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Abstract. We consider the problem of conjugating a flow on Td×R to an “integrable” flow
q̇ = ω and ṗ = cp, if possible, with c 6= 0. Our emphasis is on a constructive approach, using
a KAM type iteration and analyticity. An application to the periodically forced Van der Pol
oscillator is given.

1. Introduction and main results

Denote by T be the circle R/(2πZ). The flows considered here are of the type

q̇ = Q(q, p) , ṗ = P (q, p) , q ∈ Td , p ∈ Rn , (1.1)

with d ≥ 2 and n ≥ 1. Here q̇ = dq
dt and ṗ = dp

dt are derivatives with respect to time t.
The vector field X = (Q,P ) is defined on some bounded domain DX in Td×Rn and takes
values in Rd+n. Our focus is on the existence of invariant d-tori that are either attracting
or repelling. For simplicity we restrict to the case n = 1. Possible extensions to n > 1 will
be discussed after Theorem 1.1.

The simplest vector fields that have invariant d-tori are given by

Kω
c (q, p) = (ω, cp) , ω ∈ Rd , c ∈ R . (1.2)

We will refer to such a vector field Kω
c as being integrable, assuming c 6= 0 unless specified

otherwise. The equation (1.1) in this case is simply q̇ = ω and ṗ = cp. The time-t map for
K = Kω

c is given by ΦtK(q, p) =
(
q+ tω, etcp

)
. So the flow ΦK has Td×{0} as an invariant

torus, which is attracting for c < 0 and repelling for c > 0.
In this paper, we consider analytic perturbations of such flows. In a weak sense

mentioned below, if the perturbation is sufficiently small, then the resulting vector field X
is conjugate to an integrable vector field. To be more precise, X is said to be conjugate to
Y if there exists a diffeomorphism V : DY → DX , such that

Y = V ∗X , V ∗X
def
= (DV )−1X ◦ V . (1.3)

Formally, this is equivalent to a conjugacy ΦtY = V −1 ◦ ΦtX ◦ V for the associated flows.
Our focus is on flows and conjugacies that are real-analytic, and on perturbations

that are small but not necessarily tiny. When investigation a specific flow ẋ = X(x) that
appears to have an attracting invariant d-torus, a natural first step is to perform a change
of variables V that makes V ∗X close to integrable. A method that is well suited for such a
task is computer-assisted analysis, since analyticity allows for good approximations. After
getting V ∗X close to integrable, the goal would be to continue with a KAM type iteration.
In this paper, we introduce such a procedure, which is constructive and can give usable
bounds. A KAM theorem whose scope includes analytic near-integrable flows is stated
in [20], but the methods give no information about the size of the allowed perturbation.
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Applications of KAM methods to other dissipative systems can be found in [15,18,21,22,24]
and references therein.

Attracting or repelling invariant tori are special cases of hyperbolic invariant mani-
folds. For known results in a Cr setting, see [4,7,9,19] and references therein. In the case of
compact invariant manifolds, persistence under small perturbations is equivalent to normal
hyperbolicity [5]. This includes the tori considered here. Conjugacy to the unperturbed
vector field is in general only Hölder continuous. But under strong nonresonance condi-
tions, one can guarantee Cr−1 conjugacy [19]. Still, the size of the allowed perturbation is
usually unknown and can tend to zero in the limit of large r.

For analytic perturbations of Kω
c with c 6= 0, the smoothness of perturbed tori and

conjugacies depends mainly on the frequency vector of the flow. The frequency vector
for an invariant d-torus is a vector ω ∈ Rd, whose component ωk describes the average
amount of rotation per unit time around the k-th fundamental cycle on the torus. A precise
definition will not be needed here. But for a flow that is conjugate to (q̇, ṗ) = (ω, cp), the
frequency vector is ω. (And the nonzero Lyapunov exponent is c.)

We restrict to frequency vectors ω that satisfy a Diophantine condition

|ω · ν| ≥ ζ0|ν|1−d−χ , ν ∈ Zd \ {0} , (1.4)

with χ and ζ0 positive real numbers. Such vectors are common: for any fixed value χ > 0,
the set of vectors ω ∈ Rd that violate the condition (1.4) approaches a set of measure zero
as ζ0 > 0 tends to zero [2].

Given a vector field X = (Q,P ), we denote by α(X) and β(X) the average over Td
of the function q 7→ Q(q, 0) and q 7→ P (q, 0), respectively. In Section 6, we will define a
Banach space X of real-analytic vector fields on a domain D(%) = Td× (−%, %) that satisfy
β(X) = 0. The subspace of all vectors H ∈ X that satisfy α(H) = 0 is denoted by X ◦.

In order to give a concrete theorem, let us fix a vector ω̄ ∈ Rd that satisfies a Dio-
phantine condition (1.4). Let C be some non-empty open interval in R that is bounded
away from the origin. Denote by Kω̄ the line of all vector fields Kω̄

c with c ∈ C.

Theorem 1.1. Let 0 < % ≤ 1. Then there exists a positive %′ < %, and a real-analytic
codimension d manifold W ⊂ X , that includes Kω̄ and is transversal to Kω̄ + (Rd, 0), such
that the following holds. Every X ∈ W is real-analytically conjugate to some vector field
in Kω̄ on D(%′). So in particular, the flow for X ∈ W has a real-analytic invariant torus
with frequency vector ω̄.

To be more specific, there exists a real-analytic function Ω : B → Rd, defined on some
open domain B ⊂ X ◦, such that W is the graph of the map H 7→ H +

(
ω̄ + Ω(H), 0

)
.

Estimates will be given later. They are uniform in ζ0, χ, % > 0, as long as these
parameters are bounded away from 0. The assumption % ≤ 1 is not really necessary but
simplifies part of our proof. We note that the condition β(X) = 0 on our vector fields
represents no true loss of generality. If a vector field close to Kω̄ has a nonzero average
β(X), then a suitable translation T in the variable p yields an average β(T ∗X) = 0.

As indicated above, our main goal in this paper is to develop a KAM type iteration that
is constructive and can be combined with computer-assisted techniques. For Hamiltonian
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flows, such KAM techniques have been developed in [11,13,17,25]. The approach used here
is similar in spirit to the one presented in [8,12,14] for elliptic tori, where a KAM step can
be implemented as a transformation on a fixed space of vector fields.

The transformation R introduced in this paper does not define a dynamical system.
But it is simpler and thus easier to control, except for the construction of the stable
manifold W. The estimates in Section 3 are non-perturbative and quite accurate. The
same holds for much of Section 5. But the choices made in Section 4 are geared toward a
purely qualitative result like Theorem 1.1.

Theorem 1.1 extends readily to cases where n > 1 in (1.1). The corresponding inte-
grable vector fields are Kω

C (q, p) = (ω,Cp), with C a linear operator on Rn. If we assume
that the spectrum of C lies in a half-plane Im z < 0 or Im z > 0, then our proofs go through
without essential changes. But for accurate estimates, this is best done in a concrete set-
ting. A natural generalization replaces Rn by a Banach space and t 7→ etC by a suitable
semigroup. Result on invariant manifolds for C1 semiflows, and references, can be found
in [9].

To give a simple application of Theorem 1.1, we consider the periodically driven Van
der Pol (VdP) oscillator, described by the equation

ÿ − µ
(
1− y2

)
ẏ + y − ε cos(ω1 .) = 0 , (1.5)

for a real-valued function y = y(t). Here µ > 0 is the strength of the nonlinearity, while ω1

and ε are the frequency and coupling constant, respectively, for the periodic driving term.
The uncoupled system with ε = 0 is the standard VdP oscillator. It was introduced in [1]
to model relaxation-oscillations in electrical circuits. Some recent work and references can
be found in [10,16,21,22,23].

The equation (1.5) can be written as a flow on T×R2, by setting y1 = y, y2 = ẏ, and
y0(t) = ω1t, so that

ẏ0 = ω1 , ẏ1 = y2 , ẏ2 = Y2(y)
def
= µ

(
1− y2

1

)
y2 + ε cos(y0) . (1.6)

For ε = 0, the VdP flow in the variables (y1, y2) has an invariant circle [6] that is attracting
for all values µ > 0. The period T = T (µ) takes the value 2π for µ = 0 and tends to
infinity as µ→∞. Numerically, it seems to be strictly increasing.

If desired, the VdP vector field can be transformed into the form (1.1). One possibility
is to change variables from (y1, y2) ∈ R2 to (q2, p) ∈ T × R via y1 = ep cos(q2) and
y2 = −ep sin(q2). Setting in addition q1 = y0 = ω1t yields the equation

q̇1 = ω1 , q̇2 = 1− Y2(y)e−p cos(q2) , ṗ = −Y2(y)e−p sin(q2) . (1.7)

This form will not be needed here. But it illustrates that the deviation from an integrable
flow (q̇, ṗ) = (ω, cp) is not small. Still, for ε = 0, one has conjugacy to an integrable flow.
This will be described in Section 7. So for ε 6= 0 close to zero, Theorem 1.1 applies after a
change of variables.

To be more specific, we obtain the following.
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Theorem 1.2. Let µ̄ be a value of µ where T ′(µ) 6= 0. Let ω̄2 = 2π/T (µ̄) and ω̄1 ∈ R.
Assume that ω̄ = (ω̄1, ω̄2) satisfies a Diophantine condition (1.4). Then there exists real-
analytic functions µ = µ(ε) and c = c(ε), defined near ε = 0, satisfying µ(0) = µ̄ and
c(ε) < 0, such that the VdP vector field (1.6) with ω1 = ω̄1 and µ = µ(ε) is real-analytically
conjugate to Kω̄

c(ε).

In this application of Theorem 1.1, the manifoldW is of codimension d = 2. The vector
field (1.6) depends on the three parameters (ω1, µ, ε). The condition T ′(µ) 6= 0 guarantees
that the three-parameter VdP family intersects W transversally in a curve. This condition
can fail only at a discrete set of values of µ, since T depends real-analytically on µ.

In fact, this is really a codimension 1 problem, since ω̄1 is fixed. Our proof extends
readily to quasiperiodic forcings

∑n
i=1 εi cos(ait + bi) with a Diophantine condition on

(a1, . . . , an, ω2). In this case, the invariant tori are of dimension d = 1 + n, but it is still
just a codimension 1 problem.

The existence of invariant tori for the periodically forced VdP flow was proved in [23]
for some parameter values that include non-small values of ε. Their proof uses a dynamics
approach and computer-assisted estimates. A KAM theorem for coupled VdP oscillators
with small nonlinearities is proved in [21,22].

The remaining part of this paper is organized as follows. Section 2 gives a rough
description of our KAM procedure. The estimates needed are proved in Section 3. The
setting allows vector fields to depend on parameters, as described in Section 5. This is
used to construct the manifold W. A proof Theorem 1.1 is given in Section 6, based on
domain choices discussed in Section 4. Theorem 1.2 is proved in Section 7.

2. Informal description of the KAM procedure

2.1. The transformation R
Consider a vector field X near Kω̄ with average β(X) = 0. The main step in any KAM

approach is to perform a change of coordinates V , depending on X, in such a way that
V ∗X is closer to being integrable than is X. The easiest direction of improvement is along
a subspace that we call nonresonant. Using a linear projection I− onto this subspace, we
determine V is such a way that

I−Y ' 0 , Y
def
= V ∗X . (2.1)

This condition will be made precise below. The intended effect of the change of variables
X 7→ V ∗X is to eliminate the nonresonant part of X, up to a small error. After this step,
β(Y ) is nonzero in general. This is corrected via a translation T (q, p+ τ), with τ = τ(Y )
chosen in such a way that β(T ∗Y ) = 0. Now we set

R(X) = T ∗V ∗X . (2.2)

A similar transformation has been used in [14] to construct elliptic invariant tori for
near-constant vector fields. There, the re-normalization Y 7→ T ∗Y includes a change of
coordinates on Td via a matrix in SL(d,Z). Solving I−Y = 0 exactly, for a proper choice
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of I−, results in a transformation R that involves no loss of domain (analyticity). In some
special cases, R is in fact a dynamical system [8,11]. Then the analogue of the manifold
W in Theorem 1.1 is the stable manifold of R at a fixed point.

The transformation R considered here does involve a loss of domain (analyticity).
Still, we want to iterate R. At the n-th step, we use a version Rn of R with a projection
I−n that increases with n. This makes the above-mentioned elimination harder for large n,
but, as in other quasi-Newton schemes, this is compensated for by the fact that the error
(here the non-integrable part of the vector field) tends to zero quickly.

The manifold W described in Theorem 1.1 can be viewed as the local stable manifold
at Kω̄ for the sequence n 7→ Rn. For its construction we first extendRn to a transformation
Rn for parameterized vector fields X = X(z). After a suitable re-parameterization Sn that
depends on X, we set

Rn(X)(z) = Rn(X(Sn(z)) . (2.3)

For details we refer to Section 5.

2.2. Partial elimination of resonant modes

To make the condition I−Y ' 0 more precise, let us write X = Kω
c +F and assume that F

is small, say of order ε. We split F = I−F + I+F , where I+ = I− I−. By our choice of the
projection I−, the resonant part I+F of F is typically of order ε2, after a small reduction
of the domain. So the goal is to find V = I + U , with U of order ε, in such a way that
Y −Kω

c is of order ε2. To this end, we consider a curve

Y(z) = (I + zDU)−1(Kω
c + zF ) ◦ (I + zU) (2.4)

that interpolates between Y(0) = Kω
c and Y(1) = Y . Then

Y = Kω
c + Y ′(0) +R , Y ′(0) = F − (DU)Kω

c + (DKω
c )U , (2.5)

where R is the second order Taylor remainder in the expansion of Y(z) in powers of z,
evaluated at z = 1. The vague condition I−Y ' 0 is now made precise by requiring that
I−Y ′(0) = 0. Using that Kω

c is in the null space of I−, this leads to the equation

I−F −
[
(DU)Kc + (DKc)

]
U = 0 . (2.6)

After solving this equation, the expression (2.5) for Y becomes

Y = Kω
c + I+F +R . (2.7)

Having eliminated the nonresonant part of X up to order ε, we expect R to be of order
ε2, which would make Y −Kω

c of order ε2 as well.

Remark 1. As mentioned above, it is possible to solve the equation I−Y = 0 exactly.
This is very useful in a non-perturbative setting [11], since only I−F needs to be small.

In order to describe the projection I−, let us write a function g on Td × (−ρ, ρ) as a
Fourier-Taylor series

g(q, p) =
∑

(ν,k)∈I

gν,ke
iν·qpk , q ∈ Td , p ∈ (−ρ, ρ) , (2.8)
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where I = Zd ×N. In Section 3, we will define two index sets I
−
0 ⊂ I and I

−
1 ⊂ I. Then

I−0g is defined by restricting the sum in (2.8) to indices (ν, k) ∈ I
−
0 . And I−1g is defined

analogously. Using the notation X = (X0, X1) for a vector field, instead of X = (Q,P ),
we define I−X = (I−0X0, I

−
1X1). Given that (DKω

c )U = (0, c U1), the equation (2.6) can be
written as

I−0F0 =
[
ω · ∇q + cp∂p

]
U0 , I−1F1 =

[
ω · ∇q + cp∂p − cI

]
U1 . (2.9)

Notice that each of the modes (q, p) 7→ eiν·qpk in the expansion (2.8) is an eigenvector
of the operators [. . .] in the equation (2.9). The corresponding eigenvalues are

λj,ν,k = iω · ν + c(k − j) for Lj = ω · ∇q + cp∂p − jcI . (2.10)

We will choose I
−
j in such a way that these eigenvalues are bounded away from 0 on the

nonresonant subspace. Then the solution of (2.9) is given by

Uj =
[
ω · ∇q + cp∂p − cjI

]−1I−jFj , j ∈ {0, 1} . (2.11)

3. Controlling the transformation R

In this section, we define and control the KAM transformation R described above.

3.1. Diophantine condition

For the the remaining part of this paper we fix three constants ζ, χ > 0 and 1 < θ < 2.
The interval C mentioned before Theorem 1.1 is considered fixed as well. In order to leave
some room for estimates, we choose another open interval C′ that includes the closure of
C and is still bounded away from 0. Then the Diophantine condition imposed on ω̄ ∈ Rd
is that

|iω̄ · ν + c̄µ| ≥ 2ζ
(
|ν|+ |µ|

)1−d−χ
, (ν, µ) ∈ Zd+1 \ {(0, 0)} , (3.1)

holds for all c̄ ∈ C′. Notice that this is a standard Diophantine condition when restricted
to µ = 0, and it imposes a lower bound on |c̄| when restricted to (ν, µ) = (0, 1). The
remaining cases add nothing new to the condition (3.1).

In this section, we also fix an integer n > 0. The resulting transformation R will be
denoted by Rn later. Later on, when referring ****

The vector fields considered are of the form Kω
c + F . Our process of eliminating

nonresonant modes involves the following condition.

Definition 2. Our approximate Diophantine condition for a triple (ω, c, n) is

|iω · ν + cµ| ≥ ζ
(
|ν|+ |µ|

)1−d−χ
, (ν, µ) ∈ Zd+1 , 0 < |ν|+ |µ| < θn . (3.2)

This condition is assumed to hold in this section. Besides a smallness condition on
the function F , this determines the domain of the transformation R. Notice that ω and c
need not be real.
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A more practical criterion that implies (3.2) is described in the following proposition.
For z ∈ Cd define ‖z‖ = supi |zi|.

Proposition 3.1. Assume that c̄ ∈ C′, so that the Diophantine condition (3.1) holds. Let
m > 0, and assume that z ∈ Cd and v ∈ C satisfy the bound

‖z‖ , |v| ≤ ζθ−(d+χ)m . (3.3)

Then (ω, c,m) with ω = ω̄+z and c = c̄+v satisfies the approximate Diophantine condition
in the sense of Definition 2.

Proof. Consider ν ∈ Zd and µ ∈ Z satisfying 0 < |ν|+ |µ| < θm. Using the Diophantine
condition (3.1), we obtain

|iω · ν + µc| ≥ |iω̄ · ν + µc̄| −max
(
‖z‖, |v|

)(
|ν|+ |µ|

)
≥ 2ζ

(
|ν|+ |µ|

)1−d−χ − ζθm(1−d−χ)

≥ 2ζ
(
|ν|+ |µ|

)1−d−χ − ζ(|ν|+ |µ|)1−d−χ = ζ
(
|ν|+ |µ|

)1−d−χ (3.4)

This shows that (ω, c,m) satisfies an approximate Diophantine condition, as claimed. QED

Each of the d+ 1 components of one of our vector fields is a functions g that admits a
Fourier-Taylor expansion of the type (2.8). Later on, we will need vector fields that depend
on a parameter z ∈ Cd. Then the Fourier-Taylor coefficients gν,k of g are function of z as
well. The corresponding function space B will be specified in Section 5.

In what follows, B can be any commutative Banach algebra over C with a unit 1.
An example would be B = C. The norm of an element b ∈ B will be denoted by |b|. We
assume that |1| = 1, and that |ab| ≤ |a||b| whenever a, b ∈ B. To simplify notation, a
scalar multiple s1 of 1 will be written as s.

3.2. Spaces and basic estimates

Given ρ > 0 define Aρ(B) to be the space of all functions (2.8) with coefficients gν,k ∈ B,
that have a finite norm

‖g‖ρ =
∑

(ν,k)∈I

|gν,k|eρ|ν|ρk . (3.5)

Here |ν| denotes the `1 norm of ν. Notice that every function g ∈ Aρ(B) is analytic in the
complex open neighborhood of Td × {0} defined by | Im qi| < ρ and |p| < ρ.

When the choice of B does not matter, we simply write Aρ in place of Aρ(B). The
norm in AJρ for a finite set J is defined to be ‖g‖ρ = maxj∈J ‖g(j)‖ρ. This applies e.g. to

a vector field F = (F0, F1) with F0 ∈ Adρ and F1 ∈ Aρ.
We note that Aρ is a Banach algebra under pointwise multiplication, in the sense

that ‖gh‖ρ ≤ ‖g‖ρ‖h‖ρ for any g, h ∈ Aρ. Furthermore, g ∈ Aρ is bounded on the above-
mentioned complex domain and satisfies |g(q, p)| ≤ ‖g‖ρ. These properties imply the
following. Given two vector fields F = (F0, F1) and U = (U0, U1), consider the composed
map

G = F ◦ (I + U) , G(q, p) = F
(
q + U0(q, p), p+ U1(q, p)

)
. (3.6)
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Proposition 3.2. Let 0 < ρ′ < ρ. Assume that U = (U0, U1) belongs to Ad+1
ρ′ , and that

F ∈ Ad+1
ρ . If

ρ′ + ‖Uj‖ρ′ ≤ ρ , j = 0, 1 , (3.7)

then G belongs to Ad+1
ρ′ , and ‖Gj‖ρ′ ≤ ‖Fj‖ρ for j = 0, 1.

As mentioned earlier, θ ∈ (1, 2) is fixed globally, and n > 0 is fixed in this section.
To motivate the definition below, we note that only n ≥ n◦ will be needed later, for some
large positive integer n◦. Recall that I = Zd ×N.

Definition 3. Let I
−
0 =

{
(ν, k) ∈ I : 0 < |ν|+ k < θn

}
. Then set I

−
1 = I

−
0 \ {(0, 1)}, and

I
+

j = I \ I−j for j ∈ {0, 1}.

These index sets I
±
j define linear projections I±j on the spaces Aρ via

(I±jg)(q, p) =
∑

(ν,k)∈I±
j

gν,ke
iν·qpk , j ∈ {0, 1} . (3.8)

The subspaces I−jAρ and I+jAρ of Aρ will be referred to as the nonresonant and resonant

subspaces, respectively. The corresponding projections I± for vector fields G = (G0, G1)
are defined by I±G = (I±0G0, I

±
1G1).

Recall from (2.2) that we want to define R(X) = T ∗Y , where Y = V ∗X, with
V = I + U determined by the equation (2.11).

We start by decomposing X = Kω
c + F in such a way that F is normalized.

Definition 4. We say that F is normalized if α(F ) = β(F ) = γ(F ) = 0, where

α(F ) = F0,0,0 , β(F ) = F1,0,0 , γ(F ) = F1,0,1 . (3.9)

For α and β, this corresponds to the definition given in the introduction.
The following proposition describes an important feature of normalized resonant func-

tions. Its proof is straightforward.

Proposition 3.3. Let 0 < ρ′ < ρ. Assume that F ∈ Ad−1
ρ is normalized. Then

‖I+jFj‖ρ′ ≤ Qθ
n

‖I+jFj‖ρ , Q = max
{
ρ′/ρ, eρ

′
/eρ
}
. (3.10)

For simplicity, we will restrict to ρ ≤ 1 later on. Writing ρ′ = ρ− ε, we obtain

ρ′

ρ
= 1− ε

ρ
≤ e−ε/ρ ≤ e−ε =

eρ
′

eρ
. (ρ ≤ 1) (3.11)

So Q = eρ
′−ρ in this case.
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3.3. First order elimination

In what follows, ρ > 0 and F ∈ Ad+1
ρ are considered fixed. Furthermore, we assume that

the triple (ω, c, n) satisfies the approximate Diophantine condition in Definition 2.
Consider U = L−1I−F as defined in (2.11).

Proposition 3.4. Let 0 < ρ′ ≤ ρ. Then U belongs to Ad+1
ρ′ and satisfies

θn‖Uj‖ρ′ , ‖∂qiUj‖ρ′ , ρ′‖∂pUj‖ρ′ ≤ ζ−1θ(d+χ)n‖I−jFj‖ρ′ , (3.12)

for every i ∈ {1, 2, . . . , d} and j ∈ {0, 1}.

Proof. Let j ∈ {0, 1}. Recall from (2.10) that the eigenvectors and eigenvalues of Lj are

eν,k(q, p) = eiν·qpk , λj,ν,k = iω · ν + c(k − j) . (3.13)

Restrict now to (ν, k) ∈ I−j . Then j − k > 0. Thus, if |ν|+ (k − j) < θn, then

|λj,ν,k| ≥ ζ
(
|ν|+ (k − j)

)1−d−χ
> ζθ(1−d−χ)n , (3.14)

by the condition (3.2). Using that k ≤ θn, we have

‖∂pL−1
j eν,k‖ρ′ = |λj,ν,k|−1k‖eν,k−1‖ρ′

= |λj,ν,k|−1k(ρ′)−1‖eν,k‖ρ′ ≤ (ρ′)−1ζ−1θ(d+χ)n‖eν,k‖ρ′ .
(3.15)

Taking the supremum over (ν, k) ∈ I
−
j yields an upper bound (ρ′)−1ζ−1θ(d+χ)n on the

operator norm of ∂pLjI
−
j acting on Aρ′ . This implies the bound in (3.12) on ∂pUj . The

remaining bounds in (3.12) are obtained similarly. QED

Corollary 3.5. Let 0 < ρ′ ≤ ρ. Then the operator norm of DU : Ad+1
ρ′ → A

d+1
ρ′ satisfies

‖DU‖ρ′ ≤ (d+ 1)Bn‖I
−
F‖ρ′ , Bn

def
= min{1, ρ′}−1ζ−1θ(d+κ)n . (3.16)

3.4. Change of coordinates

Our next goal is to estimate the vector field Y = V ∗X. Let

Z = X ◦ V = X ◦ (I + U) . (3.17)

Then Y admits the decomposition

Y = (I +DU)−1Z = Z − (I +DU)−1(DU)Z

= Kω
c + (Z −Kω

c )− (I +DU)−1(DU)Z .
(3.18)

Assumption 5. Given 0 < ρ′ < ρ and r ≥ 1, assume that F = rF satisfies

(a) ρ′ +Bn‖I
−F‖ρ′ ≤ ρ.
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(b) (d+ 1)Bn‖I
−F‖ρ′ ≤ 1

2 .
(c) |ω|+ |c|ρ′ +

(
|c|Bn + 1

)
‖F‖ρ ≤ B for some fixed B.

Lemma 3.6. Let 0 < ρ′ < ρ and r = 1. Under Assumption 5, we have

‖Z‖ρ′ ≤ B , ‖Y −Kω
c ‖ρ′ ≤ B

(
1 + 2(d+ 1)Bn

)
‖F‖ρ . (3.19)

Proof. First, we note that Kω
c ◦ (I + U) = Kω

c + (DKω
c )U , and thus

Z = X ◦ (I + U) = Kω
c ◦ (I + U) + F ◦ (I + U)

= Kω
c + (DKω

c )U + F ◦ (I + U) .
(3.20)

So by Proposition 3.2, Proposition 3.4, and Assumption 5.a, we have

‖Z −Kω
c ‖ρ′ ≤ ‖(DKω

c )U‖ρ′ + ‖F (I + U)‖ρ′ ≤ |c|‖U‖ρ′ + ‖F‖ρ
≤
(
|c|Bn + 1

)
‖F‖ρ .

(3.21)

Using Assumption 5.c and the fact that ‖Kω
c ‖ρ′ = |ω|+ |c|ρ′, this yields

‖Z‖ρ′ ≤ |ω|+ |c|ρ′ +
(
|c|Bn + 1

)
‖F‖ρ ≤ B . (3.22)

Notice that Corollary 3.5 and Assumption 5.b imply that ‖DU‖ρ′ ≤ 1
2 . Thus, using (3.18)

and the last two inequalities, we obtain

‖Y −Kω
c ‖ρ′ ≤ ‖Z −Kω

c ‖ρ′ + ‖(I +DU)−1(DU)Z‖ρ′
≤ ‖Z −Kω

c ‖ρ′ + 2‖DU‖ρ′‖Z‖ρ′

≤
(
|c|Bn + 1

)
‖F‖ρ + 2(d+ 1)Bn‖I

−
F‖ρ′B

≤ B‖F‖ρ + 2B(d+ 1)Bn‖I
−
F‖ρ′ .

(3.23)

This completes the proof of Lemma 3.6. QED

Recall from (2.5) that Y = Kω
c +I+F+R, where R is the second order Taylor remainder

in the expansion of Y(z) = (I + zDU)−1(Kω
c + zF ) ◦ (I + zU) in powers of z, evaluated

at z = 1. Formally, ‖R‖ρ′ is of the order of ‖F‖2ρ. The following lemma makes this more
precise. It is intended to be used with r−1 somewhat larger than ‖F‖ρ.

Lemma 3.7. Let 0 < ρ′ < ρ and r ≥ 2. Under Assumption 5, we have

‖R‖ρ′ ≤
B

r − 1

(
1 + 2(d+ 1)Bn

)
‖F‖ρ , (3.24)

Proof. Recall that Y = (I + DU)−1(Kω
c + F ) ◦ (I + U). Replacing F by F = zF in this

identity yields the vector field Y(z). Here we use that F 7→ U is linear. By assumption, F
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satisfies the bounds in Assumption 5 whenever |z| ≤ r. So we can apply Lemma 3.6 with
F in place of F . Using the representation

R =
1

2πi

∮
|z|=r

[
Y(z)−Kω

c

] dz

z2(1− z)
, (3.25)

this yields the desired bound

‖R‖ρ′ ≤
1

r(r − 1)
sup
|z|=r

‖Y(z)−Kω
c ‖ρ′ ≤

1

r(r − 1)
B
(
1 + 2(d+ 1)Bn

)
‖rF‖ρ .

QED

3.5. Normalization via translation

Recall that X = Kω
c + F , and that Y = X ◦ V admits a decomposition

Y = Kω
c +H , H

def
= I+F +R , (3.26)

with R as described above. We expect that H is much smaller in Ap+1
ρ′ than F is in Ad+1

ρ .

The reason is the factor Qθ
n

in Proposition 3.3 and the factor (r − 1)−1 in Lemma 3.7.
But β(Y ) is nonzero in general. To correct this, we choose a suitable p-translation T

and then define R(X) = T ∗Y . Here T is of the form Tτ (q, p) = (q, p + τ), and τ = τ(Y )
is determined by the condition β(T ∗Y ) = 0. This is possible in the following sense.

Proposition 3.8. Let 0 < ρ′′ < ρ′ and ε = (ρ′ − ρ′′)/2. Assume that H belongs to Ad+1
ρ′

and satisfies ‖H‖ρ′ ≤ min{|c|, 1}ε/2. Then there exists a unique solution τ of the equation
β(T ∗τ Y ) = 0 with |τ | ≤ ε. Furthermore,

|τ | ≤ |c|−1‖H‖ρ′ , ‖T ∗τ Y −Kω
c ‖ρ′′ ≤ ‖H‖ρ′ . (3.27)

Proof. For |τ | ≤ ε we have ‖TτH‖ρ′−ε ≤ ‖H‖ρ′ by Proposition 3.2. Thus,

|β(TτH)| ≤ ‖H‖ρ′ ≤
ε

2
,

∣∣∣∣ ddτ β(TτH)

∣∣∣∣ ≤ 1

ε
‖H‖ρ′ ≤

|c|
2
. (3.28)

Here we have used a Cauchy bound for the derivative. So the map τ 7→ −c−1β(TτH) is
a contraction on the disk |τ | ≤ ε. For the (unique) fixed point τ we have β(TτH) = −cτ .
Given that β(T ∗τ Kω

c ) = cτ , this yields β(T ∗τ Y ) = 0, as claimed.
Notice that |cτ | = |β(TτH)| ≤ ‖TτH‖ρ′′ ≤ ‖H‖ρ′ . This implies the first bound in

(3.27). Furthermore, ‖T ∗τ Y − Kω
c ‖ρ′′ = ‖T ∗τ H − (0, cτ)‖ρ′′ ≤ ‖TτH‖ρ′′ ≤ ‖H‖ρ′ . This

proves the second bound in (3.27). QED

Summary 6. The transformation R is defined on a domain in Aρρ with ρ > 0. Consider

a vector field X = Kω
c + F with F ∈ Ad+1

ρ normalized. To check whether X belongs to
the domain of R for a given n > 0, use Proposition 5.1 to verify that (ω, c, n) satisfies the
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approximate Diophantine condition (3.2). Then choose parameters 0 < ρ′′ < ρ′ < ρ. Now
check that F satisfies the smallness Assumption 5 for some (preferably large) value r ≥ 2.
Then Y = V ∗X is well-defined, and Lemma 3.7 yields a bound on the Taylor remainder
R. Finally, verify that H = I+F +R satisfies the norm bound assumed in Proposition 3.8.
Then R(X) = T ∗Y is well-defined and belongs to Ad+1

ρ′′ .

In what follows, n is no longer fixed. So if necessary, we denote R by Rn. And the
projections I± for vector fields will be be denoted by I±n.

4. Choice of domains

The goal now is to iterate the sequence n 7→ Rn. This involves choosing parameters
ρn, ρ

′
n, rn, and upper bounds ‖Fn‖ρn ≤ εn that propagate properly under iteration. Once

Fn is very close to zero, maintaining accurate bounds is straightforward, independently of
the values of d, ζ, χ, C and other constants. What is important for accurate bounds is to
optimize the earlier steps. This is best done in a concrete setting. So we aim for simplicity
at this point.

We start the iteration not with n = 1, but with n = n◦ for some (large) integer n◦ > 0.
Let % ∈ (0, 1] be fixed. In order to define our choice of domains, pick a positive integer n̄
such that %− 1/n̄ > 0. With ρ∞ ∈ [%− 1/n̄, %) to be determined later, set

ρm = ρ∞ +m−1 , m = n̄+ (0, 1, 2, . . .) . (4.1)

In what follows, we assume that n ≥ n◦ with n◦ > n̄. After having chosen n◦ later on,
we want our estimates to hold for ρn◦ = %. So our bounds will have to be uniform in the
choice of ρ∞ ∈ [%− 1/n̄, %]. This requirement is easy to satisfy.

Notice that the sequence m 7→ ρm is decreasing, with gaps ρm−1 − ρm bounded from
above and below by (m − 1)−2 and m−2, respectively. The domain radii that have been
used in Section 3 are related to the sequence m 7→ ρm via

ρn = ρ′′ < ρ′ = ρn + 1
2n
−2 < ρ = ρn−1 . (4.2)

So the domain of Rn is a subset of Ad+1
ρn−1

and the range is included in Ad+1
ρn , as described

in Summary 6. Due to the choices made above, we have ρn ≤ 1 for all n ≥ n◦. This is just
for convenience, so that we can use Proposition 3.3 with Q = eρ

′−ρ. For the factor r that
appears in Lemma 3.7, we use r = rn defined by

rn = eκϑ
n

, 1 < ϑ < θ < 2 , 1− ϑ−1 < κ < 1 , (4.3)

where, κ and ϑ are fixed parameters.

Consider now Xn◦ ∈ Ad+1
ρn◦

. We would like to construct the sequence of vector fields

Xn = Rn(Xn−1) , n = n◦ + (1, 2, 3, . . .) . (4.4)

If Xm is well-defined, then we set ωm = α(Xm) and cm = γ(Xm). This defines a decom-
position Xm = Kωm

cm + Fm, with Fm normalized in the sense of Definition 4.
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Lemma 4.1. Let C > 0. If n◦ is chosen sufficiently large, then the following holds. Let
n > n◦. Assume that (ωn−1, cn−1, n) satisfies an approximate Diophantine condition in
the sense of Definition 2, and that the bounds

‖Xm‖ρm < C −m−1 , ‖Fm‖ρm < e−ϑ
m

, (4.5)

hold for m = n−1. Then Xn = Rn(Xn−1) is well-defined and, together with the associated
function Fn, satisfies the bounds (4.5) with m = n.

Proof. Let n > n◦, and assume that Xn−1 satisfies the hypotheses of Lemma 4.1. Recall
from (3.26) that

Y n −Kωn−1
cn−1

= Hn = I+nFn−1 +Rn−1 . (4.6)

Let ρ′ = ρn + 1
2n
−2 and ρ = ρn−1. Then by Proposition 3.3, we have

‖I+nFn−1‖ρ′ ≤ e(ρ′n−ρ)θ
n

‖I+nFn−1‖ρ < e−
1
2n
−2θne−ϑ

n−1

. (4.7)

And by Lemma 3.7, we have

‖Rn−1‖ρ′ ≤ C1r
−1
n Bn‖Fn−1‖ρ < C2e

−κϑnθ(d+χ)ne−ϑ
n−1

. (4.8)

Here, and in what follows, C1, C2, . . . denote positive constants that depend only on the
parameters d, ζ, χ, θ, ϑ, κ, C, C′. And we assume that n◦ has been chosen sufficiently large.

Then the bound in (4.7) on I+nFn−1 is smaller than the bound in (4.8) on Rn−1. Thus,

‖Hn‖ρ′ < C3e
−κϑnθ(d+χ)ne−ϑ

n−1

= C3θ
(d+χ)ne−(κ+ϑ−1)ϑn . (4.9)

By Proposition 3.8, we now have a bound

‖Fn‖ρn = ‖Xn −Kωn
cn ‖ρn ≤

∥∥Xn − Y n
∥∥
ρn

+
∥∥Y n −Kωn

cn

∥∥
ρn

≤ ‖Fn −Hn‖ρn +
∥∥Y n −Kωn−1

cn−1

∥∥
ρn

≤ 2
(
‖Hn‖ρ′ + ‖Fn−1‖ρn

)
≤ C4θ

(d+χ)ne−(κ+ϑ−1)ϑn < e−ϑ
n

.

(4.10)

This proves that the second inequality in (4.5) holds for m = n. The first inequality is
clearly satisfied as well. QED

A bound analogous to (4.10) applies to ‖Xn −Kωn−1
cn−1 ‖ρn . So

‖ωn − ωn−1‖ , |cn − cn−1| < e−ϑ
n

, (4.11)

if n◦ has been chosen sufficiently large. This may suggest that we can iterateR indefinitely,
getting n 7→ ωn and n 7→ cn to converge, with limits close to αn◦ and cn◦ , respectively.
The (only) problem is that the approximate Diophantine condition (3.2) could fail after a
finite number of iterations.
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5. Parameterized vector �elds

We need to ensure that the sequence n 7→ ωn converges to ω̄. This can be achieved (only)
by fine-tuning the initial value of ωn◦ . So this value should depend on a parameter, that
can be adjusted properly.

5.1. The transformation R

Our parameter z ∈ Cd will be restricted to some (small) ball D ⊂ Cd, centered at the
origin. Then a parameterized vector field can be viewed as a function X : D → Ad+1

ρ .
Defining R pointwise via R(X)(z) = R(X(z)), we set

R(X) = X̃ ◦ S , X̃ = R(X) . (5.1)

for some suitable re-parameterization map S : D̃ → D that depends on X. We also write
this as R = S∗ ◦ R.

To be more precise, assume that α(X) = ω with ω(z) = ω̄ + z. The goal is to choose
S in such a way that α(R(X)) = ω as well. Setting ω̃ = α

(
X̃
)
, the equation for S is

ω̃ ◦ S = ω , ω(z)
def
= ω̄ + z . (5.2)

In order to solve this equation, consider the decomposition

ω̃(z) = ω̄ + z + w(z) , S(z) = z − σ(z) . (5.3)

Then the equation ω̃(S(z)) = ω̄ + z for S becomes ω̄ + z − σ(z) + w(z − σ(z)) = ω̄ + z,
which simplifies to

σ(z) = w(z − σ(z)) . (5.4)

Given δ > 0, denote by Dδ the open disk in Cd defined by the condition ‖z‖ < δ. The
space Bδ is defined as the vector space of all analytic functions f : Dδ → C that extend
continuously to the closure of Dδ, equipped with the sup-norm |f |δ = supz∈Dd

δ
|f(z)|. For

ω ∈ Bdδ we use the norm ‖ω‖δ = supi |ωi|δ.

Proposition 5.1. Let 0 < δ′′ < δ. Define δ′ = (δ + δ′′)/2 and ε = (δ − δ′′)/2. Assume
that w belongs to ∈ Bdδ and satisfies ‖w‖δ ≤ ε/2. Then the equation σ = w ◦ (I− σ) has a
unique solution σ ∈ Bdδ′ satisfying ‖σ‖δ′ ≤ ‖w‖δ. So S = I + σ maps Dδ′′ into Dδ.

Proof. We regard (5.4) as a fixed point problem for the map σ 7→ w ◦ (I + σ) on the disk
‖σ‖δ′ ≤ ε. On this disk we have

‖w‖δ′ ≤ ε/2 , ‖Dw‖δ′ ≤ ε−1‖w‖δ ≤ 1
2 . (5.5)

Here we have used a Cauchy bound for the derivative. So the map σ 7→ w ◦ (I + σ) is
a contraction on the disk ‖σ‖δ′ ≤ ε. For the (unique) fixed point σ we have the bound
‖σ‖δ′ = ‖w ◦ (I + σ)‖δ′ ≤ ‖w‖δ, as claimed. QED

At this point, we could characterize the domain of R as was done for R in Summary 6.
But the extra conditions on F are mild, so we refrain from doing this.

In what follows, n is no longer fixed. So if necessary, we denote R by Rn.
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5.2. Iterating R

Consider now iterating the sequence n 7→ Rn. At the m-th step we choose for δ the value

δm = e−m
3

, (5.6)

so that m 7→ δm/δm−1 decrease faster than exponential. This choice works for a proof of
Theorem 1.1, but it should be reasonable in other applications as well.

In what follows, we use the notation Aρ,δ = Aρ(Bδ). The norm of F ∈ Aρ,δ will be
denoted by ‖F‖ρ,δ. Consider vector fields Xm = Kωm

cm + Fm with Fm normalized. The
analogue of the property (4.5) for families is

‖Fm‖ρm,δm ≤ e−ϑ
m

. (5.7)

Definition 7. For m ≥ n◦ define Dm+1 to be the set of all vector fields Xm ∈ Aρm,δm
with the following properties. Define c◦m = cm(0) and vm = cm − c◦m. Then
(a) Xm takes values in Rd+1 for real arguments (q, p, z).
(b) Fm satisfies the bound (5.7).
(c) α(Xm) = ω, where ω(z) = ω̄ + z.
(d) v = vm satisfies the second bound in (3.3).

Theorem 5.2. If n◦ > 0 is chosen sufficiently large, then, with c◦n◦ ∈ C and for n =
n◦ + (1, 2, 3, . . .), the domain of Rn includes Dn, and Rn maps Dn into Dn+1.

Proof. First we note that, by construction, the reality condition (a) in Definition 7 prop-
agates under our iteration.

For n = n◦ + (1, 2, 3, . . .) we have the following. Assume that Xn−1 belongs to Dn.
So in particular, ωn−1 is the restriction of ω to Dδn−1

. On this domain we have |z| ≤ δn−1.
Thus, both bounds in (3.3) are satisfied for m = n − 1 and v = vm. Furthermore, given
that cn◦ ∈ C, it is clear from (4.11) that c◦n−1 ∈ C′. So by Proposition 3.1 with c̄ = c◦n−1,
the triple (ωn−1, cn−1, n) satisfies an approximate Diophantine condition in the sense of
Definition 2. Then by Lemma 4.1, the vector field Xn−1 belongs to the domain of Rn.
Here, and in what follows, we assume that n◦ has been chosen sufficiently large.

Let now X̃ = Rn(Xn−1). If we temporarily set Xn = X̃, then Xn satisfies property
(b) in Definition 7 with m = n. The same holds after re-parameterization.

So it suffices to verify that (c) and (d) hold after a re-parameterization X̃ 7→ Xn.
Notice that w = ω̃ − ω in (5.3). By (4.11) we have the bound

‖w‖δn−1
= ‖ω̃ − ω‖δn−1

< e−ϑ
n

. (5.8)

Choose δ′′ = δn. Then Proposition 5.1 applies with δ = δn−1. As a result, Xn = S∗X̃
belongs to Ad+1

ρn,δ′′
. This shows that property (c) holds for m = n.

To verify property (d) for n = m, we can use that the same property holds for
n = m− 1. So we have |vn−1| ≤ ζθ−(d+χ)(n−1). When combined with (4.11), this yields a
bound

|vn| ≤ 2ζθ−(d+χ)(n−1) . (5.9)
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However, this estimate is not sufficient and has to be improved.
To this end, we repeat the arguments after (5.8) for the choice δ′′ = (δnδn−1)1/2. The

function vn is still analytic on Dδ′′ and satisfies the bound (5.9). Given that vn vanishes
at the origin z = 0, its restriction to Dδn satisfies |vn| ≤ 2ζθ−(d+χ)(n−1)(δn/δn−1)1/2 by
Schwarz’s lemma. This implies property (d) of Definition 7 for m = n. QED

6. Proof of Theorem 1.1

In what follows, n◦ is assumed to be sufficiently large to have Xn−1 ∈ Dn for all n > n◦,
whenever Xn◦−1 ∈ Dn◦ . And we choose ρ∞ in the definition (4.1) of the sequence m 7→ ρm
in such a way that ρn◦ agrees with the parameter % that has been chosen in Theorem 1.1.

Denote by Xρ the real Banach space of all vector fields X ∈ Aρ(C)d+1 that satisfy
β(X) = 0, and that take values in Rd+1 when restricted to real arguments (q, p). Define
X ◦ρ to be the subspace of all H ∈ Xρ that satisfy α(H) = 0. And define X ◦◦ρ to be the
subspace of all F ∈ X ◦ρ that satisfy γ(F ) = 0.

We start the iteration of R with n = n◦ and a parameterized vector field Xn given
by Xn(z) = Kω̄+z

0 + Hn with Hn ∈ X ◦ρn . Notice that Hn = K0
cn + Fn, with cn = γ(Hn)

and Fn normalized.
Assume that Xn◦ belongs to the domain Dn◦+1 specified in Definition 7. By Propo-

sition 5.1 and (5.8), the re-parameterization map Sn used in the step Rn satisfies

‖Sn − I‖δn = ‖σ‖δn ≤ ‖w‖δn−1
< e−ϑ

n

, n > n◦ . (6.1)

This bound guarantees the existence of the limits

zn = lim
m→∞

zn,m , zn,m = Sn,m(0) , Sn,m = Sn+1 ◦ · · · ◦ Sm−1 ◦ Sm , (6.2)

for all n ≥ n◦. Here we use that Sn,m maps Dδm into Dδn , and that 0 belongs to all these
balls. The sequence of limiting values satisfies zn = Sn,m(zm) for all m > n ≥ n◦, and
zn → 0. From the bounds (5.7), it is clear that Xn(zn)→ Kω̄

c∞ in Aρ∞ for some constant
c∞. Due to the uniform bounds used in our estimates of Rn, and due to the uniform
convergence of zn,m → zn, we know that c∞ and each zn depends analytically on Hn◦ .

The function Ω mentioned after Theorem 1.1 is given by Ω(Hn◦) = zn◦ . And the
manifold M described in Theorem 1.1 is the graph of the map Hn◦ 7→ Xn◦(zn◦) on a
domain of vector fields H = K0

c + F with c ∈ C and F ∈ X ◦◦ρn◦ close to zero.

As a result of the above-mentioned iteration, we get a sequence of vector fields Xn(zn)
that are related via changes of coordinates,

Xm(zm) = V∗n,mXn(zn) , Vn,m = Vn+1 ◦ Tn+1 ◦ · · · ◦ Vm ◦ Tm .

By construction, the domain of Vn,m includes the complex open neighborhood Aρn of
Td × {0}, where | Im qi| < ρn and |p| < ρn. Furthermore, the maps Tk − I and Vk − I are

bounded in norm by Ce−ϑ
k

on their domains Aρ′
k
, where C is some fixed constants. Their

derivatives satisfy an analogous bound by Corollary 3.5. So it is clear that Vn,m → Vn
uniformly on Aρn , and that V∗nXn(zn) = Kω̄

c∞ , for all n ≥ n◦.
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This completes our proof of Theorem 1.1.

The following will be used in our application of Theorem 1.1 to the VdP flow.

Remark 8. Consider the restriction of our analysis to vector fields X = (X1, X0) with
the property that X1 has a constant component, say Xi

1. Then Xi
1 is resonant at each

iteration of R and thus remains unchanged. And the re-parameterization in R does not
change the parameter zi. So in the affine subspace of such vector fields, the manifold W
in Theorem 1.1 is trivially of codimension d− 1.

7. Proof of Theorem 1.2

We start by linearizing the VdP flow (1.6) in the plane y = (y1, y2), using the following
lemma. A proof of this lemma can likely be found elsewhere, but we include it here for
completeness.

Lemma 7.1. Let Y be a real-analytic vector field in some open domain in R2 that has an
attracting periodic orbit C in this domain. Let T be its period and α = 2π/T . Then the
flow ΦY for Y is real-analytically conjugate near C to a linear flow q̇ = α and ṗ = cp for
some c < 0. The conjugacy depends real-analytically on the vector field Y , in the sense
described below.

Proof. Consider a vector field ẏ = Y (y) with the indicated properties. As a first step, we
perform a real-analytic change of coordinates y = V (q, r) from an annulus Aε = T×(−ε, ε)
to an open neighborhood inR2 of the circle C. Subsequent coordinate changes map one such
annulus into another, with the size ε > 0 decreasing at each step. The vector Z = V ∗Y
belongs to one of our spaces Xρ. It will be clear from the description below that our
estimates are uniform for suitable choices of ε, ρ > 0. Pulling back Xρ via V defines
uniformity of bounds for the original vector field Y .

Defining V (q, 0) = ΦαqY (y) yields a map q 7→ y from T to C. Notice that every point
y = V (q, 0) is a fixed point of ΦTY . Since the torus is attracting, the derivative DΦTY has a
stable subspace Eq with eigenvalue λ ∈ (−1, 1). Pick a continuous family y 7→ `q of linear
isometries `q : R 7→ Eq. The choice is unique up to a sign, so this family is necessarily
real-analytic. Now consider the change of coordinates V defined by V (q, r) = V (q, 0)+`qr.

In these new coordinates, we have a vector field Z = V ∗Y , and a flow of the form

ΦtZ(q, r) =
(
q + tα, φtq(r)

)
, (7.1)

with DΦTZ (q, 0) = diag(1, λ). Our goal is to conjugate ΦZ to the linearized flow Ψ,

Ψt(q, r) =
(
q + tα,Dφtq(0)r

)
. (7.2)

Let us start with t = T , where Dφtq(0) = λ. By standard results on invariant mani-

folds, the map ΦTZ has a one-dimensional stable manifold W that passes through the point
(0, 0) and is tangent to the eigenspace (0,R) for the eigenvalue λ. Furthermore, W is the
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range of a function W from some open neighborhood of 0 in R to an open neighborhood
of (0, 0) in T×R, satisfying

ΦTZ ◦W = W ◦ΨT at q = 0 . (7.3)

In other words, W linearizes ΦTZ at q = 0. The identity (7.3) holds if T is replaced by nT
with n ≥ 0. And it extends to any fixed n < 0, if restricted to Aε with ε > 0 sufficiently
small.

We note that W is real-analytic. This can be seen e.g. by construction W via
Hadamard’s graph transform method: the curve W that linearizes the unstable mani-
fold for the map Φ−TZ at q = 0 is the unique fixed point of a contraction. The contraction
property is due to the fact that W (0) = 0 and W ′(0) = (0, 1) can be fixed, so that the
equation is really for W ′′. This yields a factor λ2 from the re-parameterization that appears
in the graph transform.

The goal now is to extend the conjugacy of ΦZ and Ψ to arbitrary times t ≥ 0. The
following is rather standard; see also [3]. To simplify the description, let us lift our flows
from q ∈ T to q ∈ R as 2π-periodic functions. For q in some open neighborhood of [−π, π],
define

H(q, r) = Φ
τ(q)
Z ◦W ◦Ψ−τ(q)(q, r) , τ(q) = q/α . (7.4)

Using the relation (7.3) and its counterpart where T is replaced by −T , we see that
q 7→ H(q, r) defines a real-analytic function on Aε, for ε > 0 sufficiently small. And a
straightforward computation shows that H ◦Ψt = ΦtZ ◦H for all t ≥ 0.

After the two changes of variables defined by V and H, we now have a flow Ψ that is
generated by

q̇ = α , ṙ = g(q)r , (7.5)

for some real-analytic function g : T → R. If c denotes the average value of g, then
g − c = G′ for some function G : T→ R. A straightforward computation shows that

q̇ = α , ṗ = cp , p
def
= e−G(q)/αr . (7.6)

Obviously we must have c < 0 for the flow to have an attracting periodic orbit. This
completes our proof of Lemma 7.1. QED

Consider now the VdP flow (1.6) for ε = 0 in the variables y = (y1, y2). It is of the
form ẏ = Y (y), with Y1(y) = y2, and with Y2 as defined in (1.6). The flow for this vector
field has an attracting periodic orbit. Its period T depends real-analytically on the the
parameter µ. For µ = 0 we have T = 2π, and it is well-known that T (µ)→∞ as µ→∞.
So ω2 = 2π/T can take on any value in (0, 1) as µ > 0 is being varied.

By Lemma 7.1, there exists a real-analytic change of variables (q2, p) 7→ (y1, y2) that
yields the flow (q̇2, ṗ) = (ω2, cp). If we include the circle ẏ0 = ω1 in our flow and set
Y0 = ω1, then we have a vector field Y on T × R2 with an attracting invariant torus.
Renaming y0 to q1, this flow is real-analytically conjugate to the flow

q̇ = ω , ṗ = cp , (7.7)
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for the integrable vector field Kω
c . To be more precise, the conjugacy is known to hold

only near the invariant torus. Denote by V the change of coordinates that conjugates Y to
Kω
c in the case ε = 0. For ε 6= 0 close to zero, we perform the same change of coordinates

to get a vector field X = V∗Y close to Kω
c .

As was mentioned above, in the case ε = 0 we can fix any desired frequency vector
ω ∈ (0, 1)×R and find parameter values (ω1, µ) for which the VdP vector field is conjugate
to Kω

c for some c < 0.
Consider now vectors ω close to a vector ω̄ that satisfies a Diophantine condition (1.4).

In fact, let us restrict to a codimension 1 situation where ω1 takes the fixed value ω̄1. As
mentioned in Remark 8, the manifold W is of codimension d − 1 = 1 in this restricted
setting. Under the assumption that T ′(µ̄) 6= 0, the frequency ω2 is a strictly monotone
function of µ near µ̄. And the curve ω2 7→ Kω

c crosses W transversally. Now it suffices to
note that transversality persists under small perturbations, which includes varying ε near
zero.

This concludes our proof of Theorem 1.2.
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