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1. Introduction

The present article is devoted to the studies of the existence of stationary solutions
of the following system of the integro-differential equations inRd, d = 4, 5

∂um

∂t
= −Dm[(−∆)s1,m + (−∆)s2,m ]um+

+

∫

Rd

Km(x− y)gm(u(y, t))dy + fm(x), (1.1)

where1 ≤ m ≤ N, 0 < s1,m < s2,m < 1 and
3

2
−

d

4
< s2,m < 1 appearing in the

cell population dynamics. The results of the work are obtained in these particular
ranges of the values of the powers of the negative Laplacians, which is based on the
solvability of the linear Poisson type equations (1.13) andthe applicability of the
Sobolev inequality (1.7) for the fractional Laplace operator. The solvability of the
system analogous to (1.1) containing a single fractional Laplacian in the diffusion
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term of each equation was covered in [29]. Note that the spacevariablex in our
problem corresponds to the cell genotype, the functionsum(x, t) describe the cell
density distributions for various groups of cells as functions of their genotype and
time,

u(x, t) = (u1(x, t), u2(x, t), ..., uN(x, t))
T .

The right side of system (1.1) describes the evolution of cell densities by virtue of
the cell proliferation, mutations and cell influx or efflux. The double scale anoma-
lous diffusion terms with positive coefficientsDm correspond to the change of geno-
type due to small random mutations, and the integral production terms describe
large mutations. Functionsgm(u) stand for the rates of cell birth depending onu

(density dependent proliferation), and the kernelsKm(x − y) express the propor-
tions of newly born cells changing their genotype fromy to x. Let us assume that
they depend on the distance between the genotypes. The functionsfm(x) designate
the influxes or effluxes of cells for different genotypes.
The fractional Laplace operator describes a particular case of the anomalous dif-
fusion actively studied in the context of the various applications in plasma physics
and turbulence [7], [24], surface diffusion [19], [22], semiconductors [23] and so
on. The anomalous diffusion can be understood as a random process of the particle
motion characterized by the probability density distribution of the jump length. The
moments of this density distribution are finite in the case ofthe normal diffusion,
but this is not the case for the anomalous diffusion. The asymptotic behavior at
the infinity of the probability density function determinesthe value of the power of
the negative Laplacian (see [20]). Weak error for continuous time Markov chains
related to fractional in time P(I)DEs was estimated in [17].In the present article

we discuss the case of0 < s1,m < s2,m < 1,
3

2
−

d

4
< s2,m < 1, 1 ≤ m ≤ N and

d = 4, 5. The necessary conditions of the preservation of the nonnegativity of the
solutions of a system of parabolic equations in the situation of the double scale
anomalous diffusion were obtained in [13]. In the work [15] the authors consider
the simultaneous inversion for the fractional exponents inthe space-time fractional
diffusion equation.
We set here allDm = 1 and demonstrate the existence of solutions of the system of
equations

−[(−∆)s1,m + (−∆)s2,m ]um +

∫

Rd

Km(x− y)gm(u(y))dy + fm(x) = 0, (1.2)

where0 < s1,m < s2,m < 1,
3

2
−

d

4
< s2,m < 1, 1 ≤ m ≤ N andd = 4, 5. Let us

treat the case when the linear parts of the operators involved in our system fail
to satisfy the Fredholm property. Consequently, the conventional methods of the
nonlinear analysis may not be applicable. We use the solvability conditions for the
non-Fredholm operators along with the method of contraction mappings.
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Consider the problem
−∆u + V (x)u− au = f, (1.3)

whereu ∈ E = H2(Rd) andf ∈ F = L2(Rd), d ∈ N, a is a constant and the
scalar potential functionV (x) is either zero in the whole space or tends to0 at the
infinity. Such model equation is discussed here in order to illustrate certain fea-
tures of the problems without the Fredholm property, the techniques used to solve
them and the preceding results. Ifa ≥ 0, the essential spectrum of the operator
A : E → F , which corresponds to the left side of equation (1.3) contains the origin.
Consequently, such operator does not satisfy the Fredholm property. Its image is
not closed, ford > 1 the dimension of its kernel and the codimension of its image
are not finite. The present article deals with the studies of the certain properties of
the operators of this kind. The elliptic equations containing non-Fredholm oper-
ators were studied actively in recent years. Approaches in weighted Sobolev and
Hölder spaces were developed in [2], [3], [4], [5], [6]. TheSchrödinger type
operators without Fredholm property were treated with the methods of the spectral
and the scattering theory in [12], [25], [30], [33]. The nonlinear non-Fredholm
elliptic equations were covered in [12], [13], [29], [31], [32], [34]. The signifi-
cant applications to the theory of reaction-diffusion typeequations were developed
in [9], [10]. Fredholm structures, topological invariantsand applications were
considered in [11]. The works [14] and [21] are important forthe understanding
of the Fredholm and properness properties of the quasilinear elliptic systems of the
second order and of the operators of this kind onRN . The non-Fredholm operators
arise also when considering the wave systems with an infinitenumber of localized
traveling waves (see [1]). In particular, whena = 0 the operatorA is Fredholm
in some properly chosen weighted spaces (see [2], [3], [4], [5], [6]). However, the
case ofa 6= 0 is significantly different and the method developed in thesearticles
cannot be applied. The front propagation equations with theanomalous diffusion
were treated actively in recent years (see e.g. [26], [27]).

Let us setKm(x) = εmHm(x), whereεm ≥ 0, so that

ε := max1≤m≤Nεm, s2 := max1≤m≤Ns2,m, (1.4)

where
3

2
−

d

4
< s2 < 1 and assume the following.

Assumption 1.1.Let 1 ≤ m ≤ N, 0 < s1,m < s2,m < 1,
3

2
−

d

4
< sm < 1, where

d = 4, 5, the functionsfm : Rd → R do not vanish identically for somem, such
that

fm ∈ L1(Rd), (−∆)
3

2
−s2,mfm ∈ L2(Rd).

Let us also assume thatHm : Rd → R, so that

Hm ∈ L1(Rd), (−∆)
3

2
−s2,mHm ∈ L2(Rd).
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Moreover,

H2 :=

N∑

m=1

‖Hm‖
2
L1(Rd) > 0 (1.5)

and

Q2 :=
N∑

m=1

‖(−∆)
3

2
−s2,mHm‖

2
L2(Rd) > 0. (1.6)

We choose here the space dimensionsd = 4, 5. This is related to the solvability
conditions for the linear Poisson type equation (4.1) stated in Lemma 4.1 below. For
the practical applications, the space dimensions are not limited tod = 4, 5, because
the space variable here corresponds to the cell genotype butnot to the usual physical
space. Let us apply the Sobolev inequality for the fractional negative Laplacian (see
Lemma 2.2 of [16], also [18]), namely

‖fm‖
L

2d
d−6+4s2,m (Rd)

≤ cs2,m,d‖(−∆)
3

2
−s2,mfm‖L2(Rd), (1.7)

with
3

2
−

d

4
< s2,m < 1, d = 4, 5 and1 ≤ m ≤ N . By virtue of the Assumption

1.1 above along with the standard interpolation argument, we arrive at

fm ∈ L2(Rd), d = 4, 5, 1 ≤ m ≤ N. (1.8)

Let us use the Sobolev spaces for the technical purposes, namely

H2s2,m(Rd) := {φ : Rd → R | φ ∈ L2(Rd), (−∆)s2,mφ ∈ L2(Rd)}, (1.9)

where
3

2
−

d

4
< s2,m < 1, 1 ≤ m ≤ N, d = 4, 5.

Each space (1.9) is equipped with the norm

‖φ‖2
H

2s2,m (Rd)
:= ‖φ‖2L2(Rd) + ‖(−∆)s2,mφ‖2L2(Rd). (1.10)

For a vector function

u(x) = (u1(x), u2(x), ..., uN(x))
T ,

throughout the article we will use the norm

‖u‖2H3(Rd,RN ) := ‖u‖2L2(Rd,RN ) +

N∑

m=1

‖(−∆)
3

2um‖
2
L2(Rd), (1.11)

with d = 4, 5 and

‖u‖2L2(Rd,RN ) :=
N∑

m=1

‖um‖
2
L2(Rd).
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We recall the Sobolev embedding inRd, d = 4, 5, namely

‖φ‖L∞(Rd) ≤ ce‖φ‖H3(Rd), (1.12)

wherece > 0 is the constant of the embedding. When all the nonnegative parame-
tersεm are trivial, we arrive at the linear Poisson type equations

[(−∆)s1,m + (−∆)s2,m ]um(x) = fm(x), 1 ≤ m ≤ N. (1.13)

By virtue of Lemma 4.1 below under the stated assumptions each problem (1.13)
admits a unique solution

u0,m ∈ H2s2,m(Rd),
3

2
−

d

4
< s2,m < 1, 1 ≤ m ≤ N,

and no orthogonality conditions for the right side of (1.13)are required here. Obvi-
ously, for1 ≤ m ≤ N ,

[(−∆)
3

2
−s2,m+s1,m + (−∆)

3

2 ]u0,m = (−∆)
3

2
−s2,mfm ∈ L2(Rd) (1.14)

via Assumption 1.1. It can be easily derived from (1.14) using the standard Fourier
transform (2.1) that

(−∆)
3

2u0,m ∈ L2(Rd), 1 ≤ m ≤ N.

Hence, each linear equation (1.13) possesses a unique solution u0,m ∈ H3(Rd). By
means of the definition of the norm (1.11), we have

u0(x) := (u0,1(x), u0,2(x), ..., u0,N(x))
T ∈ H3(Rd,RN).

Let us look for the resulting solution of the nonlinear system of equations (1.2) as

u(x) = u0(x) + up(x), (1.15)

where
up(x) := (up,1(x), up,2(x), ..., up,N(x))

T .

Evidently, we easily obtain the perturbative system of equations

[(−∆)s1,m + (−∆)s2,m ]up,m(x) = εm

∫

Rd

Hm(x− y)gm(u0(y)+ up(y))dy, (1.16)

where0 < s1,m < s2,m < 1,
3

2
−

d

4
< s2,m < 1, 1 ≤ m ≤ N, d = 4, 5.

We introduce a closed ball in our Sobolev space

Bρ := {u ∈ H3(Rd,RN) | ‖u‖H3(Rd,RN ) ≤ ρ}, 0 < ρ ≤ 1. (1.17)
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Let us seek the solution of problem (1.16) as the fixed point ofthe auxiliary nonlin-
ear system

[(−∆)s1,m + (−∆)s2,m ]um(x) = εm

∫

Rd

Hm(x− y)gm(u0(y) + v(y))dy, (1.18)

with 0 < s1,m < s2,m < 1,
3

2
−

d

4
< s2,m < 1, 1 ≤ m ≤ N, d = 4, 5

in ball (1.17). For a given vector functionv(y) this is a system of equations with
respect tou(x). The left side of themth equation in (1.18) involves the operator
which fails to satisfy the Fredholm property

lm := (−∆)s1,m + (−∆)s2,m : H2s2,m(Rd) → L2(Rd), 1 ≤ m ≤ N. (1.19)

We have (1.19) defined via the spectral calculus. It is the pseudo-differential opera-
tor with the symbol|p|2s1,m + |p|2s2,m, such that for1 ≤ m ≤ N

lmφ(x) =
1

(2π)
d
2

∫

Rd

(|p|2s1,m + |p|2s2,m)φ̂(p)eipxdp, φ ∈ H2s2,m(Rd),

with the standard Fourier transform defined in (2.1). The essential spectrum of
(1.19) fills the nonnegative semi-axis[0,+∞). Thus, this operator does not have a
bounded inverse. The similar situation appeared in articles [31] and [32] but as
distinct from the present case, the equations studied thererequired the orthogonality
relations. The fixed point technique was applied in [28] to evaluate the perturbation
to the standing solitary wave of the Nonlinear Schrödinger(NLS) equation when
either the external potential or the nonlinear term in the NLS were perturbed but
the Schrödinger operator involved in the nonlinear problem there had the Fredholm
property (see Assumption 1 of [28], also [8]). Let us introduce the closed ball in
the space ofN dimensions as

I := {z ∈ RN | |z|RN ≤ ce‖u0‖H3(Rd,RN ) + ce}, d = 4, 5. (1.20)

Here and below|.|RN will denote the length of a vector inRN . The closed ballDM

in the space ofC2(I,RN) vector functions is given by

{g(z) := (g1(z), g2(z), ..., gN(z)) ∈ C2(I,RN) | ‖g‖C2(I,RN ) ≤ M}, (1.21)

whereM > 0. Here the norms

‖g‖C2(I,RN ) :=

N∑

m=1

‖gm‖C2(I), (1.22)

‖gm‖C2(I) := ‖gm‖C(I) +
N∑

n=1

∥∥∥∂gm
∂zn

∥∥∥
C(I)

+
N∑

n,l=1

∥∥∥ ∂2gm

∂zn∂zl

∥∥∥
C(I)

, (1.23)
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where‖gm‖C(I) := maxz∈I |gm(z)|. We make the following technical assumption
on the nonlinear part of the system of equations (1.2). From the perspective of the
applications in biology,gm(z) can be, for example the quadratic functions, which
describe the cell-cell interactions.

Assumption 1.2. Let 1 ≤ m ≤ N . Suppose thatgm : RN → R is such that
gm(0) = 0 and∇gm(0) = 0. We also assume thatg ∈ DM and it does not vanish
identically in the ballI.

We use the technical Assumptions 1.1 and 1.2 above in the proofs of our main
theorems. It is not clear at the moment if there is a more efficient way to analyze
our system of equations which would enable us to weaken theseconditions.
Let us introduce the operatorTg, such thatu = Tgv, whereu is a solution of the
system of equations (1.18). Our first main statement is as follows.

Theorem 1.3.Let Assumptions 1.1 and 1.2 hold. Then for everyρ ∈ (0, 1] system
(1.18) defines the mapTg : Bρ → Bρ, which is a strict contraction for all

0 < ε ≤
ρ

M(‖u0‖H3(Rd,RN ) + 1)2
×

×

[
H2(‖u0‖H3(Rd,RN ) + 1)

8s2
d

−2d

(d− 4s2)(2π)4S2

(
|Sd|

4S2

) 4S2
d

+Q2

]− 1

2

. (1.24)

The unique fixed pointup of this mapTg is the only solution of problem (1.16) in
Bρ.

Note thatε, s2, H, Q andS2 are defined in formulas (1.4), (1.5), (1.6) and (2.6).
Here and further downSd stands for the unit sphere in the space ofd = 4, 5 dimen-
sions centered at the origin and|Sd| denotes its Lebesgue measure.
Clearly, the resulting solutionu(x) of the system of equations (1.2) given by (1.15)
will not vanish identically because the influx/efflux termsfm(x) are nontrivial for
some1 ≤ m ≤ N and all gm(0) = 0 as we assume. Let us make use of the
following elementary lemma.

Lemma 1.4.LetR ∈ (0,+∞) andd = 4, 5. We consider the function

ϕ(R) := αRd−4s +
1

R4s
,

3

2
−

d

4
< s < 1, α > 0.

It attains its minimal value atR∗ :=

(
4s

α(d− 4s)

) 1

d

, which is given by

ϕ(R∗) =

(
α

4s

) 4s
d

d

(d− 4s)
d−4s

d

.
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Our second main proposition deals with the continuity of theresulting solution of
the system of equations (1.2) given by formula (1.15) with respect to the nonlinear
vector functiong. Let us use the following positive auxiliary expression

σ := M(‖u0‖H3(Rd,RN ) + 1)×

×

{
H2(‖u0‖H3(Rd,RN ) + 1)

8s2
d

−2d

(d− 4s2)(2π)
4S2

(
|Sd|

4S2

) 4S2
d

+Q2

} 1

2

. (1.25)

Theorem 1.5.Let j = 1, 2, the assumptions of Theorem 1.3 are valid, such thatup,j

is the unique fixed point of the mapTgj : Bρ → Bρ, which is a strict contraction
for all the values ofε satisfying (1.24) and the resulting solution of the system of
equations (1.2) withg(z) = gj(z) is

uj(x) := u0(x) + up,j(x). (1.26)

Then for all the values ofε, which satisfy inequality (1.24), the bound

‖u1 − u2‖H3(Rd,RN ) ≤
εσ

M(1− εσ)
(‖u0‖H3(Rd,RN ) + 1)‖g1 − g2‖C2(I,RN ) (1.27)

holds.

Let us turn our attention to the proof of our first main result.

2. The existence of the perturbed solution

Proof of Theorem 1.3.We choose arbitrarily a vector functionv ∈ Bρ and designate
the terms involved in the integral expressions in the right side of the system of
equations (1.18) as

Gm(x) := gm(u0(x) + v(x)), 1 ≤ m ≤ N.

Let us use the standard Fourier transform throughout the article, namely

φ̂(p) :=
1

(2π)
d
2

∫

Rd

φ(x)e−ipxdx, d = 4, 5. (2.1)

Obviously, the estimate from above

‖φ̂‖L∞(Rd) ≤
1

(2π)
d
2

‖φ‖L1(Rd) (2.2)

is valid. We apply (2.1) to both sides of system (1.18) and arrive at

ûm(p) = εm(2π)
d
2

Ĥm(p)Ĝm(p)

|p|2s1,m + |p|2s2,m
,
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where0 < s1,m < s2,m < 1,
3

2
−

d

4
< s2,m < 1, 1 ≤ m ≤ N, d = 4, 5. We obtain

the expression for the norm given by

‖um‖
2
L2(Rd) = (2π)dε2m

∫

Rd

|Ĥm(p)|
2|Ĝm(p)|

2

[|p|2s1,m + |p|2s2,m ]2
dp. (2.3)

As distinct from works [31] and [32] with the standard Laplacian in the diffusion
term, here we do not try to control the norms

∥∥∥∥∥
Ĥm(p)

|p|2s1,m + |p|2s2,m

∥∥∥∥∥
L∞(Rd)

, 1 ≤ m ≤ N.

Instead, we estimate the right side of (2.3) using the analogof bound (2.2) applied
to functionsHm andGm with R ∈ (0,+∞) as

(2π)dε2m

∫

Rd

|Ĥm(p)|
2|Ĝm(p)|

2

[|p|2s1,m + |p|2s2,m]2
dp ≤

≤ (2π)dε2m

[ ∫

|p|≤R

|Ĥm(p)|
2|Ĝm(p)|

2

|p|4s2,m
dp+

∫

|p|>R

|Ĥm(p)|
2|Ĝm(p)|

2

|p|4s2,m
dp
]
≤

≤ ε2m‖Hm‖
2
L1(Rd)

{
|Sd|

(2π)d
‖Gm‖

2
L1(Rd)

Rd−4s2,m

d− 4s2,m
+

‖Gm‖
2
L2(Rd)

R4s2,m

}
. (2.4)

By means of norm definition (1.11) along with the triangle inequality and using the
fact thatv ∈ Bρ, we easily derive

‖u0 + v‖L2(Rd,RN ) ≤ ‖u0‖H3(Rd,RN ) + 1, d = 4, 5.

Sobolev embedding (1.12) yields

|u0 + v|RN ≤ ce(‖u0‖H3(Rd,RN ) + 1).

Let the dot stand for the scalar product of two vectors inRN . Clearly,

Gm(x) =

∫ 1

0

∇gm(t(u0(x) + v(x))).(u0(x) + v(x))dt, 1 ≤ m ≤ N.

We use the ballI introduced in (1.20). Hence,

|Gm(x)| ≤ supz∈I |∇gm(z)|RN |u0(x) + v(x)|RN ≤ M |u0(x) + v(x)|RN ,

so that

‖Gm‖L2(Rd) ≤ M‖u0 + v‖L2(Rd,RN ) ≤ M(‖u0‖H3(Rd,RN ) + 1).
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Evidently, fort ∈ [0, 1] and1 ≤ m, j ≤ N , we can write

∂gm

∂zj
(t(u0(x) + v(x))) =

∫ t

0

∇
∂gm

∂zj
(τ(u0(x) + v(x))).(u0(x) + v(x))dτ.

This implies that
∣∣∣∂gm
∂zj

(t(u0(x) + v(x)))
∣∣∣ ≤ supz∈I

∣∣∣∇∂gm

∂zj

∣∣∣
RN

|u0(x) + v(x)|RN ≤

≤
N∑

n=1

∥∥∥ ∂2gm

∂zn∂zj

∥∥∥
C(I)

|u0(x) + v(x)|RN .

Therefore,

|Gm(x)| ≤ |u0(x) + v(x)|RN

N∑

n,j=1

∥∥∥ ∂2gm

∂zn∂zj

∥∥∥
C(I)

|u0,j(x) + vj(x)| ≤

≤ M |u0(x) + v(x)|2RN .

Thus,

‖Gm‖L1(Rd) ≤ M‖u0 + v‖2L2(Rd,RN ) ≤ M(‖u0‖H3(Rd,RN ) + 1)2. (2.5)

This allows us to derive the upper bound for the right side of (2.4) given by

ε2mM
2‖Hm‖

2
L1(Rd)(‖u0‖H3(Rd,RN ) + 1)2×

×

{
|Sd|(‖u0‖H3(Rd,RN ) + 1)2Rd−4s2,m

(2π)d(d− 4s2,m)
+

1

R4s2,m

}
,

with R ∈ (0,+∞). Lemma 1.4 yields the minimal value of the expression above,
such that

‖um‖
2
L2(Rd) ≤ εm

2M2‖Hm‖
2
L1(Rd)×

×(‖u0‖H3(Rd,RN ) + 1)2+
8s2,m

d

(
|Sd|

4s2,m

) 4s2,m
d

d

(d− 4s2,m)(2π)4s2,m
.

We define

(
|Sd|

4S2

) 4S2
d

1

(2π)4S2
:= max1≤m≤N

(
|Sd|

4s2,m

) 4s2,m
d

1

(2π)4s2,m
, (2.6)

where
3

2
−

d

4
< S2 < 1. Hence, we obtain

‖u‖2L2(Rd,RN ) ≤
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≤ ε2M2H2(‖u0‖H3(Rd,RN ) + 1)2+
8s2
d

d

d− 4s2

(
|Sd|

4S2

) 4S2
d

1

(2π)4S2
. (2.7)

By means of (1.18),

[(−∆)
3

2
−s2,m+s1,m + (−∆)

3

2 ]um(x) = εm(−∆)
3

2
−s2,m

∫

Rd

Hm(x− y)Gm(y)dy

with 0 < s1,m < s2,m < 1,
3

2
−

d

4
< s2,m < 1, 1 ≤ m ≤ N, d = 4, 5.

We use the standard Fourier transform (2.1), the analog of upper bound (2.2) applied
to functionGm along with (2.5) to derive

‖(−∆)
3

2um‖
2
L2(Rd) ≤ ε2m‖Gm‖

2
L1(Rd)‖(−∆)

3

2
−s2,mHm‖

2
L2(Rd) ≤

≤ ε2M2(‖u0‖H3(Rd,RN ) + 1)4‖(−∆)
3

2
−s2,mHm‖

2
L2(Rd).

Thus,
N∑

m=1

‖(−∆)
3

2um‖
2
L2(Rd) ≤ ε2M2(‖u0‖H3(Rd,RN ) + 1)4Q2. (2.8)

Let us recall the definition of the norm (1.11). Bounds (2.7) and (2.8) give us that

‖u‖H3(Rd,RN ) ≤ εM(‖u0‖H3(Rd,RN ) + 1)2×

×

[
H2(‖u0‖H3(Rd,RN ) + 1)

8s2
d

−2d

(d− 4s2)(2π)4S2

(
|Sd|

4S2

) 4S2
d

+Q2

] 1

2

≤ ρ (2.9)

for all the values ofε, which satisfy (1.24). Hence,u ∈ Bρ as well.
Suppose that for a certainv ∈ Bρ there exist two solutionsu1,2 ∈ Bρ of system
(1.18). Clearly, their differencew(x) := u1(x)− u2(x) ∈ H3(Rd,RN) satisfies the
homogeneous system of equations

[(−∆)s1,m + (−∆)s2,m ]wm(x) = 0,

where0 < s1,m < s2,m < 1,
3

2
−

d

4
< s2,m < 1, 1 ≤ m ≤ N, d = 4, 5.

Each operatorlm : H2s2,m(Rd) → L2(Rd) introduced in (1.19) does not have any
nontrivial zero modes. Thus,w(x) vanishes inRd. Therefore, problem (1.18) de-
fines a mapTg : Bρ → Bρ for all ε satisfying bound (1.24).
Our goal is to show that this map is a strict contraction. Let us choose arbitrarily
v1, v2 ∈ Bρ. By virtue of the argument above,u1,2 := Tgv1,2 ∈ Bρ as well if ε
satisfies (1.24). Obviously, by means of (1.18) we obtain for1 ≤ m ≤ N

[(−∆)s1,m + (−∆)s2,m ]u1,m(x) = εm

∫

Rd

Hm(x− y)gm(u0(y) + v1(y))dy, (2.10)
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[(−∆)s1,m + (−∆)s2,m ]u2,m(x) = εm

∫

Rd

Hm(x− y)gm(u0(y) + v2(y))dy, (2.11)

with 0 < s1,m < s2,m < 1,
3

2
−

d

4
< s2,m < 1, d = 4, 5. We define

G1,m(x) := gm(u0(x) + v1(x)), G2,m(x) := gm(u0(x) + v2(x)), 1 ≤ m ≤ N

and apply the standard Fourier transform (2.1) to both sidesof systems (2.10) and
(2.11). This gives us

û1,m(p) = εm(2π)
d
2

Ĥm(p)Ĝ1,m(p)

|p|2s1,m + |p|2s2,m
, û2,m(p) = εm(2π)

d
2

Ĥm(p)Ĝ2,m(p)

|p|2s1,m + |p|2s2,m
.

Evidently,

‖u1,m − u2,m‖
2
L2(Rd) = ε2m(2π)

d

∫

Rd

|Ĥm(p)|
2|Ĝ1,m(p)− Ĝ2,m(p)|

2

[|p|2s1,m + |p|2s2,m]2
dp. (2.12)

Clearly, the right side of (2.12) can be estimated from aboveby means of inequality
(2.2) as

ε2m(2π)
d

[∫

|p|≤R

|Ĥm(p)|
2|Ĝ1,m(p)− Ĝ2,m(p)|

2

|p|4s2,m
dp+

+

∫

|p|>R

|Ĥm(p)|
2|Ĝ1,m(p)− Ĝ2,m(p)|

2

|p|4s2,m
dp

]
≤ ε2‖Hm‖

2
L1(Rd)×

×

{
‖G1,m −G2,m‖

2
L1(Rd)

(2π)d
|Sd|Rd−4s2,m

d− 4s2,m
+

‖G1,m −G2,m‖
2
L2(Rd)

R4s2,m

}

with R ∈ (0,+∞). Obviously, we can express for1 ≤ m ≤ N

G1,m(x)−G2,m(x) =

∫ 1

0

∇gm(u0(x) + tv1(x) + (1− t)v2(x)).(v1(x)− v2(x))dt.

For t ∈ [0, 1], we have

‖v2 + t(v1 − v2)‖H3(Rd,RN ) ≤ t‖v1‖H3(Rd,RN )+

+(1− t)‖v2‖H3(Rd,RN ) ≤ ρ.

Hence,v2 + t(v1 − v2) ∈ Bρ. We easily obtain the upper bound

|G1,m(x)−G2,m(x)| ≤ supz∈I |∇gm(z)|RN |v1(x)−v2(x)|RN ≤ M |v1(x)−v2(x)|RN ,

so that

‖G1,m −G2,m‖L2(Rd) ≤ M‖v1 − v2‖L2(Rd,RN ) ≤ M‖v1 − v2‖H3(Rd,RN ).

12



Let us write
∂gm

∂zj
(u0(x) + tv1(x) + (1− t)v2(x)) for 1 ≤ m, j ≤ N as

∫ 1

0

∇
∂gm

∂zj
(τ [u0(x) + tv1(x) + (1− t)v2(x)]).[u0(x) + tv1(x) + (1− t)v2(x)]dτ.

Thus, fort ∈ [0, 1]

∣∣∣∂gm
∂zj

(u0(x) + tv1(x) + (1− t)v2(x))
∣∣∣ ≤

≤
N∑

n=1

∥∥∥∥∥
∂2gm

∂zn∂zj

∥∥∥∥∥
C(I)

(|u0(x)|RN + t|v1(x)|RN + (1− t)|v2(x)|RN ),

so that

|G1,m(x)−G2,m(x)| ≤ M |v1(x)−v2(x)|RN

(
|u0(x)|RN+

1

2
|v1(x)|RN+

1

2
|v2(x)|RN

)
.

By virtue of the Schwarz inequality, we derive the estimate from above for the norm
‖G1,m −G2,m‖L1(Rd) as

M‖v1 − v2‖L2(Rd,RN )

(
‖u0‖L2(Rd,RN ) +

1

2
‖v1‖L2(Rd,RN ) +

1

2
‖v2‖L2(Rd,RN )

)
≤

≤ M‖v1 − v2‖H3(Rd,RN )(‖u0‖H3(Rd,RN ) + 1). (2.13)

Therefore, the upper bound for the norm‖u1,m − u2,m‖
2
L2(Rd)

is given by

ε2‖Hm‖
2
L1(Rd)M

2‖v1−v2‖
2
H3(Rd,RN )

{(‖u0‖H3(Rd,RN ) + 1)2|Sd|Rd−4s2,m

(2π)d(d− 4s2,m)
+

1

R4s2,m

}
.

Let us minimize the expression above overR ∈ (0,+∞) using Lemma 1.4, such
that

‖u1,m − u2,m‖
2
L2(Rd) ≤ ε2‖Hm‖

2
L1(Rd)M

2‖v1 − v2‖
2
H3(Rd,RN )×

×(‖u0‖H3(Rd,RN ) + 1)
8s2,m

d

(
|Sd|

4s2,m

) 4s2,m
d

d

(2π)4s2,m(d− 4s2,m)
.

Then
‖u1 − u2‖

2
L2(Rd,RN ) ≤ ε2H2M2‖v1 − v2‖

2
H3(Rd,RN )×

×(‖u0‖H3(Rd,RN ) + 1)
8s2
d

d

(2π)4S2(d− 4s2)

(
|Sd|

4S2

) 4S2
d

. (2.14)

By means of (2.10) and (2.11) with1 ≤ m ≤ N , we have

[(−∆)
3

2
−s2,m+s1,m + (−∆)

3

2 ](u1,m(x)− u2,m(x)) =

13



= εm(−∆)
3

2
−s2,m

∫

Rd

Hm(x− y)[G1,m(y)−G2,m(y)]dy.

Let us use the standard Fourier transform (2.1) along with upper bounds (2.2) and
(2.13). Hence,

‖(−∆)
3

2 (u1,m − u2,m)‖
2
L2(Rd) ≤

≤ ε2‖G1,m −G2,m‖
2
L1(Rd)‖(−∆)

3

2
−s2,mHm‖

2
L2(Rd) ≤

≤ ε2M2‖v1 − v2‖
2
H3(Rd,RN )(‖u0‖H3(Rd,RN ) + 1)2‖(−∆)

3

2
−s2,mHm‖

2
L2(Rd).

Therefore,
N∑

m=1

‖(−∆)
3

2 (u1,m − u2,m)‖
2
L2(Rd) ≤

≤ ε2M2‖v1 − v2‖
2
H3(Rd,RN )(‖u0‖H3(Rd,RN ) + 1)2Q2. (2.15)

Inequalities (2.14) and (2.15) imply that the norm‖u1 − u2‖H3(Rd,RN ) can be esti-
mated from above by the expressionεM(‖u0‖H3(Rd,RN ) + 1)×

×

{
H2(‖u0‖H3(Rd,RN ) + 1)

8s2
d

−2d

(d− 4s2)(2π)
4S2

(
|Sd|

4S2

) 4S2
d

+Q2

} 1

2

‖v1− v2‖H3(Rd,RN ). (2.16)

It can be trivially checked that for all the values ofε satisfying (1.24) the constant
in the right side of (2.16) is less than one. Hence, the mapTg : Bρ → Bρ defined by
the system of equations (1.18) is a strict contraction. Its unique fixed pointup is the
only solution of system (1.16) in the ballBρ. The resultingu ∈ H3(Rd,RN) given
by (1.15) solves problem (1.2). Obviously, by virtue of (2.9), up converges to zero
in theH3(Rd,RN) norm asε → 0.

Let us proceed to the proof of the second main proposition of the work.

3. The continuity of the resulting solution

Proof of Theorem 1.5.Clearly, for all the values ofε satisfying (1.24)

up,1 = Tg1up,1, up,2 = Tg2up,2,

such that
up,1 − up,2 = Tg1up,1 − Tg1up,2 + Tg1up,2 − Tg2up,2.

Thus,

‖up,1−up,2‖H3(Rd,RN ) ≤ ‖Tg1up,1−Tg1up,2‖H3(Rd,RN )+‖Tg1up,2−Tg2up,2‖H3(Rd,RN ).

Upper bound (2.16) gives us

‖Tg1up,1 − Tg1up,2‖H3(Rd,RN ) ≤ εσ‖up,1 − up,2‖H3(R2,RN ),
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whereσ is introduced in (1.25). We haveεσ < 1 because our mapTg1 : Bρ → Bρ

is a strict contraction under the stated assumptions. Hence,

(1− εσ)‖up,1 − up,2‖H3(Rd,RN ) ≤ ‖Tg1up,2 − Tg2up,2‖H3(Rd,RN ). (3.1)

Evidently, for the fixed point we haveTg2up,2 = up,2. We denoteη(x) := Tg1up,2(x).
For1 ≤ m ≤ N , we obtain

[(−∆)s1,m + (−∆)s2,m ]ηm(x) = εm

∫

Rd

Hm(x− y)g1,m(u0(y) + up,2(y))dy, (3.2)

[(−∆)s1,m + (−∆)s2,m ]up,2,m(x) =

= εm

∫

Rd

Hm(x− y)g2,m(u0(y) + up,2(y))dy, (3.3)

with 0 < s1,m < s2,m < 1,
3

2
−

d

4
< s2,m < 1, d = 4, 5. Let us designate

G1,2,m(x) := g1,m(u0(x) + up,2(x)), G2,2,m(x) := g2,m(u0(x) + up,2(x)).

We apply the standard Fourier transform (2.1) to both sides of systems (3.2) and
(3.3) and arrive at

η̂m(p) = εm(2π)
d
2

Ĥm(p)Ĝ1,2,m(p)

|p|2s1,m + |p|2s2,m
, ûp,2,m(p) = εm(2π)

d
2

Ĥm(p)Ĝ2,2,m(p)

|p|2s1,m + |p|2s2,m
.

Then,
‖ηm − up,2,m‖

2
L2(Rd) =

= ε2m(2π)
d

∫

Rd

|Ĥm(p)|
2|Ĝ1,2,m(p)− Ĝ2,2,m(p)|

2

[|p|2s1,m + |p|2s2,m]2
dp. (3.4)

Let us derive the upper bound on the right side of (3.4) via (2.2) as

ε2m(2π)
d

[∫

|p|≤R

|Ĥm(p)|
2|Ĝ1,2,m(p)− Ĝ2,2,m(p)|

2

|p|4s2,m
dp+

+

∫

|p|>R

|Ĥm(p)|
2|Ĝ1,2,m(p)− Ĝ2,2,m(p)|

2

|p|4s2,m
dp

]
≤ ε2‖Hm‖

2
L1(Rd)×

×

{
|Sd|

(2π)d

‖G1,2,m −G2,2,m‖
2
L1(Rd)R

d−4s2,m

d− 4s2,m
+

‖G1,2,m −G2,2,m‖
2
L2(Rd)

R4s2,m

}
,

whereR ∈ (0,+∞). Obviously, we can write

G1,2,m(x)−G2,2,m(x) =

∫ 1

0

∇[g1,m−g2,m](t(u0(x)+up,2(x))).(u0(x)+up,2(x))dt.
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Hence,

|G1,2,m(x)−G2,2,m(x)| ≤ ‖g1,m − g2,m‖C2(I)|u0(x) + up,2(x)|RN .

This yields

‖G1,2,m −G2,2,m‖L2(Rd) ≤ ‖g1,m − g2,m‖C2(I)‖u0 + up,2‖L2(Rd,RN ) ≤

≤ ‖g1,m − g2,m‖C2(I)(‖u0‖H3(Rd,RN ) + 1).

Let us use another representation formula with1 ≤ m, j ≤ N andt ∈ [0, 1], namely

∂

∂zj
(g1,m − g2,m)(t(u0(x) + up,2(x))) =

=

∫ t

0

∇
[ ∂

∂zj
(g1,m − g2,m)

]
(τ(u0(x) + up,2(x))).(u0(x) + up,2(x))dτ.

Thus, ∣∣∣ ∂

∂zj
(g1,m − g2,m)(t(u0(x) + up,2(x)))

∣∣∣ ≤

≤

N∑

n=1

∥∥∥∥∥
∂2(g1,m − g2,m)

∂zn∂zj

∥∥∥∥∥
C(I)

|u0(x) + up,2(x)|RN .

Clearly,

|G1,2,m(x)−G2,2,m(x)| ≤ ‖g1,m − g2,m‖C2(I)|u0(x) + up,2(x)|
2
RN ,

so that

‖G1,2,m −G2,2,m‖L1(Rd) ≤ ‖g1,m − g2,m‖C2(I)‖u0 + up,2‖
2
L2(Rd,RN ) ≤

≤ ‖g1,m − g2,m‖C2(I)(‖u0‖H3(Rd,RN ) + 1)2. (3.5)

This allows us to obtain the estimate from above for the norm‖ηm − up,2,m‖
2
L2(Rd)

asε2‖Hm‖
2
L1(Rd)

(‖u0‖H3(Rd,RN ) + 1)2×

×‖g1,m − g2,m‖
2
C2(I)

[
(‖u0‖H3(Rd,RN ) + 1)2

|Sd|Rd−4s2,m

(2π)d(d− 4s2,m)
+

1

R4s2,m

]
.

We minimize this expression overR ∈ (0,+∞) via Lemma 1.4 and arrive at the
inequality

‖ηm − up,2,m‖
2
L2(Rd) ≤

≤ ε2‖Hm‖
2
L1(Rd)(‖u0‖H3(Rd,RN ) + 1)2+

8s2,m
d

(
|Sd|

4s2,m

) 4s2,m
d d‖g1,m − g2,m‖

2
C2(I)

(2π)4s2,m(d− 4s2,m)
,
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so that
‖η − up,2‖

2
L2(Rd,RN ) ≤

≤ ε2H2(‖u0‖H3(Rd,RN ) + 1)2+
8s2
d

d‖g1 − g2‖
2
C2(I,RN )

(d− 4s2)(2π)4S2

(
|Sd|

4S2

) 4S2
d

.

By virtue of formulas (3.2) and (3.3) with1 ≤ m ≤ N , we derive

[(−∆)
3

2
−s2,m+s1,m + (−∆)

3

2 ]ηm(x) = εm(−∆)
3

2
−s2,m

∫

Rd

Hm(x− y)G1,2,m(y)dy,

[(−∆)
3

2
−s2,m+s1,m+(−∆)

3

2 ]up,2,m(x) = εm(−∆)
3

2
−s2,m

∫

Rd

Hm(x−y)G2,2,m(y)dy,

where0 < s1,m < s2,m < 1,
3

2
−

d

4
< s2,m < 1, d = 4, 5.

By means of the standard Fourier transform (2.1) along with (2.2) and (3.5), the
norm‖(−∆)

3

2 (ηm − up,2,m)‖
2
L2(Rd)

can be bounded from above by

ε2‖G1,2,m −G2,2,m‖
2
L1(Rd)‖(−∆)

3

2
−s2,mHm‖

2
L2(Rd) ≤

≤ ε2‖g1,m − g2,m‖
2
C2(I)(‖u0‖H3(Rd,RN ) + 1)4‖(−∆)

3

2
−s2,mHm‖

2
L2(Rd).

Then
N∑

m=1

‖(−∆)
3

2 (ηm − up,2,m)‖
2
L2(Rd) ≤

≤ ε2‖g1 − g2‖
2
C2(I,RN )(‖u0‖H3(Rd,RN ) + 1)4Q2.

Therefore,
‖η − up,2‖H3(Rd,RN ) ≤ ε‖g1 − g2‖C2(I,RN )×

×(‖u0‖H3(Rd,RN ) + 1)2

[
H2(‖u0‖H3(Rd,RN ) + 1)

8s2
d

−2d

(d− 4s2)(2π)4S2

(
|Sd|

4S2

) 4S2
d

+Q2

] 1

2

.

By virtue of (3.1), the norm‖up,1 − up,2‖H3(Rd,RN ) can be estimated from above by

ε

1− εσ
(‖u0‖H3(Rd,RN ) + 1)2×

×

[
H2(‖u0‖H3(Rd,RN ) + 1)

8s2
d

−2d

(d− 4s2)(2π)4S2

(
|Sd|

4S2

) 4S2
d

+Q2

] 1

2

‖g1 − g2‖C2(I,RN ).

Let us use formulas (1.25) and (1.26) to complete the proof ofthe theorem.

4. Auxiliary results
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We establish the solvability conditions for the linear Poisson type equation with a
square integrable right side in the situation of the double scale anomalous diffusion

[(−∆)s1 +(−∆)s2]φ(x) = f(x), x ∈ Rd, d = 4, 5, 0 < s1 < s2 < 1. (4.1)

This auxiliary statement was proved in the previous work [34] using the standard
Fourier transform (2.1). Let us provide the argument below for the convenience of
the readers.

Lemma 4.1. Let 0 < s1 < s2 < 1, f : Rd → R, d = 4, 5 and f ∈ L1(Rd) ∩
L2(Rd). Then equation (4.1) admits a unique solutionφ ∈ H2s2(Rd).

Proof. It can be trivially checked that ifφ ∈ L2(Rd) is a solution of problem (4.1)
with a square integrable right side, it will be contained inH2s2(Rd) as well. Indeed,
if we apply the standard Fourier transform (2.1) to both sides of (4.1), we obtain

(|p|2s1 + |p|2s2)φ̂(p) = f̂(p) ∈ L2(Rd).

Hence, ∫

Rd

[|p|2s1 + |p|2s2]2|φ̂(p)|2dp < ∞.

Clearly, the equality

‖(−∆)s2φ‖2L2(Rd) =

∫

Rd

|p|4s2|φ̂(p)|2dp < ∞

holds, so that(−∆)s2φ ∈ L2(Rd). Let us recall the definition of the norm (1.10).
Thus,φ ∈ H2s2(Rd) as well.
To establish the uniqueness of solutions for problem (4.1),we suppose that our
equation has two solutionsφ1,2 ∈ H2s2(Rd). Then their differencew := φ1 − φ2 ∈
H2s2(Rd) solves the homogeneous problem

[(−∆)s1 + (−∆)s2 ]w = 0.

The operator
(−∆)s1 + (−∆)s2 : H2s2(Rd) → L2(Rd)

does not have any nontrivial zero modes. Therefore,w(x) vanishes inRd.
Let us apply the standard Fourier transform (2.1) to both sides of equation (4.1).
This yields

φ̂(p) =
f̂(p)

|p|2s1 + |p|2s2
χ{|p|≤1} +

f̂(p)

|p|2s1 + |p|2s2
χ{|p|>1}. (4.2)

In formula (4.2) and belowχA will denote the characteristic function of a setA ⊆
Rd.
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Evidently, the second term in the right side of (4.2) can be estimated from above in

the absolute value by
|f̂(p)|

2
∈ L2(Rd) due to the one of our assumptions.

The first term in the right side of (4.2) can be bounded from above in the absolute
value by virtue of (2.2) by

‖f‖L1(Rd)

(2π)
d
2 |p|2s2

χ{|p|≤1}. (4.3)

It can be easily verified that expression (4.3) withd = 4, 5 and0 < s2 < 1 is
contained inL2(Rd). .

Note that in the auxiliary lemma above we establish the solvability of equation
(4.1) inH2s2(Rd), d = 4, 5 for all the values of the powers of the fractional Laplace
operators0 < s1 < s2 < 1, such that no orthogonality conditions are needed for
the right sidef(x). This is similar to the case when the Poisson type equation is
studied with a single fractional Laplacian in the spaces of the same dimensions (see
Theorem 1.1 of [33], also [29]). The solvability of the problem analogous to (4.1)
containing a scalar potential was considered in [12].
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