := dtw. Use (4.44) and follow the samesteps used to prove (4.16) in Proposition 4.4 to show ∥

∥d2
t ẇ

(m)
∥

∥

2

L2(0,T ;H1
w
∗)

≤ β̃w for every positiveinteger m, all t ∈ [0, T ], and some β̃w > 0 proportional to β̂w in (4.46). Repla
ing ẇ = dtw, addingthe result to (4.46), and passing to the limits establishes (4.47) for some βw > 0 proportional to β̂w.The in
lusions in H1, H2, and L∞ in assertion (4.48) follow immediately from (4.47), whereasthe in
lusions in the time-
ontinuous spa
es are implied by the Sobolev embedding theorems [8, Th.6.6-1℄ applied to Bana
h spa
e-valued fun
tions on [0, T ] ⊂ R. Finally, the in
lusion in the spa
e-
ontinuous spa
e is implied by the Sobolev embedding theorems applied to Ω-periodi
 fun
tions in
R

2.Other than the regularity properties given in Propositions 4.6 and 4.8, boundedness of weakand strong solutions for bounded input fun
tions g 
an also be established. We defer this result toSe
tion 5, where the proof is obtained as a 
orollary of Proposition 5.3.In the remainder of the paper, we give formal arguments for some of the proofs, in the sense thatwe take the inner produ
t of (3.5) with fun
tions that belong to L2
w, instead of fun
tions belongingto H1

w that is required for the test fun
tions hw in (4.4). However, the proofs 
an be made rigoroususing the Galerkin approximation te
hnique based on the dual orthogonal basis of H1
w ⋐ L2

w andthen passing to the limits, as in the proofs of Theorems 4.5 and 4.7. See the dis
ussion and resultsin [41, Se
. 11.1.2℄ for further details.5. Semidynami
al Systems and Biophysi
al Plausibility of the Evo-lutionIn this se
tion, we establish a semidynami
al system framework for the initial-value problem pre-sented in Se
tion 4. Assume g ∈ L2(0,∞;L2
i ) and let u(t) := (v(t), i(t),dti(t), w(t),dtw(t)) denotea solution of (3.3)�(3.5) with the initial value u0 := u(0) = (v0, i0, i

′
0, w0, w

′
0). Re
all the De�nitions4.2 and 4.3 and the results of Theorems 4.5 and 4.7 to note that the Hilbert spa
es

Uw := L2
v × L2

i × Li ×H1
w × L2

w,(5.1)
Us := L2

v × L2
i × Li ×H2

w ×H1
w,
onstru
t, respe
tively, the phase spa
es asso
iated with the weak and strong solutions. Now, forevery t ∈ [0,∞), de�ne the mappings

Sw(t) : Uw → Uw, Sw(t)u0 := u(t),

Ss(t) : Us → Us, Ss(t)u0 := u(t).The existen
e and uniqueness of solutions given by Theorems 4.5 and 4.7 along with the time-
ontinuity of solutions given by Propositions 4.6 and 4.8 imply that the above mappings are well-de�ned for all t ∈ [0,∞). Then, {

Sw(t)
}

t∈[0,∞)
and {

Ss(t)
}

t∈[0,∞)
form semigroups of operatorswhi
h give the weak and strong solutions of (3.1), respe
tively. The following propositions showthat these semigroups are 
ontinuous, whi
h also ensures that the initial-value problems of �ndingweak and strong solutions for (3.1) are well-posed.Proposition 5.1 (Continuity of the smigroup {Sw}) The semigroup {

Sw(t)
}

t∈[0,∞)
of weaksolution operators is 
ontinuous for all g ∈ L2(0,∞;L2

i ).27



Proof. Continiuity of the semigroup with respe
t to t follows immediately from the 
ontinuity ofthe weak solutions given in Proposition 4.6. It remains to prove 
ontinuous dependen
e of thesolution on the initial values. Let ũ0 and û0 be any two initial values in Uw that give the solutions
ũ(t) = Sw(t)ũ0 and û(t) = Sw(t)û0 for all t ∈ [0, T ], T > 0. Let u(t) := ũ(t) − û(t) be the weaksolution with the initial value u0 := ũ0 − û0. Now, 
onsider (3.3)�(3.5) satis�ed by ũ and û, andtake the inner produ
t of (3.3)�(3.5) in ea
h set with v, dti, and dtw, respe
tively. Subtra
ting theresulting two sets of equations yields

(

Φdtv, v
)

L2
v

+
(

v, v
)

L2
v
−

(

J1i, v
)

L2
v

(5.2)
+

(

J2(ṽĩT − v̂îT)ΨJ4 + J3(ṽĩT − v̂îT)ΨJ5, v
)

L2
v

= 0,
(

d2
t i,dti

)

L2
i
+ 2

(

Γdti,dti
)

L2
i
+

(

Γ2i,dti
)

L2
i
− e

(

ΥΓJ6w,dti
)

L2
i

(5.3)
−e

(

ΥΓNJ7(f(ṽ) − f(v̂)),dti
)

L2
i

= 0,
(

d2
t w,dtw

)

L2
w

+ 2ν
(

Λdtw,dtw
)

L2
w
− 3

2ν2
(

∆w,dtw
)

L2
w

+ ν2
(

Λ2w,dtw
)

L2
w

(5.4)
−ν2

(

Λ2MJ8(f(ṽ) − f(v̂)),dtw
)

L2
w

= 0.As in the proof of uniqueness given in Theorem 4.5,
−

(

J2(ṽĩT − v̂îT)ΨJ4, v
)

L2
v
≤

√

2κĩ

∥

∥Ψ
∥

∥

2

∥

∥v
∥

∥

2

L2
v

+
∥

∥v
∥

∥

2

L2
v

+ 1
2κv̂

∥

∥Ψ
∥

∥

2

2

∥

∥i
∥

∥

2

L2
i

,(5.5)
−

(

J3(ṽĩT − v̂îT)ΨJ5, v
)

L2
v
≤

√

2κĩ

∥

∥Ψ
∥

∥

2

∥

∥v
∥

∥

2

L2
v

+
∥

∥v
∥

∥

2

L2
v

+ 1
2κv̂

∥

∥Ψ
∥

∥

2

2

∥

∥i
∥

∥

2

L2
i

,

e
(

ΥΓNJ7(f(ṽ) − f(v̂)),dti
)

L2
i
≤

∥

∥dti
∥

∥

2

L2
i

+ 1
32e2

∥

∥ΥΓNJ7

∥

∥

2

2
max

{

F2
E

σ2
E

,
F2

I

σ2
I

}

∥

∥v
∥

∥

2

L2
v
,

ν2
(

Λ2MJ8(f(ṽ) − f(v̂)),dtw
)

L2
w
≤ ν2

∥

∥dtw
∥

∥

2

L2
w

+ 1
32ν2 F2

E

σ2
E

tr(Λ4M2)
∥

∥v
∥

∥

2

L2
v
,

(

J1i, v
)

L2
v
≤

∥

∥v
∥

∥

2

L2
v

+ 1
2

∥

∥i
∥

∥

2

L2
i

,

e
(

ΥΓJ6w,dti
)

L2
i
≤

∥

∥dti
∥

∥

2

L2
i

+ 1
4e2

∥

∥ΥΓJ6

∥

∥

2

2

∥

∥w
∥

∥

2

L2
w
,where κv̂ and κĩ are in the form of (4.17) and (4.18). Now, substituting the above inequalitiesinto (5.2)�(5.4), adding the resulting inequalities together, and using Grönwall's inequality yield,for some α, β > 0,(5.6) ∥

∥u(t)
∥

∥

2

Uw
≤ βeαT

∥

∥u0

∥

∥

2

Uw
for all t ∈ [0, T ],whi
h 
ompletes the proof.Proposition 5.2 (Continuity of the smigroup {Ss}) The semigroup {

Ss(t)
}

t∈[0,∞)
of strongsolution operators is 
ontinuous for all g ∈ L2(0,∞;L2

i ).Proof. Continiuity of the semigroup with respe
t to t follows immediately from the time 
ontinuityof the strong solutions given by Proposition 4.8. To prove 
ontinuous dependen
e on the initialvalues, 
onsider any two initial values ũ0 and û0 in Us and 
onstru
t the solutions ũ(t) = Ss(t)ũ0and û(t) = Ss(t)û0, t ∈ [0, T ], T > 0, for (3.3)�(3.5). Let u := ũ − û and A := −∆ + I, and takethe inner produ
t of (3.3)�(3.5) for ea
h solutions with v, dti, and Adtw, respe
tively. Subtra
ting28



the resulting two sets of equations gives (5.2), (5.3), and(5.7) 1
2dt

∥

∥dtw
∥

∥

2

H1
w

+ 2ν
∥

∥Λ
1
2 dtw

∥

∥

2

H1
w

+ 3
4ν2dt

∥

∥∂w
∥

∥

2

H1
∂w

+ 1
2ν2dt

∥

∥Λw
∥

∥

2

H1
w

= ν2
(

Λ2MJ8(f(ṽ) − f(v̂)),dtAw
)

L2
w
.Note that (5.6) also holds sin
e Us ⊂ Uw, and sin
e (5.2) and (5.3) remain un
hanged, the 
ontinuityof v and i holds.Now, it follows from (5.7) by integrating over [0, t] that

∥

∥dtw
∥

∥

2

H1
w

+ ν2
[

3
2

∥

∥∂w
∥

∥

2

H1
∂w

+
∥

∥Λw
∥

∥

2

H1
w

]

≤
(

∥

∥dtw
∥

∥

2

H1
w

+ ν2
[

3
2

∥

∥∂w
∥

∥

2

H1
∂w

+
∥

∥Λw
∥

∥

2

H1
w

])
∣

∣

∣

t=0

+ 2ν2

∫ t

0

(

Λ2MJ8(f(ṽ) − f(v̂)),dsAw
)

L2
w
ds,whi
h, using (2.1), 
an be written equivalently for some α1, β1 > 0 as(5.8) Q(w(t),dtw(t)) ≤ α1Q(w(0),dtw(0)) + β1

∫ t

0

(

Λ2MJ8(f(ṽ) − f(v̂)),dsAw
)

L2
w
ds,where(5.9) Q(w(t),dtw(t)) :=

∥

∥dtw(t)
∥

∥

2

H1
w

+
∥

∥Aw(t)
∥

∥

2

L2
w
.Integrating by parts in the se
ond term of the right-hand side of the above inequality yields

β1

∫ t

0

(

Λ2MJ8(f(ṽ) − f(v̂)),dsAw
)

L2
w
ds(5.10)

= β1

(

Λ2MJ8(f(ṽ) − f(v̂)), Aw
)

L2
w
− β1

(

Λ2MJ8(f(ṽ0) − f(v̂0)), Aw0

)

L2
w

− β1

∫ t

0

(

Λ2MJ8ds(f(ṽ) − f(v̂)), Aw
)

L2
w
ds.Next, re
alling that supvX(x,t)∈R |∂vX

fX(vX)| ≤ FX

2
√

2σX

by (4.37) and using Young's inequality weobtain
β1

(

Λ2MJ8(f(ṽ) − f(v̂)), Aw
)

L2
w
≤ 1

2

∥

∥Aw
∥

∥

2

L2
w

+
β2

1

16

F2
E

σ2
E

tr(Λ4M2)
∥

∥v
∥

∥

2

L2
v
,(5.11)

−β1

(

Λ2MJ8(f(ṽ0) − f(v̂0)), Aw0

)

L2
w
≤ 1

2

∥

∥Aw0

∥

∥

2

L2
w

+
β2

1

16

F2
E

σ2
E

tr(Λ4M2)
∥

∥v0

∥

∥

2

L2
v
.Moreover,

−β1

(

Λ2MJ8ds(f(ṽ) − f(v̂)), Aw
)

L2
w

= −β1

(

Λ2MJ8(∂ṽf(ṽ)dsṽ − ∂v̂f(v̂)dsv̂), Aw
)

L2
w

≤ 1
2

∥

∥Aw
∥

∥

2

L2
w

+ 1
2β2

1

∥

∥Λ2MJ8(∂ṽf(ṽ)dsṽ − ∂v̂f(v̂)dsv̂)
∥

∥

2

L2
w

= 1
2

∥

∥Aw
∥

∥

2

L2
w

+ 1
2β2

1 tr(Λ4M2)

∫

Ω
|∂ṽE

f(ṽE)dsṽE − ∂v̂E
f(v̂E)dsv̂E|2dx,29



where, noting that supvE(x,t)∈R |∂2
vE

fE(vE)| < 1
5

FE

σ2
E

by dire
t 
omputation of the derivative of (4.37),we 
an write
|∂ṽE

f(ṽE)dsṽE − ∂v̂E
f(v̂E)dsv̂E|2dx = |∂ṽE

f(ṽE)dsvE + (∂ṽE
f(ṽE) − ∂v̂E

f(v̂E))dsv̂E|2

≤ 2|∂ṽE
f(ṽE)|2|dsvE|2 + 2|∂ṽE

f(ṽE) − ∂v̂E
f(v̂E)|2|dsv̂E|2

≤ 1
4

F2
E

σ2
E

|dsvE|2 + 2

[

sup
vE(x,t)∈R

|∂2
vE

fE(vE)|
]2

|vE|2|dsv̂E|2

≤ 1
4

F2
E

σ2
E

|dsvE|2 + 2
25

F2
E

σ4
E

|vE|2|dsv̂E|2.Therefore, it follows that
−β1

(

Λ2MJ8ds(f(ṽ) − f(v̂)), Aw
)

L2
w
≤ 1

2

∥

∥Aw
∥

∥

2

L2
w

+
β2

1

8

F2
E

σ2
E

tr(Λ4M2)
∥

∥dsv
∥

∥

2

L2
v

(5.12)
+

β2
1

25

F2
E

σ4
E

tr(Λ4M2)
∥

∥dsv̂
∥

∥

2

C1([0,T ];L2
v)

∥

∥v
∥

∥

2

L2
v
.Furthermore, (3.3) implies that for some α2 > 0,(5.13) ∥

∥dsv(s)
∥

∥

2

L2
v
≤ α2

(

∥

∥v(s)
∥

∥

2

L2
v

+
∥

∥i(s)
∥

∥

2

L2
i

+
∥

∥v(s)
∥

∥

2

L2
v

∥

∥i(s)
∥

∥

2

L2
i

) for all s ∈ [0, T ].Now, substituting (5.11), (5.12) and (5.13) into (5.10) and using (5.6), it follows that there existsome β2, . . . , β6 > 0 su
h that
β1

∫ t

0

(

Λ2MJ8(f(ṽ) − f(v̂)),dsAw
)

L2
w
ds

≤ 1
2

∫ t

0

∥

∥Aw
∥

∥

2

L2
w
ds + β2

∫ t

0

(

∥

∥v
∥

∥

2

L2
v

+
∥

∥i
∥

∥

2

L2
i

+
∥

∥v
∥

∥

2

L2
v

∥

∥i
∥

∥

2

L2
i

)

ds

+ 1
2

∥

∥Aw
∥

∥

2

L2
w

+ β3

∥

∥v
∥

∥

2

L2
v

+ 1
2

∥

∥Aw0

∥

∥

2

L2
w

+ β4

∥

∥v0

∥

∥

2

L2
v
,

≤ 1
2

∫ t

0

∥

∥Aw
∥

∥

2

L2
w
ds + β5

∥

∥u0

∥

∥

2

Uw

(

1 +
∥

∥u0

∥

∥

2

Uw

)

t + 1
2

∥

∥Aw
∥

∥

2

L2
w

+ 1
2

∥

∥Aw0

∥

∥

2

L2
w

+ β6

∥

∥u0

∥

∥

2

Uw
.Substituting this inequality into (5.8) yields

1
2Q(w(t),dtw(t)) ≤ 1

2

∫ t

0
Q(w(s),dsw(s))ds + β5

∥

∥u0

∥

∥

2

Uw

(

1 +
∥

∥u0

∥

∥

2

Uw

)

t(5.14)
+ α1Q(w(0),dtw(0)) + 1

2

∥

∥Aw0

∥

∥

2

L2
w

+ β6

∥

∥u0

∥

∥

2

Uw
,where, using Grönwall's inequality for the fun
tion 1

2

∫ t

0 Q(w(s),dsw(s))ds, we 
an write
1
2

∫ t

0
Q(w(s),dsw(s))ds ≤ β5

∥

∥u0

∥

∥

2

Uw

(

1 +
∥

∥u0

∥

∥

2

Uw

)

(

et − (t + 1)
)

+
[

α1Q(w(0),dtw(0)) + 1
2

∥

∥Aw0

∥

∥

2

L2
w

+ β6

∥

∥u0

∥

∥

2

Uw

]

(

et − 1
)

.30



This inequality along with (5.14) and the de�nition of Q, given by (5.9), implies that for some
β7 > 0,

Q(w(t),dtw(t)) ≤ β7e
T

[

Q(w(0),dtw(0)) +
∥

∥u0

∥

∥

2

Uw

(

1 +
∥

∥u0

∥

∥

2

Uw

)] for all t ∈ [0, T ].Now, noting that Q(w(0),dtw(0)) =
∥

∥w′
0

∥

∥

2

H1
w

+
∥

∥Aw0

∥

∥

2

L2
w
, it follows from the above inequality and(5.6) that, for some α̂, β̂ > 0,

∥

∥u(t)
∥

∥

2

Us
≤ β̂eα̂T

∥

∥u0

∥

∥

2

Us

(

1 +
∥

∥u0

∥

∥

2

Uw

) for all t ∈ [0, T ],whi
h 
ompletes the proof.Although the spa
es Uw and Us 
onstru
ted in (5.1) provide the theoreti
al phase spa
es of theproblem for the solutions 
onstru
ted in Se
tion 4, the evolution of the dynami
s of the model isnot biophysi
ally plausible on entire spa
es Uw and Us. As des
ribed in Se
tion 3, i(x, t) and w(x, t)(and also g(x, t)) are nonnegative quantities.In fa
t, one 
an 
onstru
t initial fun
tions i′0 ∈ L2
i and

w′
0 ∈ L2

w su
h that the solutions i(x, t) and w(x, t), despite starting from nonnegative initial values
i0 ∈ L2

i and w0 ∈ H1
w, take negative values over a subset X ∈ Ω of positive measure for a timeinterval of positive length. In the following propositions, we establish 
onditions under whi
h thedynami
s of the model is guaranteed to evolve in biophysi
ally plausible subsets of Uw and Us.Proposition 5.3 (Nonnegativity of the solution w(x, t)) Suppose that w ∈ L2(0, T ;H1

w) isthe w-
omponent of an Ω-periodi
 weak solution u(t) = Sw(t)u0 of (3.3)�(3.6) and de�ne the set
Dw ⊂ H1

w × L2
w as(5.15) Dw :=
{

(w0, w
′
0) ∈ W1,∞ × L∞

w : w′
0 + νΛw0 ≥ 0 a.e. in Ω,and w0(y) + ∂yw0(y)(y − x) ≥ 0 for almost every x ∈ Ω, y ∈ B(x, t), t ∈ (0, T ]} .Then, for every initial values (w0, w

′
0) ∈ Dw, the solution w(x, t) remains nonnegative almost ev-erywhere in Ω for all t ∈ (0, T ].Proof. First, note that the weak and strong solutions 
oin
ide for v(t) and they satisfy (3.3) and(3.4) almost everywhere in Ω for all t ∈ [0, T ], T > 0; see the proof of Theorem 4.7. Substituting v(t)into f , we 
an interpret f(v) in (3.5) as a fun
tion f̂(x, t) := f(v(x, t)) for almost every x ∈ Ω andall t ∈ [0, T ]. Next, note that, by de�nitions (3.2) and (3.7), and Proposition 4.6, f̂ ∈ L∞(0, T ;L∞

v )and f̂ > 0 in Ω × [0, T ]. Now, repla
e f(v) in (3.5) by f̂ and s
ale x by the fa
tor √

3
2ν to obtain

∂2
t w̃ + 2νΛ∂tw̃ − ∆w̃ + ν2Λ2w̃ − f̃ = 0, in Ω̃ × (0, T ],

w̃ = w̃0, ∂tw̃ = w̃′
0, on Ω̃ × {0},where Ω̃ :=

√

3
2νΩ, and w̃, w̃0, w̃′

0, and f̃ denote w, w0, w′
0, and ν2Λ2MJ8f̂ in the s
aled domain

Ω̃, respe
tively. Note that with the new interpretation of f , the above equation is a system of twode
oupled telegraph equations. Therefore, applying the same arguments to ea
h of the two equationsindependently, in what follows we assume without loss of generality that the above equation is s
alar.31



Using the 
hange of variable q := eνΛtw̃ the problem 
an be transformed to the initial-valueproblem of the standard wave equation given by
∂2

t q − ∆q = eνΛtf̃ , in R
2 × (0, T ],(5.16)

q = w̃0, ∂tq = w̃′
0 + νΛw̃0, on R

2 × {0}.Here, the extension from Ω̃ to R
2 is done periodi
ally due to the Ω̃-periodi
ity of the fun
tions. Let

w̃0ε, w̃′
0ε, and f̃ε denote, respe
tively, w̃0, w̃′

0, and f̃ after molli�
ation by the standard positivemolli�er φε ∈ C∞
c ; see [8, Se
. 2.6℄. Using Poisson's formula for the homogeneous wave equation in

R
2, along with Duhamel's prin
iple for the nonhomogenous problem [15, Se
. 2.4℄, it 
an be shownthat the fun
tion

qε(x, t) := 1
2−
∫

B(x,t)

t
[

w̃0ε(y) +
(

∂yw̃0ε(y), y − x
)

R2

]

+ t2
[

w̃′
0ε(y) + νΛw̃0ε(y)

]

[

t2 −
∥

∥y − x
∥

∥

2

R2

]
1
2

dy(5.17)
+ 1

2

∫ t

0
(t − s)2eνΛs−

∫

B(x,t−s)

f̃ε(y, s)
[

(t − s)2 −
∥

∥y − x
∥

∥

2

R2

]
1
2

dy dssolves the wave equation (5.16) 
lassi
ally for the for
ing term eνΛtf̃ε and initial values w̃0ε and
w̃′

0ε.The se
ond term in this solution is nonnegative for all t ∈ [0, T ] sin
e f̃ , and 
onsequently, f̃εare nonnegative on B(x, t) for all x ∈ Ω and all t ∈ [0, T ]. Moreover, by [8, Theorem 2.6-1℄ and thede�nition of weak derivative we 
an write
(

∂yw̃0ε(y), y − x
)

R2 =
(

∫

B(y,ε)
∂yφε(y − z)w̃0(z)dz , y − x

)

R2

=
(

−
∫

B(y,ε)
∂zφε(y − z)w̃0(z)dz , y − x

)

R2

=
(

∫

B(y,ε)
φε(y − z)∂zw̃0(z)dz , y − x

)

R2

=

∫

B(y,ε)
φε(y − z)

(

∂zw̃0(z), z − x
)

R2dz

+

∫

B(y,ε)
φε(y − z)

(

∂zw̃0(z), y − z
)

R2dz,where, using Hölder's inequality and the property ∫

B(0,ε) φε(x)dx = 1, we have
∣

∣

∣

∣

∣

∫

B(y,ε)
φε(y − z)

(

∂zw̃0(z), y − z
)

R2dz

∣

∣

∣

∣

∣

≤
∥

∥∂xw̃0

∥

∥

L∞
∂w

∫

B(y,ε)
φε(y − z)

∥

∥y − z
∥

∥

1
dz

≤
√

2
∥

∥∂xw̃0

∥

∥

L∞
∂w

ε.
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Therefore, it follows that
−
∫

B(x,t)

t
[

w̃0ε(y) +
(

∂yw̃0ε(y), y − x
)

R2

]

[

t2 −
∥

∥y − x
∥

∥

2

R2

]
1
2

dy

≥ −
∫

B(x,t)
t





∫

B(y,ε) φε(y − z)
[

w̃0(z) +
(

∂zw̃0(z), z − x
)

R2

]

dz

[

t2 −
∥

∥y − x
∥

∥

2

R2

]
1
2

−
√

2
∥

∥∂xw0

∥

∥

L∞
∂w

ε

[

t2 −
∥

∥y − x
∥

∥

2

R2

]
1
2



 dy

≥ −
√

2
∥

∥∂xw̃0

∥

∥

L∞
∂w

ε for all (w̃0, w̃
′
0) ∈ D̃w,where D̃w denotes Dw in the s
aled domain Ω̃. Note that the last inequality holds sin
e the �rst termin the integration on the right-hand side is nonnegative by (5.15), and t

[

t2−
∥

∥y−x
∥

∥

2

R2

]− 1
2 takes theaverage value 1 over the ball B(x, t). Finally, note that w̃′

0ε(y) + νΛw̃0ε(y) in (5.17) is nonnegativeon B(x, t) when (w̃0, w̃
′
0) ∈ D̃w. Therefore, it follows that(5.18) qε(x, t) ≥ −

√
2
∥

∥∂xw̃0

∥

∥

L∞
∂w

ε for all (w̃0, w̃
′
0) ∈ D̃w.Now, taking the limits as ε → 0, it follows from [8, Theorem 2.6-3℄ that w̃0ε → w̃0, w̃′

0ε →
w̃′

0, and f̃ε → f̃ in L2(Ω̃t), where Ω̃t :=
{

y ∈ R
2 : y ∈ B(x, t), x ∈ Ω

}. Therefore, there exists asubsequen
e {

εn

}∞
n=1

, 
onvergent to 0, su
h that w̃0εn → w̃0, w̃′
0εn

→ w̃′
0, and f̃εn → f̃ almosteverywhere on Ωt as n → ∞ [17, Th. 2.30℄. Moreover, sin
e (w̃0, w̃

′
0) ∈ W1,∞ × L∞

w in D̃w,
f̃ ∈ L∞(0, T ;L∞

v ), and the fun
tion [

t2 −
∥

∥y − x
∥

∥

2

R2

]− 1
2 is integrable over B(x, t), it follows thatthe integrands in (5.17) are uniformly bounded with respe
t to ε by integrable fun
tions over B(x, t).The Lebesgue dominated 
onvergen
e theorem then implies that q(x, t) := limn→∞ qεn(x, t) exists on

Ω̃t and, by uniqueness of the weak solution, is a weak solution of the wave equation (5.16). Now,letting ε = εn → 0 in (5.18), it follows that if (w̃0, w̃
′
0) ∈ D̃w, then q(x, t) ≥ 0 for almost every

x ∈ Ω̃ and all t ∈ (0, T ]. This 
ompletes the proof sin
e the 
hange of variable w̃ = e−νΛtq and spa
eres
aling Ω =
√

2
3ν−1Ω̃ do not 
hange the sign of solutions.Corollary 5.4 (Boundedness of the weak solutions) Suppose g ∈ L∞(0, T ;L∞

i ), v0 ∈ L∞
v ,

i0 ∈ L∞
i , i′0 ∈ L∞

i , w0 ∈ W1,∞, and w′
0 ∈ L∞

w . Then, in addition to the regularities given byProposition 4.6, the weak solution (v(t), i(t), w(t)) of (3.3)�(3.6) satis�es
v ∈ C1,1([0, T ];L∞

v ), i ∈ C0,1([0, T ];L∞
i ), w ∈ L∞(0, T ;L∞

w ).Proof. The boundedness of w follows immediately from the proof of Proposition 5.3, sin
e underthe assumption w0 ∈ W1,∞ and w′
0 ∈ L∞

w the integrands in (5.17) are integrable and ea
h 
omponentof the weak solution w(t) is a
hieved almost everywhere in Ω as the limit of (5.17) when ε → 0,followed by the spa
e res
aling from Ω̃ to Ω.Now, to prove boundedness of v, i, and dti let x0 ∈ Ω be any Lebesgue point of the initialfun
tions v0, i0, i′0, w0, and g(0). Take the R
4-inner produ
t of (3.4) at x0 with dti(x0, t) for every

t ∈ (0, T ] to obtain
(

d2
t ix0

,dtix0

)

R4 + 2
(

Γdtix0
,dtix0

)

R4 +
(

Γ2ix0
,dtix0

)

R4

− e
(

ΥΓJ6wx0
,dtix0

)

R4 − e
(

ΥΓNJ7f(vx0
),dtix0

)

R4 = e
(

ΥΓgx0
,dtix0

)

R4 ,33



where vx0
(t) := v(x0, t), ix0

(t) := i(x0, t), wx0
(t) := w(x0, t), and gx0

(t) := g(x0, t). This equality issimilar to (4.21) in the proof of Proposition 4.4, with L2
i -inner produ
ts being repla
ed by R

4-innerprodu
t, and the approximate solutions v(m), i(m), and w(m) being repla
ed by vx0
, ix0

, and wx0
,respe
tively. Therefore, similar arguments as in the proof of Proposition 4.4 imply that

sup
t∈[0,T ]

(

∥

∥dtix0
(t)

∥

∥

2

R4 +
∥

∥ix0
(t)

∥

∥

2

R4

)

≤ κi,(5.19)where, with κw :=
∥

∥w
∥

∥

2

L∞(0,T ;L∞
w )

and for some α1 > 0 independent of x0,
κi = α1

(

∥

∥i′0
∥

∥

2

L∞
i

+
∥

∥i0
∥

∥

2

L∞
i

+

[

e2κw

γmin

∥

∥ΥΓJ6

∥

∥

2

2
+

e2|Ω|
γmin

(F2
E + F2

I )
∥

∥ΥΓNJ7

∥

∥

2

2

]

T

+
e2

2γmin

∥

∥ΥΓ
∥

∥

2

2

∥

∥g
∥

∥

2

L∞(0,T ;L∞
i )

)

,and γmin is the smallest eigenvalue of Γ.Similarly, taking the R
2-inner produ
t of (3.3) at x0 with vx0

(t) and using the arguments follow-ing (4.23) in the proof of Proposition 4.4 yields
sup

t∈[0,T ]

(

∥

∥vx0
(t)

∥

∥

2

L2
v

)

≤ κv ,(5.20)where, for some α2, β > 0 independent of x0,
κv = α2 exp

(

β
√

2κi

∥

∥Ψ
∥

∥

2
T

)

(

∥

∥v0

∥

∥

2

L∞
v

+ κiT
)

.Now, note that almost every point x0 ∈ Ω is a Lebesgue point for the lo
ally integrable initialfun
tions, and the estimates κv and κi are independent of x0. Therefore, taking the supremum overall Lebesgue points x0 ∈ Ω in (5.19) and (5.20) implies v ∈ L∞(0, T ;L∞
v ) and i ∈ W 1,∞(0, T ;L∞

i )whi
h, re
alling (3.3), further imply v ∈ W 2,∞(0, T ;L∞
v ). Finally, it follows by using Morrey'sinequality [15, Th. 5.6-4 and Th. 5.6-5℄ that v ∈ C1,1([0, T ];L∞

v ) and i ∈ C0,1([0, T ];L∞
i ), whi
h
ompletes the proof.Next, we re
all and use the following standard result in the theory of ordinary di�erntial equa-tions to establish 
onditions that guarantee nonnegativity of i(x, t) for all biophysi
ally plausiblevalues of the input g, that is, for all g ∈ L2(0, T ;Dg), where(5.21) Dg :=

{

ℓ ∈ L2
i : ℓ ≥ 0 a.e. in Ω

}

.Proposition 5.5 (Invarian
e of the nonnegative 
one [7, Prop. I.1.1℄) Let {

S(t)
}

t∈[0,∞)
bethe semigroup of solution operators asso
iated with the ordinary di�erential equation

dtq(t) = P (q(t)), q(t) ∈ R
n, t ∈ [0,∞),where P : R

n → R
n is a 
ontinuous lo
ally Lips
hitz mapping. Then the nonnegative 
one R

n
+ isinvariant for {

S(t)
}

t∈[0,∞)
if and only if P (q) is quasipositive, that is, for every j ∈ {1, . . . , n},

Pj(q1, . . . , qn) ≥ 0 whenevr qj = 0 and qk ≥ 0 for all k 6= j.34



Proposition 5.6 (Positively invariant region for the solution i(x, t)) Suppose g ∈ L2(0, T ;
Dg) and let u(t) = Sw(t)u0 be an Ω-periodi
 weak solution of (3.3)�(3.6). Suppose the w-
omponentof the weak solution, w(x, t), is nonnegative for almost every x ∈ Ω and all t ∈ [0, T ], T > 0, andde�ne the set(5.22) Di :=

{

(ℓ, ℓ′) ∈ L2
i × L2

i : ℓ ≥ 0 and ℓ′ + Γℓ ≥ 0 a.e. in Ω
}

.Then, for every (i0, i
′
0) ∈ Di, we have (i(t),dti(t)) ∈ Di almost everywhere in Ω for all t ∈ [0, T ].An identi
al result holds for strong solutions u(t) = Ss(t)u0 of (3.3)�(3.6) with nonnegative w-
omponent.Proof. Let b := dti + Γi and rewrite (3.4) as the �rst-order system of equations

dti = −Γi + b,(5.23)
dtb = −Γb + eΥΓJ6w + eΥΓNJ7f(v) + eΥΓg.Let x0 ∈ Ω be a Lebesgue point of the initial fun
tions v0, i0, i′0, w0, and g(0), and de�ne vx0

(t),
ix0

(t), wx0
(t), and gx0

(t) as given in the proof of Corollary 5.4. A

ordingly, let bx0
(t) := b(x0, t) =

dtix0
(t) + Γix0

(t).Now, (5.23) implies that the fun
tion qx0
:= (ix0

, bx0
) satis�es the ordinary di�erential equation

dtqx0
(t) = P (qx0

(t)), t ∈ [0, T ], where the mapping P : R
8 → R

8 given by
P (qx0

) = P (ix0
, bx0

) := (−Γix0
+ bx0

,−Γbx0
+ eΥΓJ6wx0

+ eΥΓNJ7f(vx0
) + eΥΓgx0

)is Lips
hitz 
ontinuous. Moreover, note that by assumption we have wx0
≥ 0 and gx0

≥ 0 whi
h,along with the de�nitions of f , Υ, Γ, N, J6, and J7 given by (3.2) and (3.7), implies eΥΓJ6wx0
(t) ≥

0, eΥΓNJ7f(vx0
(t)) ≥ 0 and eΥΓgx0

(t) ≥ 0 for all t ∈ [0, T ]. Therefore, it follows that P isquasipositive, and hen
e, by Proposition 5.5 we have qx0
(t) ≥ 0 for all t ∈ [0, T ]. This 
ompletes theproof sin
e x0 is an arbitrary Lebesgue point of the initial fun
tions and almost every points in Ω isa Lebesgue point for these fun
tions.Remark 5.7 (Biophysi
ally plausible set of initial values) Propositions 5.3 and 5.6 ensurethat if g ∈ L2(0,∞;Dg), where Dg is given by (5.21), and the initial values lie in the set(5.24) DBio := L2

v ×Di ×Dw,where Dw and Di are given by (5.15) and (5.22), respe
tively, then i(x, t) and w(x, t) always remainnonnegative at almost every point in Ω as they evolve over the time. However, it should be notedthat this does not imply that the set DBio ⊂ Uw is positively invariant, sin
e Proposition 5.3 doesnot imply positive invarian
e of the set Dw. Therefore, DBio 
annot serve as a phase spa
e for thesemidynami
al system framework of the problem.In the analysis of next se
tions, nonnegativity of the solution i(x, t) is essential. Moreover, itwould be of no pra
ti
al value if we analyze the dynami
s of the model out of the biophysi
al regionsof the phase spa
e. Therefore, we de�ne
Dw := {u0 ∈ Uw : i(t) ≥ 0, w(t) ≥ 0 a.e. in Ω for all t ∈ [0,∞), u(t) = Sw(t)u0} ,(5.25)
Ds := {u0 ∈ Us : i(t) ≥ 0, w(t) ≥ 0 a.e. in Ω for all t ∈ [0,∞), u(t) = Ss(t)u0} ,35



as the maximal 
losed subsets of Uw and Us for the initial values of the weak and strong solutions,respe
tively, su
h that i and w initiated from the points in these sets evolve nonnegatively overtime. Note that Dw and Ds are nonempty sin
e DBio ⊂ Dw and DBio ∩ Us ⊂ Ds when g ∈
L2(0,∞,Dg). Moreover, Dw and Ds are 
losed sets sin
e {

Sw(t)
}

t∈[0,∞)
and {

Ss(t)
}

t∈[0,∞)
are
ontinuous semigroups, as given by Propositions 5.1 and 5.2. Moreover, it follows immediately fromthe de�nitions given by (5.25) that Dw and Ds are positively invariant sets. Therefore, endowedwith the metri
 indu
ed by the norm in Uw and Us, the sets Dw and Ds form positively invariant
omplete metri
 spa
es and 
an be 
onsidered as biophysi
ally plausible phase spa
es of the model,based on whi
h, we 
onstru
t the semidynami
al systems

(

Dw,
{

Sw(t)
}

t∈[0,∞)

)

,
(

Ds,
{

Ss(t)
}

t∈[0,∞)

)

,asso
iated with the weak and strong solutions of (3.3)�(3.6), respe
tively, and investigate theirglobal dynami
s in the remainder of the paper.6. Existen
e of Absorbing SetsIn this se
tion, we prove the existen
e of absorbing sets for the semigroups {

Sw(t)
}

t∈[0,∞)
and

{

Ss(t)
}

t∈[0,∞)
a
ting on Dw and Ds, respe
tively. First re
all the following de�nition of an absorbingset for an operator semigroup.De�nition 6.1 (Absorbing set [7, Def. II.2.3℄) A set B0 in a 
omplete metri
 spa
e D is
alled an absorbing set for the semigroup {

S(t) : D → D
}

t∈[0,∞)
if for every bounded set B ∈ Dthere exists t0(B) ∈ (0,∞) su
h that S(t)B ⊂ B0 for all t ≥ t0(B).Theorem 6.2 (Existen
e of absorbing sets in Uw) Assume that g ∈ L∞(0,∞;Dg) and thereexists θ > 2γ−3

min su
h thati) 4
3θe2Υ2

EEγmax(νΛEE)−3 < 1,ii) 4
3θe2Υ2

EIγmax(νΛEI)
−3 < 1,where γmin := min{γEE, γEI, γIE, γII} and γmax := max{γEE, γEI, γIE, γII} are the smallest and largesteigenvalues of Γ, respe
tively. Then the semigroup {

Sw(t) : Dw → Dw

}

t∈[0,∞)
asso
iated with theweak solutions of (3.3)�(3.6) has a bounded absorbing set Bw. Spe
i�
ally, 
onsider the fun
tions

Q−
w : Dw → [0,∞) and Q+

w : Dw → [0,∞) de�ned by
Q−

w(u) :=
∥

∥Φ
1
2 v

∥

∥

2

L2
v

+ θ
∥

∥dti + 3
2Γi

∥

∥

2

L2
i

+ 1
4θ

∥

∥Γi
∥

∥

2

L2
i

+
∥

∥dtw + 3
2νΛw

∥

∥

2

L2
w

(6.1)
+ 1

4ν2 min{6,Λ2
min}

∥

∥w
∥

∥

2

H1
w
,

Q+
w(u) :=

∥

∥Φ
1
2 v

∥

∥

2

L2
v

+ θ
∥

∥dti + 3
2Γi

∥

∥

2

L2
i

+ 1
4θ

∥

∥Γi
∥

∥

2

L2
i

+
∥

∥dtw + 3
2νΛw

∥

∥

2

L2
w

+ 1
4ν2 max{6,Λ2

max}
∥

∥w
∥

∥

2

H1
w
,and a s
alar ε su
h that(6.2) max

{

4
3θe2Υ2

EEγmax(νΛEE)−3, 4
3θe2Υ2

EIγmax(νΛEI)
−3

}

< 2γmaxε < 1.36



Let τmax := max{τE, τI} denote the largest eigenvalue of Φ, and Λmin := min{ΛEE,ΛEI} and Λmax :=
max{ΛEE,ΛEI} denote the smallest and largest eigenvalues of Λ, respe
tively. Let ρ2

w := βw

αw
, where

αw := min
{

2
3τ−1

max,
(

1
2γ−1

max − ε
)

γ2
min, 3θ

−1
(

θγmin − 2γ−2
min

)

, 1
2νΛmin,(6.3)

3νΛ−2
max min{Λ3

EE − 2
3

e2

ν3ε
Υ2

EE,Λ3
EI − 2

3
e2

ν3ε
Υ2

EI}
}

,

βw :=
4θe2

γ−1
max − 2ε

[

|Ω|(F2
E + F2

I )
∥

∥ΥNJ7

∥

∥

2

2
+

∥

∥Υ
∥

∥

2

2

∥

∥g
∥

∥

2

L∞(0,∞;L2
i )

]

+ 2ν3|Ω|F2
E tr(Λ3M2).(6.4)Then, for all ρ > ρw, the bounded sets Bw :=

{

u ∈ Dw : Q−
w(u) ≤ ρ2

} are absorbing in Uw. More-over, for every bounded set B ⊂ Dw there exists R > 0 su
h that Q+
w(u0) ≤ R2 for all u0 ∈ B, and

S(t)B ⊂ Bw for all t ≥ tw(B), where(6.5) tw(B) = tw(R) := max

{

0,
1

αw
log

R2

ρ2 − ρ2
w

}

.Proof. First, taking the inner produ
t of (3.3) with v yields
1
2dt

∥

∥Φ
1
2 v

∥

∥

2

L2
v

+
∥

∥v
∥

∥

2

L2
v
−

(

J1i, v
)

L2
v

+

∫

Ω

(

v2
1i

TΨJ4 + v2
2i

TΨJ5

)

dx = 0.The integral term in this equation is nonnegative in Dw for all t ∈ [0,∞); see (3.7) and (5.25).Therefore, dropping the integral term and using Young's inequality yields, for every ε1 > 0,
dt

∥

∥Φ
1
2 v

∥

∥

2

L2
v
≤ −2(1 − ε1)

∥

∥v
∥

∥

2

L2
v

+
1

ε1

∥

∥i
∥

∥

2

L2
i

(6.6)
≤ −2(1 − ε1)τ

−1
max

∥

∥Φ
1
2 v

∥

∥

2

L2
v

+
1

ε1γ
2
min

∥

∥Γi
∥

∥

2

L2
i

.Next, let b := dti + 3
2Γi and rewrite (3.4) as
dtb + 1

2Γb + 1
4Γ2i − eΥΓJ6w − eΥΓNJ7f(v) = eΥΓg.Taking the inner produ
t of the above equality with b yields

1
2dt

∥

∥b
∥

∥

2

L2
i

+ 1
2

(

Γb, b
)

L2
i
+ 1

8dt

∥

∥Γi
∥

∥

2

L2
i

+ 3
8

∥

∥Γ
3
2 i

∥

∥

2

L2
i

− e
(

ΥΓJ6w, b
)

L2
i
− e

(

ΥΓNJ7f(v), b
)

L2
i

= e
(

ΥΓg, b
)

L2
i
.Note that

(

Γb, b
)

L2
i
≥ γ−1

max

∥

∥Γb
∥

∥

2

L2
i

,

∥

∥Γ
3
2 i

∥

∥

2

L2
i

≥ γmin

∥

∥Γi
∥

∥

2

L2
i

,and, using similar arguments as in the proof of Proposition 4.4, it follows that for every ε2, ε3, ε4 > 0,
e
(

ΥΓJ6w, b
)

L2
i
≤ ε2

∥

∥Γb
∥

∥

2

L2
i

+
e2

4ε2

∥

∥ΥJ6w
∥

∥

2

L2
i

e
(

ΥΓNJ7f(v), b
)

L2
i
≤ ε3

∥

∥Γb
∥

∥

2

L2
i

+
e2|Ω|
4ε3

(F2
E + F2

I )
∥

∥ΥNJ7

∥

∥

2

2
,

e
(

ΥΓg, b
)

L2
i
≤ ε4

∥

∥Γb
∥

∥

2

L2
i

+
e2

4ε4

∥

∥Υ
∥

∥

2

2

∥

∥g
∥

∥

2

L2
i
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Therefore,(6.7) dt

[

∥

∥b
∥

∥

2

L2
i

+ 1
4

∥

∥Γi
∥

∥

2

L2
i

]

≤ −
(

γ−1
max − 2(ε2 + ε3 + ε4)

)
∥

∥Γb
∥

∥

2

L2
i

− 3
4γmin

∥

∥Γi
∥

∥

2

L2
i

+
e2

2ε2

∥

∥ΥJ6w
∥

∥

2

L2
i

+
e2

2ε3
|Ω|(F2

E + F2
I )

∥

∥ΥNJ7

∥

∥

2

2
+

e2

2ε4

∥

∥Υ
∥

∥

2

2

∥

∥g
∥

∥

2

L2
i

.Next, let q := dtw + 3
2νΛw and rewrite (3.5) as(6.8) dtq + 1

2νΛq − 3
2ν2∆w + 1

4ν2Λ2w − ν2Λ2MJ8f(v) = 0.Taking the inner produ
t of this equality with q yields
1
2dt

∥

∥q
∥

∥

2

L2
w

+ 1
2ν

∥

∥Λ
1
2 q

∥

∥

2

L2
w

+ 3
4ν2dt

∥

∥∂w
∥

∥

2

L2
∂w

+ 9
4ν3

∥

∥Λ
1
2 ∂w

∥

∥

2

L2
∂w

+ 1
8ν2dt

∥

∥Λw
∥

∥

2

L2
w

+ 3
8ν3

∥

∥Λ
3
2 w

∥

∥

2

L2
w
− ν2

(

Λ2MJ8f(v), q
)

L2
w

= 0.Using similar arguments as in the proof of Proposition 4.4 we 
an write, for every ε5 > 0,
(

Λ2MJ8f(v(m)), q
)

L2
w
≤ ε5

∥

∥Λ
1
2 q

∥

∥

2

L2
w

+
1

4ε5
|Ω|F2

E tr(Λ3M2),and hen
e, it follows that
dt

[

∥

∥q
∥

∥

2

L2
w

+ 3
2ν2

∥

∥∂w
∥

∥

2

L2
∂w

+ 1
4ν2

∥

∥Λw
∥

∥

2

L2
w

](6.9)
≤ −ν(1 − 2νε5)

∥

∥Λ
1
2 q

∥

∥

2

L2
w
− 3ν

(

3
2ν2

∥

∥Λ
1
2 ∂w

∥

∥

2

L2
∂w

+ 1
4ν2

∥

∥Λ
3
2 w

∥

∥

2

L2
w

)

+
ν2

2ε5
|Ω|F2

E tr(Λ3M2).Now, set ε1 = 2
3 in (6.6), set ε3 = ε4 = 1

8(γ−1
max − 2ε) in (6.7) with ε := ε2, and set ε5 = 1

4ν
in(6.9). Then, multiplying (6.7) by θ > 0 and adding the result to (6.6) and (6.9) yields

dtQw ≤ −2
3τ−1

max

∥

∥Φ
1
2 v

∥

∥

2

L2
v
− θ

(

1
2γ−1

max − ε
)
∥

∥Γb
∥

∥

2

L2
i

− 3
4

(

θγmin − 2γ−2
min

)
∥

∥Γi
∥

∥

2

L2
i

− 1
2ν

∥

∥Λ
1
2 q

∥

∥

2

L2
w

− 3ν

(

3
2ν2

∥

∥Λ
1
2 ∂w

∥

∥

2

L2
∂w

+ 1
4ν2

(

[

Λ3 − 2
3

θe2

ν3ε
JT

6 Υ2J6

]

w,w
)

L2
w

)

+ βw,where βw is given by (6.4) and(6.10) Qw(u) =
∥

∥Φ
1
2 v

∥

∥

2

L2
v

+ θ
∥

∥b
∥

∥

2

L2
i

+ 1
4θ

∥

∥Γi
∥

∥

2

L2
i

+
∥

∥q
∥

∥

2

L2
w

+ 3
2ν2

∥

∥∂w
∥

∥

2

L2
∂w

+ 1
4ν2

∥

∥Λw
∥

∥

2

L2
w
.Note that for θ > 2γ−3

min we have θγmin−2γ−2
min > 0 and for range of values of ε given by (6.2) we have

1
2γ−1

max−ε > 0. Moreover, Assumptions (i) and (ii) along with (6.2) ensure that Λ3− 2
3

θe2

ν3ε
JT

6 Υ2J6 >

0. Therefore, with the de
ay rate αw given by (6.3),(6.11) dtQw(u) ≤ −αwQw(u) + βw,and hen
e, using Grönwall's inequality [48, Se
. III.1.1.3.℄,(6.12) Q−
w(u(t)) ≤ Q+

w(u(0))e−αw t + ρ2
0

(

1 − e−αwt
)

,38



where Q−
w and Q+

w are given in (6.1) and lim supt→∞ Q−
w(u(t)) ≤ ρ2

0 := βw

αw
. Now, sin
e the mapping(6.13) (v, i, i′, w,w′) 7→ (Φ

1
2 v, 1

2θ
1
2 Γi, θ

1
2 [i′ + 3

2Γi], 1
2ν[max{6,Λ2

max}]
1
2 w,w′ + 3

2νΛw)is a linear isomorphism over Uw, for every bounded set B ⊂ Dw there exists R > 0 su
h that
Q+

w(u0) ≤ R2 for all u0 ∈ B. Hen
e, it is immediate from (6.12) that Sw(t)B ⊂ Bw for all
t ≥ tw(B), where tw(B) is given by (6.5).Theorem 6.3 (Existen
e of absorbing sets in Ds) Suppose the assumptions of Theorem 6.2hold, namely, assume g ∈ L∞(0,∞;Dg) and there exists θ > 2γ−3

min su
h that the biophysi
al param-eters of the model satisfyi) 4
3θe2Υ2

EEγmax(νΛEE)−3 < 1,ii) 4
3θe2Υ2

EIγmax(νΛEI)
−3 < 1,where γmin and γmax are the smallest and largest eigenvalues of Γ, respe
tively. Then the semigroup

{

Ss(t) : Ds → Ds

}

t∈[0,∞)
asso
iated with the strong solutions of (3.3)�(3.6) has a bounded absorbingset Bs. Spe
i�
ally, 
onsider the fun
tion Q−

s : Ds → [0,∞) de�ned by(6.14) Q−
s (u) :=

∥

∥Φ
1
2 v

∥

∥

2

L2
v

+ θ
∥

∥dti + 3
2Γi

∥

∥

2

L2
i

+ 1
4θ

∥

∥Γi
∥

∥

2

L2
i

+
∥

∥dtw + 3
2νΛw

∥

∥

2

H1
w

+ 1
8ν2 min{6,Λ2

min}
∥

∥(−∆ + I)w
∥

∥

2

L2
w
,and denote by Λmin and Λmax the smallest and largest eigenvalues of Λ, respe
tively, and by τmaxthe largest eigenvalue of Φ. Let ρ2

s := 2βs

αs
with

αs := min
{

2
3τ−1

max,
(

1
2γ−1

max − ε
)

γ2
min, 3θ

−1
(

θγmin − 2γ−2
min

)

, νΛmin,(6.15)
3νΛ−2

max min{Λ3
EE − 2

3
e2

ν3ε
Υ2

EE,Λ3
EI − 2

3
e2

ν3ε
Υ2

EI}
}

,

βs :=
4e2θ

γ−1
max − 2ε

[

|Ω|(F2
E + F2

I )
∥

∥ΥNJ7

∥

∥

2

2
+

∥

∥Υ
∥

∥

2

2

∥

∥g
∥

∥

2

L∞(0,∞;L2
i
)

](6.16)
+ 2ν2

[

1

32ε2

F2
E

σ2
E

tr(Λ4M2)ηρ2
w + 1

4 |Ω|F2
E tr(Λ4M2)

(

1

ε1
+

αs

ε2

)]

,where η is a positive 
onstant, ρ2
w := βw

αw
is the same 
onstant given in Theorem 6.2, the s
alar εtakes values within the same range given by (6.2), and(6.17) ε1 := 1

32αs min{6,Λ2
min}

(

1 +
∥

∥

3
2νΛ − αI

∥

∥

2

2

)−1
, ε2 := 1

16 min{6,Λ2
min}.Then, for all ρ > ρs, the bounded sets Bs :=

{

u ∈ Ds : Q−
s (u) ≤ ρ2

} are absorbing in Ds.Proof. Let A := −∆ + I and take the inner produ
t of (6.8) with Aq to obtain
1
2dt

∥

∥q
∥

∥

2

H1
w

+ 1
2ν

∥

∥Λ
1
2 q

∥

∥

2

H1
w

+ 3
4ν2dt

∥

∥∂w
∥

∥

2

H1
∂w

+ 9
4ν3

∥

∥Λ
1
2 ∂w

∥

∥

2

H1
∂w

+ 1
8ν2dt

∥

∥Λw
∥

∥

2

H1
w

+ 3
8ν3

∥

∥Λ
3
2 w

∥

∥

2

H1
w
− ν2

(

Λ2MJ8f(v), Aq
)

L2
w

= 0.39



This equality, along with the inequalities (6.6) and (6.7) derived in the proof of Theorem 6.2 andthe same values of ε1, . . . , ε4 therein, implies that
dtQs ≤ −2

3τmax

∥

∥Φ
1
2 v

∥

∥

2

L2
v
− θ

(

1
2γ−1

max − ε
)
∥

∥Γb
∥

∥

2

L2
i

− 3
4

(

θγmin − 2γ−2
min

)
∥

∥Γi
∥

∥

2

L2
i

− ν
∥

∥Λ
1
2 q

∥

∥

2

H1
w

− 3ν

(

3
2ν2

∥

∥Λ
1
2 ∂w

∥

∥

2

H1
∂w

+ 1
4ν2

(

[

Λ3 − 2
3

θe2

ν3ε
JT

6 Υ2J6

]

w,w
)

H1
w

)

+ 2ν2
(

Λ2MJ8f(v), Aq
)

L2
w

+ β,where
Qs(u) :=

∥

∥Φ
1
2 v

∥

∥

2

L2
v

+ θ
∥

∥b
∥

∥

2

L2
i

+ 1
4θ

∥

∥Γi
∥

∥

2

L2
i

+
∥

∥q
∥

∥

2

H1
w

+ 3
2ν2

∥

∥∂w
∥

∥

2

H1
∂w

+ 1
4ν2

∥

∥Λw
∥

∥

2

H1
w
,

β :=
4e2θ

γ−1
max − 2ε

[

|Ω|(F2
E + F2

I )
∥

∥ΥNJ7

∥

∥

2

2
+

∥

∥Υ
∥

∥

2

2

∥

∥g
∥

∥

2

L∞(0,∞;L2
i )

]

,and ε takes values within the range given by (6.2). Now, using similar arguments as in the proof ofTheorem 6.2, it follows from Assumptions (i) and (ii) with θ > 2γ−3
min that(6.18) dtQs(u) ≤ −αsQs(u) + 2ν2

(

Λ2MJ8f(v), Aq
)

L2
w

+ β,where the de
ay rate αs is given by (6.15). Then, Grönwall's inequality [48, Se
. III.1.1.3.℄ implies(6.19) Qs(u(t)) ≤ Qs(u(0))e−αst + 2ν2

∫ t

0

(

Λ2MJ8f(v), Aq
)

L2
w
eαs(s−t)ds +

β

αs

(

1 − e−αst
)

.Repla
ing q := dtw + 3
2νΛw in the integral term in the above inequality and integrating by partsyields

∫ t

0

(

Λ2MJ8f(v), Aq
)

L2
w
eαs(s−t)ds

= −
∫ t

0

(

Λ2MJ8dsf(v), Aw
)

L2
w
eαs(s−t)ds +

∫ t

0

(

Λ2MJ8f(v), (3
2νΛ − αsI)Aw

)

L2
w
eαs(s−t)ds

+
(

Λ2MJ8f(v), Aw
)

L2
w
−

(

Λ2MJ8f(v0), Aw0

)

L2
w
e−αst.Next, noting that dsf(v) = ∂vf(v)dsv and supvE(x,t)∈R |∂vE
fE(vE)| ≤ FE

2
√

2σE

by (4.37), it follows thatfor every ε1, ε2 > 0,
∫ t

0

(

Λ2MJ8f(v), Aq
)

L2
w
eαs(s−t)ds

≤ ε1

(

1 +
∥

∥

3
2νΛ − αsI

∥

∥

2

2

)

∫ t

0

∥

∥Aw
∥

∥

2

L2
w
eαs(s−t)ds +

1

32ε1

F2
E

σ2
E

tr(Λ4M2)

∫ t

0

∥

∥dsv
∥

∥

2

L2
v
eαs(s−t)ds

+ ε2

∥

∥Aw
∥

∥

2

L2
w

+ 1
4 |Ω|F2

E tr(Λ4M2)

(

1

αsε1
+

1

ε2

)

−
(

Λ2MJ8f(v0), Aw0

)

L2
w
e−αst.Moreover, it follows from Theorem 6.2 that for every bounded set B ⊂ Ds there exists a time tw(B),given by (6.5), and a 
onstant η > 0 su
h that ∥

∥dtv(t)
∥

∥

2

L2
v
≤ ηρ2

w for all t ≥ tw(B). Therefore,using the estimate (5.13) for t < tw(B) we 
an write(6.20) ∫ t

0

∥

∥dsv
∥

∥

2

L2
v
eαs(s−t)ds ≤

∫ tw(B)

0

∥

∥dsv
∥

∥

2

L2
v
eαs(s−t)ds +

ηρ2
w

αs
≤ κ0(B)e−αst +

ηρ2
w

αs
,40



where, for some α > 0,
κ0(B) := α

∫ tw(B)

0

(

∥

∥v(s)
∥

∥

2

L2
v

+
∥

∥i(s)
∥

∥

2

L2
i

+
∥

∥v(s)
∥

∥

2

L2
v

∥

∥i(s)
∥

∥

2

L2
i

)

eαssds < ∞.Now, using the above estimate for the integral term in (6.19), with ε1 and ε2 given by (6.17),yields(6.21) Q−
s (u)eαst ≤ 1

2αs

∫ t

0
Q−

s (u)eαssds + κ(B) +
βs

αs
eαst,where βs := β + 2ν2

[

1
32ε2

F2
E

σ2
E

tr(Λ4M2)ηρ2
w + 1

4 |Ω|F2
E tr(Λ4M2)

(

1
ε1

+ αs

ε2

)

] as given in (6.16), Q−
s (u)is given in (6.14), and

κ(B) := Q+
s (u(0)) + 2ν2

[

1

32ε2

F2
E

σ2
E

tr(Λ4M2)κ0(B) −
(

Λ2MJ8f(v0), Aw0

)

L2
w

]

− β

αs
,

Q+
s (u) :=

∥

∥Φ
1
2 v

∥

∥

2

L2
v

+ θ
∥

∥b
∥

∥

2

L2
i

+ 1
4θ

∥

∥Γi
∥

∥

2

L2
i

+
∥

∥q
∥

∥

2

H1
w

+ 1
4ν2 max{6,Λ2

max}
∥

∥Aw
∥

∥

2

L2
w
.Next, using Grönwall's inequality for the fun
tion ∫ t

0 Q−
s (u)eαssds in (6.21) gives

∫ t

0
Q−

s (u)eαssds ≤ 1
1
2αs

[

κ(B)
(

e
1
2
αst − 1

)

+
βs

αs

(

eαst − e
1
2
αst

)

]

,whi
h, along with (6.21) implies(6.22) Q−
s (u) ≤ κ(B)e−

1
2
αst + ρ2

s

(

1 − 1
2e−

1
2
αst

)

,where lim supt→∞ Q−
s (u(t)) ≤ ρ2

s := 2βs

αs
.Finally, 
onsidering the linear isomorphism (6.13) over Us, it follows that for every bounded set

B ⊂ Ds there exists R > 0 su
h that κ(B) ≤ R2 for all u0 ∈ B. Therefore, (6.22) implies that
Ss(t)B ⊂ Bs for all t ≥ ts(B) and some ts(B) > 0, whi
h 
ompletes the proof.Note that an estimate similar to (6.5) given in Theorem 6.2 
an be also obtained for ts(B) inthe proof of Theorem 6.3. However, this would be of limited pra
ti
al value sin
e the bound (6.20)is very 
onservative for times t ≪ tw(B).Remark 6.4 (Conditions on parameter sets) For the range of values given in Table 1, themaximum value that the left-hand side of the inequalities in Assumptions (i) and (ii) of Theorems6.2 and 6.3 may take is 39.4083 θ, whi
h is a
hieved when ΥEE = 2, ΥEI = 2, ΛEE = 0.1, ΛEI = 0.1,
ν = 100, and γmax = 1000. Assumptions (i) and (ii) then require that θ < 1

39.4083 = 0.0254.Moreover, Theorems 6.2 and 6.3 allow for θ > 2γ−3
min ≥ 0.002, in a

ordan
e with Table 1. Thisimplies that�for the entire range of values that the biophysi
al parameters of the model may take�the 
onditions imposed by Theorems 6.2 and 6.3 are satis�ed at least for any 0.002 < θ < 0.0254,and the model (3.1) possesses bounded absorbing sets as given by these theorems.
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7. Existen
e and Nonexisten
e of a Global Attra
torIn this se
tion, we investigate the problem of existen
e of a global attra
tor for the semigroups
{

Sw(t) : Dw → Dw

}

t∈[0,∞)
and {

Ss(t) : Ds → Ds

}

t∈[0,∞)
of solution operators of (3.3)�(3.6). First,we re
all the de�nition of a global attra
tor and a widely used theorem for establishing the existen
eof a global attra
tor.De�nition 7.1 (Attra
ting set [7, Def. II.2.4℄) A set P in a 
omplete metri
 spa
e D is
alled an attra
ting set for a semigroup {

S(t)
}

t∈[0,∞)
a
ting in D if for every bounded set B ∈ D,

distD(S(t)B,P) → 0 as t → ∞. Here, distD(G ,H ) := supg∈G infh∈H

∥

∥g − h
∥

∥

D is the Hausdor�distan
e between the two sets G ,H ⊂ D.De�nition 7.2 (Global attra
tor [7, Def. II.3.1℄) A bounded set A in a 
omplete metri
 spa
e
D is 
alled a global attra
tor for a semigroup {

S(t)
}

t∈[0,∞)
a
ting in D if it satis�es the following
onditions:i) A is 
ompa
t in D.ii) A is an attra
ting set for {

S(t)
}

t∈[0,∞)
.iii) A is stri
tly invariant with respe
t to {

S(t)
}

t∈[0,∞)
, that is, S(t)A = A for all t ∈ [0,∞).De�nition 7.3 (Asymptoti
 
ompa
tness [7, Def. II.2.5℄) The semigroup {

S(t)
}

t∈[0,∞)
a
t-ing in a 
omplete metri
 spa
e D is 
alled asymptoti
ally 
ompa
t if it possesses a 
ompa
t attra
tingset K ⋐ D.Theorem 7.4 (Global Attra
tor [7, Th. II.3.1℄) Let {

S(t)
}

t∈[0,∞)
be an asymptoti
ally 
om-pa
t 
ontinuous semigroup in a 
omplete metri
 spa
e D possessing a 
ompa
t attra
ting set K ⋐ D.Then {

S(t)
}

t∈[0,∞)
has a global attra
tor A ⊂ K given by A = ω(K ), where ω(K ) is the ω-limitset of K .7.1 Challenges in Establishing a Global Attra
torContinuity of {Sw(t)
}

t∈[0,∞)
and {

Ss(t)
}

t∈[0,∞)
, as required by Theorem 7.4, is established in Propo-sitions 5.1 and 5.2, respe
tively. To prove asymptoti
 
ompa
tness of a semigroup {

S(t)
}

t∈[0,∞)a
ting in D a general approa
h is to show �rst, that the semigroup possesses a bounded absorbingset and se
ond, that the semigroup is κ-
ontra
ting, meaning that limt→∞ κ(S(t)B) = 0 for anybounded set B ∈ D, where κ denotes the Kuratowski measure of 
ompa
tness [35,53℄. An e�e
tiveway to establish the later property is through a de
omposition S(t) = S1(t) + S2(t) su
h that forevery bounded set B ∈ D the 
omponent S1(t)B 
onverges uniformly to 0 as t → 0, and the
omponent S2(t)B is κ-
ontra
tive or is pre
ompa
t in D for large t [44, 48℄.As the �rst step towards proving the asymptoti
 
ompa
tness property stated above, existen
e ofbounded absorbing sets for {

Sw(t)
}

t∈[0,∞)
and {

Ss(t)
}

t∈[0,∞)
is established in Theorems 6.2 and 6.3,respe
tively. However, it turns out that the κ-
ontra
ting property is hard to a
hieve for the model(3.3)�(3.5) with parameter values in the range given in Table 1, due to the la
k of spa
e-dissipativeterms in the ordinary di�erential equations (3.3) and (3.4), the nature of nonlinear 
ouplings in(3.3) and (3.4), and the range of values of the biophysi
al parameters of the model.42



The uniform 
ompa
tness of the 
omponent S2(t) in the de
omposition approa
h stated above isusually veri�ed by establishing energy estimates in more regular fun
tion spa
es and then dedu
ing
ompa
tness from 
ompa
t embedding theorems. This approa
h, although su

essfully used in [36℄to prove existen
e of a global attra
tor for a 
oupled ODE-PDE rea
tion-di�usion system, is not verypromising here. In [36℄, the ODE subsystem is linear and the energy estimates in a higher regularspa
e are a
hieved by taking spa
e-derivatives of the ODE's and 
onstru
ting energy fun
tionalsfor the resulting equations. As seen in the proof of Theorem 6.2, the nonnegativity of i(x, t) is akey property that permits elimination of the sign-inde�nite quadrati
 term in the energy equationof (3.3), whi
h results in the energy variation inequality 6.6. This nonnegativity property, however,is not preserved in the derivative or any other variations of i(x, t), leaving some sign-inde�nitequadrati
 terms in the analysis. Moreover, it 
an be observed from the range of parameter valuesgiven in Table 1 that the sign-inde�nite nonlinear terms that would appear in the energy equations ofany variations of (3.3) and (3.4) have signi�
antly larger 
oe�
ients than the sign-de�nite dissipativeterms. This makes the analysis 
hallenging to balan
e the terms in the energy fun
tional to absorbthe nondissipative terms into dissipative ones. Finally, the nonlinear terms appearing in (3.3) and(3.4) do not satisfy the usual assumptions, e.g., as in [13℄, that enable shaping the energy fun
tionalto eliminate the nondissipative terms that would otherwise appear in the equations.Some other te
hniques are available in the literature to avoid energy estimations in higher regularspa
es. In [35℄, for instan
e, the notion of ω-limit 
ompa
tness is used to develope ne
essary andsu�
ient 
onditions for existen
e of a global attra
tor. This is a

omplished by de
omposing thephase spa
e into two spa
es, one of whi
h being �nite-dimensional, and then showing that for everybounded set B ⊂ D the 
anoni
al proje
tion of S(t)B onto the �nite-dimensional spa
e is bounded,and the 
anoni
al proje
tion on the 
omplement spa
e remains arbitrarily small for su�
iently large
t ≥ t0, for some t0 = t0(B) > 0. These de
omposition te
hniques, however, rely on the spe
tralde
omposition of the spa
e-a
ting operators to 
onstru
t the desired phase spa
e de
omposition.Su
h operators do not exist in the ODE subsystems (3.3) and (3.4) in our problem.7.2 Nonexisten
e of a Global Attra
torAs dis
ussed in Se
tion 7.1, establishing a global attra
tor for (3.3)�(3.5) is a 
hallenging problem.In fa
t, in this se
tion we show that there exit sets of parameter values, leading to physiologi
allyreasonable behavior in the model, for whi
h the semigroups {

Sw(t)
}

t∈[0,∞)
and {

Ss(t)
}

t∈[0,∞)
donot possess a global attra
tor. We �rst use [13, Prop. 4.7℄ to prove the following theorem givingsu�
ient 
onditions for non
ompa
tness of the equilibrium sets of (3.3)�(3.5) in Uw and Us.Theorem 7.5 (Non
ompa
tness of equilibrium sets) Suppose g is bounded and 
onstant intime, that is, g(x, t) = g(x) for all (x, t) ∈ Ω × [0,∞) and g ∈ L∞

i . Let ue := (ve, ie, 0, we, 0) bean equilibrium of (3.3)�(3.5) su
h that ve ∈ L∞
v , ie ∈ L∞

i , and we ∈ H2
w. De�ne the mapping

P = (Pv , Pi) : L∞
v × L∞

i → L∞
v × L∞

i as
Pv(v, i) := v − J1i + J2viTΨJ4 + J3viTΨJ5,(7.1)
Pi(v, i) := (eΥ)−1Γi − NJ7f(v) − g,and let A := −3

2∆ + Λ2I. Assume that the following 
onditions hold:i) ΛEE and ΛEI take the same values, that is, Λ = ΛEEI2×2 = ΛEII2×2.43



ii) There exists (v0, i0) ∈ L∞
v × L∞

i su
h that
ess inf

x∈Ω

∥

∥(ve(x), ie(x)) − (v0(x), i0(x))
∥

∥

∞ > 0and(7.2) Pv(v0, i0) = 0, Pi(v0, i0) = Pi(ve, ie).iii) ∂(v,i)P (ve, ie) and ∂(v,i)P (v0, i0) are nonsingular almost everywhere in Ω.iv) There exists α > 0 su
h that, for every b = (bv, bi) ∈ L∞
v × L∞

i , the system of equations
∂(v,i)Pv(ve, ie)φ = bv,(7.3)

∂(v,i)Pi(ve, ie)φ − J6A
−1Λ2MJ8∂vf(ve)φv = bi,has a unique solution φ = (φv, φi) ∈ L∞

v × L∞
i that satis�es(7.4) ∥

∥φ
∥

∥

L∞
v ×L∞

i

≤ α
∥

∥b
∥

∥

L∞
v ×L∞

i

.Then, for a measurable partition Ω = Ωe ∪ Ω0 and(7.5) v̄ := veχΩe
+ v0χΩ0

, ī := ieχΩe
+ i0χΩ0

,the following assertions hold:I) For every ε > 0 there exists δ > 0 and an equilibrium u∗ := (v∗, i∗, 0, w∗, 0) of (3.3)�(3.5)su
h that
∥

∥(v∗, i∗) − (v̄, ī)
∥

∥

L∞
v ×L∞

i

≤ ε, whenever |Ω0| ≤ δ.II) The equilibrium sets of (3.3)�(3.5) are non
ompa
t in Us and Uw.Proof. First, we show that the system of equations
∂(v,i)Pv(v̄, ī)φ = bv,(7.6)

∂(v,i)Pi(v̄, ī)φ − J6A
−1Λ2MJ8∂vf(v̄)φv = bi,has a unique solution φ ∈ L∞

v × L∞
i for every b = (bv, bi) ∈ L∞

v × L∞
i .Let φ(0) = (φ

(0)
v , φ

(0)
i ) be the solution of (7.3) for a given b ∈ L∞

v × L∞
i and 
onstru
t anapproximate solution for (7.6) of the form φ(1) := φ(0) + φ

(1)
r , where φ

(1)
r = (φ

(1)
rv , φ

(1)
ri ) is the uniquesolution of

∂(v,i)P (v0, i0)φ
(1)
r =

(

∂(v,i)P (ve, ie) − ∂(v,i)P (v0, i0)
)

φ(0)χΩ0
.(7.7)Note that by Assumption (iii) the unique solution φ

(1)
r exists and belongs to L∞

v ×L∞
i . The approx-imate solution φ(1) solves

∂(v,i)Pv(v̄, ī)φ(1) = bv,

∂(v,i)Pi(v̄, ī)φ(1) − J6A
−1Λ2MJ8∂vf(v̄)φ(1)

v = bi + b(1)
ri

,44



where b
(1)
r = (0, b

(1)
ri ), with(7.8) b(1)
ri

:= J6A
−1Λ2MJ8

[

(∂vf(ve) − ∂vf(v0)) φ(0)
v − ∂vf(v0)φ

(1)
rv

]

χΩ0
,is the remainder resulting from the approximation error in φ(1).Now, note that by Assumption (iv) there exist α0 := α > 0 su
h that(7.9) ∥

∥φ(0)
∥

∥

L∞
v ×L∞

i

≤ α0

∥

∥b
∥

∥

L∞
v ×L∞

i

.Moreover, sin
e by Assumption (ii) we have (v0, i0) ∈ L∞
v ×L∞

i , it is immediate from the de�nitionof Pv and Pi, given by (7.1), that ∂(v,i)P (v0, i0) is bounded. This, along with Assumption (iii) and(7.9), implies that the solution φ
(1)
r of (7.7) satis�es(7.10) ∥

∥φ(1)
r

∥

∥

L∞
v ×L∞

i

≤ ζ1

∥

∥φ(0)
∥

∥

L∞
v ×L∞

i

≤ α1

∥

∥b
∥

∥

L∞
v ×L∞

ifor some ζ1, α1 > 0.Next, note that sin
e A−1 : L2
w → H2

w is a bounded operator and f is smooth, the de�nition of
b
(1)
r , given by (7.8), implies that b

(1)
r ∈ H2

w. Moreover, it further implies by the Sobolev embeddingtheorems that b
(1)
r ∈ C

0,λ
per(Ω, R2) for all λ ∈ (0, 1) and, in parti
ular, there exist ζ2, . . . , ζ5, β1 > 0su
h that

∥

∥b(1)
r

∥

∥

L∞
w

≤ ζ2

∥

∥b(1)
r

∥

∥

H2
w
≤ ζ3

(

∥

∥φ(0)
v

∥

∥

L2
v

+
∥

∥φ(1)
rv

∥

∥

L2
v

)

≤ ζ4

∥

∥φ(0)
∥

∥

L2
v×L2

i

≤ ζ5|Ω0|
1
2

∥

∥φ(0)
∥

∥

L∞
v ×L∞

i

≤ β1|Ω0|
1
2

∥

∥b
∥

∥

L∞
v ×L∞

i

.Now, for m = 2, 3, . . . , let φ(m) := φ(m−1) + φ
(m)
r , where φ

(m)
r is the unique solution of

∂(v,i)P (v0, i0)φ
(m)
r = b(m−1)

r χΩ0
.It follows immediately that, for some η > 0,(7.11) ∥

∥φ(m)
r

∥

∥

L∞
v ×L∞

i

≤ η
∥

∥b(m−1)
r

∥

∥

L∞
v ×L∞

i

, m = 2, 3, . . . .Moreover, φ
(m)
r solves the system of equations

∂(v,i)Pv(v̄, ī)φ(m) = bv,

∂(v,i)Pi(v̄, ī)φ(m) − J6A
−1Λ2MJ8∂vf(v̄)φ(m)

v = bi + b(m)
ri

,where
b(m)
ri

:= J6A
−1Λ2MJ8∂vf(v0)φ

(m)
rv

χΩ0
, m = 2, 3, . . . .The remainder b

(m)
r = (0, b

(m)
ri ) satis�es, for some ζ6, ζ7, ζ8, β > 0,

∥

∥b(m)
r

∥

∥

L∞
w

≤ ζ6

∥

∥b(m)
r

∥

∥

H2
w
≤ ζ7

∥

∥φ(m)
r

∥

∥

L2
v×L2

i

≤ ζ8|Ω0|
1
2

∥

∥φ(m)
r

∥

∥

L∞
v ×L∞

i

≤ β|Ω0|
1
2

∥

∥b(m−1)
r

∥

∥

L∞
v ×L∞

i

, m = 2, 3, . . . ,45



whi
h, letting κ := β|Ω0|
1
2 , implies

∥

∥b(m)
r

∥

∥

L∞
w

≤ β1|Ω0|
1
2 κ(m−1)

∥

∥b
∥

∥

L∞
v ×L∞

i

m = 2, 3, . . . .Now, let |Ω0| < δ̄, δ̄ > 0, and 
hoose δ̄ su
h that κ < 1. Note that β, and 
onsequently, the
hoi
e of δ̄ and the value of κ do not depend on b and the spe
i�
 form of the partition Ω = Ωe∪Ω0.Therefore, it follows that ∥

∥b
(m)
r

∥

∥

L∞
v ×L∞

i

→ 0 as m → ∞, and hen
e, φ(m) 
onverges to a solution φfor (7.6) when |Ω0| < δ̄. Moreover, (7.9), (7.10), and (7.11) imply
∥

∥φ(m)
∥

∥

L∞
v ×L∞

i

≤
∥

∥φ(0)
∥

∥

L∞
v ×L∞

i

+
∥

∥φ(1)
r

∥

∥

L∞
v ×L∞

i

+

m
∑

l=2

∥

∥φ(l)
r

∥

∥

L∞
v ×L∞

i

≤
[

α0 + α1 + ηβ1|Ω0|
1
2

m
∑

l=2

κ(l−2)

]

∥

∥b
∥

∥

L∞
v ×L∞

i

,and hen
e, taking the limit as m → ∞, there exists ᾱ > 0 su
h that(7.12) ∥

∥φ
∥

∥

L∞
v ×L∞

i

≤ ᾱ
∥

∥b
∥

∥

L∞
v ×L∞

i

.To prove the solution 
onstru
ted above for (7.6) is unique, �rst note that by Assumption (i) theoperator A be
omes a s
alar operator given by A = (−3
2∆ + Λ2

EEI). Then, 
onsidering the stru
tureof the matrix parameters given by (3.7) and reinspe
ting the expanded form (3.1), the system ofequations (7.6) 
an be transformed to a system 
omposed of �ve algebrai
 equations and one partialdi�erential equation by pre-multiplying the se
ond equation in (7.6) by the elementary matrix






1 0

− MEI

MEE
1 02×2

02×2 I2×2






.This follows from the fa
t that the s
alar operator (−3

2∆+Λ2
EEI)−1 a
ts only on one of the unknowns,namely, φvE

. Now, sin
e ∂(v,i)P (v̄, ī) is nonsingular by Assumption (iii), φi and φvI

an be uniquelydetermined with respe
t to φvE

by elementary algebrai
 operations. Consequently, (7.6) is redu
ed toa s
alar partial di�erential equation of the form
p(v̄, ī)φvE

− (−3
2∆ + Λ2

EEI)−1Λ2
EEMEE∂vE

f(v̄E)φvE
= ĥ,where ĥ ∈ L∞

per(Ω, R) is given by the same elementary operations on b and p(v̄, ī) is nonzero almosteverywhere in Ω, sin
e elementary operations do not disrupt the nonsingularity of ∂(v,i)P (v̄, ī).Next, dividing by p(v̄, ī), the above equation 
an be written as(7.13) (I − K)φvE
= h,where K := p(v̄, ī)−1Λ2

EEMEE∂vE
f(v̄E)(−3

2∆ + Λ2
EEI)−1 and h := p(v̄, ī)−1ĥ. The operator K :

L2
per(Ω, R) → L2

per(Ω, R) is linear, self-adjoint, and 
ompa
t by the Relli
h-Kondra
hov 
ompa
tembedding theorems [8, Th. 6.6-3℄. The existen
e of solutions of (7.6) proved above guaranteersthe existen
e of a solution φvE
∈ L∞

per(Ω, R) for every h ∈ L∞
per(Ω, R), whi
h implies, L∞

per(Ω, R) ⊂
Range(I − K). However, Range(I − K) = Kernel(I − K∗)⊥ = Kernel(I − K)⊥ by Fredholm46



alternative [15, Th. 5, Appx. D℄, and hen
e, L∞
per(Ω, R) ∩ Kernel(I − K) = {0}. This proves theuniqueness of bounded solutions of (7.13), and 
onsequently, the uniqueness of solutions of (7.6)for every b = (bv, bi) ∈ L∞

v × L∞
i .Now, to prove Assertion (I) note that sin
e ue := (ve, ie, 0, we, 0) is an equilibrium of (3.3)�(3.5),we have(7.14) Pv(ve, ie) = 0, Pi(ve, ie) = J6we, we = A−1Λ2MJ8f(ve).We seek an equilibrium point u∗ := (v∗, i∗, 0, w∗, 0) su
h that

v∗ = v̄ + φv, i∗ = ī + φi,where φ := (φv , φi) ∈ L∞
v ×L∞

i is a small 
orre
tor fun
tion that satis�es(7.15) Pv(v
∗, i∗) = 0, Pi(v

∗, i∗) = J6w
∗, w∗ = A−1Λ2MJ8f(v∗).Note that (7.2), (7.5), and (7.14) imply

Pv(v̄, ī) = 0, Pi(v̄, ī) = J6we, ve = v̄ − (v0 − ve)χΩ0
.Therefore, it follows from (7.14) and (7.15) that

Pv(v̄ + φv, ī + φi) − Pv(v̄, ī) = 0,(7.16)
Pi(v̄ + φv, ī + φi) − Pi(v̄, ī) = J6A

−1Λ2MJ8

(

f(v̄ + φv) − f(v̄ − (v0 − ve)χΩ0
)
)

,whi
h, by the impli
it fun
tion theorem [8, Th. 7.13-1℄, has a unique solution φ ∈ L∞
v × L∞

i sin
e(7.6) has a unique solution in L∞
v × L∞

i for every b ∈ L∞
v × L∞

i , as proved above. Moreover, it isimmediate from the de�nition of the Fré
het derivative of the mappings Pi and Pv that the solutionof (7.16) is arbitrarily 
lose to the solution of (7.6) with
b := (0, J6A

−1Λ2MJ8∂vf(v̄)(v0 − ve))χΩ0
,provided it is su�
iently small, whi
h is ensured for small |Ω0| sin
e ∥

∥b
∥

∥

L∞
v ×L∞

i

≤ β|Ω0|
1
2 for some

β > 0. Therefore, (7.12) implies that Assertion (I) holds for some δ = δ(ε) ≤ δ̄.Finally, to prove Assertion (II), let(7.17) ε := 1
3 ess inf

x∈Ω

∥

∥(ve(x), ie(x)) − (v0(x), i0(x))
∥

∥

∞ > 0in Assertion (I) and let δ = δ(ε) > 0 be the 
orresponding bound on the size of the partitions thatsatis�es the result of Assertion (I). Note that ε exists by Assumption (ii). Moreover, let M (Ω)denote the set of all measurable subsets of Ω and de�ne
Pδ(Ω) := {(Ωe,Ω0) ∈ M (Ω) × M (Ω) : Ωe = Ω \ Ω0, |Ω0| ≤ δ} .Let Θδ(Ω) ⊂ Pδ(Ω) su
h that for every θ̃ = (Ω̃e, Ω̃0) ∈ Θδ(Ω) and θ̂ = (Ω̂e, Ω̂0) ∈ Θδ(Ω) wehave |Ω̃0 △ Ω̂0| > 1

2δ. Note that Θδ(Ω) is an un
ountable set that 
an be viewed as an index setenumerating all measurable partitions Ω = Ωe ∪ Ω0, |Ω0| ≤ δ, whi
h are distin
t in the sense ofmeasure by a fa
tor of at least 1
2δ. 47



Now, it follows from Assertion (I) that, for every θ̃ 6= θ̂ ∈ Θδ(Ω), there exist equilibria u
θ̃

:=
(v

θ̃
, i

θ̃
, 0, w

θ̃
, 0) and u

θ̂
:= (v

θ̂
, i

θ̂
, 0, w

θ̂
, 0) su
h that

ess sup
x∈(Ω̃e∩Ω̂0)

∥

∥(v
θ̂
(x), i

θ̂
(x)) − (v0(x), i0(x))

∥

∥

∞ ≤ ε,

ess sup
x∈(Ω̃0∩Ω̂e)

∥

∥(v
θ̂
(x), i

θ̂
(x)) − (ve(x), ie(x))

∥

∥

∞ ≤ ε,

ess sup
x∈(Ω̃e∩Ω̂0)

∥

∥(v
θ̃
(x), i

θ̃
(x)) − (ve(x), ie))

∥

∥

∞ ≤ ε,

ess sup
x∈(Ω̃0∩Ω̂e)

∥

∥(vθ̃(x), iθ̃(x)) − (v0(x), i0))
∥

∥

∞ ≤ ε.Therefore, noting that Ω̃0 △ Ω̂0 = (Ω̃0 ∩ Ω̂e) ∪ (Ω̃e ∩ Ω̂0) and re
alling the de�nition of ε given by(7.17),
ess sup

x∈(Ω̃0△Ω̂0)

∥

∥(vθ̃, iθ̃) − (v
θ̂
, i

θ̂
)
∥

∥

∞ ≥ ε,whi
h further implies
∥

∥(v
θ̃
, i

θ̃
) − (v

θ̂
, i

θ̂
)
∥

∥

L2
v×L2

i

≥ |Ω̃0 △ Ω̂0|
1
2 ess sup

x∈(Ω̃0△Ω̂0)

∥

∥(v
θ̃
, i

θ̃
) − (v

θ̂
, i

θ̂
)
∥

∥

∞ > (1
2δ)

1
2 ε.Sin
e θ̃ and θ̂ are arbitrary, it follows that the set E :=

{

uθ

}

θ∈Θδ(Ω)

omposed of the equilibria uθ
onstru
ted as above is an un
ountable dis
rete subset of the equilibrium sets of (3.3)�(3.5) in Usand Uw. This 
ompletes the proof.Remark 7.6 (Alternative assumptions for Theorem 7.5) A

ording to the proof of Theorem7.5, some of the assumptions of this theorem 
an be relaxed or repla
ed by alternative assumptionsas follows:

• Assumption (i) is used to prove the uniqueness of solutions of (7.6). Without this assumption,the operator A is not a s
alar operator and (7.6) 
annot be redu
ed to a s
alar partial di�eren-tial equation using elementary algebrai
 operations. The system of PDE's arising in this 
asewould not be self-adjoint, and hen
e, appli
ation of the Fredholm alternative would not im-mediately imply uniqueness of solutions. However, an alternative assumption to Assumption(i) 
an be made on the adjoint of the operator representing the system of PDE's su
h that itstill ensures uniqueness of solutions of (7.6) dedu
ed from the Fredholm alternative. We avoidthis unne
essary 
ompli
ation sin
e the �ber de
ay s
ale 
onstants ΛEE and ΛEI are alwaysassumed to be equal in the pra
ti
al appli
ations of the model [5℄.
• In Assumption (ii), it is su�
ient to have ess infx∈X

∥

∥(ve, ie) − (v0, i0)
∥

∥

∞ > 0, where Xis any measurable subset of Ω with positive measure. Correspondingly, it su�
es that thenonsingularity in Assumption (iii) holds almost everywhere on an open subset Y ⊃ X of Ω.In this 
ase, the proof is modi�ed by restri
ting Pδ(Ω) to its subset 
onsisting of partitionswith Ω0 ⊂ X . The index set Θδ(Ω) remains un
ountable, and the non
ompa
tness result ofthe theorem holds with no 
hange.
48



Table 2: A set of biophysi
ally plausible parameter values for the model (3.1) for whi
h Theorem7.5 implies nonexisten
e of a global attra
tor [5, Table VI, Col. 2℄. The parameters ḡEE, ḡEI, ḡEI,and ḡII are, respe
tively, the mean values of the physiologi
ally shaped random inputs gEE, gEI, gEI,and gII used in [5℄.Parameter τE τI VEE VEI VIE VII γEE γEIValue 11.787×10−3 138.25×10−3 61.264 51.703 −7.127 −12.679 816.04 261.29Parameter γIE γII ΥEE ΥEI ΥIE ΥII NEE NEIValue 219.09 40.575 0.92695 1.3012 0.19053 0.94921 3893.0 3326.8Parameter NIE NII ν ΛEE, ΛEI MEE MEI FE FIValue 839.39 682.41 101.78 0.96545 4013.5 1544.3 266.44 300.65Parameter µE µI σE σI ḡEE ḡEI ḡIE ḡIIValue 30.628 19.383 5.6536 3.3140 83.190 6407.5 0 0Remark 7.7 (Nonexisten
e of a Global Attra
tor) Suppose that the assumptions of Theorem7.5 hold for an input g and an equilibrium ue that further satisfy ie, we > 0 almost everywherein Ω and g ∈ Dg, where Dg is given by (5.21). Note that ue then belongs to Ds. Then, theequation Pi(ve, ie) = J6we in the equilibrium equations (7.14) implies that Pi(ve, ie) ≥ 0, and hen
e,
Pi(v0, i0) ≥ 0 in (7.2). Therefore, it follows from the de�nition of Pi given by (7.1) that everysolution i0 of (7.2) is positive almost everywhere in Ω. Then, by de�nition of (v̄, ī), given by (7.5),all equilibria u∗ 
onstru
ted by Assertion (I) of Theorem 7.5 satisfy i∗ > 0 almost everywhere in
Ω when δ is su�
iently small. Also, the equilibrium equations we = A−1Λ2MJ8f(ve) and w∗ =
A−1Λ2MJ8f(v∗) imply that

∥

∥w∗ − we

∥

∥

L∞
w

≤ β1

∥

∥w∗ − we

∥

∥

H2
w
≤ β

∥

∥v∗ − ve

∥

∥

L∞
vfor some β > 0, and hen
e, w∗ > 0 almost everywhere in Ω, when δ is su�
iently small. Therefore,Assertion (II) of Theorem 7.5 ensures existen
e of a biophysi
ally plausible non
ompa
t set of equi-libria E ⊂ Ds ⊂ Dw. This, in parti
ular, implies that in the 
ase where the assumptions of Theorem7.5 are satis�ed for some ue and g as given above, the semigroups {

Sw(t) : Dw → Dw

}

t∈[0,∞)
and

{

Ss(t) : Ds → Ds

}

t∈[0,∞)
are not asymptoti
ally 
ompa
t, and hen
e, they do not posses a globalattra
tor.The assumptions of Theorem 7.5 are relatively straightforward to 
he
k for the spa
e-homogeneousequilibria of (3.3)�(3.5). Consider the set of values given in Table 2 for the parameters of the model,whi
h are suggested in [5, Table VI, 
ol. 2℄ as a set of parameter values leading to physiologi
allyreasonable behavior in the model. The parameters ḡEE, ḡEI, ḡEI, and ḡII are the mean values of thephysiologi
ally shaped random signals used in [5℄ as the sub
orti
al inputs gEE, gEI, gEI, and gII,respe
tively. Here, we set g(t, x) = (ḡEE, ḡEI, ḡEI, ḡII) for all x and t, and 
he
k the assumptions ofTheorem 7.5 for a spa
e-homogeneous equilibrium of (3.3)�(3.5).Assumption (i) holds with ΛEE = ΛEE = 0.96545, as given in Table 2. Solving the equations

Pv(ve, ie) = 0, Pi(ve, ie) = J6we and we = MJ8f(ve), a spa
e-homogeneous equilibrium is 
al
ulatedas
ve = (1.9629, 6.5150), ie = (5.2552, 100.2372, 2.4493, 53.5665), we = (821.7136, 316.1760).49



Note that the numbers given here should a
tually be regarded as 
onstant fun
tions over Ω. As-sumption (ii) then holds by �nding a solution (v0, i0) 6= (ve, ie) for (7.2) as
v0 = (10.9417, 7.7148), i0 = (25.9005, 177.5837, 4.0757, 89.1352).Assumption (iii) also holds with the following nonsingular matrix-valued fun
tions

∂(v,i)P (ve, ie) =

















1.4294 0 −0.9680 0 1.2754 0
0 7.1635 0 −0.8740 0 1.5138

−199.2222 0 323.8625 0 0 0
−170.2472 0 0 73.8727 0 0

0 −440.3409 0 0 423.0237 0
0 −357.9898 0 0 0 15.7254

















,

∂(v,i)P (v0, i0) =

















1.9946 0 −0.8214 0 2.5352 0
0 11.4648 0 −0.8508 0 1.6085

−1858.395 0 323.8625 0 0 0
−1588.109 0 0 73.8727 0 0

0 −730.7260 0 0 423.0237 0
0 −594.0680 0 0 0 15.7254

















.To 
he
k Assumption (iv), note that for every b = (bv, bi) ∈ L∞
v × L∞

i , elementary algebrai
operations redu
e (7.3) to
φvE

= 0.6287φiEE + hvE
, φvI

= 0.0521φiEE + hvI
,(7.18)

φiEI
= 2.4834φiEE + hiEI

, φiIE = 0.0543φiEE + hiIE , φiII = 1.1870φiEE + hiII ,and the s
alar partial di�erential equation(7.19) (I − D)φiEE
= hiEE

, D := 0.6060(−3
2∆ + 0.965452I)−1,where h = (hv , hi) ∈ L∞

v × L∞
i is the result of the same algebrai
 operations on b. Now, note thatsin
e −∆ is a nonnegative operator in H2

per(Ω; R), it follows from the spe
tral theory of boundedlinear self-adjoint operators [15, Appx. D.6℄ that the spe
trum of the operator (I−D) : L2
per(Ω; R) →

L2
per(Ω; R) lies entirely above 1−0.6060×0.96545−2 = 0.3498 > 0. Therefore, the partial di�erentialequation (7.19) has a unique solution φiEE

∈ L2
per(Ω; R) for every hiEE

∈ L2
per(Ω; R) ⊃ L∞

per(Ω; R),and hen
e, it follows from (7.18) that (7.3) has a unique solution φ = (φv, φi) ∈ L∞
v ×L∞

i for every
b ∈ L∞

v × L∞
i .It remains to 
he
k (7.4). Using the spe
tral theory of bounded linear self-adjoint operators andCau
hy-S
hwarz inequality we 
an write

∥

∥φiEE

∥

∥

2

L2
per(Ω;R)

≤ 1
0.3498

(

(I − D)φiEE
, φiEE

)

L2
per(Ω;R) = 1

0.3498

(

hiEE
, φiEE

)

L2
per(Ω;R)

≤ 1
0.3498

∥

∥hiEE

∥

∥

L2
per(Ω;R)

∥

∥φiEE

∥

∥

L2
per(Ω;R)

.Therefore, there exists α1 = 1
0.3498 > 0 su
h that

∥

∥φiEE

∥

∥

L2
per(Ω;R)

≤ α1

∥

∥hiEE

∥

∥

L2
per(Ω;R)

.50



Now, using (7.19) and the Sobolev embedding theorems we 
an write, for some α2, α3 > 0,
∥

∥φiEE

∥

∥

L∞
per(Ω;R)

≤
∥

∥hiEE

∥

∥

L∞
per(Ω;R)

+
∥

∥DφiEE

∥

∥

L∞
per(Ω;R)

≤
∥

∥hiEE

∥

∥

L∞
per(Ω;R)

+ α2

∥

∥DφiEE

∥

∥

H2
per(Ω;R)

≤
∥

∥hiEE

∥

∥

L∞
per(Ω;R)

+ α3

∥

∥φiEE

∥

∥

L2
per(Ω;R)

≤
∥

∥hiEE

∥

∥

L∞
per(Ω;R)

+ α1α3

∥

∥hiEE

∥

∥

L2
per(Ω;R)

≤ (1 + α1α3|Ω| 12 )
∥

∥hiEE

∥

∥

L∞
per(Ω;R)

,whi
h, along with the algebrai
 equalities (7.18), implies (7.4). Hen
e, Assumption (iv) holds.It is now implied by Theorem 7.5 that the equilibrium sets of (3.3)�(3.5) are non
ompa
t in Usand Uw. Moreover, it follows immediately from the equilibrium equations (7.14) and the de�nitionof Pi given by (7.1) that, in general, all spa
e-homogeneous equilibria ie and we are positive and, inparti
ular, belong to DBio∩Ds. Therefore, by Remark 7.7, the semigroups {

Ss(t) : Ds → Ds

}

t∈[0,∞)asso
iated with the model with parameter values given by Table 2 do not possess a global attra
tor.It 
an be shown by similar 
al
ulations as above that the assumptions of Theorem 7.5 aresatis�ed by spa
e-homogeneous equilibria of the model for 3 other sets of parameter values out the
24 sets available in [5, Tables V and VI℄, namely, the sets given in [5, Tables V, 
ol. 2℄ and [5, TablesVI, 
ol. 10 and 
ol. 12℄. Moreover, it is likely that these assumptions or their possible alternativessuggested in Remark 7.6 would also hold for other sets of parameter values if we 
onsider equilibria
ue and inputs g that are not homogeneous over Ω. Che
king the assumptions of Theorem 7.5 inthis 
ase is, however, not very straightforward.8. Dis
ussion and Con
lusionIn this paper, we developed basi
 analyti
al results to establish a global attra
tor theory for themean �eld model of the ele
troen
ephalogram proposed by Liley et al., 2002. We showed theboundary-initial value problem asso
iated with the model is well-posed in the weak and strong sense,and established su�
ient 
onditions for the nonnegativity of the i(x, t) and w(x, t) 
omponents ofthe solution over the entire time horizon. Moreover, we proved existen
e of bounded absorbingsets for semigroups of weak and strong solutions, and dis
ussed 
hallenges towards proving theasymptoti
 
ompa
tness property for these semigroups. Finally, we showed that the equilibriumsets of the model are non
ompa
t for some physiologi
ally reasonable sets of parameter values whi
h,in parti
ular, implies nonexisten
e of a global attra
tor.The 
onditions developed in this paper for ensuring nonnegativity of the solution 
omponents
i(x, t) and w(x, t) over the entire in�nite time horizon 
an be useful in 
omputational analysis ofthe model. Without using su
h mathemati
al analysis, it is impossible to ensure that the solutions
omputed numeri
ally over a �nite time horizon are biophysi
ally plausible sin
e, evidently, non-negativity might o

ur for time intervals beyond the �nite time horizon of numeri
al 
omputations.This fa
t has been overlooked in most of the available 
omputational analysis of the model. However,in these 
omputational studies, the initial values are usually set equal to the numeri
ally 
omputedspa
e-homogenous equilibrium of the model, or equal to zero in the 
ase where no equilibrium isfound numeri
ally. In both 
ases, the preset initial values satisfy the su�
ient 
onditions developedin Se
tion 5 of this paper for biophysi
al plausibility of the solutions. It is perhaps an intra
tableproblem to spe
ify a set of biophysi
al initial values for a model of the EEG; however, analyzing amore diverse set of reasonable initial values satisfying the su�
ient 
onditions developed in Se
tion5 
an be bene�
ial in observing di�erent behaviors of the model.51



Existen
e of bounded absorbing sets is a desirable global property for a model of ele
tri
ala
tivity in the neo
ortex. As stated in Remark 6.4, the EEG model investigated in this paperpossesses this global property for its entire range of parameter values given in Table 1. Moreover, thisproperty holds independently of the parameters of the �ring rate fun
tions, number of intra
orti
aland 
orti
o
orti
al 
onne
tions, mean Nernst potentials, and membrane time 
onstants, as observedin Assumptions (i) and (ii) of Theorems 6.2 and 6.3.The la
k of spa
e dissipation terms in the ODE 
omponents (3.3) and (3.4) of the model is amajor sour
e of di�
ulty towards establishing a global attra
tor. Indeed, as implied by the proofof Theorem 7.5, the v(x, t) and i(x, t) 
omponents of the solution 
an evolve dis
ontinuously inspa
e despite 
ontinuous evolution of the w(x, t) 
omponent. Other than disrupting the asymptoti

ompa
tness property of the semigroups of solution operators, these spa
e irregularities 
an predi
tsharp transitions in the v(x, t) and i(x, t) 
omponents of the solution, whi
h 
an potentially beproblemati
 in numeri
al 
omputation of the model. A slight modi�
ation to the model wherein theunderlying neurophysiologi
al stru
ture of the model is maintained 
an be bene�
ial. Consideringa singularly perturbed version of (3.3) and (3.4) by in
luding additional di�usion terms ε∆ withsu�
iently small ε 
an be 
onsidered as a potential modi�
ation.A
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