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Abstract

We propose a way to perform analytic integration of the Van der Pol
unforced equation, in order to provide the Cartesian algebraic equation of
the integral curve representing the Van der Pol limiting cycle. The method
provides exact analytic solutions to the Van der Pol equation in the small
control parameter (ε) approximation. A plot comparison with the results
obtained with the numerical Runge-Kutta method is also examined. The
present approach exhibits the advantage of dealing with the only geometry of
the integral curve avoiding to involve kinematics, i.e., time dependence of the
co-ordinate variable during motion.

Keywords: Dynamical Systems methods Van der Pol limit cycle Location of integral
curves.

1 Introduction

The search for exact analytic solutions to the Van der Pol unforced oscillator and the
investigation on the related limit cycle solution (for an historical overview see, i.e.
[1]) was attempted by several authors starting from the original paper of Balthasar
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Van der Pol[6] until it was “shown that by a series of variable transformations the
Van der Pol oscillator can be exactly reduced to Abel’s equations of the second kind.
The absence of exact analytic solutions in terms of known (tabulated) functions of
the reduced equations leads to the conclusion that there are no exact solutions of
the Van der Pol oscillator in terms of known (tabulated) functions.”[3]

Therefore more and more attention was concentrated on numerical methods in
order to obtain affordable solutions (a comparison of the efficiency of different nu-
merical methods has been offered in[5]) and on approximated analytical ways based
either on linearization (see, e.g.[2]) or on perturbative approaches or on Adomian
decomposition.[4] Generally all those approaches are involved in studying the time
dependent solutions to the original second order evolutionary Van der Pol equation,
written in the equivalent form of a system of two first order o.d.e. Here we intend to
propose an alternative way to attack the analytical problem concentrating ourselves
on the Cartesian equation of the phase path solution to the non-evolutionary equa-
tion of integral curves arising eliminating the time parameter from the autonomous
evolutionary o.d.e. Our approach will provide exact analytical solutions to the inte-
gral curve equation, when the control parameter ε is small respect to unity (ε� 1).
We will be able to integrate solutions up to the third order of approximation, em-
ploying the symbolic manipulation package Xmaxima (see Appendix).

A graphical comparison with the numeric method by Runge-Kutta shows a very
high level of agreement even in correspondence to the upper limit value of the range
ε = 1.

2 The Van der Pol unforced oscillator

We consider the non-linear second order o.d.e. governing the unforced Van der Pol
oscillator:

ẍ− ε(1− x2)ẋ+ x = 0, (1)

where:

x ≡ x(t), (2)

is the unknown real function of time t ∈ R, differentiable at least twice on the time
real axis and ε is a (generally positive) constant real control parameter.

As usual we reduce the second order eq (1) to an equivalent system of two first
order equations:
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{
ẋ = y,
ẏ = ε(1− x2)y − x. (3)

The system (3), being autonomous, it may be replaced in non-singular points
(y 6= 0) by the equation of integral curves :

y′ = ε(1− x2)− x

y
⇐⇒ yy′ = ε(1− x2)y − x. (4)

The solutions to (4):

y ≡ y(x), (5)

characterize the Cartesian equations of the integral curves representing the solutions
to the system (3) in the phase plane xy, prime denoting the derivative respect to x.
One is unable to integrate (4) analytically for any value of ε. So in order to proceed
analytically, we are led to involve a power series expansion approximation respect
to the control parameter ε.

3 Power expansion respect to the parameter ε

In the present section we will look for analytic solutions to eq (4) which exhibit the
form of a series expansion into powers of the control parameter ε:

f(x) =
+∞∑
k=0

hk(x)εk. (6)

In the assumption that ε is enough less than unity (ε� 1) the powers εk decrease
as k increases and we may drop higher order contributions according to the desired
order of approximation n regardless of assumptions on the series convergence. So
we consider the Taylor polynomial:

f[n](x) = h0(x) + h1(x)ε+ h2(x)ε2 + · · ·+ hn(x)εn, (7)

which is to be introduced into the differential equation:

p(x, ε) ≡ f(x)
df(x)

dx
− ε(1− x2)f(x) + x = 0. (8)

Further we consider the Taylor expansion (polynomial) of p(x, ε) at order n, in
the neighborhood of ε = 0:
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p[n](x, ε) = p(x, 0) +
∂p

∂ε
(x, 0)ε+

1

2

∂2p

∂ε2
(x, 0)ε2 + · · ·+ 1

n!

∂np

∂εn
(x, 0)εn, (9)

which will be required to be zero. We will proceed stepwise searching for analytical
solutions at each stage of the expansion approximation, until we are able to proceed
analytically.

3.1 Order zero [ε0]

At order zero we have to consider simply:

f[0](x) = h0(x), (10)

which is to be introduced into:

p[0](x, ε) ≡ p(x, 0), (11)

leading to the equation of the integral curves of the unforced harmonic oscillator:

h[0](x)
dh[0](x)

dx
+ x = 0 ⇐⇒ d

dx

[
h[0](x)2 + x2

2

]
= 0, (12)

the solution to which provides the Cartesian equations of the two branches:

h
(±)
[0] (x) = ±

√
A2 − x2 =⇒ f

(±)
[0] (x) = ±

√
A2 − x2, (13)

of the circular integral curve of radius |A|, where A is constant depending on the
boundary conditions (see fig.1).

3.2 Order one (ε1)

At the first order of approximation we need to consider the linear function of ε:

f[1]((x) = h[0](x) + h[1](x)ε, (14)

where h[0](x) is now provided by the previous result (13-a). Then we have to test
the functions, related to two branches of the integral curve:

f
(±)
[1] ((x) = ±

√
A2 − x2 + h

(±)
[1] (x)ε, (15)
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Figure 1: Analytic solution of the integral curve at order n = 0 when |A| = 2

where the h
(±)
[1] (x) are to be determined imposing that the Taylor polynomial:

p[1](x, ε) = p(x, 0) +
∂p

∂ε
(x, 0)ε, (16)

is equal to zero when non-linear powers of ε are neglected. Since at order zero the
harmonic oscillator solution h

(±)
[0] , given by (13) implies that p(x, 0) becomes null, it

remains to impose that the coefficient of the linear term ε vanishes. Calculations
lead to the differential equation for the unknown coefficient h

(±)
[1] (x):

(A2 − x2)
dh

(±)
[1] (x)

dx
− xh(±)[1] (x) = (A2 − x2)(1− x2). (17)

The solution to which is given by:

h
(±)
[1] (x) =

1

8

[
A2(4− A2)√
A2 − x2

sin−1
( x
A

)
+ (xA2 − 2x3 + 4x)

]
+

C(±)
√
A2 − x2

, (18)

where C(±) are integration constants. Remarkably the previous result, when A2 = 4
and C(±) = 0, becomes simply:

h
(+)
[1] (x) ≡ h

(−)
[1] (x) = x− x3

4
. (19)
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Then we obtain the analytic solution at the first order approximation respect to
ε of the Van der Pol limit cycle (see fig.2):

f
(±)
[1] (x) = ±

√
4− x2 +

(
x− x3

4

)
ε. (20)

Figure 2: a) Analytic solution of the integral curve at order n = 1 for|A| = 2, ε = .5
b) Comparison of the 1st order analytic result with Runge-Kutta method

Moreover it happens that, at this law level of approximation, when |A| is near
2 some branches of the phase trajectories appear to approach the limit cycle (see
fig.3), even if they escape elsewhere, since a more accurate order of approximations
would be required for a true asymptotic behavior.

3.3 Order two (ε2)

At the second order of approximation we now consider the quadratic function of ε:

f[2](x) = h[0](x) + h[1](x)ε+ h[2](x)ε2, (21)

where h[0](x), h[1](x) are known being provided respectively by (13) and (18).
It follows that:

f
(±)
[2] (x) = ±

√
A2 − x2 +

1

8

[
A2(4− A2)√
A2 − x2

sin−1
( x
A

)
+

6



Figure 3: Analytic solutions of the integral curves at order n = 1 when A = |2|, ε = .5
(limit cycle) and branches of the phase trajectories in correspondence to |A| =
2.8, 2.4, 1.7365, C = .58,−1.3,−3 (from top to bottom)

(22)

+(xA2 − 2x3 + 4x) +
C(±)

√
A2 − x2

]
ε+ h

(±)
[2] (x)ε2,

where h[2](x) is to be determined requiring that the Taylor quadratic polynomial:

p[2](x, ε) = p(x, 0) +
∂p

∂ε
(x, 0)ε+

1

2

∂2p

∂ε2
(x, 0)ε2, (23)

becomes null when cubic powers of ε and of higher order are neglected. Substitution
of (22) into (23) leads to an extremely long and complicated o.d.e., i.e.:

x sin−1
(
x
A

)2
A8 +

√
A2 − x2

{
− 2x2 sin−1

(
x
A

)
A6 +

[
4x4 sin−1

(
x
A

)
+ 64

dh
(±)
2 (x)

dx

]
A4+

+
[(

32x2 − 16x4
)

sin−1
(

x
A

)
− 128x2

dh
(±)
2 (x)

dx
− 64xh

(±)
2 (x) + 16C(±)x2

]
A2+

+64x4
dh

(±)
2 (x)

dx
+ 64x3h

(±)
2 (x)− 32C(±)x4 + 64C(±)x2

}
+
[
x3 − 8x sin−1

(
x
A

)2]
A6+

+
[
16x sin−1

(
x
A

)2
− 16C(±)x sin−1

(
x
A

)
− 5x5 + 8x3

]
A4 +

[
64C(±)x sin−1

(
x
A

)
+

+8x7 − 24x5 + 16x3
]
A2 − 4x9 + 16x7 − 16x5 + 64[C(±)]2x = 0.

(24)
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Remarkably the latter equation becomes dramatically simpler in correspondence
to the parameter choices:

|A| = 2, C(±) = 0, (25)

which identifies the Van der Pol limit cycle, resulting simply:

dh
(±)
[2] (x)

dx
−
xh

(±)
[2] (x)

4− x2
+
x3

16

√
4− x2 = 0. (26)

Integration yields now to:

h
(±)
[2] (x) = ± x

6 − 6x4 + 32

96
√

4− x2
. (27)

Therefore we obtain the second order approximation for the Van der Pol limit
cycle equation (see fig.4):

f
(±)
[2] (x) = ±

√
4− x2 +

(
x− x3

4

)
ε± x6 − 6x4 + 32

96
√

4− x2
ε2. (28)

Figure 4: a) Analytic solution of the integral curve at order n = 2 for |A| = 2, ε = .5
b) Comparison of the 2nd order result with Runge-Kutta method

We point out that even in the upper limit value ε = 1 there is a fine agreement
between our analytic result and the Runge-Kutta numerical method (see fig.5).
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Figure 5: a) Analytic solution of the integral curve at order n = 2 for |A| = 2, ε = 1
b) Comparison of the 2nd order analytic result with Runge-Kutta method

3.4 Order three (ε3)

Proceeding further we examine now what happens at the third order of approxima-
tion.

We have:

f[3](x) = h[0](x) + h[1](x)ε+ h[2](x)ε2 + h[3](x)ε3, (29)

where h[0](x), h[1](x) are known from the previous results. We limit ourselves to ana-
lyze the solution corresponding to the Van der Pol limit cycle, which is characterized
by the parameter values |A| = 2, C(±) = 0. According to (28) we know have:

f
(±)
[3] (x) = ±

√
4− x2 +

(
x− x3

4

)
ε± x6 − 6x4 + 32

96
√

4− x2
ε2 + h[3](x)ε3. (30)

The unknown function h[3](x) will now be determined requiring that the cubic
Taylor polynomial:

p[3](x, ε) = p(x, 0) +
∂p

∂ε
(x, 0)ε+

1

2

∂2p

∂ε2
(x, 0)ε2 +

1

6

∂3p

∂ε3
(x, 0)ε3, (31)

vanishes in correspondence to the solution f
(±)
[3] (x), if the powers of ε4 and of higher

order are dropped.
Substitution of (30) into (31) yields:
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Figure 6: a) Analytic solution of the integral curve at order n = 3 for |A| = 2, ε = .5
b) Comparison of the 2nd order analytic result with Runge-Kutta method

Figure 7: a) Analytic solution of the integral curve at order n = 3 for |A| = 2, ε = 1
b) Comparison of the 2nd order analytic result with Runge-Kutta method
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(96x2 − 384)
dh

(±)
[3] (x)

dx
+ 96xh

(±)
[3] (x) + x8 − 9x6 + 24x4 − 16x2 = 0, (32)

the solution of which results to be:

h
(±)
[3] (x) =

sin−1 (x
2
)

48
√

4− x2
− 3x7 − 22x5 + 34x3 + 12x

2304
+

c(±)√
4− x2

. (33)

The third order approximation fo the Van der Pol cycle function is obtained
setting c(±) = 0 (see fig.6 and fig.7):

f
(±)
[3] = ±

√
4− x2 +

(
x− x3

4

)
ε± x6 − 6x4 + 32

96
√

4− x2
ε2 +

(34)

+

(
sin−1 (x

2
)

48
√

4− x2
− 3x7 − 22x5 + 34x3 + 12x

2304

)
ε3.

At higher orders the o.d.e. become to heavy to be solved analytically even
running a symbolic manipulator on a computing machine.

4 Conclusion

We presented an analytic approach to obtain solutions to the equation of integral
curves in terms of polynomials of powers of the control parameter ε. The advantage
of our method, in order to simplify the problem, is that of avoiding time depen-
dence of the unknown functions, pointing directly to the Cartesian equation of the
trajectories, being the system of the ordinary differential equations involved, au-
tonomous. We were able to obtain analytical solutions up to the third order of
approximation, which exhibit a good agreement with the numerical results provided
by the Runge-Kutta method.
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APPENDIX

Xmaxima List of commands

–> assume(A>0)$ assume(Aˆ2-xˆ2>0)$

–> h[1](x,A,c1):=(-asin(x/A)*Aˆ4+sqrt(A-x)*sqrt(A+x)*(x*Aˆ2-2*xˆ3+4*x)+
4*asin(x/A)*Aˆ2+8*c1)/(8*sqrt(A-x)*sqrt(A+x))$

–> f[2](x,A):=%epsilon*h[1](x,A,0)+%epsilonˆ2*h[2](x,A)$

–> h[0](x,A):=sqrt(Aˆ2-xˆ2)$ g[0](x,A):=h[0](x,A)$

–> pp[2](x,A):=f[2](x,A)+g[0](x,A)$ pm[2](x,A):=f[2](x,A)-g[0](x,A)$

–> qp[2](x,A):=pp[2](x,A)*di↵(pp[2](x,A),x)-%epsilon*(1-xˆ2)*pp[2](x,A)+x$
qm[2](x,A):=pm[2](x,A)*di↵(pm[2](x,A),x)-%epsilon*(1-xˆ2)*pm[2](x,A)+x$

–> Tp[2](x,A):=taylor(qp[2](x,A),%epsilon,0,2)$ Tm[2](x,A):=taylor(qm[2],%epsilon,0,2)$

–> Cp[2](x,A):=radcan(coe↵(Tp[2](x,A),%epsilon,2))$
Cm[2](x,A):=radcan(coe↵(Tm[2](x,A),%epsilon,2))$

–> radcan(ode2(Cp[2](x,A)=0,h[2](x,A),x));
A=2 (limit cycle Cartesian equation)

–> ratsimp(Cp[2](x,2));

–> radcan(ode2(Cp[2](x,2)=0,h[2](x,2),x));

–> radcan(integrate(sqrt(2-x)*sqrt(x-2)*(xˆ4+2*xˆ3),x));

–> ratsimp(Cp[2](x,-2));

–> h[2](x,A):=ratsimp(((%i*xˆ6-6*%i*xˆ4+32*%i)/6)/(%i*16*sqrt(4-xˆ2)))$

–> h[2](x,2);
Plot of the limit cycle

–> set plot option([’plot format, ’xmaxima])$

–> wxplot size:[800,600];
%epsilon=.5

–> %epsilon:.5;

–> results:rk(%epsilon*(1-xˆ2)-x/y,y,0.1,[x,-2.01,2.01,.05])$

–> wxplot2d([pp[2](x,2),pm[2](x,2)], [x,-3,3],[y,-3,3],[yx ratio,1],[axes,solid],[box,false],[legend,false],
[label,[”X”,3.1,0.0],[”Y”,.2,2.9]],[style,[lines,3]])$

–> wxplot2d([[discrete,-results],[discrete,results]], [x,-3,3],[y,-
3,3],[yx ratio,1],[axes,solid],[box,false],[legend,false], [la-
bel,[”X”,3.1,0.0],[”Y”,.2,3.9]],[point type,times],[style,[points,5]])$

–> wxplot2d([pp[2](x,2),pm[2](x,2),[discrete,-results],[discrete,results]],
[x,-3,3],[y,-3,3],[yx ratio,1],[axes,solid],[box,false],[legend,false],
[label,[”X”,3.1,0.0],[”Y”,.2,3.9]],[point type,times],
[style,[lines,3],[lines,3],[points,5],[points,5]])$

%epsilon=1

1
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–> %epsilon:1;

–> results:rk(%epsilon*(1-xˆ2)-x/y,y,0.1,[x,-2.01,2.01,.05])$

–> pp[2](x,2);

–> pm[2](x,2);

–> pm[2](x,A):=-sqrt(4-xˆ2)-(xˆ6-6*xˆ4+32)/(96*sqrt(4-xˆ2))+(8*x-2*xˆ3)/8;

–> wxplot2d([pp[2](x,2),pm[2](x,2)], [x,-3,3],[y,-3,3],[yx ratio,1],[axes,solid],[box,false],[legend,false],
[label,[”X”,3.1,0.0],[”Y”,.2,2.9]],[style,[lines,3]])$

–> wxplot2d([[discrete,-results],[discrete,results]], [x,-3,3],[y,-
3,3],[yx ratio,1],[axes,solid],[box,false],[legend,false], [la-
bel,[”X”,3.1,0.0],[”Y”,.2,3.9]],[point type,times],[style,[points,5]])$

–> wxplot2d([pp[2](x,2),pm[2](x,2),[discrete,-results],[discrete,results]],
[x,-3,3],[y,-3,3],[yx ratio,1],[axes,solid],[box,false],[legend,false],
[label,[”X”,3.1,0.0],[”Y”,.2,3.9]],[point type,times],
[style,[lines,3],[lines,3],[points,5],[points,5]])$

–>

2
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