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Abstract. The work deals with the existence of solutions of a certain
quadratic integral equation inH3(Rd), d = 4, 5. The theory of quadratic
integral equations has many significant applications in the mathematical
physics, economics, biology. It is important for describing the real world
problems. The proof of the existence of solutions is based on a fixed
point technique in the Sobolev space in dimensions four and five.

1. Introduction

The present article is devoted to the existence of solutions of the following
integral equation

(1.1) u(x) = u0(x) + [Tu(x)]

∫

Rd

K(x− y)g(u(y))dy, x ∈ R
d, d = 4, 5.

We generalize the results of the preceding works [16] and [17], in which
the solvability of the problem analogous to (1.1) was established in H1(R)
and H2(Rd), d = 2, 3 respectively. The exact conditions on the functions
u0(x), g(u), the linear operator T and the kernel K(x) will be specified
further down. The second term in the right side of (1.1) is a product of
Tu(x) and the integral operator applied to the function g(u). The sublinear
growth for it will be shown in the proof of Theorem 1.3. below. Hence, the
integral equation of this kind is called quadratic. The theory of the integral
equations has many significant applications in describing the various events
and problems of the real world. It is caused by the fact that this theory is
often applicable in different branches of mathematics and in mathematical
physics, economics, biology as well as for solving the real world problems.
The quadratic integral equations are used in the theories of the radiative
transfer, neutron transport, in the kinetic theory of gases, in the design of
the bandlimited signals for the binary communication with the simple mem-
oryless correlation detection, when the signals are disturbed by the additive
white Gaussian noise (see e.g. [1], [5], [11] and the references therein). The
work [1] deals with the solvability of a nonlinear quadratic integral equa-
tion in the Banach space of the real functions being defined and continuous
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on a bounded and closed interval via the fixed point technique. The arti-
cles [2] and [4] are devoted to the studies of the existence of solutions for
the quadratic integral equations on unbounded intervals. The solvability of
the quadratic integral inclusions was covered in [3]. In the work [10] the au-
thors consider the nondecreasing solutions of a quadratic integral equation of
Urysohn-Stieltjes type. The solvability of the quadratic integral equations in
Orlicz spaces was discussed in [7], [8], [9]. The integro-differential equations
containing either Fredholm or non-Fredholm operators appear in the math-
ematical biology when studying the systems with the nonlocal consumption
of resources and the intra-specific competition (see [12], [13], [18], [19] and
the references therein). The contraction argument was applied in [15] to
evaluate the perturbation to the standing solitary wave of the Nonlinear
Schrödinger (NLS) equation when either the external potential or the non-
linear term were perturbed. The similar ideas were exploited to show the
persistence of pulses for some reaction-diffusion type problems (see [6]). We
suppose that the conditions below are fulfilled. They are needed for deriving
the estimates on the solutions of our integral equations in the fixed point
argument.

Assumption 1.1. Let the kernel K(x) : Rd → R, d = 4, 5 be nontrivial,

such that K(x), (−∆)
3

2K(x) ∈ L1(Rd). The function u0(x) : R
d → R does

not vanish identically in R
d and u0(x) ∈ H3(Rd). Let us also suppose that

the linear operator T : H3(Rd) → H3(Rd) is bounded, such that its norm
0 < ‖T‖ < ∞.

It can be easily verified that for the identity operator T = I the conditions
above are satisfied. But we do not use this special choice of the operator T
in the argument. T can be any operator relevant to the applications, which
satisfies the assumptions given above. Let us define the technical quantity

(1.2) Q :=

√
‖K(x)‖2

L1(Rd)
+ ‖(−∆)

3

2K(x)‖2
L1(Rd)

.

Evidently, under the conditions above we have 0 < Q < ∞. We will use the
Sobolev space

(1.3) H3(Rd) :=
{
u(x) : Rd → R | u(x) ∈ L2(Rd), (−∆)

3

2u(x) ∈ L2(Rd)
}
,

where d = 4, 5. It is equipped with the norm

(1.4) ‖u‖2
H3(Rd) := ‖u‖2

L2(Rd) + ‖(−∆)
3

2u‖2
L2(Rd).

(−∆)
3

2 is defined via the spectral calculus. It is the pseudo-differential
operator with the symbol |p|3, such that

(−∆)
3

2u(x) =
1

(2π)
d
2

∫

Rd

|p|3û(p)eipxdp,
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where the standard Fourier transform is given by

(1.5) û(p) =
1

(2π)
d
2

∫

Rd

u(x)e−ipxdx.

Clearly, the upper bound

(1.6) ‖û(p)‖L∞(Rd) ≤
1

(2π)
d
2

‖u(x)‖L1(Rd)

holds. By means of the standard Sobolev embedding, we have

(1.7) ‖u(x)‖L∞(Rd) ≤ ce‖u(x)‖H3(Rd), d = 4, 5.

Here ce > 0 is the constant of the embedding. Let us recall the algebra
property for the Sobolev space. Hence, for any u(x), v(x) ∈ H3(Rd), d = 4, 5

(1.8) ‖u(x)v(x)‖H3(Rd) ≤ ca‖u(x)‖H3(Rd)‖v(x)‖H3(Rd),

where ca > 0 is a constant, so that u(x)v(x) ∈ H3(Rd) as well.
The Young’s inequality (see e.g. Section 4.2 of [14]) enables us to derive the
estimate from above on the norm of the convolution as

(1.9) ‖u ∗ v‖L2(Rd) ≤ ‖u‖L1(Rd)‖v‖L2(Rd).

Obviously, the upper bound

(1.10)
∥∥∥(−∆x)

3

2

∫

Rd

u(x− y)v(y)dy
∥∥∥
L2(Rd)

≤ ‖(−∆)
3

2u‖L1(Rd)‖v‖L2(Rd)

can be easily obtained similarly to (1.9) using the standard Fourier transform
(1.5) along with (1.6). Here and further down ∆x will stand for the Laplace
operator with respect to the x-variable.
We seek the resulting solution of nonlinear equation (1.1) as

(1.11) u(x) = u0(x) + up(x).

Evidently, we arrive at the perturbative problem

(1.12) up(x) = [T (u0(x) + up(x))]

∫

Rd

K(x− y)g(u0(y) + up(y))dy

with d = 4, 5. Let us introduce a closed ball in the Sobolev space

(1.13) Bρ := {u(x) ∈ H3(Rd) | ‖u‖H3(Rd) ≤ ρ}, 0 < ρ ≤ 1.

We look for the solution of equation (1.12) as the fixed point of the auxiliary
nonlinear problem

(1.14) u(x) = [T (u0(x) + v(x))]

∫

Rd

K(x− y)g(u0(y) + v(y))dy

in ball (1.13). Let us define the interval on the real line

(1.15) I := [−ce − ce‖u0‖H3(Rd), ce + ce‖u0‖H3(Rd)]

along with the closed ball in the space of C1(I) functions, so that

(1.16) DM := {g(z) ∈ C1(I) | ‖g‖C1(I) ≤ M}, M > 0.



4 V. VOUGALTER

In this context the norm

(1.17) ‖g‖C1(I) := ‖g‖C(I) + ‖g′‖C(I)

with ‖g‖C(I) := maxz∈I |g(z)|.

Assumption 1.2. Let g(z) : R → R, such that g(0) = 0. We also assume
that g(z) ∈ DM and it does not vanish identically on the interval I.

We introduce the operator tg, such that u = tgv, where u is a solution of
equation (1.14). Our first main result is as follows.

Theorem 1.3. Let Assumptions 1.1 and 1.2 hold and

(1.18) ca‖T‖(‖u0‖H3(Rd) + 1)2QM ≤
ρ

2
.

Then for every ρ ∈ (0, 1] equation (1.14) defines the map tg : Bρ → Bρ,
which is a strict contraction. The unique fixed point up(x) of this map tg is
the only solution of problem (1.12) in Bρ.

Clearly, the resulting solution of equation (1.1) given by (1.11) will not
vanish identically in R

d, d = 4, 5, because g(0) = 0, the operator T is linear
and the function u0(x) is nontrivial in the whole space as assumed.

We will use the technical quantity

(1.19) σ := 2ca(‖u0‖H3(Rd) + 1)‖T‖MQ > 0.

Our second major statement is about the continuity of the resulting solution
of problem (1.1) given by (1.11) with respect to the function g.

Theorem 1.4. Let j = 1, 2, the assumptions of Theorem 1.3 are valid,
such that up,j(x) is the unique fixed point of the map tgj : Bρ → Bρ, which
is a strict contraction since the upper bound (1.18) holds and the cumulative
solution of equation (1.1) with g(z) = gj(z) is given by

(1.20) uj(x) = u0(x) + up,j(x).

Then the inequality

(1.21) ‖u1(x)− u2(x)‖H3(Rd) ≤

≤
σ

2M(1 − σ)
(‖u0‖H3(Rd) + 1)‖g1(z)− g2(z)‖C1(I)

is valid.

Let us proceed to the proof of our first main proposition.
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2. The existence of the perturbed solution

Proof of Theorem 1.3. We choose arbitrarily v(x) ∈ Bρ. By virtue of (1.14)
along with (1.8), we obtain the upper bound

‖u‖H3(Rd) ≤

(2.1) ≤ ca‖T (u0(x)+ v(x))‖H3(Rd)

∥∥∥
∫

Rd

K(x− y)g(u0(y)+ v(y))dy
∥∥∥
H3(Rd)

.

Let us derive the estimate from above on the right side of (2.1). Obviously,

(2.2) ‖T (u0(x) + v(x))‖H3(Rd) ≤ ‖T‖(‖u0(x)‖H3(Rd) + 1).

By means of inequality (1.9), we have

(2.3)
∥∥∥
∫

Rd

K(x− y)g(u0(y) + v(y))dy
∥∥∥
L2(Rd)

≤

≤ ‖K‖L1(Rd)‖g(u0(x) + v(x))‖L2(Rd).

Similarly, (1.10) yields
∥∥∥(−∆x)

3

2

∫

Rd

K(x− y)g(u0(y) + v(y))dy
∥∥∥
L2(Rd)

≤

(2.4) ≤ ‖(−∆)
3

2K‖L1(Rd)‖g(u0(x) + v(x))‖L2(Rd).

By virtue of bounds (2.3) and (2.4),
∥∥∥
∫

Rd

K(x− y)g(u0(y) + v(y))dy
∥∥∥
H3(Rd)

≤

(2.5) ≤ Q‖g(u0(x) + v(x))‖L2(Rd).

Let us express

(2.6) g(u0(x) + v(x)) =

∫ u0(x)+v(x)

0
g′(z)dz.

For v(x) ∈ Bρ by means of (1.7) we easily arrive at

(2.7) |u0 + v| ≤ ce(‖u0‖H3(Rd) + 1).

Hence,

(2.8) |g(u0(x) + v(x))| ≤ maxz∈I |g
′(z)||u0(x) + v(x)| ≤ M |u0(x) + v(x)|,

where the interval I defined in (1.15). Therefore,

(2.9) ‖g(u0(x) + v(x))‖L2(Rd) ≤ M(‖u0‖H3(Rd) + 1).

Thus, we obtain

(2.10) ‖u(x)‖H3(Rd) ≤ ca‖T‖(‖u0‖H3(Rd) + 1)2QM.

By virtue of (1.18), we have ‖u(x)‖H3(Rd) ≤ ρ. This means that the function

u(x), which is uniquely determined by (1.14) belongs to Bρ as well, such that
under the given conditions problem (1.14) defines a map tg : Bρ → Bρ.
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It remains to establish that under the stated assumptions this map is a
strict contraction. Let us choose arbitrarily v1,2(x) ∈ Bρ. By means of the
argument above, u1,2 := tgv1,2 ∈ Bρ. By virtue of (1.14),

(2.11) u1(x) = [T (u0(x) + v1(x))]

∫

Rd

K(x− y)g(u0(y) + v1(y))dy,

(2.12) u2(x) = [T (u0(x) + v2(x))]

∫

Rd

K(x− y)g(u0(y) + v2(y))dy.

From system (2.11), (2.12) we easily deduce that

(2.13) u1(x)−u2(x) = [Tv1(x)−Tv2(x)]

∫

Rd

K(x− y)g(u0(y)+ v1(y))dy+

+[T (u0(x) + v2(x))]

∫

Rd

K(x− y)[g(u0(y) + v1(y))− g(u0(y) + v2(y))]dy.

By means of (2.13) along with (1.8),

‖u1(x)− u2(x)‖H3(Rd) ≤ ca‖Tv1(x)− Tv2(x)‖H3(Rd)×

×
∥∥∥
∫

Rd

K(x− y)g(u0(y) + v1(y))dy
∥∥∥
H3(Rd)

+ ca‖T (u0(x) + v2(x))‖H3(Rd)×

(2.14) ×
∥∥∥
∫

Rd

K(x− y)[g(u0(y) + v1(y))− g(u0(y) + v2(y))]dy
∥∥∥
H3(Rd)

.

Let us obtain the upper bound on the right side of (2.14). Evidently,

(2.15) ‖Tv1(x)− Tv2(x)‖H3(Rd) ≤ ‖T‖‖v1(x)− v2(x)‖H3(Rd).

Inequality (1.9) gives us
∥∥∥
∫

Rd

K(x− y)g(u0(y) + v1(y))dy
∥∥∥
L2(Rd)

≤

(2.16) ≤ ‖K‖L1(Rd)‖g(u0(x) + v1(x))‖L2(Rd).

We use (1.10) to derive
∥∥∥(−∆x)

3

2

∫

Rd

K(x− y)g(u0(y) + v1(y))dy
∥∥∥
L2(Rd)

≤

(2.17) ≤ ‖(−∆)
3

2K‖L1(Rd)‖g(u0(x) + v1(x))‖L2(Rd).

By virtue of the estimates from above (2.16) and (2.17),
∥∥∥
∫

Rd

K(x− y)g(u0(y) + v1(y))dy
∥∥∥
H3(Rd)

≤

(2.18) ≤ Q‖g(u0(x) + v1(x))‖L2(Rd).

Clearly,

(2.19) g(u0(x) + v1(x)) =

∫ u0(x)+v1(x)

0
g′(z)dz.
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From (2.19) we easily obtain that

(2.20) |g(u0(x)+v1(x))| ≤ maxz∈I |g
′(z)||u0(x)+v1(x)| ≤ M |u0(x)+v1(x)|.

Then

(2.21) ‖g(u0(x) + v1(x))‖L2(Rd) ≤ M(‖u0‖H3(Rd) + 1).

Thus, the first term in the right side of (2.14) can be bounded from above
by

(2.22) ca‖T‖‖v1(x)− v2(x)‖H3(Rd)QM(‖u0‖H3(Rd) + 1).

Therefore, it remains to derive the estimate from above on the second term
in the right side of inequality (2.14). Obviously,

(2.23) ‖T (u0(x) + v2(x))‖H3(Rd) ≤ ‖T‖(‖u0‖H3(Rd) + 1).

By means of (1.9),
∥∥∥
∫

Rd

K(x− y)[g(u0(y) + v1(y))− g(u0(y) + v2(y))]dy
∥∥∥
L2(Rd)

≤

(2.24) ≤ ‖K‖L1(Rd)‖g(u0(x) + v1(x))− g(u0(x) + v2(x))‖L2(Rd).

Upper bound (1.10) gives us
∥∥∥(−∆x)

3

2

∫

Rd

K(x− y)[g(u0(y) + v1(y))− g(u0(y) + v2(y))]dy
∥∥∥
L2(Rd)

≤

(2.25) ≤ ‖(−∆)
3

2K‖L1(Rd)‖g(u0(x) + v1(x))− g(u0(x) + v2(x))‖L2(Rd).

By virtue of (2.24) and (2.25),
∥∥∥
∫

Rd

K(x− y)[g(u0(y) + v1(y))− g(u0(y) + v2(y))]dy
∥∥∥
H3(Rd)

≤

(2.26) ≤ Q‖g(u0(x) + v1(x))− g(u0(x) + v2(x))‖L2(Rd).

Let us write

(2.27) g(u0(x) + v1(x))− g(u0(x) + v2(x)) =

∫ u0(x)+v1(x)

u0(x)+v2(x)
g′(z)dz.

By means of (2.27), we have

|g(u0(x) + v1(x))− g(u0(x) + v2(x))| ≤ maxz∈I |g
′(z)||v1(x)− v2(x)| ≤

(2.28) ≤ M |v1(x)− v2(x)|.

Formula (2.28) yields that

(2.29) ‖g(u0(x)+v1(x))−g(u0(x)+v2(x))‖L2(Rd) ≤ M‖v1(x)−v2(x)‖H3(Rd).

Thus, the second term in the right side of bound (2.14) can be estimated
from above by expression (2.22) as well. Therefore,

‖u1(x)− u2(x)‖H3(Rd) ≤
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(2.30) ≤ 2ca(‖u0‖H3(Rd) + 1)‖T‖MQ‖v1(x)− v2(x)‖H3(Rd).

By virtue of (2.30) along with definition (1.19), we derive that

(2.31) ‖tgv1(x)− tgv2(x)‖H3(Rd) ≤ σ‖v1(x)− v2(x)‖H3(Rd).

It can be easily verified using (1.18) that for the constant in the right side
of (2.31), we have

(2.32) σ < 1.

This implies that the map tg : Bρ → Bρ defined by (1.14) is a strict con-
traction under the given conditions. Its unique fixed point up(x) is the only
solution of equation (1.12) in the ball Bρ. The resulting u(x) given by (1.11)
solves problem (1.1). �

Let us conclude the article by establishing the validity of the second main
statement.

3. The continuity of the resulting solution with respect to

the function g

Proof of Theorem 1.4. Obviously, under the stated assumptions, we have

(3.1) up,1 = tg1up,1, up,2 = tg2up,2.

Thus,

(3.2) up,1 − up,2 = tg1up,1 − tg1up,2 + tg1up,2 − tg2up,2,

such that

‖up,1 − up,2‖H3(Rd) ≤

(3.3) ≤ ‖tg1up,1 − tg1up,2‖H3(Rd) + ‖tg1up,2 − tg2up,2‖H3(Rd).

By means of (2.31), we have the upper bound

(3.4) ‖tg1up,1 − tg1up,2‖H3(Rd) ≤ σ‖up,1 − up,2‖H3(Rd),

where σ is defined in (1.19) and (2.32) holds. Hence, we obtain

(3.5) (1− σ)‖up,1 − up,2‖H3(Rd) ≤ ‖tg1up,2 − tg2up,2‖H3(Rd).

Evidently, for our fixed point tg2up,2 = up,2. Let us introduce η(x) := tg1up,2.
Therefore,

(3.6) η(x) = [T (u0(x) + up,2(x))]

∫

Rd

K(x− y)g1(u0(y) + up,2(y))dy,

(3.7) up,2(x) = [T (u0(x) + up,2(x))]

∫

Rd

K(x− y)g2(u0(y) + up,2(y))dy.

By virtue of system (3.6), (3.7),

η(x)− up,2(x) = [T (u0(x) + up,2(x))]×
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(3.8) ×

∫

Rd

K(x− y)[g1(u0(y) + up,2(y))− g2(u0(y) + up,2(y))]dy.

Let us recall (1.8). Thus,

‖η(x)− up,2(x)‖H3(Rd) ≤ ca‖T (u0(x) + up,2(x))‖H3(Rd)×

(3.9) ×
∥∥∥
∫

Rd

K(x− y)[g1(u0(y) + up,2(y))− g2(u0(y) + up,2(y))]dy
∥∥∥
H3(Rd)

.

Clearly, the estimate from above

(3.10) ‖T (u0(x) + up,2(x))‖H3(Rd) ≤ ‖T‖(‖u0‖H3(Rd) + 1)

is valid. By means of (1.9), we have
∥∥∥
∫

Rd

K(x− y)[g1(u0(y) + up,2(y))− g2(u0(y) + up,2(y))]dy
∥∥∥
L2(Rd)

≤

(3.11) ≤ ‖K‖L1(Rd)‖g1(u0(x) + up,2(x))− g2(u0(x) + up,2(x))‖L2(Rd).

Similarly, inequality (1.10) implies that
∥∥∥(−∆x)

3

2

∫

Rd

K(x− y)[g1(u0(y) + up,2(y))− g2(u0(y) + up,2(y))]dy
∥∥∥
L2(Rd)

≤

(3.12) ≤ ‖(−∆)
3

2K‖L1(Rd)‖g1(u0(x)+up,2(x))−g2(u0(x)+up,2(x))‖L2(Rd).

Let us use upper bounds (3.11) and (3.12) to derive
∥∥∥
∫

Rd

K(x− y)[g1(u0(y) + up,2(y))− g2(u0(y) + up,2(y))]dy
∥∥∥
H3(Rd)

≤

(3.13) ≤ Q‖g1(u0(x) + up,2(x))− g2(u0(x) + up,2(x))‖L2(Rd).

Obviously,

(3.14) g1(u0(x) + up,2(x)) − g2(u0(x) + up,2(x)) =

=

∫ u0(x)+up,2(x)

0
[g′1(z)− g′2(z)]dz.

It follows easily from (3.14) that

|g1(u0(x) + up,2(x)) − g2(u0(x) + up,2(x))| ≤

≤ maxz∈I |g
′

1(z)− g′2(z)||u0(x) + up,2(x)| ≤

(3.15) ≤ ‖g1(z) − g2(z)‖C1(I)|u0(x) + up,2(x)|.

Then
‖g1(u0(x) + up,2(x))− g2(u0(x) + up,2(x))‖L2(Rd) ≤

(3.16) ≤ ‖g1(z)− g2(z)‖C1(I)(‖u0‖H3(Rd) + 1).

We combine estimates from above (3.9), (3.10), (3.13), (3.16) and arrive at

‖η(x) − up,2(x)‖H3(Rd) ≤
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(3.17) ≤ ca‖T‖(‖u0‖H3(Rd) + 1)2Q‖g1(z)− g2(z)‖C1(I).

Inequalities (3.5) and (3.17) imply that

‖up,1(x)− up,2(x)‖H3(Rd) ≤

(3.18) ≤
ca

1− σ
‖T‖(‖u0‖H3(Rd) + 1)2Q‖g1(z)− g2(z)‖C1(I).

By virtue of formula (1.20) along with upper bound (3.18) and definition
(1.19), estimate (1.21) holds. �

Remark 3.1. The results of the present work will be generalized to the
case of the systems of the coupled equations of this kind in the consecutive
articles.
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