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1. Introduction

The present article is devoted to the studies of the existehstationary solutions
of the following nonlocal integro-differential equation

% = —D(—=A)°u+ . K(x —y)g(u(y,t))dy+ f(z), 0<s< %, (1.1)
which is relevant to the cell population dynamics. The spaa@ablex here is
corresponding to the cell genotypez, t) denotes the cell density as a function
of their genotype and time. The right side of this equatioscdées the evolution
of cell density by means of the cell proliferation, mutasand cell influx. The
anomalous diffusion term in this context corresponds tatienge of genotype via
small random mutations, and the integral term describgg larutations. Function
g(u) denotes the rate of cell birth dependingwofdensity dependent proliferation),
and the kerneK (x — y) stands for the proportion of newly born cells changing their



genotype fromy to z. Let us assume here that it depends on the distance between
the genotypes. Finally, the last term in the right side oftlesignates the influx
or efflux of cells for different genotypes.

The operatof—A)® in equation (1.1) describes a particular case of the anoma-
lous diffusion actively studied in the context of differempplications in plasma
physics and turbulence [7], [19], surface diffusion [19]7], semiconductors [18]
and so on. Anomalous diffusion can be described as a randocess of particle
motion characterized by the probability density distribatof jump length. The
moments of this density distribution are finite in the casaeaimal diffusion, but
this is not the case for the anomalous diffusion. Asymptogibavior at infinity of
the probability density function determines the valuef the power of our nega-
tive Laplace operator (see [16]). The operaterh)® is defined by means of the
spectral calculus. In the present work we will consider tagecof0 < s < 1/2.

A similar problem in the case of the standard Laplacian indiffesion term was
considered recently in [31].
Let us setD = 1 and establish the existence of solutions of the equation

—(=A)*u+ . K(x—y)g(u(y))dy + f(x) =0, 0<s< % (1.2)
We will consider the case where the linear part of this operfails to satisfy the
Fredholm property. As a consequence, the conventionalodstbf nonlinear anal-
ysis may not be applicable. Let us use solvability condgiéor non Fredholm
operators along with the method of contraction mappings.

Consider the equation

—Au+V(x)u — au = f, (1.3)

whereu € £ = H*(RY) andf € FF = L*(R%), d € N, a is a constant and the
scalar potential functiot () is either zero identically or tends €oat infinity. For
a > 0, the essential spectrum of the operatior E — F which corresponds to the
left side of problem (1.3) contains the origin. As a consegeethis operator fails
to satisfy the Fredholm property. Its image is not closeddfo- 1 the dimension
of its kernel and the codimension of its image are not finitee present work is
devoted to the studies of certain properties of the opesatbthis kind. Note that
elliptic problems with non Fredholm operators were treaietiVely in recent years.
Approaches in weighted Sobolev and Holder spaces werdapaaetin [2], [3],
[4], [5], [6]. The non Fredholm Schrodinger type operataese studied with the
methods of the spectral and the scattering theory in [208], [f27]. The Laplace
operator with drift from the point of view of non Fredholm optors was treated
in [26] and linearized Cahn-Hilliard equations in [23] and9]. Nonlinear non
Fredholm elliptic problems were considered in [28] and [3@)portant applica-
tions to the theory of reaction-diffusion equations wereali@ped in [9], [10]. Non
Fredholm operators arise also when studying wave systethsawiinfinite number
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of localized traveling waves (see [1]). Particularly, whern= 0 the operatord

is Fredholm in some properly chosen weighted spaces (seg8]2]4], [5], [6]).
However, the case af # 0 is significantly different and the approach developed
in these articles cannot be applied. Front propagationl@nad with anomalous
diffusion were studied actively in recent years (see e.d], [22]).

We setK (z) = eK(z), wheree > 0 and suppose that the assumption below is
fulfilled.

Assumption 1. Consider0 < s < % Let f(z) : R? — R be nontrivial, such
that f(z) € LY(R?) N L*(R?) and (—A)'=*f(z) € L*(R?). Assume also that
K(x): R? - RandK(z) € L*(R?). Additionally,(—A)'=*K(z) € L*(R?), such

that

Q= |[(~A)K(x - 0.

)HLQ(RQ)

Let us choose the space dimensiba- 2, which is relevant to the solvability
conditions for the linear Poisson type equation (4.31)estab Lemma 6 below.
From the point of view of applications, the space dimenssnat limited tod =
2 since the space variable corresponds to the cell genotypadiuo the usual

. . . 1
physical space. @ = 1 our problem was treated in [34] with< s < 1 based
on the solvability relations for the analog of (4.31) in onmension. Ind = 3

our equation was studied in [32] f(alf < s < —. As distinct from the situations

ind = 1,2, in three dimensions we were able to use the Sobolev inggdatithe
fractional Laplacian (see Lemma 2.2 of [12], also [13]). frartechnical purposes,
we use the Sobolev spaces

H*(R?) = {u(z) : R* = R |u(z) € L*(R?), (-A)yue L*(R*)}, 0<s<1
equipped with the norm
e [ e /|G N e (1.4)
By means of the standard Sobolev embedding in two dimensigbkave
[ull Lo (m2) < cellull r2re), (1.5)

wherec, > 0 is the constant of the embedding. When the nonnegative gaeam
e = 0, we obtain the linear Poisson type equation (4.31). By gidfiLemma 6
below along with Assumption 1, equation (4.31) has a uniqgti®n

1
ug(z) € H*(R?), 0<s< X



such that no orthogonality conditions are required. By msezEri_emma 6, when
% < s < 1, a certain orthogonality condition (4.33) is required todiée to solve
problem (4.31) inf/?¢(R?). Using Assumption 1, since

~Au(z) = (~8)'f(z) € I(R?),

we obtain for the unique solution of linear equation (4.3Bttu(z) € H*(R?).
We seek the resulting solution of nonlinear problem (1.2) as

u(z) = up(z) + up(x). (1.6)

Apparently, we arrive at the perturbative equation

(-8 ) =¢ [ Klo = ngtunls) +u)dy. 0<s<g L)

R2

We designate a closed ball in the Sobolev space as
B, = {u(x) € H*R?) | |[ull 22y < p}, 0<p<1. (1.8)

Let us look for the solution of equation (1.7) as the fixed pahthe auxiliary
nonlinear problem

1

(=A)u(z) =¢ | Kz —y)gluoly) +vly))dy, 0<s<g  (1.9)
R2

in ball (1.8). For a given function(y) this is an equation with respectgz). The

left side of (1.9) involves the operator without Fredholropperty

(—A)* - H*(R?) — L*(R?).

Its essential spectrum fills the nonnegative semi-&xis-oc). Hence, this oper-
ator has no bounded inverse. The similar situation appdaradicles [28] and
[30] but as distinct from the present situation, the proldestudied there required
orthogonality relations. The fixed point technique was used24] to estimate
the perturbation to the standing solitary wave of the NadnSchrodinger (NLS)
equation when either the external potential or the nontitean in the NLS were
perturbed but the Schrodinger operator involved in thdinear problem there had
the Fredholm property (see Assumption 1 of [24], also [8]heexistence of
pulses for local and nonlocal reaction- diffusion equagtioras established via the
Leray-Schauder method in [11] using the operators whicksgesed the Fredholm
property as well. We define the interval on the real line

= [ = clluollm2me) — ce, celluollmzme) + c] (1.10)
along with the closed ball in the space@®f(I) functions, namely

Dy = {g(2) € Co(D) | llglleay < M}, M > 0. (1.11)
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Here the norm
l9lleany = llgllea + g llew + 19" lew, (1.12)

with || g]|c(r) := maz.cr|g(2)]. Let us make the following technical assumption on
the nonlinear part of problem (1.2).

Assumption 2. Let¢g(z) : R — R, such thatg(0) = 0 and¢’(0) = 0. We also
assume thag(z) € D), and it is not equal to zero identically on the interval

We explain why we impose conditigfi(0) = 0. Let us assume here that the
Fourier image of the kernél(x) is positive in the wholéR?, which is common
in many biological applications. 1§’(0) < 0, then the essential spectrum of the
corresponding operator is in the left-half plane. Such afpesatisfies the Fredholm
property, and conventional approaches of nonlinear aisadye applicable here. If
¢'(0) > 0, then the operator fails to satisfy the Fredholm propentyl the goal
of this article is to establish the existence of solutionsuch case where usual
methods are not applicable. The method developed in thik wan be used for
¢'(0) = 0 but not forg’(0) > 0. This is the reason we impose such condition on the
nonlinearity.

Let us introduce the operatdi,, such that. = 7,v, wherew is a solution of
problem (1.9). Our first main proposition is as follows.

Theorem 3. Let Assumptions 1 and 2 hold. Then problem (1.9) defines tipe ma
T, : B, — B,, which is a strict contraction for al0 < ¢ < ex for somes* > 0.

The unique fixed point,(x) of this mapI} is the only solution of equation (1.7) in
B,.
Evidently, the resulting solution of problem (1.2) given(y6) will be nontriv-
ial since the source terrfi(z) is nontrivial andg(0) = 0 by means of our assump-

tions. Let us make use of the following trivial statement.

Lemma 4. For R € (0, 4o00) consider the function

1 1
o(R) :=aR*™ + —  0<s<=, a>0.

R*s’ 2
. - 2 S
It achieves the minimal value ak* := ﬁ which is given by
« — 4S5
*\ (1 B 25)28_1 2s
QD(R ) - (28)25 «

Our second main proposition deals with the continuity of fixed point of
the map7, which existence was proved in Theorem 3 above with respettteto
nonlinear functiony.



Theorem 5. Letj = 1, 2, the assumptions of Theorem 3 hold, such tha{z)
is the unique fixed point of the mdp, : B, — B, which is a strict contraction for
all 0 < e < ¢ andd :=min(e}, e3). Thenforalld < ¢ < § the estimate

[tp1 — up2lm2re) < Cllgr = g2llcan) (1.13)
holds, where” > 0 is a constant.
We proceed to the proof of our first main statement.
2. The existence of the perturbed solution

Proof of Theorem 3We choose arbitrarily(x) € B, and denote the term involved
in the integral expression in the right side of equation)a<®

G(7) := g(uo(z) +v(z)).
We use the standard Fourier transform
1

o(p) = o ¢>( )e P da. (2.14)
m
Clearly, we have the estimate
1
16(p) [l L= g2y < %Hﬁﬁ(x)HLl(R?). (2.15)
Let us apply (2.14) to both sides of equation (1.9). Thisdgel
() = 527T/C(p)§(p)
[p[**
Therefore, for the norm we arrive at
IC G(p
L |‘p"4s . (2.16)

As distinct from articles [28] and [30] involving the stamda.aplacian in the
diffusion term, here we do not try to control the norm

K(p)
p|?s

Lo (R2)

Instead, we estimate the right side of (2.16) via the anatdmpond (2.15) applied
to functions/C andG with R > 0 as

i 21 2 i 2| A 2
47r2€2/ \lC(p)\ \G(p)\ dp—|—47r252/ |]C(p)| ‘G(p)| dp <
Ip|I<R

Ip|*s Ip|>R ||t N
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1 R2—4s 1
< KN we)d NG @ mey 57 + 5 G @) T2 - (2.17)
41 1—-2s R

Sincev(x) € B,, we obtain
Huo + 'UHLQ(RQ) < ||u0||H2(R2) + 1.
Sobolev embedding (1.5) gives us

‘UO + U‘ < Ce(Hu0||H2(R2) + 1)
uo+v
ldentity G(z) = / ¢'(2)dz with the intervall defined in (1.10) yields
0

|G(2)| < sup.erlg'(2)|[uo +v| < Mlug + v].
Therefore,

|G ()| 2r2) < Mlug + v|[r2mz) < M([[uol|mr2@e) + 1)
up+v Y
Evidently,G(x) :/ dy[/ g"(z)dz]. This implies
0 0
1 M
(G@)] < Ssup-erlg”(2)[uo +v* < Z-Juo + v/,

M M
|G ()21 @2) < 7““0 + 0| 2@z < 7(HU0’|H2(R2) +1)% (2.18)

Hence we arrive at the upper bound for the right side of (2a%7)

(luoll m2geey + 1)2R> 1 }

&I KN 2y M (Iluao | 2y + 1)2{ 167(1 — 29) e

whereR € (0, +o0). By virtue of Lemma 4, we arrive at the minimal value of the
expression above. Therefore,

2+4s M2
(1 —2s)(32ms)?

lullZe g2y < K7 g2y (luollrr2zey + 1) (2.19)

Evidently, due to (1.9) we have
~Bula) = (-8 [ Kl = )Gl
R2

By means of the analog of bound (2.15) applied to func@ioamlong with (2.18) we
obtain

M2
Al 7o) < GIE )@ < - (luolliees) +1)'Q% (2.20)
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Therefore, by virtue of the definition of the norm (1.4) with- 1 along with bounds
(2.19) and (2.20) we arrive at the estimate from abovefdjr2 ) as

1
1N ey (lwo | 2z + D72 Q2|2
L1(R2) (R?) i Q_ <)

e (ol sr2e) + 1)°M (1= 25)(3275) O

for all ¢ > 0 sufficiently small. Thereforey(x) € B, as well. If for somev(z) €
B, there exist two solutions, »(z) € B, of equation (1.9), their difference(x) :=
up(7) — us(x) € L*(R?) solves

(—A)*w = 0.

1 .
Because the operatorA)®, 0 < s < 3 considered on the wholg? does not have

nontrivial square integrable zero modeg;) = 0 a.e. onR?. Thus, equation (1.9)
defines a maff;, : B, — B, for all ¢ > 0 small enough.

Our goal is to establish that this map is a strict contractlaet us choose arbi-
trarily vy 2(x) € B,. The argument above gives us, := T,v, , € B, as well. By
means of (1.9) we arrive at

<ﬂmmmw:e/"Ku—ymwaw+wmwm% (2.21)

RQ

(=A)ug(z) =¢ [ Kz —y)g(uo(y) + v2(y))dy, (2.22)

RQ

0<s< % We define

Gi(z) == g(uo(z) +vi(x)), Ga(x) := g(uo(x) + v2())

and apply the standard Fourier transform (2.14) to bothssadeequations (2.21)
and (2.22). This yields

_ K(p)Gi(p)

_con K(p)Ga(p)
Op) =2,

, us(p) = e2m
») e

Clearly,

K (p)|2IG (p) — Ga(p) 2
R2 |p ‘48

dp.

lug — U2||2L2(R2) = e247?

Evidently, it can be estimated from above by virtue of indiyé2.15) by

1 R2—4s 1
2 2 2 2
€ HICHLl(R?){%HGl(x) = Go(0)|[ 1 ey 5 + 1G1(2) = Gz(af)lle(Ra)@},
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whereR € (0, +o00). We use the identity

uo+v1

G1(z) — Go(x) = / g'(2)dz.

ug+v2

Therefore,

Gi(x) = Ga(z)| < sup.er|g'(2)[|vi(x) — va(2)] < Mvi(z) — va(2)].
Hence,

HGl(l’) - G2(£)||L2(R2) S MH’Ul - U2HL2(R2) S MHUl - U2HH2(R2)'

dy[/oy g”(z)dz] :

We obtain the upper bound f6#, (x) — G(z) in the absolute value as

Evidently,

up+v1

Gala) - Galo) = |

up+v2

1

M
isung\g”(z)H(vl — 9)(2ug + v1 + v3)| < 7\(01 — 09)(2ug + v1 + v)|.

The Schwarz inequality yields the upper bound for the npé(z) — Go () || 1 (r2)
as
M
7”% — Vo[ 22y || 2u0 + v1 + V2| L2(m2) <
< Mljvr — va mr2(re) ([|uol| 2 g2) + 1) (2.23)
Therefore, we arrive at the estimate from above for the nprpz) — uz(z)||7- (R2)
given by

1
27

R2—4s 1
+ }

s oy M2 on — ol | SEPRE TR

Uo H2(R2)
(l[uol +1)°

Lemma 4 allows us to minimize the expression above éver (0, +o00) to obtain
the upper bound folfu: () — uz(2)||7 2 x2) S

(luoll 22y + 1)*
(1 —2s)(8ws)?s

KNI T ey M2 [[or — val| 5o ey (2.24)

Formulas (2.21) and (2.22) give us

(=A) (w1 —us)(w) = e(=A)"" | K(z —y)[Gi(y) — Ga2(y)ldy.

RQ

By means of inequalities (2.15) and (2.23) we arrive at
[A(ur = ug) |72(m2) < €2Q%|Gr — Gal| 71 ey <
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S €2Q2M2“’U1 — U2||§{2(R2)(Hu0||H2(R2) + 1)2 (225)

By virtue of (2.24) and (2.25) the noru; — us| y2r2) can be estimated from
above by the expressia/ (||uo|| g2 g2y + 1) X

{ VI gyl 2y + 1)

+ 2 — 2(R2) . 2.26
(1= 25)(5ms)" Q} ol 220

Therefore, our maff;, : B, — B, defined by equation (1.9) is a strict contraction
for all values ot > 0 small enough. Its unique fixed poimg(z) is the only solution
of problem (1.7) in the balB,. The resulting:(z) € H?*(R?) given by (1.6) is a
solution of equation (1.2). [ |

Then we proceed to the proof of the second main propositi@upérticle.
3. The continuity of the fixed point of the map7,
Proof of Theorem 5Evidently, for all0 < ¢ < 6 we have
Up1 = Ty tup1, Upo = TgUpo.

Hence
Up1 — Upo = Tgup1 — Ty upo+ Ty upo — Ty,upo.

Therefore,
Jup1 — upollre@ey < | Toups — Ty upallmzmey + (| Ty up2 — Tooupall m2re)-
By means of bound (2.26), we arrive at
| Tgytp1 — Tglup,2HH2(R2) <eo|up; — up,2||H2(R2).

Hereco < 1 because the map,, : B, — B, under our assumptions is a strict
contraction and the positive constant

1
K12 e (ol a2y + 1)~ QQ}?

0 = M(luoll ) + 1>{ (1= 25)(575)"

Hence, we obtain
(1= eo)|lups — upallmzme) < [ Tgup2 — Ty upall @) (3.27)

Note that for our fixed poinf’,u,» = u,» and denoté& (z) := T,,u, .. We arrive
at

(=AY ¢(x) =¢ | Kz —y)gi(uo(y) + upa2(y))dy, (3.28)

R2
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(=8 up(r) = [ Kz = y)g2(uoy) + upa2(y))dy, (3.29)

RQ

1
where( < s < 5" Let Gy 2(z) == g1(up(z) + up2(z)) andGaa(z) = g2(up(z) +

up2(x)). We apply the standard Fourier transform (2.14) to bothssadequations
(3.28) and (3.29). This yields

- K(p)Gislp)

§p) =e2n B 7%,2(29):6%M.

p[?
Evidently,

K()]2|Gra(p) — Goa(p)]?

R2 ‘p|4s

Hf(x) - up,Q(x)||%2(R2) = 62471'2 dp
Apparently, it can be bounded from above by means of (2.15) by

R2—4s

1 1
52’|K||%1(R2){E||G1,2 - G272||%1(R2)1_728 +Gr2 — G2,2||2L2(R2)@}>

with R € (0, +00). We use the identity

uo(z)+up,2() ) )
Gra(2) — Caal) = / 19,(2) — gh(2)]d=.
0
Thus
1Gra(2) — Ganl@)] < sup.erld, (=) — b()luo(@) + wpal)| <

< g1 — g2llcumluo(w) + upa(z)|.
Hence
1G12 — Gazllr2@2) < |lg1 — g2llca 1o + up2l|2@ey <

< lg1 — g2llcony ([luoll m2re) + 1)
Another useful representation formula would be

ug (z)+up,2(z) Yy . .
Grale) ~ Gaale) = | ay| [ (61:) - gh(aNaz].
0 0
Therefore,

1 1 1
(Gra(2) = Gap()| < Ssup-erlgi(2) = g5(2)l[uo () + wpa(w)|” <

< g1 — g2llean [uo(@) + upa(z) ).

N —
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Hence,

1
G2 — G2,2HL1(R2) < §||91 = 92llcanlluo + uPQH%Q(RQ) <
1 2
< sllgr = g2l ([luoll m2@e) + 1)°. (3.30)

This allows us to obtain the upper bound for the ndigtir) — w, 2(z) H%Q(RQ) as

R2—4s 1
1—2s  REl

1
KNz g2y (ol ey + 1) 91 = g2l1&,1) | 7= (llollzgez) +1)°

This expression can be trivially minimized ovBre (0, +o00) via Lemma 4. We
arrive at the estimate

9445 g1 — 92||202(1)
(1 —2s)(32ms)?s”

1€(2) = up2(2) |1 Z2@ey < KT @) ([0l 22y + 1)
Formulas (3.28) and (3.29) yield

—Al(z) = 5(_A)1_5 K(z — y)G12(y)dy,

RQ

—Aupa(r) =e(=A) | K(x —y)Gaa(y)dy.
]R2
Then by means of (2.15) and (3.30), the ndfth[¢(z) — up,(2)]|72 g2y can be
estimated from above by

62 Q2

e|Gr2 = Gopllfr(re)@° < 1

(luoll 2 @2y + 1)*lg1 — g2llZ, 1) -

Thus, [[§(2) = upa(2) || 2(@2) <

= — 1
||’CH%1 R2 (HUOHHQ(RQ) + 1)48—2 973
<e|g 92’|02(1)(||u0]|H2(R2) 1)2 (R?) |

(1 —2s)(327s)?s 4

By virtue of inequality (3.27), the normu, 1 — u, || y2r2) can be bounded from
above by

1
< H’C||2L1(R2)(||U0HH2(R2) + 1% 22
1)? “@ B
o ol +1) amer | o eleo,
which completes the proof of our theorem. m

4. Auxiliary results

12



Below we state the solvability conditions for the linear $3min type equation
with a square integrable right side

(—=A)Yu=f(x), z€R?’ 0<s<l. (4.31)

We designate the inner product as

(Fle) gl = [ f)ata)ds, (4.3

with a slight abuse of notations when the functions involve@.32) are not square
integrable, like for example the one present in orthogtyaondition (4.33) of
Lemma 6 below. Indeed, if(z) € L'(R?) andg(z) € L>*(R?), then the integral
in the right side of (4.32) makes sense. We have the followgobgnical statement,
which can be easily proved by applying the standard Fourgrstorm (2.14) to
both sides of equation (4.31) (see the part b) of the firstrdracmf [35] and for

s = % the part 2) of Lemma 3.1 of [33]).

Lemma 6. Let f(z) : R? — R and f(z) € L*(R?).
1) When0 < s < 5 and in additionf(z) € L'(R?), problem (4.31) has a
unique solution:(z) € H*(R?).

2) When; < s < 1 and additionally|z|f(z) € L*(R?), equation (4.31) admits
a unique solution:(z) € H*(R?) if and only if the orthogonality condition

(f(2),1)2mey =0 (4.33)
holds.
Note that for the lower values of the power of the negativeldeg operator

1 . . : . .
0<s< 3 under the conditions given above no orthogonality relatiare required
to solve the linear Poisson type problem (4.31Jiiff (R?).
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