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Abstract: The paper deals with the easily verifiable necessary condition of the
preservation of the nonnegativity of the solutions of a system of parabolic equa-
tions in the case of the anomalous diffusion with the Laplaceoperator in a frac-
tional power in one dimension. This necessary condition is vitally important for
the applied analysis society because it imposes the necessary form of the system of
equations that must be studied mathematically.
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1. Introduction

The solutions of many systems of convection-diffusion-reaction equations arising
in biology, physics or engineering describe such quantities as population densities,
pressure or concentrations of nutrients and chemicals. Thus, a natural property to
require for the solutions is the nonnegativity. Models thatdo not guarantee the non-
negativity are not valid or break down for small values of thesolution. In many
cases, showing that a particular model does not preserve thenonnegativity leads
to the better understanding of the model and its limitations. One of the first steps
in analyzing ecological or biological or bio-medical models mathematically is to
test whether solutions originating from the nonnegative initial data remain nonneg-
ative (as long as they exist). In other words, the model underconsideration ensures
that the nonnegative cone is positively invariant. We recall that if the solutions (of
a given evolution PDE) corresponding to the nonnegative initial data remain non-
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negative as long as they exist, we say that the system satisfies the nonnegativity
property.

For scalar equations the nonnegativity property is a directconsequence of the
maximum principle (see [2] and the references therein). However, for systems of
equations the maximum principle is not valid. In the particular case of monotone
systems the situation resembles the case of scalar equations, sufficient conditions
for preserving the nonnegative cone can be found in [2].

In this paper we aim to prove a simple and easily verifiable criterion, that is,
the necessary condition for the nonnegativity of solutionsof systems of nonlinear
convection-anomalous diffusion-reaction equations arising in the modelling of life
sciences. We believe that it could provide the modeler with atool, which is easy to
verify, to approach the question of positive invariance of the model.

The present article deals with the preservation of the nonnegativity of solutions
of the following system of reaction-diffusion equations

∂u

∂t
= −A(−∆x)

su+

m∑

l=1

Γl ∂u

∂xl

− F (u), (1.1)

whereA, Γl, 1 ≤ l ≤ m areN × N matrices with constant coefficients, which
is relevant to the cell population dynamics in MathematicalBiology. We call sys-
tem (1.1) as a(N,m) one. Note that the analogous model can be used to study
such branches of science as the Damage Mechanics, the temperature distribution
in Thermodynamics. In the present article the space variablex corresponds to the
cell genotype,uk(x, t) stands for the cell density distributions for various groups of
cells as functions of their genotype and time,

u(x, t) = (u1(x, t), u2(x, t), ..., uN(x, t))
T .

The operator(−∆x)
s in problem (1.1) describes a particular case of anomalous dif-

fusion actively treated in the context of different applications in plasma physics and
turbulence [4], [1], surface diffusion [5], [7], semiconductors [8] and so on. Anoma-
lous diffusion can be described as a random process of particle motion characterized
by the probability density distribution of jump length. Themoments of this density
distribution are finite in the case of normal diffusion, but this is not the case for
superdiffusion. Asymptotic behavior at infinity of the probability density function
determines the values of the power of the Laplacian [6]. The operator(−∆x)

s is
defined by virtue of the spectral calculus. For the simplicity of presentation we will
treat the case of the one spatial dimension with0 < s < 1/4. Front propagation
problems with anomalous diffusion were studied actively inrecent years (see e.g.
[9], [10]). The solvability of the single equation containing the Laplacian with
drift relevant to the fluid mechanics was treated in [11]. We assume here that (1.1)
contains the square matrices with the entries constant in space and time

(A)k,j := ak,j, (Γ)k,j := γk,j, 1 ≤ k, j ≤ N
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and that the matrixA+A∗ > 0 for the sake of the global well posedness of system
(1.1). HereA∗ stands for the adjoint of matrixA. Hence, problem (1.1) can be
rewritten in the form

∂uk

∂t
= −

N∑

j=1

ak,j

(
− ∂2

∂x2

)s

uj +
N∑

j=1

γk,j
∂uj

∂x
− Fk(u), 1 ≤ k ≤ N, (1.2)

with 0 < s <
1

4
. In the present work the interaction of species term

F (u) = (F1(u), F2(u), ..., FN(u))
T ,

which can be linear, nonlinear or in principle even nonlocal. We assume its smooth-
ness in the theorem below for the sake of the well posedness ofour system (1.1),
although, we are not focused on the well posedness issue in the present article. Let
us choose the space dimensiond = 1, which is related to the solvability conditions
for the linear Poisson type problem (4.14) stated in Lemma 2 below. From the per-
spective of applications, the space dimension is not restricted tod = 1 because the
space variable corresponds to cell genotype but not to the usual physical space. We
denote the inner product as

(f(x), g(x))L2(R) :=

∫ ∞

−∞

f(x)ḡ(x)dx, (1.3)

with a slight abuse of notations when the functions involvedin (1.3) are not square
integrable, like for example the one present in orthogonality relations (4.17) and
(4.18) of Lemma 2 below. Indeed, iff(x) ∈ L1(R) andg(x) is bounded , then
the integral in the right side of (1.3) makes sense. As for thevector functions, their
inner product is defined using their components as

(u, v)L2(R,RN ) :=

N∑

k=1

(uk, vk)L2(R). (1.4)

Clearly, (1.4) induces the norm

‖u‖2L2(R,RN ) =
N∑

k=1

‖uk‖2L2(R).

We use the Sobolev spaces

H2s(R) :=

{
u(x) : R → R | u(x) ∈ L2(R),

(
− d2

dx2

)s

u ∈ L2(R)

}
, 0 < s ≤ 1
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equipped with the norm

‖u‖2H2s(R) := ‖u‖2L2(R) +

∥∥∥∥∥

(
− d2

dx2

)s

u

∥∥∥∥∥

2

L2(R)

. (1.5)

By the nonnegativity of a vector function below we mean the nonnegativity of the
each of its components. Our main statement is as follows.

Theorem 1. LetF : RN → RN , such thatF ∈ C1, the initial condition for system
(1.1) isu(x, 0) = u0(x) ≥ 0 andu0(x) ∈ L2(R,RN). We also assume that the off
diagonal element of the matrixA, are nonnegative, such that

ak,l ≥ 0, 1 ≤ k, l ≤ N, k 6= l. (1.6)

Then the necessary condition for problem (1.1) to admit a solutionu(x, t) ≥ 0 for
all t ∈ [0,∞) is that the matricesA andΓ are diagonal and for all1 ≤ k ≤ N

Fk(u1(x), ..., uk−1(x), 0, uk+1(x), ..., uN(x)) ≤ 0 (1.7)

holds a.e., whereul(x) ≥ 0 andul(x) ∈ L2(R) with 1 ≤ l ≤ N, l 6= k.

Remark 1. In the case of the linear interaction of species, namely whenF (u) =
Lu, whereL is a matrix with elementsbi,j , 1 ≤ i, j ≤ N constant in space and time,
our necessary condition leads to the condition that the matrix L must be essentially
nonpositive, that isbi,j ≤ 0 for i 6= j, 1 ≤ i, j ≤ N .

Remark 2. Our proof implies that, the necessary condition for preserving the non-
negative cone is carried over from the ODE (the spatially homogeneous case, as
described by the ordinary differential equationu′(t) = −F (u)) to the case of the
anomalous diffusion and the convective drift term.

Remark 3. In the forthcoming papers we intend to consider the following cases:
a) the necessary and sufficient conditions of the present work,
b) the nonautonomous version of the present work,
c) the density-dependent diffusion matrix,
d) the effect of the delay term in the cases a), b) and c).

Let us proceed to the proof of our main result.

2. The preservation of the nonnegativity of the solution of the system of parabolic equations

Proof of Theorem 1.Let us note that the maximum principle actively used for the
studies of solutions of single parabolic equations does notapply to systems of such
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equations. We consider a time independent, square integrable vector functionv(x)
and estimate

(
∂u

∂t

∣∣∣∣∣
t=0

, v

)

L2(R,RN )

=

(
limt→0

u(x, t)− u0(x)

t
, v(x)

)

L2(R,RN )

.

By means of the continuity of the inner product, the right side of the identity above
equals to

limt→0

(u(x, t), v(x))L2(R,RN )

t
− limt→0

(u0(x), v(x))L2(R,RN )

t
. (2.8)

Let us choose the initial condition for our systemu0(x) ≥ 0 and the constant in
time vector functionv(x) ≥ 0 to be orthogonal to each other inL2(R,RN). This
can be achieved, for instance for

u0(x) = (ũ1(x), ..., ũk−1(x), 0, ũk+1(x), ..., ũN(x)), vj(x) = ṽ(x)δj,k, (2.9)

with 1 ≤ j ≤ N , whereδj,k is the Kronecker symbol and1 ≤ k ≤ N is fixed.
Therefore, the second term in (2.8) vanishes and (2.8) equals to

limt→0

∑N

k=1

∫∞

−∞
uk(x, t)vk(x)dx

t
≥ 0

due to the nonnegativity of all the componentsuk(x, t) andvk(x) involved in the
formula above. Thus, we arrive at

N∑

j=1

∫ ∞

−∞

∂uj

∂t

∣∣∣∣∣
t=0

vj(x)dx ≥ 0.

By virtue of (2.9), only thek th component of the vector functionv(x) is nontrivial.
This yields ∫ ∞

−∞

∂uk

∂t

∣∣∣∣∣
t=0

ṽ(x)dx ≥ 0.

Hence, via (1.2) we arrive at

∫ ∞

−∞

[
−

N∑

j=1, j 6=k

ak,j

(
− ∂2

∂x2

)s

ũj(x) +
N∑

j=1, j 6=k

γk,j
∂ũj

∂x
−

−Fk(ũ1(x), ..., ũk−1(x), 0, ũk+1(x), ..., ũN(x))

]
ṽ(x)dx ≥ 0.
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Since the nonnegative, square integrable functionṽ(x) can be chosen arbitrarily, we
obtain

−
N∑

j=1, j 6=k

ak,j

(
− ∂2

∂x2

)s

ũj(x) +
N∑

j=1, j 6=k

γk,j
∂ũj

∂x
−

−Fk(ũ1(x), ..., ũk−1(x), 0, ũk+1(x), ..., ũN(x)) ≥ 0 a.e. (2.10)

For the purpose of the scaling, let us replace all theũj(x) by ũj

(
x

ε

)
in the inequal-

ity above, whereε > 0 is a small parameter. This yields

−
N∑

j=1, j 6=k

ak,j
ε2s

(
− ∂2

∂y2

)s

ũj(y) +

N∑

j=1, j 6=k

γk,j
ε

∂ũj(y)

∂y
−

−Fk(ũ1(y), ..., ũk−1(y), 0, ũk+1(y), ..., ũN(y)) ≥ 0 a.e. (2.11)

Clearly, the second term in the left side of (2.11) is the leading one asε → 0. In
the case ofγk,j > 0 we can choose herẽuj(y) = e−y in a neighborhood of the
origin, smooth and decaying to zero at the infinities. Ifγk,j < 0, then we can pick
ũj(y) = ey around the origin and tending to zero at the infinities. Then the left side
of (2.11) can be made as negative as possible which will violate inequality (2.11).
Note that the last term in the left side of (2.11) will remain bounded. Therefore, for
the matrixΓ involved in problem (1.1), the off diagonal terms should vanish, such
that

γk,j = 0, 1 ≤ k, j ≤ N, k 6= j.

Therefore, from (2.11) we obtain

−
N∑

j=1, j 6=k

ak,j
ε2s

(
− ∂2

∂y2

)s

ũj(y)−

−Fk(ũ1(y), ..., ũk−1(y), 0, ũk+1(y), ..., ũN(y)) ≥ 0 a.e. (2.12)

Let us suppose that some of theak,j involved in the sum in the left side of (2.12) are
strictly positive. We choose here all theũj(y), 1 ≤ j ≤ N, j 6= k to be identical.
For the equation

−
(

− ∂2

∂x2

)s

ũj(x) = ṽj(x), 0 < s <
1

4
, (2.13)

we assume that its right side belongs toC∞
c (R). Clearly, ṽj(x) ∈ L1(R) ∩ L2(R)

as well. Then by means of the part 1 of Lemma 2 below, (2.13) admits a unique
solutionũj(x) ∈ H2s(R). Suppose the right side of (2.13) is nonnegative on the
whole real line. By virtue of Section 5.9 of [3] we have the explicit formula

ũj(x) = −cs

∫ ∞

−∞

|x− y|2s−1ṽj(y)dy,
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wherecs > 0 is a constant. Theñuj(x) is negative onR, which contradicts to our
original assumption. Therefore,ṽj(x) has the points of negativity on the real line.
By making the parameterε small enough, we can violate the inequality in (2.12).
Since the negativity of the off diagonal elements of the matrix A is ruled out due to
assumption (1.6), we arrive at

ak,j = 0, 1 ≤ k, j ≤ N, k 6= j.

Therefore, by means of (2.10) we obtain

Fk(ũ1(x), ..., ũk−1(x), 0, ũk+1(x), ..., ũN(x)) ≤ 0 a.e.,

whereũj(x) ≥ 0 andũj(x) ∈ L2(R) with 1 ≤ j ≤ N, j 6= k.

4. Auxiliary results

Below we state the solvability conditions for the linear Poisson type equation
with a square integrable right side

(
− d2

dx2

)s

u = f(x), x ∈ R, 0 < s < 1. (4.14)

We have the following technical proposition. It can be easily derived by applying
the standard Fourier transform

φ̂(p) :=
1√
2π

∫ ∞

−∞

φ(x)e−ipxdx. (4.15)

to both sides of problem (4.14) (see Lemma 1.6 of [13]). For the similar results in
three dimensions see Lemma 5 of [12]. We will use the obvious upper bound

‖φ̂(p)‖L∞(R) ≤
1√
2π

‖φ(x)‖L1(R). (4.16)

We will provide the proof below for the convenience of the readers.

Lemma 2. Letf(x) : R → R andf(x) ∈ L2(R).
1) When0 < s < 1

4
and in additionf(x) ∈ L1(R), equation (4.14) admits a

unique solutionu(x) ∈ H2s(R).

2) When1
4
≤ s < 3

4
and additionally|x|f(x) ∈ L1(R), problem (4.14) pos-

sesses a unique solutionu(x) ∈ H2s(R) if and only if the orthogonality relation

(f(x), 1)L2(R) = 0 (4.17)

holds.
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3) When3
4
≤ s < 1 and in additionx2f(x) ∈ L1(R), equation (4.14) has a

unique solutionu(x) ∈ H2s(R) if and only if orthogonality conditions (4.17) and

(f(x), x)L2(R) = 0 (4.18)

hold.

Proof. First, let us observe that by virtue of norm definition (1.5) along with the
square integrability of the right side of (4.14), it would besufficient to establish the
solvability of equation (4.14) inL2(R). Clearly, the solutionu(x) ∈ L2(R) will
belong toH2s(R), 0 < s < 1 as well.

We prove the uniqueness of solutions for problem (4.14). Ifu1,2(x) ∈ H2s(R)
both solve (4.14), then the differencew(x) := u1(x)− u2(x) ∈ L2(R) satisfies the
homogeneous equation (

− d2

dx2

)s

w = 0.

Because the operator

(
− d2

dx2

)s

on the real line does not possess nontrivial square

integrable zero modes,w(x) = 0 a.e. onR.
We apply (4.15) to both sides of problem (4.14). This yields

û(p) =
f̂(p)

|p|2sχ{p∈R | |p|≤1} +
f̂(p)

|p|2sχ{p∈R | |p|>1}, (4.19)

whereχA is the characteristic function of a setA ⊆ R. Evidently, for all0 < s < 1
the second term in the right side of (4.19) is square integrable by means of the bound

∫ ∞

−∞

|f̂(p)|2
|p|4s χ{p∈R | |p|>1}dp ≤ ‖f‖2L2(R) < ∞.

To establish the square integrability of the first term in theright side of (4.19) for
0 < s < 1

4
, we apply inequality (4.16), which yields

∫ ∞

−∞

|f̂(p)|2
|p|4s χ{p∈R | |p|≤1}dp ≤

‖f(x)‖2
L1(R)

π(1− 4s)
< ∞.

This completes the proof of part 1) of our lemma.
To prove the solvability of problem (4.14) when1

4
≤ s < 3

4
, we apply the

formula

f̂(p) = f̂(0) +

∫ p

0

df̂(s)

ds
ds.

This enables us to express the first term in the right side of (4.19) as

f̂(0)

|p|2s χ{p∈R | |p|≤1} +

∫ p

0
df̂(s)
ds

ds

|p|2s χ{p∈R | |p|≤1}. (4.20)
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By means of definition (4.15)
∣∣∣∣∣
df̂(p)

dp

∣∣∣∣∣ ≤
1√
2π

‖|x|f(x)‖L1(R) < ∞

via the one of our assumptions. Thus,
∣∣∣∣∣

∫ p

0
df̂(s)
ds

ds

|p|2s χ{p∈R | |p|≤1}

∣∣∣∣∣ ≤
1√
2π

‖|x|f(x)‖L1(R)|p|1−2sχ{p∈R | |p|≤1} ∈ L2(R).

The remaining term in (4.20)
f̂(0)

|p|2s χ{p∈R | |p|≤1} ∈ L2(R) if and only if f̂(0) = 0,

which gives us orthogonality relation (4.17) in case 2) of the lemma.

Finally, it remains to study the situation when
3

4
≤ s < 1. For that purpose, we

use the identity

f̂(p) = f̂(0) + p
df̂

dp
(0) +

∫ p

0

(∫ r

0

d2f̂(q)

dq2
dq
)
dr.

This allows us to express the first term in the right side of (4.19) as

[
f̂(0)

|p|2s +
pdf̂

dp
(0)

|p|2s +

∫ p

0

( ∫ r

0
d2f̂(q)
dq2

dq
)
dr

|p|2s

]
χ{p∈R | |p|≤1}. (4.21)

Definition (4.15) yields

∣∣∣d
2f̂(p)

dp2

∣∣∣ ≤ 1√
2π

‖x2f(x)‖L1(R) < ∞

as assumed. This enables us to estimate
∣∣∣∣∣

∫ p

0

( ∫ r

0
d2f̂(q)
dq2

dq
)
dr

|p|2s χ{p∈R | |p|≤1}

∣∣∣∣∣ ≤
1

2
√
2π

‖x2f(x)‖L1(R)|p|2−2sχ{p∈R | |p|≤1},

which is clearly square integrable. The sum of the first and the second terms in

(4.21) does not belong toL2(R) unless botĥf(0) and
df̂

dp
(0) are equal to zero. This

yields orthogonality relations (4.17) and (4.18) respectively.

Let us note that the left side of relations (4.17) and (4.18) is well defined under
the given conditions. For the lower values of the power of thenegative second

derivative operator0 < s <
1

4
under the assumptions stated above no orthogonality

relations are required to solve the linear Poisson type equation (4.14) inH2s(R).
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