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Abstract. We will discuss, as a classical example of dissipative map, the Hénon map
when the dissipation vanishes. Using a numerical continuation that we devised, and
called “dribbling method” [Falcolini & Tedeschini-Lalli (2013)], one can follow bifurcation
paths from the highly degenerate area-preserving case into the dissipative one, organizing
families of coexisting attractive periodic orbits with diverging period. The coexistence
of sinks is greater and greater approaching the conservative case. When the dissipation
parameter goes to zero, we will give numerical evidence of the coexistence of such periodic
orbits, in the coordinate and parameter space values . We discuss the dependence of the
stability range of periodic orbits with respect to the period. As the period p diverges, we
describe here the renormalization scheme we set up to study the families. The families
we study all appear as homoclinic bifurcation, and the fixed point causing the homoclinic
onset also structures the renormalization scheme. Using the same dribbling method, as
further promising application, we also deal with the dissipative Standard map.

1. Introduction

We will deal with the Hénon system of maps of the plane (x, y), depending on two param-
eters a and b:

T(a,b)(x, y) := (a− x2 − b y , x)(1)

for values of the constant Jacobian b in the quasi–conservative cases: orientation-preserving
b = 1 − ε, and orientation-reversing b = −1 + ε for very small values of ε. The “histori-
cal” Hénon model is orientation reversing, but physicists have found it important to deal
with orientation preserving. The two cases differ in various aspects regarding possible
bifurcations and their continuation [Hénon(1976)], [Holmes & Whitley, 1984].

A periodic orbit of period p solves T p(a,b)(x, y) := (xp, yp) = (x, y)), where T p(a,b)(x, y) :=

T(a,b)(T
p−1
(a,b)(x, y)) is the p-th iteration of T . The periodic orbit is therefore linearly attract-

ing if the eigenvalues of its final Jacobian matrix lie inside the unit circle. The Jacobian
matrix J is product of the Jacobian matrix along the orbit (xi, yi), i = 0, ..., p− 1:
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J =

p−1∏
i=0

(
−2xi −b

1 0

)
,

At a saddle-node node bifurcation an eigenvalue of J is exactly 1 whereas it is -1 for a
period-doubling bifurcation.

In our paper [Falcolini & Tedeschini-Lalli (2013)] we discuss the orientation reversing
case, the coexistence of an increasing number of periodic attractors moving closely to-
wards the singular case b = −1; the starting point was a method to “dribble” around the
singularities of the bifurcation curves at b = −1.

In [Falcolini & Tedeschini-Lalli (2016)] we presented results for the orientation–preserving
case b = 1 and discussed some global unexpected features of bifurcation curves in the [b, a]
parameter plane.

Our “dribbling method” in that cases allowed the study of bifurcation curves, and of
their singularity in the limit |b| → 1 (i.e. ε → 0). We detected entire families of periodic
orbits sharing a homoclinic geometry.

In this paper we describe the two quasi–conservative cases with further detailed data,
in order to discuss our renormalization algorithm with diverging period. As new results
we present in both cases (b = 1 and b = −1) orbits of much larger periods and show that,
in the orientation reversing case, the boundaries of their stability range accumulate in an
oscillatory fashion as p diverges.

2. The method for studying bifurcation curves from and into the
conservative case

Given an initial saddle periodic orbit of period p in the conservative cases, we know
that the saddle-node bifurcation curve is singular at |b| = 1 so we devised a method to
”dribble” this singularity. The crucial observation is that saddles are robust, so can always
be continued into the dissipative regime. Once in the dissipative regime, one can look for
the companion node, that necessarily exists (see [Falcolini & Tedeschini-Lalli (2013)] for
details and arguments).

At each b̄ where the p-orbit still exists, we detect the value of asn(b̄) at which the saddle-
node appears and the value of apd(b̄) for which the periodic orbit first double its period
(see Fig.1).

Such values lie on curves in space (b, a), which can then be evaluated with a continuation
method in the four variables (x, y, a, b) see for instance,[Kuznetsov,1999)].

Now all is set, to study the singularity of the curves asn(b), apd(b) as |b| → 1, which we
did in the previously cited papers.

We want to study families of orbits sharing a common geometry. So we initialize the
search of a family of periodic orbits with increasing period. We start with a saddle orbit
of short period p at one of the area preserving cases, |b| = 1. The advantage of starting
with a low period is that orbits and their spatial patterns are usually easier to detect (see
Fig.2).
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Figure 1. Dribbling a singularity and then approaching it. (1) Start from b = −1
at a chosen value of ā with a period-p saddle point. Follow the orbit in |b| < 1 up
to an arbitrary b̄ using a continuation method for (x, y, b, ā). (2) Follow the saddle
branch, moving downward in a, for (x, y, b̄, a) up to the value asn(b̄) marked with
(3). Follow the node branch, moving upward in a, for (x, y, b̄, a) up to the first
period-doubling value apd(b̄) marked with (4)

Figure 2. The conservative cases: example of an initial saddle periodic orbit for
b=±1. Left: for b = −1 and a = 0.244 the big dots represent a period 14 orbit.
Right: for b = 1 and a = −0.719 the big dots represent a period 7 orbit
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We then follow the method described above, to detect bifurcation curves depending
on p We follow the periodic orbit into |b| < 1 till a value of b = b̄ for which the orbit
still exists. We then find the precise a values, depending on b̄ and p, at which the orbit
appears (asn(b̄)) and at which it first double its period (apd(b̄)) (these values exist in this
case, as for [Yorke & Alligood, 1985]). We finally use a continuation method to follow
the stability range of the periodic orbit for |b| → 1. Each curve in fact also depends on
period p. Overlapping of stability ranges for different period p in [b, a] plane, signal areas
of parameters that allow coexistence of sinks.

Figure 3. Space displacements of the orbits for the case b = −1+10−6 for asn(p)
and apd(p) with p in the range [12,220]. The diamonds contain initial points of
saddle-node periodic orbits at their formation for a = asn(p) whereas the circles
contain initial points at their first doubling for a = apd(p). For period doubling
initial points at increasing values of p, the algorithm follows the blue circled branch
for low periods and the black large dots for larger periods.
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3. Large periods: a renormalization scheme in p.

The families of curves we study, regard sinks that arise via homoclinic bifurcations; all
sinks are therefore geometrically organized in families according to the homoclinic connec-
tion.

In Fig.3 we report the spatial configuration of a family of saddle–nodes. Note the space
displacement of the orbit for different values of asn(p) and apd(p) as a function of p.

We would like to follow such study in two different variables: both increasing the period
p, keeping b fixed, and also varying b keeping the period p fixed. At varying |b| → 1, one
can study the actual nature of the singularity of the bifurcation curves, attained at the
conservative case, as we did in [Falcolini & Tedeschini-Lalli (2016)].

Here we present detailed results on increasing p. We use the computed values of the
curves asn(b) and apd(b) as the starting point to increase the period, keeping b fixed. We
then change b and observe that the renormalization scheme sitll converges nicely. In this
section we report on the renormalization scheme in p .

The algorithm we used for a fixed b = b̄ is a Newton method in three variables (x, y, a, b̄)
which can be stated as requirements on the periodicity in the space variables (x, y) and an
extra requirement on the eigenvalue of its Jacobian matrix.
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Figure 4. Adjustments from linear prediction in renormalization scheme. For
period p initialize a Newton method with initial guess given by linear interpolation
of previous p − 1, p − 2 data. If Newton’s method seems not to converge, adjust
initial guess only in one variable, y and try again. This figure illustrates dependence
of the final error in the calculation of asn from adjusted guess.

We look for an eigenvalue of the Jacobian matrix along the orbit to be 1 in the period-
doubling case at apd and −1 for the saddle-node case at asn. As usual in Newton algorithms,
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the starting point is crucial for the convergence and has to be guessed in a very precise
way, especially in this case of high nonlinearity of iterated maps. The usual solution is
to take random initial conditions in a certain neighborhood but we prefer to search for a
renormalization approach which can predict a good guess at any step.

We start with three aligned (x, y) periodic points of orbit with consecutive periods and
make a linear guess on all variables (x(p), y(p), a(p)) for the next period p. The error on
the three conditions can vary a lot and we tried to adjust the search looking at a graph
(see Fig.4) of the error as a function of one of the three variables. The error function can
then be minimized by an automatic algorithm that takes advantage of its smoothness in a
suitable interval (see Fig.5).
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Figure 5. Same error function of Fig4 with period p = 90, b = −1 + 10−5. The
minimal error can be detected using an automatic algorithm in a suitable interval
where the error function is smooth. The interval horizontal size is 2 · 10−4.

In order to follow a Newton method for increasing periods is therefore very important
to fix the correct branch of the orbit families. For the first low period orbits, and for
symmetry reasons, the best choice is where the branch is straight, that is in the top left
part of Fig.3. For higher period orbit of the family the best choice is instead near the fixed
point. We have used a proper choice of branch to reach higher and higher periods. In fact
once the renormaliztion scheme start to apply, we are able to find periodic orbits of any
period with the only limitations of numerical accuracy. All calculations were done with
1000 digits precision. We got a good convergence of the algorithm for all the analyzed
cases (ε = 10−5, 10−6, 10−7, 10−8 ) for periods larger than 100 near b = 1 and for periods
larger than 50 near b = −1.

Some results are shown in Fig.6 (see also Fig.10 and Fig.11): the stability range of many
periodic orbits is plotted with the p-periodic saddle-node bifurcation value asn(p) and the
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Figure 6. Stability ranges in the a parameter for b = −1 + 10−5 and periodic
orbits of period p between 12 and 220. For a = .0769 there are a maximum of 16
coexisting attractors of period p between 30 and 60. Note, in the enlarged box, the
change of behavior for p > 136.

first period-doubling bifurcation value apd(p). Note that the values asn(p) and apd(p) seem
to decreases in p together with the corresponding stability range: in fact the stability range
decreases slowly for small values of p and faster for larger values of p allowing more and
more coexisting periodic attractors as |b| → 1. For b = −1 + 10−5 the maximum number
of coexisting periodic attractors is 16 and can be seen for instance at a = 0.0769 or values
of a in the interval (0.076827, 0.077001) and other 7 similar intervals which satisfy the
condition asn(k) < apd(k + 15). For b = −1 + 10−6 the maximum number of coexisting
periodic attractors is 27 and can be seen for a = 0.0549 or values of a in the interval
(0.0548598, 0.0549191) and other 2 similar intervals which satisfy the condition asn(k) <
apd(k + 26). For b = −1 + 10−7 the maximum number of coexisting periodic attractors
is 39 and can be seen for a = 0.0444 or values of a in the interval (0.0443212, 0.0444539)
and other 6 similar intervals which satisfy the condition asn(k) < apd(k + 38). For large
p the values of asn(p) and apd(p) reach a minimum and then seem to remain bounded
by a limiting value: for b = −1 + 10−5 this minimum value is obtained at p = 144, for
b = −1 + 10−6 at p = 188 and for b = −1 + 10−7 at p = 236. All calculations have 1000
digits of accuracy.

We show in Fig.7 coexistence of periodic attractors for certain values of a comparing the
cases of b = −1+10−5 and b = −1+10−6. In the neighborhood of the fixed point we select
a frame size which contains the outermost 15 attractive periodic orbits: for b = −1 + 10−5

such periods p are between 32 and 60 (see also Fig.6) and for b = −1 + 10−6 the periods p
are between 66 and 94 (see also Fig.10). Note that the horizontal side length of the images,
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which appear quite similar, in the two cases have different scale: periodic orbits of larger
periods lies on a smaller interval of (x, y) coordinates. In the example

4. Other quantities as period p→∞

4.1. Coexistence of sinks. In [Falcolini & Tedeschini-Lalli (2016)] we presented prelim-
inary results on the case b = 1 − ε and we present here the analogous results, in the
quasi-conservative case, of our first paper [Falcolini & Tedeschini-Lalli (2013)].

We have analyzed the coexistence of attractors, whose number increases for b = 1 − ε
as ε goes to zero, and the rate of convergence of their stability range for different values of
ε. As in Sec.3 we dealt with the cases b = 1− ε for ε = 10−5, 10−6, 10−7 and 10−8 and we
reached a value of p = 120 where the automatic Newton-method procedure applies.

4.2. Convergence regimes, changes as ε → 0. We show (see Fig.8 and compare with
the similar figure for b = −1 + ε in [Falcolini & Tedeschini-Lalli (2013)]) that the stability
range apd − asn has two different rate of changement varying p: for small values of p
it decreases slowly up to a certain threshold (which depends on ε) and then it reaches
a renormalization-like regime where the convergence becomes exponentially fast. This
behavior with two different regimes and the increasing number of coexisting attractors as
ε decreases can be analyzed looking at the changes of apd and asn separately for increasing
p: in Fig.9 it can be seen, for increasing value of ε, the increasing space between the curves
apd(p) and asn(p) and the different p thresholds at which the difference apd − asn becomes
negligible for a limiting value limp→+∞ apd(p) = limp→+∞ asn(p) = aε which depends on ε.

In Fig.8 we see also how the rate of convergence, with respect to the period p, of the
stability range apd−asn changes varying ε. The negative value of the slopemε in logarithmic
scale increases as ε decreases which means that the stability ranges of a given p-periodic
orbit becomes larger and larger approaching the conservative regime.

5. The dissipative Standard map

The dissipative Standard map (see for example [Schmidt & Wang (2013)]) on the cylin-
der, using the same notation of (1), can be written as:

T(a,b,ν)(x, y) := (a+ x+ ν sin x+ b y (mod 2π), a+ ν sin x+ b y)(2)

with x on a circle (mod 2π), constant Jacobian 0 < b ≤ 1 and the extra parameter ν
as the usual perturbation parameter of the conservative Standard Map.

For the unperturbed map ν = 0, and b = 1, the orbit with rotation number ω is invariant
for changes in b if the parameter a satisfy the relation y = ω = a

1−b and can be followed as
ν varies. For different values of ν and a given b there is an interval range of values of a at
which the invariant orbit is attractive.

The differences with Hénon map (1) are great: the twist condition on the Standard
map, the number of parameters; we show how to apply our method of calculations to the
stability range of a periodic orbit also in this case.
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A periodic orbit of rotation number ω = l/p (i.e. such that xp = x + l (mod 2π)) is
linearly stable if the eigenvalues γ1,2 of the matrix M

M =

p−1∏
i=0

(
1 + ν cosxi b
ν cosxi b

)
,

lie inside the unit circle. The condition on the stability range of a p-periodic orbit can
then be stated also in terms of the residue R defined as

(3) R =
1 + det(M)− tr(M)

2(1 + det(M))
=

1 + bp − tr(M)

2(1 + bp)

so that a sufficient condition for an orbit of period p to be stable is

(4) |γ1,2| < 1 ⇐⇒ 0 < R < 1.

In a seminal paper Greene proposed,in the conservative case, a method to detect the ν
threshold at which an invariant curve of irrational rotation number ω breaks down: if we
let lj/pj be the sequence of rational approximants of ω an ω-invariant circle exists if and
only if the residue R(lj/pj) is bounded.

In the paper [Falcolini & de la Llave (1992)], with Rafael de la Llave, a partial version
of the Greene’s method was proved. As an example of application of the method to
the dissipative Standard map see [Calleja & Celletti (2010)]; for a comparate study of the
conservative Hénon map, both in the orientation reversing and orientation preserving cases,
with the conservative Standard map on a torus see [Miguel et al. (2013)].

In a more recent paper [Calleja & al. (2014)] a partial justification of Greene’s criterion
for conformally symplectic systems, including the dissipative standard map, has been given.

We show some figure for periodic orbits of rotation number 3/5 and 8/13 and show how
their stability range depends on the parameters a, b and ν. More precisely we present in
Fig.12 the space coordinates of periodic orbits which are attractive for different values of
the parameter a (as in Fig.3) and in Fig.13 the curves asn(ν) and apd(ν) which gives the
stability range of the 8/13 periodic orbit as a function of ν. Such curves are evaluated using
our dribbling method, starting at b = 1, ν = 0 and fixing the coordinates (x, y) of one of
the points of a 13-periodic orbit of rotation number 8/13. We have looked for different
values of b and ν and the behavior of stability range of more periodic orbits approaching
the conservative case is in progress.

6. Conclusions

For the Hénon map with very small dissipation we have shown, numerical evidence of
coexisting attractive periodic orbits with diverging period that have shown to accumulate
approaching the conservative case. The approach is different from the perturbative ap-
proach also used in literature. We rather study the limit as the dissipation goes to zero.
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As a new result, in the quasi-conservative case, we illustrate the dependence on p of the
width of range of stability interval, of end points (asn(p) and apd(p) ) for periodic orbits of
increasing period p is not monotone. The length of this interval decreases until it reaches
a minimum, depending on b, and then it remains bounded seeming to reach an asymp-
tote from below. Moreover, it seems to be oscillating in the orientation-reversing case,
and eventually monotone in the area-preserving case. We illustrated the renormalization
scheme allowing a study for large p. Using the same algorithms we discuss, as an example
of applications, the stability range of periodic orbits in the dissipative Standard map.
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8. Appendix

Figure 7. Coexistence of periodic attractors (isolated points), all other points
are a unique orbit on the unstable manifold of the fixed point (rightmost big dot).
Left: for a = 0.0769 and b = −1 + 10−5 the horizontal side length is 2.1 · 10−1.
Right: for a = 0.0549 and b = −1 + 10−6 the horizontal side length is 4.6 · 10−2.
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p x y asn
xp

xp−1

yp
yp−1

ap
ap−1

12 -0.4446736408 0.4597202249 0.2512746710
14 -0.3681763754 0.3453287622 0.1919397498 0.8279698674 0.7511715680 0.7638642965
16 -0.2655588696 0.2940788855 0.1536385892 0.7212816664 0.8515910566 0.8004521699
18 -0.1825154895 0.2757119770 0.1282813066 0.6872882452 0.9375442804 0.8349549892
20 -0.1177028837 0.2751192136 0.1110820980 0.6448925734 0.9978500627 0.8659258389
22 -0.06776115069 0.2825656841 0.09914904099 0.5756966063 1.027066341 0.8925744360
24 -0.02936152052 0.2928153913 0.09069761229 0.4333090601 1.036273715 0.9147603585
26 0.0002411967946 0.3033264883 0.08460266177 -0.008214724250 1.035896668 0.9327992175
28 0.02316601016 0.3129895520 0.08013863254 96.04609465 1.031856973 0.9472353572
30 0.04100722744 0.3214097547 0.07682696335 1.770146311 1.026902504 0.9586757462
32 0.05495508983 0.3285298392 0.07434482451 1.340131808 1.022152671 0.9676918268
34 0.06589974700 0.3344402271 0.07246963941 1.199156388 1.017990414 0.9747771938
36 0.07451145457 0.3392862637 0.07104470729 1.130678917 1.014489993 0.9803375298
38 0.08129967732 0.3432245046 0.06995754264 1.091103077 1.011607428 0.9846974576
40 0.08665560833 0.3464032369 0.06912596741 1.065878872 1.009261379 0.9881131441
42 0.09088254823 0.3489547883 0.06848903032 1.048778607 1.007365842 0.9907858491
44 0.09421759672 0.3509934165 0.06800095540 1.036696248 1.005842098 0.9928736775
46 0.09684729910 0.3526157651 0.06762703208 1.027910947 1.004622163 0.9945012049
48 0.09891907374 0.3539024084 0.06734075520 1.021392178 1.003648854 0.9957668276
50 0.1005497298 0.3549197897 0.06712179354 1.016484749 1.002874751 0.9967484526
52 0.1018319239 0.3557222095 0.06695450969 1.012751841 1.002260848 0.9975077565
54 0.1028391582 0.3563537113 0.06682686399 1.009891144 1.001775267 0.9980935460
56 0.1036296920 0.3568497862 0.06672958567 1.007687090 1.001392085 0.9985443230
58 0.1042496494 0.3572388746 0.06665554203 1.005982430 1.001090342 0.9988903928
60 0.1047354902 0.3575436563 0.06659925095 1.004660359 1.000853160 0.9991554928
62 0.1051159936 0.3577821444 0.06655650571 1.003632994 1.000667018 0.9993581724
64 0.1054138396 0.3579685944 0.06652408239 1.002833498 1.000521127 0.9995128453
66 0.1056468793 0.3581142564 0.06649951490 1.002210712 1.000406913 0.9996306977
68 0.1058291430 0.3582279864 0.06648091878 1.001725216 1.000317580 0.9997203571
70 0.1059716488 0.3583167423 0.06646685693 1.001346565 1.000247764 0.9997884829
72 0.1060830382 0.3583859811 0.06645623402 1.001051125 1.000193234 0.9998401774
74 0.1061700863 0.3584399779 0.06644821707 1.000820565 1.000150667 0.9998793649
76 0.1062380982 0.3584820770 0.06644217251 1.000640594 1.000117451 0.9999090336
78 0.1062912288 0.3585148934 0.06643761980 1.000500109 1.000091543 0.9999314786
80 0.1063327276 0.3585404693 0.06643419400 1.000390425 1.000071338 0.9999484359
82 0.1063651378 0.3585603997 0.06643161907 1.000304799 1.000055588 0.9999612408
84 0.1063904464 0.3585759287 0.06642968556 1.000237941 1.000043309 0.9999708948
86 0.1064102083 0.3585880275 0.06642823555 1.000185749 1.000033741 0.9999781721
88 0.1064256372 0.3585974528 0.06642714921 1.000144994 1.000026284 0.9999836465
90 0.1064376827 0.3586047950 0.06642633657 1.000113183 1.000020475 0.9999877664
92 0.1064470856 0.3586105140 0.06642572928 1.000088342 1.000015948 0.9999908577
94 0.1064544257 0.3586149687 0.06642527629 1.000068955 1.000012422 0.9999931806
96 0.1064601546 0.3586184381 0.06642493873 1.000053815 1.000009675 0.9999949182
98 0.1064646262 0.3586211404 0.06642468779 1.000042003 1.000007535 0.9999962222
100 0.1064681158 0.3586232448 0.06642450139 1.000032777 1.000005868 0.9999971937
102 0.1064708394 0.3586248838 0.06642436338 1.000025581 1.000004570 0.9999979224
104 0.1064729645 0.3586261600 0.06642426123 1.000019959 1.000003559 0.9999984622
106 0.1064746230 0.3586271540 0.06642418600 1.000015577 1.000002772 0.9999988673
108 0.1064759169 0.3586279279 0.06642413053 1.000012151 1.000002158 0.9999991650
110 0.1064769267 0.3586285306 0.06642408995 1.000009484 1.000001681 0.9999993890
112 0.1064777143 0.3586289999 0.06642406016 1.000007396 1.000001308 0.9999995515
114 0.1064783290 0.3586293653 0.06642403856 1.000005774 1.000001019 0.9999996749
116 0.1064788083 0.3586296498 0.06642402278 1.000004501 1.000000793 0.9999997624
118 0.1064791825 0.3586298714 0.06642401148 1.000003514 1.000000618 0.9999998300
120 0.1064794741 0.3586300438 0.06642400326 1.000002738 1.000000481 0.9999998762
122 0.1064797019 0.3586301782 0.06642399749 1.000002139 1.000000375 0.9999999132
124 0.1064798792 0.3586302827 0.06642399329 1.000001665 1.000000291 0.9999999368
126 0.1064800179 0.3586303641 0.06642399045 1.000001302 1.000000227 0.9999999572
128 0.1064801257 0.3586304274 0.06642398837 1.000001012 1.000000176 0.9999999686
130 0.1064802101 0.3586304769 0.06642398705 1.000000793 1.000000138 0.9999999801
132 0.1064802756 0.3586305152 0.06642398605 1.000000615 1.000000107 0.9999999849
134 0.1064803270 0.3586305452 0.06642398549 1.000000483 1.000000084 0.9999999917

Table 1. b = −1 + 10−5. For each period p: (x, y) space coordinates of initial
point, asn value of saddle-node bifurcation. Ratio of these values with consecutive
periods.



FAMILIES OF PERIODIC SINKS: THE QUASI-CONSERVATIVE CASE 13

p xin yin first eigenvalue accuracy

42 -0.02471212033 -0.004353351966 0.999666+0.025007 i 980
44 0.003893968151 0.01400370243 0.998106+0.061164 i 981
46 0.03287883220 0.03630238615 0.996571+0.082467 i 981
48 0.06028145342 0.05973990689 0.994655+0.103021 i 980
50 0.08552343060 0.08300646446 0.992221+0.124292 i 980
52 0.1082722485 0.1051821971 0.989124+0.146904 i 979
54 0.1283734421 0.1256447760 0.985195+0.171279 i 979
56 0.1458237800 0.1440274072 0.980218+0.197778 i 979
58 0.1607392037 0.1601751773 0.973924+0.226748 i 979
60 0.1733182271 0.1740957680 0.965971+0.258534 i 979
62 0.1838069083 0.1859098749 0.955930+0.293489 i 979
64 0.1924697936 0.1958070451 0.943258+0.331965 i 978
66 0.1995685673 0.2040103236 0.927268+0.374309 i 978
68 0.2053481559 0.2107505750 0.907097+0.420841 i 978
70 0.2100289888 0.2162495981 0.881651+0.471827 i 978
72 0.2138038071 0.2207103044 0.849555+0.527432 i 978
74 0.2168375173 0.2243120570 0.809070+0.587650 i 979
76 0.2192688855 0.2272094757 0.758004+0.652192 i 979
78 0.2212131915 0.2295333706 0.693593+0.720313 i 979
80 0.2227652522 0.2313928385 0.612348+0.790538 i 979
82 0.2240024479 0.2328778729 0.509870+0.860204 i 978
84 0.2249875438 0.2340620792 0.380610+0.924690 i 977
86 0.2257712060 0.2350052607 0.217565+0.976002 i 977
88 0.2263941791 0.2357557547 0.011907+0.999885 i 976
90 0.2268891314 0.2363524720 -0.247504+0.968841 i 975
92 0.2272821942 0.2368266348 -0.574717+0.818296 i 975
94 0.2275942304 0.2372032327 -0.987457+0.157593 i 974
96 0.2278418727 0.2375022270 -0.379187 974
98 0.2280383657 0.2377395373 -0.244788 973

Table 2. For the coexisting attractive periodic orbits in Fig.7 for b = −1 + 10−6

and a = 0.0549 we list the period, the first 10 digits of the space coordinates of
initial point, the corresponding eigenvalue of the Jacobian matrix along their orbit
and the precision accuracy of the calculation. The first 27 orbits, with period from
42 to 94, are attractors with complex eigenvalues.
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Figure 8. Rate of convergence in p of the stability range apd − asn. Left: b =
−1 + ε with ε = 10−3, 10−4, 10−5, 10−6 and 10−7. Right: b = 1 − ε with ε =
10−5, 10−6, 10−7 and 10−8. The negative value of the slope mε in logarithmic scale
increases as ε decreases.

Figure 9. Values of apd(p) and asn(p). Left: b = −1 + ε with ε =
10−3, 10−4, 10−5, 10−6 and 10−7. Right: b = 1 − ε with ε = 10−5, 10−6, 10−7

and 10−8.



FAMILIES OF PERIODIC SINKS: THE QUASI-CONSERVATIVE CASE 15

0 12 30 42 94 120 150 180 210
p

0.0549

0.1

0.15

0.2

0.25

0.3

a

b = -1+10-6, p [12,238], nmax = 27

a = a* = 0.05157868

apd

asn

2�

178 206 236
p

5.32× 10
-9

5.34× 10
-9

5.36× 10
-9

5.38× 10
-9

5.40× 10
-9
a-a*

a = asn(178) = 0.05157868533...

apd(p)

stability

range

asn(p)

Figure 10. Stability ranges in the a parameter for b = −1 + 10−6 and periodic
orbits of period p between 12 and 238. For a = .0549 there are a maximum of 27
coexisting attractors of period p between 42 and 94. Note, in the enlarged box, the
change of behavior for p > 178.
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Figure 11. Stability ranges in the a parameter for b = −1 + 10−7 and periodic
orbits of period p between 12 and 268. For a = .0444 there are a maximum of 39
coexisting attractors of period p between 46 and 122. Note, in the enlarged box,
the change of behavior for p > 224.
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Figure 12. For b = 0.9 and ν = 0.5 an invariant attractor with an irrational
rotation number ω and the approximating periodic orbits 1/2, 2/3, 3/5, 5/8 which
are attractive for different values of a.
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Figure 13. Stability range in (a, ν), b = 0.5, for two periodic orbits with rotation
number ω = 3/5 and ω = 8/13. The border curves corresponds to the values of
asn(ν) and apd(ν). The middle curve corresponds, given b and ν, to values of a for
which the residue is maximum.


